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Hartree-Fock polymer band-structure calculations with general atomic functions
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The momentum-space formulation of the Hartree-Fock equations for the linear chain of hydrogen atoms is
studied using purely numerical methods to evaluate the necessary multicenter integrals. Modifications of the
formulation to improve the convergence properties of the summations for the direct potential energy and the
numerical treatment of the logarithmic singularity in the exchange potential energy are described. The feasi-
bility of such calculations is illustrated by applying the methods using Slater orbitals and linear combinations
of Gaussian orbitals.@S0163-1829~97!09604-5#
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I. INTRODUCTION

To a very large extent, first-principles electronic structu
calculations rely on bases of atomic Gaussian-type funct
~GTO’s! and large scale computer packages such
GAUSSIAN 94,1 PLH-93,2 and CRYSTAL92 ~Ref. 3! are widely
used for carrying out molecular and crystal structure cal
lations. However, deficiencies in these calculations may
sult from truncations coupled with the wrong asympto
properties of the Gaussian form as discussed for exampl
Davidson and Feller.4 Efforts to correct this situation mainly
consist of designing larger expansions of Gaussian funct
with parameters selected to match specific properties: t
energy, electric and magnetic responses, molecular inte
tions, etc.5 Enlarging basis sets, however, leads to additio
problems such as linear dependences, which can rapidly
come serious. In the case of extended systems, this pro
is drastically amplified by its connection with the conve
gence of lattice sums.6,7 In practice, problems arise as inst
bilities in the SCF convergence steps, unphysical value
the energy bands, etc. It may happen that lattice summat
are not converged to sufficient accuracy, leading to err
that arise from linear dependences that are reminiscen
basis set overcompleteness. These problems become
severe for systems with narrow band gaps, particularly m
tallic systems. Attempts to improve on the quality of ba
sets for extended systems thus cannot be separated from
problem of the convergence of lattice sums. In a rec
study8 using Gaussian 1s orbitals of an alternating chain o
Li molecules, with a band gap of 2.5 eV, it was found th
converged results for the exchange energy could not be
tained using the standard programPLH93.

In this paper we initiate a study of the feasibility of com
puting electronic structures of linear periodic systems a
model of polymers using methods that are largely numeri
With rapid advances in computer technology, it is becom
possible to carry out molecular calculations using orbit
that are given purely numerically,9 thereby avoiding the les
than satisfactory representation provided by GTO’s. T
550163-1829/97/55~4!/2079~10!/$10.00
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problem investigated here is the calculation of the Hartr
Fock electronic structure of the hypothetical system of a
ear chain of uniformly spaced H atoms (H)x with one Slater
function centered on each nuclear site. The results are c
pared with increasingly large expansions of GTO’s. W
choose to work within the framework of the Fourier spa
method of Harris and Monkhorst10 as formulated for mode
polymers by Delhalle and Harris11 ~to be referred to as DH!
owing to its convenience for dealing with the critical aspe
of carrying lattice summations to convergence within t
Hartree-Fock approximation as discussed by Delha
et al.12

The momentum-space representation of the Hartree-F
equations for a one-dimensional chain11 will be reviewed in
the next section. In Sec. III two modifications of these eq
tions to improve the numerical properties will be describe
One of these is a splitting of the direct potential energy in
two terms, one of which requires the evaluation of a scree
electron-electron repulsion energy in direct space, and
other is a summation in momentum space for which the c
vergence rate is improved. The second modification invol
the exchange potential energy and is constructed to impr
the numerical treatment of the logarithmic singularity. T
expansions of the various quantities~wave functions and
densities! in spherical coordinates are described in Sec.
Sections VI and VII describe in detail the numerical aspe
of the calculation, and the results of applying the method
the cases that the single atomic orbital on each site is a si
GTO, a Slater orbital, and a linear combination of GTO’s

II. MATHEMATICAL FORMULATION

The Hamiltonian for the (H)x system, which will be con-
sidered to be a linear chain ofN atoms with an internuclea
spacingd and periodic boundary conditions, is, in atom
units,

H5(
i51

N F2
1

2
¹ i
21Vn~r i !G1 (

i, j51

N

ur i2r j u211U, ~1!
2079 © 1997 The American Physical Society
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2080 55J. D. TALMAN, J. G. FRIPIAT, AND J. DELHALLE
where r i is the position vector of electroni . Vn(r i) is the
nuclear attraction potential energy of electroni given by

Vn~r i !52 (
m52N/2

N/2

ur i2mdu21 ~2!

whered denotes a vector of lengthd in thez direction.U is
the nuclear-nuclear repulsion energy, given by

U5 (
m52N/2

N/2

(
m852N/2, m8Þm

N/2

u~m2m8!du21. ~3!

