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Hartree-Fock polymer band-structure calculations with general atomic functions
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The momentum-space formulation of the Hartree-Fock equations for the linear chain of hydrogen atoms is
studied using purely numerical methods to evaluate the necessary multicenter integrals. Modifications of the
formulation to improve the convergence properties of the summations for the direct potential energy and the
numerical treatment of the logarithmic singularity in the exchange potential energy are described. The feasi-
bility of such calculations is illustrated by applying the methods using Slater orbitals and linear combinations
of Gaussian orbital§.50163-182@7)09604-3

I. INTRODUCTION problem investigated here is the calculation of the Hartree-
Fock electronic structure of the hypothetical system of a lin-
To a very large extent, first-principles electronic structureear chain of uniformly spaced H atomd ), with one Slater
calculations rely on bases of atomic Gaussian-type functionféinction centered on each nuclear site. The results are com-

(GTO’s) and large scale computer packages such agared with increasingly Iarge expansions of GTO'’s. We
GAUSSIAN 941 PLH-932 and CRYsTAL92 (Ref. 3 are widely choose to work within the framework of the Fourier space

used for carrying out molecular and crystal structure calcumethod of Harris and MonkhorStas formulated for model
lations. However, deficiencies in these calculations may rePolymers by Delhalle and Hartis(to be referred to as DH

sult from truncations Coup|ed with the wrong asymptotiCOWing to its convenience for dealing with the critical aSpeCt
properties of the Gaussian form as discussed for example Bf carrying lattice summations to convergence within the
Davidson and Fellet Efforts to correct this situation mainly Hartree-Fock approximation as discussed by Delhalle
consist of designing larger expansions of Gaussian functiongt al*?

with parameters selected to match specific properties: total The momentum-space representation of the Hartree-Fock
energy, electric and magnetic responses, molecular interagguations for a one-dimensional chéimill be reviewed in
tionS, etcs En|arging basis sets, however, leads to additionathe next section. In Sec. Ill two modifications of these equa-
problems such as linear dependences, which can rapidly b&ons to improve the numerical properties will be described.
come serious. In the case of extended systems, this problefine of these is a splitting of the direct potential energy into
is drastically amplified by its connection with the conver- two terms, one of which requires the evaluation of a screened
gence of lattice sum®’ In practice, problems arise as insta- €lectron-electron repulsion energy in direct space, and the
bilities in the SCF convergence steps, unphysical values d¥ther is a summation in momentum space for which the con-
the energy bands, etc. It may happen that lattice summationérgence rate is improved. The second modification involves
are not converged to sufficient accuracy, leading to erroréhe exchange potential energy and is constructed to improve
that arise from linear dependences that are reminiscent ¢he numerical treatment of the logarithmic singularity. The
basis set overcompleteness. These problems become mdpansions of the various quantitiéwave functions and
severe for systems with narrow band gaps, particu|ar|y medensitie$ in Spherical coordinates are described in Sec. IV.
tallic Systems_ Attempts to improve on the qua“ty of basissections VI and VIl describe in detail the numerical aSpeCtS
sets for extended systems thus cannot be separated from tBkthe calculation, and the results of applying the method to
problem of the convergence of lattice sums. In a recenthe cases that the single atomic orbital on each site is a single
study’ using Gaussian 4 orbitals of an alternating chain of GTO, a Slater orbital, and a linear combination of GTO's.

Li molecules, with a band gap of 2.5 eV, it was found that

converged results for the exchange energy could not be ob- Il. MATHEMATICAL FORMULATION

tained using the standard programH9e3.

In this paper we initiate a study of the feasibility of com-
puting electronic structures of linear periodic systems as
model of polymers using methods that are largely numerica
With rapid advances in computer technology, it is becoming“”'ts’

The Hamiltonian for the 1), system, which will be con-
idered to be a linear chain &f atoms with an internuclear
iSpacingd and periodic boundary conditions, is, in atomic

possible to carry out molecular calculations using orbitals N 1 N
that are given purely numericalfythereby avoiding the less H=Y | —Zv2+v (r) |+ D Ir—ri|"+U,
than satisfactory representation provided by GTO'’s. The S22 MY S '
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wherer; is the position vector of electron V,(r;) is the The kinetic energy functiorm (k) is given by[DH, Eq.
nuclear attraction potential energy of electiogiven by (26)]
N/2 c? N/2 .

V(== 3 Jri- pd| @ Tho=-5 3 & [ xn*vour—vajdr. ©
whered denotes a vector of lengthin the z direction.U is The functionV(k), which stems from the nuclear attrac-
the nuclear-nuclear repulsion energy, given by tion energy, can be expressed as

N/2 N/2 N/2 N/2

u= > > |(u—p")d| "t (3) V(k=—C >, S g2k
w==N2Z 1 = N2, u' % u=—N/2 v=—N/2

An immediate difficulty is that the sums in Eg4)—(3) * 1
are separately divergent in the limit— since the energy Xf x(N*|r=pd| " *x(r—wvd)dr. (10
of the system is infinite and it is the energy per site that is of
interest. The formulation in DH has been constructed to This result can also be expressed in momentum represen-
overcome this problem. tation as
The Hartree-Fock wave function is the Slater determinant

formed from Bloch function®(k,r) defined by N/2

) 1
V(k=—5— > | e 95d(qk)ydg, (11
N/2 u=—N/2 q

bkr)= > e #ky(r—pud), (4 where
m=—N/2

wherek=j/N, j=0,...,(N—1). The functiony(r) can be N2

— 2 vk —-ig-
chosen to minimize the energy; typically it is a linear com- q)(q’k)_FZN/z e f e ' Ix(N*x(r—vd)dr (12
bination of GTQ’s, but in the present calculation it can be

arbitrary. The Bloch functions satisfy is the Fourier transform of
N/2
J b(k’,r)*b(k,rydr=Ng ., S(k), (5 Qr,k)= > ™ y(r)* x(r—vd). (13
—N/.
where It should be noted that

N/2

Skky= X ezﬂi"kfxm*x(r—vd)dr (6)

v=—N/2

S(k)=®(0k). (14)

The functionJ(k), which is the direct electron-electron re-
and should be multiplied byN~2S(k)~%2 to normalize  Pulsion energy, is given by

them.
It is shown in DH[EQg. (10)] that the total energy per site _C , ,
is given by J(k)= 22 BZdk P(k")
N/2
1 1 dq | -d ’
E=J P(K)| T(k)+V(k)+ =J(k)+ = K(k) |dk-+U/N. X > HICD(q,k)P(—q,k’), (15
BZ 2 2 N ) o?

™ which can be identified as the interaction energy of charge
The functionP (k) = 2/S(k) for the occupied states and 0 for distributions given by Eq(13) separated by.d.
the unoccupied states and BZ denotes the Brillouin zone. As discussed in DH, the separate contributions given by
Since the single-particle states are doubly occupied, a factdr(k) andJ(k) are divergent, and it is necessary to combine
of 2 is included. The Brillouin zone is the intervfd, 27/  one-halfV(k) with J(k)/2, and one-half withU/N, where
d] or, equivalently,[ —#/d, w/d]. Since only half the Bril- U/N is also expressed as an integralkoiEquationg11) and
louin zone is occupied, the integral is effectively over the(15) can then be combined to give
interval [—7/2d, =/2d]. It will be convenient to choose the
length unit such thatl=2. It is then necessary to multiply 1 N/2
the kinetic energy byC? and the potential energy terms by 2[V(k)+J(k yp 2 Z f e'*adp(q,k)
C, whereC=2may/d anday is the Bohr radius. Integrations
in k are then on the intervgl-1/4, 1/4. Then

X

fdk’P(k’)(I)(—q,k’)—l}. (16)
BZ
f P(K)S(k)dk=1. (8)
BZ

The sum onu is
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N/2 N/2 N/2
eil’-qzd, (17) U/N=— E Z |(M_M,)d|7l
u=—N/2 Nu==Nr2 w'==NI2, u' #p
C N/2 N/2 1
which in the limitN—< can be expressed as o2 f 2 el
2m°N) ==\ w'==NI2, u' #p q
N/2 o c f 15 ing-d 2 1 ! d
@2miudz_, z 85(q,—n). (18 272 |N M:—N/Ze ? q
u=—NJ2 n=—o
C i 1
It is then possible to replace tlug integration in Eq(16) by - ﬁf n=—c oa;—m-1 ?dq

a summation and write

C . 1
- 1=2|_Posiak| {E 5(qz—n)—1}?dq.

1 . k__c i J du B
Z V(K +J( )]—mn?:ﬁ 27z @ Un k) (22
X j dk' P(K")®(—u,,k’)—1]|. where we have used the identity
BZ
(19) 1 N/2 2 o
— e2mudz| 8(g,—n). 23
The integration onu in this expression is twofold in the N ,L:ZNxz ;m (:—n) 23

plane perpendicular to the chain withcoordinaten; the

argument u, indicates the point with coordinates . ) ) ,
(uy,uy,n). The integral of ther=0 term in this result would It is now possible to write the terms Mi(k)/2 andU/N in
be divergent if the two terms in the brackets were treatedn® total energy as

separately; because of E@l4) the two terms cancel for

UOHO.
The functlon'K(k'), which arises from the exchange po- _f P(V(K)dK+ —
tential energy, is given by 2)ez N
c o S(k)—D(uy k)