An immediate difficulty is that the sums in Eqs.~1!–~3!
are separately divergent in the limitN→` since the energy
of the system is infinite and it is the energy per site that is
interest. The formulation in DH has been constructed
overcome this problem.

The Hartree-Fock wave function is the Slater determin
formed from Bloch functionsb(k,r ) defined by

b~k,r !5 (
m52N/2

N/2

e2p imkx~r2md!, ~4!

wherek5 j /N, j50, . . . ,(N21). The functionx(r ) can be
chosen to minimize the energy; typically it is a linear co
bination of GTO’s, but in the present calculation it can
arbitrary. The Bloch functions satisfy

E b~k8,r !* b~k,r !dr5Ndk,k8S~k!, ~5!

where

S~k!5 (
n52N/2

N/2

e2p inkE x~r !* x~r2nd!dr ~6!

and should be multiplied byN21/2S(k)21/2 to normalize
them.

It is shown in DH@Eq. ~10!# that the total energy per sit
is given by

E5E
BZ
P~k!FT~k!1V~k!1

1

2
J~k!1

1

2
K~k!Gdk1U/N.

~7!

The functionP(k)52/S(k) for the occupied states and 0 fo
the unoccupied states and BZ denotes the Brillouin zo
Since the single-particle states are doubly occupied, a fa
of 2 is included. The Brillouin zone is the interval@0, 2p/
d# or, equivalently,@2p/d, p/d#. Since only half the Bril-
louin zone is occupied, the integral is effectively over t
interval @2p/2d, p/2d#. It will be convenient to choose th
length unit such thatd52p. It is then necessary to multiply
the kinetic energy byC2 and the potential energy terms b
C, whereC52pa0 /d anda0 is the Bohr radius. Integration
in k are then on the interval@21/4, 1/4#. Then

E
BZ
P~k!S~k!dk51. ~8!
f
o

t

-

e.
or

The kinetic energy functionT(k) is given by @DH, Eq.
~26!#

T~k!52
C2

2 (
n52N/2

N/2

e2p inkE x~r !*¹2x~r2nd!dr . ~9!

The functionV(k), which stems from the nuclear attrac
tion energy, can be expressed as

V~k!52C (
m52N/2

N/2

(
n52N/2

N/2

e2p ink

3E x~r !* ur2mdu21x~r2nd!dr . ~10!

This result can also be expressed in momentum repre
tation as

V~k!52
C

2p2 (
m52N/2

N/2 E eimq–d
1

q2
F~q,k!dq, ~11!

where

F~q,k!5 (
n52N/2

N/2

e2p inkE e2 iq–rx~r !* x~r2nd!dr ~12!

is the Fourier transform of

Q~r ,k!5 (
n52N/2

N/2

e2p inkx~r !* x~r2nd!. ~13!

It should be noted that

S~k!5F~0,k!. ~14!

The functionJ(k), which is the direct electron-electron re
pulsion energy, is given by

J~k!5
C

2p2E
BZ
dk8P~k8!

3 (
m52N/2

N/2 E dq

q2
eimq–dF~q,k!F~2q,k8!, ~15!

which can be identified as the interaction energy of cha
distributions given by Eq.~13! separated bymd.

As discussed in DH, the separate contributions given
V(k) andJ(k) are divergent, and it is necessary to combi
one-halfV(k) with J(k)/2, and one-half withU/N, where
U/N is also expressed as an integral onk. Equations~11! and
~15! can then be combined to give

1

2
@V~k!1J~k!#5

C

4p2 (
m52N/2

N/2 E dq

q2
eimq–dF~q,k!

3F E
BZ
dk8P~k8!F~2q,k8!21G . ~16!

The sum onm is
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55 2081HARTREE-FOCK POLYMER BAND-STRUCTURE . . .
(
m52N/2

N/2

eimqzd, ~17!

which in the limitN→` can be expressed as

(
m52N/2

N/2

e2p imqz→ (
n52`

`

d~qz2n!. ~18!

It is then possible to replace theqz integration in Eq.~16! by
a summation and write

1

2
@V~k!1J~k!#5

C

4p2 (
n52`

` E du

u21n2
F~un ,k!

3F E
BZ
dk8P~k8!F~2un ,k8!21G .

~19!

The integration onu in this expression is twofold in the
plane perpendicular to the chain withz coordinaten; the
argument un indicates the point with coordinate
(ux ,uy ,n). The integral of then50 term in this result would
be divergent if the two terms in the brackets were trea
separately; because of Eq.~14! the two terms cancel fo
u0→0.

The functionK(k), which arises from the exchange p
tential energy, is given by

K~k!52
C

4p2E
BZ
dk8P~k8!

3 (
m52N/2

N/2 E dq

q2
eim[q–d12p~k2k8!]F~q,k!F~2q,k8!.

~20!

In the limit N→` this becomes, again applying Eq.~18!,

K~k!52
C

4p2E
BZ
dk8P~k8!

3 (
n52`

` E du

u21~n1k2k8!2
F~un1k2k8,k!

3F~2un1k2k8,k8!. ~21!

The integration onu in this expression is twofold in the
plane perpendicular to the chain withz coordinate
n1k2k8; the argumentun1k2k8 indicates the point with co-
ordinates (ux , uy , n1k2k8).

These results do not completely remove the divergen
since the energy termsU/N and the integral ofV(k)/2 must
be combined. To this end DH write
d

s,

U/N5
C

N (
m52N/2

N/2

(
m852N/2, m8Þm

N/2

u~m2m8!du21

5
C

2p2NE (
m52N/2

N/2

(
m852N/2, m8Þm

N/2

ei ~m2m8!q–d
1

q2
dq

5
C

2p2E F 1N S (
m52N/2

N/2

eimq–dD 221G 1q2dq
→

C

2p2E F (
n52`

`

d~qz2n!21G 1q2dq
5

C

4p2E
BZ
P~k!S~k!dkE F (

n52`

`

d~qz2n!21G 1q2dq,
~22!

where we have used the identity

1

N F (
m52N/2

N/2

e2p imqzG2→ (
n52`

`

d~qz2n!. ~23!

It is now possible to write the terms inV(k)/2 andU/N in
the total energy as

1

2EBZP~k!V~k!dk1
U

N

5
C

4p2E
BZ
dkP~k!F E S (

n52`

`
S~k!2F~un ,k!

u21n2

2
pS~k!

u D duG , ~24!

where again the integration onu is twofold in the plane
perpendicular to the chain. We have also used the sim
identity

E
2`

` 1

q2
dqz5

p

u
, u25qx

21qy
2 . ~25!

The apparent divergence of the integral in Eq.~24! atu50 is
removed because of Eq.~14!. The integral is apparently als
divergent at largeu. This divergence is canceled, howeve
by virtue of the identity

(
n52`

`
1

u21n2
5

p

u
coth~pu!. ~26!

Equation~24! then becomes
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1

2EBZP~k!V~k!dk1
U

N
5

C

4p2E
BZ
dkP~k!

3F E S 2p

u~e2pu21!
S~k!

2 (
n52`

`
1

un
2F~un ,k!D duG . ~27!

III. MODIFIED EQUATIONS

Equations~7!, ~9!, ~16!, ~21!, and~24! determine the en-
ergy per atom of the system. Equations~16! and~21! present
problems for numerical calculations, and these will be
dressed in this section.

If the basis functionx(r ) is ans-wave Slater orbital, the
Fourier transformF(q,k) behaves likeq24 for q→`. The
integrand in theq integration in Eq.~16! then decreases like
q24 and this is reflected in a slow convergence of the sum
Eq. ~19!. In fact, carrying out theu integration for a fixed
n andF(un ,k)5(u21n2)22 shows that the terms must de
crease liken24, which is not very satisfactory. Ifx(r ) is a
linear combination of GTO’s, this problem would apparen
be less severe. However, to represent even approximatel
cusplike behavior of the electronic wave functions close
the nuclei, it is necessary to include short-range GTO’s
these will require integration to largeuqu values. In other
words, physically the electron wave function has large m
mentum components stemming from the singular nuc
Coulomb potential, and these should be included to obta
complete description of the system.

This problem has been reduced by writing Eq.~11! as

V~k!5V1~k!1V2~k!, ~28!

where

V1~k!52
C

2p2 (
m52N/2

N/2 E eimq–d
l4

q2~q21l2!2
F~q,k!dq,

~29!

V2~k!52
C

2p2 (
m52N/2

N/2 E eimq–d
q212l2

~q21l2!2
F~q,k!dq.

~30!