C Iﬁf dkP(k)f(Z ?nzn

K(k):——zf dk'P(k") ™ JBZ n=-—o
4’7T BZ
k
N2 dq / _ 7 )>du , (24)
2 fTGIM[q~d+2W(k—k )]q)(q,k)cb(—q,k,) u
wu=—Nr2J Q
(200 where again the integration om is twofold in the plane
perpendicular to the chain. We have also used the simple
In the limit N— oo this becomes, again applying E4.9), identity
K== kP " Lae=T —giiq?
K==7-2 . (k") pd%=g, ui=dctay. (25)
- du
Xn;_w uZ+(n+k— k')2q)(“n+k—k”k) The apparent divergence of the integral in E2fl) atu=0is
removed because of E¢L4). The integral is apparently also
XP(—Upsp_k K. (22 divergent at largau. This divergence is canceled, however,

by virtue of the identity

The integration onu in this expression is twofold in the

plane perpendicular to the chain witlz coordinate

n+k—Kk’; the argument,, . _, indicates the point with co- 1 ™

ordinates (, uy, n+k—k’). n;w uZ+n2 Ucotr( mu). (26)
These results do not completely remove the divergences,

since the energy termd/N and the integral o¥/(k)/2 must

be combined. To this end DH write Equation(24) then becomes

o)
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1f Pkadk+U— Cf dkP(k
EBZ()() N~ 22 ) o (k)

2w
XU (mm

>

n=—o

1
—2<D(un,k))du}. (27)
un

I1Il. MODIFIED EQUATIONS

Equations(7), (9), (16), (21), and(24) determine the en-
ergy per atom of the system. Equatiqii$) and(21) present

problems for numerical calculations, and these will be ad-

dressed in this section.
If the basis functiony(r) is ans-wave Slater orbital, the
Fourier transform®(q,k) behaves likeqg~* for g—o. The

integrand in they integration in Eq(16) then decreases like
q~“ and this is reflected in a slow convergence of the sum in

Eq. (19). In fact, carrying out theu integration for a fixed

n and®(u,,k) = (u?+n?) "2 shows that the terms must de-

crease liken™*, which is not very satisfactory. If(r) is a

linear combination of GTO’s, this problem would apparently
be less severe. However, to represent even approximately the
cusplike behavior of the electronic wave functions close to
the nuclei, it is necessary to include short-range GTO's and

these will require integration to large| values. In other

words, physically the electron wave function has large mo-
mentum components stemming from the singular nuclear
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in principle with the summation om, which should now
converge exponentially, rather than diverge.
With this modification the term in Eq16) arising from

V;(K) becomes

1 C N/2
SV +IK]= 75 2

2
T pu=—-N/2

dgq .
| e

xf dk’P(k")®(—q,k")
BZ
)\4
‘m—m} %9
and similarly Eq.(19) becomes
1 C < du
Vi HIK= 7 2 | 7P k)
xf dk'P(k")®(—u,,k")
Bz
)\4
- ] 9

he terms in this last summation should now decrease like
n~8 rather tham ~* because of the more rapid decrease of
the screened Coulomb potential in momentum space.

The divergence problems associated with the long-range

Coulomb potential, and these should be included to obtain § the Coulomb potential are removed from Eg§J) since

complete description of the system.
This problem has been reduced by writing Etjl) as

V(K)=Vi(K)+V5(k), (28)
where
N/2 ' X
Vi==52 2 | € e ek,
(29
N/2 2 2
Val=-52 2, wq'd(i‘qz:—iﬁ)z@(q,k)dq.

(30

It is now possible to write/,(k) in position space, in anal-
ogy to the transition from Eq.10) to Eq. (11),
N/2 N/2

Vok)=—C > 3 ek
u=—N/2 v=—N/2

><fX(Ir)*Vs(r—Md)X(r—vd)dr, (31
where

1

AT
F 1+ —|e M

2

V()= (32

is a screened Coulomb potential. It may be noted that the
long-range Coulomb potential has been replaced by the
screened potential in E¢B2). There is therefore no problem

the potentialVg is of short range. Evaluation &f,(k) does

require the evaluation of three-center integrals. However,

these reduce to two-center integrals that are readily calcu-

lated if two of the centers are the same, and are very small,

because of the short-range nature of the potential, otherwise.
The term in Eq(27) arising fromV(k) is

27S(k)
J' u(eZTru_l)
Z ND(up, k)
L BA(W2 D)2 du

1J' P(k)V,(k)dk U— CJ’ dkP(k
EBZ()l()JFN—mBZ (K)

. (39

It is seen that the convergence properties of the sum on
this equation are also improved by the splitting of the nuclear
attraction potential.