It is now possible to writeV2(k) in position space, in anal
ogy to the transition from Eq.~10! to Eq. ~11!,

V2~k!52C (
m52N/2

N/2

(
n52N/2

N/2

e2p ink

3E x~r !*Vs~r2md!x~r2nd!dr , ~31!

where

Vs~r !5
1

r S 11
lr

2 De2lr ~32!

is a screened Coulomb potential. It may be noted that
long-range Coulomb potential has been replaced by
screened potential in Eq.~32!. There is therefore no problem
-

n

the
o
d

-
r
a

e
e

in principle with the summation onm, which should now
converge exponentially, rather than diverge.

With this modification the term in Eq.~16! arising from
V1(k) becomes

1

2
@V1~k!1J~k!#5

C

4p2 (
m52N/2

N/2 E dq

q2
eimq–dF~q,k!

3F E
BZ
dk8P~k8!F~2q,k8!

2
l4

~q21l2!2G ~33!

and similarly Eq.~19! becomes

1

2
@V1~k!1J~k!#5

C

4p2 (
n52`

` E du

un
2 F~un ,k!

3F E
BZ
dk8P~k8!F~2un ,k8!

2
l4

~un
21l2!2G . ~34!

The terms in this last summation should now decrease
n28 rather thann24 because of the more rapid decrease
the screened Coulomb potential in momentum space.

The divergence problems associated with the long-ra
of the Coulomb potential are removed from Eq.~31! since
the potentialVs is of short range. Evaluation ofV2(k) does
require the evaluation of three-center integrals. Howev
these reduce to two-center integrals that are readily ca
lated if two of the centers are the same, and are very sm
because of the short-range nature of the potential, otherw

The term in Eq.~27! arising fromV1(k) is

1

2EBZP~k!V1~k!dk1
U

N
5

C

4p2E
BZ
dkP~k!F E S 2pS~k!

u~e2pu21!

2 (
n52`

`
l4F~un ,k!

un
2~un

21l2!2
D duG . ~35!

It is seen that the convergence properties of the sum onn in
this equation are also improved by the splitting of the nucl
attraction potential.

A numerical difficulty arises in computing the exchan
energies detemined by Eq.~20!. The q integration in the
n50 term leads to a factor of the form lnuk82ku in the k8
integral, which is therefore improper. The integral exists, b
its numerical evaluation is computationally difficult. Th
problem can be reduced in a simple way by subtracting fr
the factorF(q,k)F(2q,k8) a termS(k)S(k8) f (q) in the
n50 term. This then eliminates the singularity atq50 in the
q integration. The functionf (q) can be chosen arbitrarily
provided theq integral converges forq→`. In the present
calculation we have chosen

f ~q!5
a8

~q21a2!4
. ~36!
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A corresponding term is then subtracted from then50 term
in Eq. ~21!. This leads to a correction term inK(k), which
can be written, sinceP(k8)S(k8)52,

D~k!52
C

2p2S~k!E
21/4

1/4

dk8E du

u21~k2k8!2
f ~uk2k8!.

~37!

Again, theu integration is twofold anduk2k8 denotes the
vector (ux , uy , k2k8). The integral can be computed i
cylindrical coordinates. Changing variables tos5uuk2k8u
gives, sinceudu5sds,

D~k!52
C

p
S~k!E

21/4

1/4

dk8E
uk2k8u

` 1

s
f ~s!ds. ~38!

It can then be shown that

D~k!52
C

p
S~k!@F~1/41k!1F~1/42k!#, ~39!

where

F~x!5xE
x

`1

s
f ~s!ds1E

0

x

f ~s!ds. ~40!

For the functionf defined in Eq.~36!,

F~x!52
1

24

xa4

~x21a2!2
2

3

16

xa2

x21a2
2xln

x

Ax21a2

1
5

16
aarctanS xaD . ~41!

The contribution ofD(k) to the total energy in Eq.~7! can
be calculated analytically as

Ec52
1

2E21/4

1/4

P~k!D~k!dk

52
C

pE21/4

1/4

@F~1/41k!1F~1/42k!#dk

52
2C

p E
0

1/2

F~k!dk. ~42!

In the present calculation

E F~x!dx52
1

48

a2x2

a21x2
2
x2

2
ln

x

Ax21a2

1
5

16
axarctanS xaD , ~43!

which is to be evaluated atx51/2.
It should be noted that the term inF(x) in xlnx leads to

the well-known logarithmic singularity inK8(k) at the top of
the Fermi surface,13 in this case atk51/4.