A numerical difficulty arises in computing the exchange
energies detemined by E@0). The q integration in the
n=0 term leads to a factor of the form|kA—k| in the k’
integral, which is therefore improper. The integral exists, but
its numerical evaluation is computationally difficult. This
problem can be reduced in a simple way by subtracting from
the factor®(q,k)®(—q,k’) a term S(k)S(k’)f(q) in the
n=0 term. This then eliminates the singularitycgt 0 in the
g integration. The functiorf(q) can be chosen arbitrarily
provided theq integral converges fog—«. In the present
calculation we have chosen

28
f(a)= Fad)’ (36)
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A corresponding term is then subtracted from the0 term
in Eq. (21). This leads to a correction term K(k), which
can be written, sinc®(k')S(k’)=2,

_C s du
A(k)——ﬁS(k)J'_lmdk fmf(uk,k,).
(37)

Again, theu integration is twofold andu,_,, denotes the
vector (Uy, uy, kK—k’). The integral can be computed in

cylindrical coordinates. Changing variables $&=|u,_ /|
gives, sincaudu=sds

C 1/4 w 1
A(k)=——S(k)f dk’f —f(s)ds. (38
T —1/4 [k—k'|S
It can then be shown that
C
A(k)=— ;S(k)[F(1/4+ K)+F(1/4—Kk)], (39
where
001 X
F(x)=xj —f(s)ds+f f(s)ds. (40
x S 0
For the functionf defined in Eq.(36),
E o= xa* 3 xa®
(X)__Zl(x2+a2)2_ﬂ3x2+a2_xn “+a
> X 41
+Eaarcta e (42

The contribution ofA (k) to the total energy in Eq7) can
be calculated analytically as

1 [(u4
Ec=——J P(K)A(K)dK
2) ua

C rua
=——f [F(1/4+k)+F(1/4—k)]dk
m)-1/4

2C (12
=——f F(k)dk. (42
7 Jo
In the present calculation
f':d_lazx2 le X
(X) x= 4_8a2+X2 ?n‘lxzﬁ-az

+ > X 43
Eaxarcta 2 (43

which is to be evaluated at=1/2.

It should be noted that the term F(X) in xInx leads to
the well-known logarithmic singularity iK' (k) at the top of
the Fermi surfacé® in this case ak=1/4.
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IV. SPHERICAL HARMONIC EXPANSIONS

In order to carry out the numerical calculations, it is nec-
essary to express the various functions in spherical coordi-
nates, that is, to expand them in terms of spherical harmon-
ics. In this section the relevant relations will be developed
and the numerical methods will be described.

A basic problem is to expand an angular momentum
eigenfunction centered at one poiat, in terms of angular
momentum eigenfunctions centered at another point, the ori-
gin. This expansion can be writtérin the form

fim(r—a)=2> > f(r,a(-1"

LM L'm’
L L A A
“l_m —wm m)YLM(a)YL’M’(r)v
(44)
where
fim(r)=F1(1)Yim(T) (45
and

fLo(r,a)=i""t "V 4am(21+ 1) (2L + 1) (2L + 1)]¥2
L L |>

X
0O 0 O
2 (= , -
x;J jL(ka)j (k) f (k) k2dk. (46)
0
Here?,(k) is the spherical Hankel transform 6f(r):
'ﬂ<k>=fo Ji(knfy(ryredr. (47)

In the present case, is in thez direction and =0, so that
the relations simplify tqomitting the factorYy, from f)

©

f(|r—a|)=L20 (2L+1)P (cos)f (r,a), (49
fL(r a)=3f' (ka)j, (kr)f(k)k2dk (49)
L(r, 7)o JL JL ,
?(k)=fwjo(kr)f(r)r2dr. (50)
0
The familiar plane wave expansion
e““=4w§ LY (F)* Yom(@)j(ar) (51)

applied in Eq.(12) leads to the expansion ¢b(q,k) in
spherical coordinates:

<D(q,k)=zo (2L+1)P (co) P (q,k), (52

An extension of this treatment to less singular terms in

Injk—k’| will be discussed in Sec. V.

where
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% The twofold integrations onu that occur in Eqgs(21),
‘I’L(q,k):4775|_of jo(ar) x(r)?r2dr (34), and (35) are calculated in cylindrical coordinates by
0 changing variables to=gu,|, |n|<s<~, in the same way
* that Eq.(38) was obtained. With this change of variable,
+87 Y, cog2m(vk—L/4))
v=1
du ds
o —— 27— (55)
Xfo jL(@nxu(r.2mw) x(r)rédr, (53 Un S
where terms inv and — v have been combined. The function and
xL(r,27v) comes from the translation of the basis orbital to
the site 2rv. It should be noted that PL(cosdy) =P.(n/s). (56)
@ (q,—-k)=(—1)‘P (g,k). (549  Then Eq.(34) becomes

ds
—[Vl(k)+J(k)]— > Z s Lgen(zul)PL(n/s)q)L(s,k)
A4
X f P(k’ )LE (2L"+1)P..(n/s)® . (s,k’)dK’ NSt (57)
In a similar way, Eq(35) becomes
1 u cC w2 A4
EJ P(k)Va(k)dk+ 1= 2l P(k)dkfo s S0~ m<1>0(s,k) ds
4
——2 (2= 8n0) E;en P(k)dk lnW(ZLJrl)PL(n/S)CDL(S,k)ds, (58)

where the terrn=_L=0 is excluded from the summation, and Eg1l) becomes

K(k):—if P(k’)dk’ 2 Z 2 (-1 (2L+1)(2L’ +1) EPL[(n+k—k’)/S]PL,[(n+k—k’)/s]
27 Bz n+k—k’|S

=-*Ll=0'-9
8

a
2)45(k)5(k )

D (s, k)P (s,k')— 5L05L/05n0(s Ta

ds+A(k), (59

where the final term in the square brackets comes from thbe 128 or 256. This method was used to compute all the
counterterm which has been included to remove the logarithspherical Hankel transforms, although it is true that the func-

mic singularity. tionsf (r,a) defined in Eq(50) can be obtained analytically
for the Slater orbitals used here.
V. NUMERICAL METHODS The infinite integrals on the intervalsne) and

(n+k—k’,) required in Eqs(57), (58), and(59) have been

The numerical methods have been based to a large extespmputed by translating them to the interval¢p, The in-
on an accurate and efficient method for computing sphericakegral on the interval(0,1) is computed using Gauss-
Hankel transforms?*®as used in Eqg49), (50), and(53).  Legendre integration omg, points and the integral on
In this method, the function§(r) and f(k) are defined on (1,©) is transformed to (&) by making the change of vari-
logarithmic meshes, i.e., uniformly in variablgs=Inr, ables=¢' and using Gauss-Laguerre integration, again with
x=Ink. In these coordinates, it is possible to compute theng, points. It is necessary, however, to interpolate the func-
transform by two applications of a numerical Fourier trans-tions® (s,k) from the logarithmic mesh to the new integra-
form, which can be carried out very efficiently using the FFTtion points. This has been done using six-point polynomial
algorithm. This approach furthermore yields accurate resultsiterpolation.
at large values of the transform variable, which are very As remarked above, the functior,(k), as given in Eq.
difficult to obtain using more conventional methods. (31), is computed by expanding the third factor about the

The p and k values are given by;=pmint (i—1)6p, common center if two of the centers coincide, i.e.uif 0,
Ki=Kkmint(i—1)8p,i=1,... N, N=2". Typically, N will v=0, or u=v. If the three centers are all different(r) and
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x(r—wvd) are expanded about the nuclear center, jual,

using Eq.(48). In the first case, only the terin=0 contrib-
utes to the integral, and in the second case, the resulting sufis

on L converges rapidly. 8
The integrations ok andk’ have been computed using 1o

Gauss-Legendre integration ap points on the intervdl—1/

4, 1/4]. A problem arises with this, however, in that the

nonanalytic term ink—k’| cannot be handled properly by

Gaussian integration, despite the fact that it is multiplied by
a function that vanishes &=k’. These logarithmic terms
arise from the highest degree terms in the Legendre polyno-

mials in Eq.(59), which are, forn=0,
(2L—1)!! L
L!

—K’'
S

Therefore, Eq(59) has been modified to

~1t(2L+1)

K(k)———f P(k")dk’ E 2 2

n=—o L= OLr 0

X(2L' +1)J ( P [(n+k—Kk')/s]P_.

X[(n+k—k’ )/S]CDL(S,k)(I)L/(S,k’)
a8

— Bno(k— k) g (K)o (K )(—2+—a2)—

+A(k), (60)

where

(2L-1)!

(k)= Tllm s P (s,k)

s—0

=476 fw r)2r2dr+8—w
~4moLo | x( (2L+1)L!

X 21 cod2m( Vk—L/4))fmI'LXL(I',27TV)
v= 0

X x(r)r2dr. (61)

The counterterms involve
- 8

[ e to Lo Lo~ Lngeina
s adt 9T e 22972

—In|k—k’|, (62

where

a2

Q= k=K

All the terms but the last are analytic knandk’ and are

included with the original terms in the numerical integration. 4

The term in Ifk—k’| in the total energy in Eq(7) is
treated separately by approximating the prodeck) ¢, (k)
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TABLE |I. Dependence of results am,.
T 2 V, E
0.474461 —-0.648750 —0.298578 —0.472867
" —0.648753 —0.298592 —0.472884
" —0.648746 —0.298594 —0.472879
" —0.648 747 " —0.472 880
1/4
j f K™k’ "(k—k") n|k—k'|dk dkK
14) - 14
1 m+n—p
ZWE (—1)””( )( )
Pq p q
2p+a
X
(p+tA+1)(p+q+A+2)
In2 ! ! 63
n p+A+1 p+g+A+2 63

if m+n+X\ is even and is zero im+n+X\ is odd. The
polynomial approximation is obtained by expanding
P(k) . (k) in Legendre polynomials inld using Gaussian
integration orf —1/4, 1/4). Cancellation errors proved to be a
problem in the calculation of these counterterms for large
values ofL; however, it was found that it was sufficient to
include only terms withL,L’<2 to overcome the problem
with the numerical integration.

VI. NUMERICAL RESULTS

In this section we present results of the application of
these methods for the cases tlyét) is a linear combination
of GTO’s and a Slater orbital. The former is much more
tractable numerically, since the Gaussian functions are
smoother and decrease much more rapidly than Slater func-
tions in both position and momentum space.

Initially we look at the single GTO case considered by
DH:

x(n=e ", (64)

with {=0.362 08, and an internuclear spacing of 1.915. The
numerical accuracy is governed by a large number of param-
eters. These are the parameters that govern the numerical
meshesN=2", the number of mesh points in theand «
meshesn,, the number of mesh points jr-1/4, 1/4] in the

TABLE Il. Dependence of results om, .

Ny T Vy Vy E
0.474455 —0.648745 —0.298486 —0.472776
6 0474461 —0.648747 —0.298595 —0.472881
8 " v —~0.298594 —0.472 880

as a polynomial ink and evaluating the resulting integral 19 " " " "

analytically using
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TABLE lll. Dependence of results 00y, Lmax andnmax. TABLE V. Dependence of results om, in the Slater orbital
case.
Vmax Lmax Nmax T \Z Vy E
1 2 0 0.454271-0.6457310.289 160 —0.480 628 ! Ve Vx c
1 2 1 " —0.645 823 —0.289 185 —0.480 737 4 0548021 -—-0.776975 —0.314386 —0.534340
1 2 2 " " " " 6 0548192 -—-0.777036 —0.299832 —-0.528677
2 2 2 0.472145-0.648 044 —0.297 213-0.473 111 8 0548187 —-0.777034 —0.299932 —0.528779
3 2 2 0.474470—0.648 098 —0.297 400 —0.471 028 10 " " —0.299928 —0.528 775
4 2 2 0.474 461-0.648 099 —0.297 399 —0.471 037
5 2 2 0.474460-0.648 099 —0.297 399 —0.471 038 _ S . .
5 3 2 " 0648181 —0.298 511 —0.472 231 €vidently obtained including only ternms=0 and=1 in the
5 4 2 " 0.648 782 — 0.298 584 — 0.472 906 §um_mation, and that comparqble accuracy is obtained by
5 5 2 " 0.648 784 —0.298 598 — 0.472 921 limiting the sums onu a'nd.v in Egs. (63) and (31) by
5 § 2 " 0.648 747 — 0298 594 — 0.472 880  Vmax— 4. Thgz results also indicate that the convergence of the
5 7 9 " 0.648 747 —0.298 592 —0.472 879  SUms onL is slower, although the summation for the ex-
5 8 2 "  —0648736—0.298 591 —0.472 867 gg?;gelgrée;%iuﬁé'd apparently be restricted py,=6 to
5 g 2 ” Y . Y y, and by =4 to.obtaln 10* accu-
5 10 2 ” 0,648 734 Y 0472865 Aoy It may be noted that the sums in E¢57) and (58)

scale likel . Whereas the calculation of E(p9) scales like
L2 It would therefore be more efficient to use a larger
value of L, in the first two than in the third. It would

k andk’ meshesns the number of mesh points in the inte- gpparently also be quite feasible to use a convergence accel-
grations on s; and parameters that govern the truncations @kation technique on the’ andL sums in Eq.(57) and the

the infinite summationsv,y, the maximum ofu andv in | sym in Eq.(58).

Egs. (30) and (53); Lmax, the maximum ofL in angular An accurate value 0E = —0.472 139 has been calculated
momentum suUmMsNpay, the maximum ofn in Egs. (57),  py Delhalleet al? for the abovey(r) andd=2.0. The cor-
(58), and(59). responding numerical result, computed witN= 256,

We consider first the dependence of the results on thgaIS= 14, Ne=10, Vyw=5, Lmam=10, and Npm=1 is

numerical meshes. The results that are given are for truncg&— _ g 472 141. The small discrepancy apparently arises
tion parameters ma=6, Vmax=4, andnma,=2. The quanti-  |argely from the truncation of the angular momentum sums.

ties computed are the kinetic energy the direct potential Similar calculations have been carried out for the Slater
energyVy, the exchange energy,, and the total energy qrpita]
E.

Results obtained fa =128 andN=256 withng=20 and x(r)=e ¢, (65)

n,=10 differed by at most 1 for V4. Presumably, then,

results obtained witiN=256 are valid to 10°%; since the where/=1.156. Because of the long-range behavior of the

times required for the two calculations were virtually the Slater orbital in momentum space, it is difficult to obtain

same, all the calculations have been made With256. accuracies comparable to those obtained for the GTO’s. For
Table | shows the dependence of the resultsignwith  example, for N=128, 256, and 512, values o¥y of

n,=20. It is evident that results accurate to f0can be

obtained withng~12. Table Il shows the dependence of the TABLE VI. Dependence of results o,y Lmax, @ndnpayin

results onn,, the number of points in the integrations kn the Slater orbital case.

andk’. It is seen that six-figure accuracy can be obtained

with a very modest value ofi,~10. This excellent result ¥max Lmax Mmax T Va Vx E
requires the careful treatment of the terms itk4rk’| de- 5 2 2 0536184—0.771 438 —0.296 150 — 0.531 404
spnbed above; calculations ywthout this treatment did not 3 2 2 0549 269-0.775991 —0.298 961 — 0.525 683
y'efag%rqﬂarﬁg'e atﬁ]cé*?f%’c‘t"’g? tmt’]‘égt'_irgfr:e"?";‘_efg o4 2 2 0548187-07755780.298 623 -0526 014
mations on tShe \;v:curacy. It is ob;;rvedI tf?a‘t ‘?Lag]c:Jnrlacysius > 2 2 0547857-0.775495-0.298 546 ~0.526 148
6 2 2 0.547871-0.775470—0.298 550 —0.526 150
6 2 3 " —0.775 472 " —0.526 152
TABLE IV. Dependence of results ong in the Slater orbital 6 2 4 " —0.775 473 " —0.526 152
case. 6 3 4 " —0.775 617 —0.299 952 — 0.527 699
6 4 4 " —0.776 844 —0.299 921 —0.528 894

ng T Vy Vy E

6 5 4 " —0.776 858 —0.299 935 - 0.528 923
8 0.548187 —0.776814 —0.300003 —0.528574 6 6 4 " —0.776 936 —0.299 866 —0.528 932
10 " —0.777080 —0.299916 —0.528 809 6 7 4 " " —0.299 840 —0.528 908
12 " —0.777030 —0.299929 —-0.528773 6 8 4 " —0.776 902 —0.299 814 — 0.528 846
14 " —0.777035 —0.299929 -0.528776 6 9 4 " " —0.299 703 —0.528 835
16 " —0.777034 —0.299928 —-0.528775 6 10 4 " —0.776 874 —0.299 794 —0.528 797
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TABLE VII. Total energyE, kinetic energyT, direct potential energy¥y, exchange potential energy
V,, the single-particle energy at @(0), and thesingle-particle energy at the top of the Fermi surface,
€(1/4), for approximations to the Hslorbital given as a linear combination df GTO’s. The results are
calculated ford=1.8861 and/=1.1253.

N E T v Vy €(0) e(1/4)

1 —0.472 606 0.469104 —0.643740 —0.297970 —0.6731  —0.0779
2 —0.514 150 0503001 —0.721506 —0.295645 —0.7216  —0.1000
3 —0.525 423 0524186 —0.752618 —0.296991  —0.7279  —0.1133
4 —-0.528 021 0528108 —0.759021  —0.297109 —0.7294  —0.1165
5 —0.529 042 0529044 —0.760940 —0.297146  —0.7298  —0.1203
% —0.529 471 0529479 —0.761806  —0.297144  —0.7300  —0.1305

—0.776 797, —0.776 511, and—0.776 558 are obtained. effort. Analytic methods are undoubtedly more economical;
(The values ofT and V, are much less dependent dh)  however, for linear combinations of GTO’s, the computa-
These results suggest that the errorsNer512 may be of tional effort behaves lika*, the purely numerical approach
the order of 5 10 °. The calculations discussed below havemay become competitive for basis functions contracted on
been carried out with this value ®&f. Again, there is very even a rather small number of GTO’s.

little increase in computing time in going froM =256 to The situation is more difficult for the Slater orbital calcu-
N=512, so that if memory limitations are not a consider-lation, for which the numerical approach can apparently give
ation, this presents no difficulty. reliable results at the 10 level, but is open to some ques-

Table IV presents results comparable to Table I, showindion at the 106 level. Certain improvements can probably be
the dependence am,, and Table V, comparable to Table Il, made in the approach. An obvious one is to introduce a con-
shows the dependence ap. These results indicate that for vergence acceleration technique in the angular momentum
the integrations ors, and the integrations ok andk’, the  sums in the direct Coulomb energy. It may also be noted that
Slater orbital does not present significantly greater difficulty.the computational effort in computingy is proportional to

Table VI shows the dependence of the resultsvgg,, L max: Whereas fowV, it is proportional toLﬁqax so that it is
Lmax: @ndnpa. It is observed that it is necessary to go to possible to include much largér values in the sum.
much larger values o¥,,,, in order to obtain accuracies It is important to remember, however, that the problems
comparable to the GTO case. The reason for this is cleawith the Slater orbital arise because it gives a better repre-
VYmax governs the summations in Eq81) and(53) and over-  sentation of the actual single-particle wave function; i.e., if
laps of Slater orbital are significant at much larger separathe parameters are chosen to conform to the nuclear charge,
tions than are those of the GTO's. It is apparent also that th# can represent the cusp at the nucleus properly, and it gives
convergence of the angular momentum summations is slower more reasonable representation of the wave function at
than in the GTO case. These summations are governed bBgrge momenta. Another viewpoint is that although the ener-
the behavior of the orbitals in momentum space, for whichgies are calculated much more accurately in the GTO case,
the Slater orbitals fall off much more slowly than the GTO's. they are actually in error by more than 0.05 a.u.

The energy minimum computed with the parameters as An important question is whether these methods can be
given in the last line of Table VI andn,=12 is extended to realistic polymers. Both the separatioV ()
—0.529 471, obtained at a spacingl=1.8861 for intoV(k) andV,(k) and the elimination of the logarithmic
{=1.1252. The kinetic, direct potential, and exchange potensingularity in K(k) can apparently be generalized to more
tial energies are, respectively, 0.529 4790.761 806, and complicated systems. A limitation that may be important is
—0.297 144. Since these results are obtained optimizing om data storage; the quantitie® (s,k) require a large
both the spacing and, the virial theorem should be satisfied amount of memory that scales with the square of the number
exactly; the ratiol/E is in fact —1.000 015. of basis orbitals. Another difficulty can arise for nuclei of

We have also carried out the calculation at the energyarge Z, for which the range of the orbitals in momentum
minimum with the H 1s orbital approximated by linear com- space becomes large, and the calculation of the functions
binations of from 1 to 5 GTO'’s as given by Stew#rRe-  f (r,a) defined in Eq(49) becomes difficult, essentially be-
sults for the energy, the three contributions to the energycause of the oscillatory behavior of the spherical Bessel
and the single-particle energy at 0 and at the top of the Fernfunctions. The problem of extending the methods to more
surface are given in Table VII. The percentage deviationgomplex chain systems will be considered in future studies.
from the accurate results have been found to be comparable
to the percentage deviations of the approximate orbital as

given by Stewart. ACKNOWLEDGMENTS
VIl. DISCUSSION This V\_/ork has been supported _by the Natural Sciences
and Engineering Research Council of Canada. J.G.F. and
The results presented in Tables I-Ill indicate that forJ.D. kindly acknowledge the support obtained within the

GTO'’s the numerical methods discussed can give results aagreement for scientific cooperation between the Commu-
curate to one part in I® with fairly modest calculational nauteFranaise de BelgiquéC.G.R.l) and Canada.



2088 J. D. TALMAN, J. G. FRIPIAT, AND J. DELHALLE 55
1GAUSSIAN 94 Revision B.1, M.J. Frisch, G.W. Trucks, H.B. edited by H.F. SchaeféPlenum Press, New York, 19¥%1b) S.
Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheese- Wilson, Adv. Chem. Phys7, 439(198%; (c) T. Koga and A.J.
man, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghava- Thakkar, Can. J. Chen¥0, 362 (1992; (d) H.F. da Costa and
chari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Fores- D.A. Micha, J. Comput. Chenl.5, 653(1994.
man, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. €5 sSuhai, P.S. Bagus, and J. Ladik, Chem. PBgs467 (1982.
Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, 7G, Ajssing and H.J. Monkhorst, Int. J. Quantum Chet8, 733
J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, (1992,
J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-8| pjamant, J.G. Fripiat, and J. Delhalle, Int. J. Quantum Chem.
Gordon, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Pittsburgh, Symp.30, 1996(to be publishet
2 PA, 1995,‘ 9J.D. Talman, Int. J. Quantum Chem: Quantum Chem. Sy&fp.
J.M. Andre D.H. Mosley, B. Champagne, J. Delhalle, J.G. 321(1993
Fripiat, J.L. Brelas, D.J. Vanderveken, and D.P. Vercauteren, inlo,: E Harris 'and H.J. Monkhorst, Phys. Rev2B4400(1970
Methods and Techniques in Computational ~Chemisttyy; ;"o oue and FE. Harris, Phys. Reval, 6775(1989.
(METECC-94) edited by E. ClementiStef, Cagliarl, 1998 155 oy oue '3 Cizek, 1. Flamant, J.L. Calais, and J.G. Fripiat, J
Vol. B, p. 429; J.G. Fripiat, D.H. Mosley, B. Champagne, and T P e ! T T
Chem. Phys101, 10 717(1994.

J.M. Andre pLH-93 from METECC-94.
3C. Pisani, R? Dovesi, and C. Roettlartree-Fock Ab Initio Treat- '3(a) F. Seitz, The Modern Theory of SoliddcGraw-Hill, New
ment of Crystalline SystertSpringer-Verlag, New York, 1988 York, 1940; (b) H.J. Monkhorst, Phys. Rev. B0, 1504(1979.
R. Dovesi, V.R. Saunders, and C. Roetti, Ab initio Hartree- 15‘]-D- Talman, J. Chem. Phy80, 2000(1984.
Fock LCAO Program for Periodic SysteragysTAL92 J.D. Talman, J. Comput. Phy29, 35 (1978.
4E.R. Davidson and D. Feller, Chem. R&@6, 681 (1986. 10J.D. Talman, Comput. Phys. Com®0, 93 (1983.

5(@) T.H. Dunning and P.J. Hay, iMlodern Theoretical Chemistry YR.F. Stewart, J. Chem. Phys0, 2485(1969.