An extension of this treatment to less singular terms
lnuk2k8u will be discussed in Sec. V.
n

IV. SPHERICAL HARMONIC EXPANSIONS

In order to carry out the numerical calculations, it is ne
essary to express the various functions in spherical coo
nates, that is, to expand them in terms of spherical harm
ics. In this section the relevant relations will be develop
and the numerical methods will be described.

A basic problem is to expand an angular moment
eigenfunction centered at one point,a, in terms of angular
momentum eigenfunctions centered at another point, the
gin. This expansion can be written14 in the form

f lm~r2a!5(
LM

(
L8M8

f LL8~r ,a!~21!m

3S L L8 l

2M 2M 8 mDYLM~ â!YL8M8~ r̂ !,

~44!

where

f lm~r !5 f l~r !Ylm~ r̂ ! ~45!

and

f LL8~r ,a!5 i l1L2L8@4p~2l11!~2L11!~2L811!#1/2

3S L L8 l

0 0 0D
3
2

pE0
`

j L~ka! j L8~kr ! f̃ l~k!k2dk. ~46!

Here f̃ l(k) is the spherical Hankel transform off l(r ):

f̃ l~k!5E
0

`

j l~kr ! f l~r !r 2dr. ~47!

In the present case,a is in thez direction andl50, so that
the relations simplify to~omitting the factorY00 from f )

f ~ ur2au!5 (
L50

`

~2L11!PL~cosu! f L~r ,a!, ~48!

f L~r ,a!5
2

pE0
`

j L~ka! j L~kr ! f̃ ~k!k2dk, ~49!

f̃ ~k!5E
0

`

j 0~kr ! f ~r !r 2dr. ~50!

The familiar plane wave expansion

eiq–r54p(
LM

i LYLM~ r̂ !*YLM~ q̂! j L~qr ! ~51!

applied in Eq.~12! leads to the expansion ofF(q,k) in
spherical coordinates:

F~q,k!5 (
L50

`

~2L11!PL~cosuq!FL~q,k!, ~52!

where



n
to

y
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FL~q,k!54pdL0E
0

`

j 0~qr !x~r !2r 2dr

18p (
n51

`

cos„2p~nk2L/4!…

3E
0

`

j L~qr !xL~r ,2pn!x~r !r 2dr, ~53!

where terms inn and2n have been combined. The functio
xL(r ,2pn) comes from the translation of the basis orbital
the site 2pn. It should be noted that

FL~q,2k!5~21!LFL~q,k!. ~54!
th
rit

xte
ic

th
s
T
ul
er
The twofold integrations onu that occur in Eqs.~21!,
~34!, and ~35! are calculated in cylindrical coordinates b
changing variables to s5uunu, unu<s,`, in the same way
that Eq.~38! was obtained. With this change of variable,

du

un
2→2p

ds

s
~55!

and

PL~cosuq!5PL~n/s!. ~56!

Then Eq.~34! becomes
1

2
@V1~k!1J~k!#5

C

2p (
n52`

` E
unu

`ds

s (
L even

~2L11!PL~n/s!FL~s,k!

3F E
BZ
P~k8! (

L8 even
~2L811!PL8~n/s!FL8~s,k8!dk82

l4

~s21l2!2G . ~57!

In a similar way, Eq.~35! becomes

1

2EBZP~k!V1~k!dk1
U

N
5

C

2pEBZP~k!dkE
0

`S 2p

e2ps21
S~k!2

l4

s~s21l2!2
F0~s,k! Dds

2
C

2p (
n50

`

~22dn0! (
L even

E
BZ
P~k!dkE

unu

` l4

s~s21l2!2
~2L11!PL~n/s!FL~s,k!ds, ~58!

where the termn5L50 is excluded from the summation, and Eq.~21! becomes

K~k!52
C

2pEBZP~k8!dk8 (
n52`

`

(
L50

`

(
L850

`

~21!L8~2L11!~2L811!E
un1k2k8u

` 1

s
PL@~n1k2k8!/s#PL8@~n1k2k8!/s#

3FFL~s,k!FL8~s,k8!2dL0dL80dn0
a8

~s21a2!4
S~k!S~k8!Gds1D~k!, ~59!
the
nc-

-

-
ith
nc-
a-
ial

he
where the final term in the square brackets comes from
counterterm which has been included to remove the loga
mic singularity.

V. NUMERICAL METHODS

The numerical methods have been based to a large e
on an accurate and efficient method for computing spher
Hankel transforms,15,16 as used in Eqs.~49!, ~50!, and ~53!.
In this method, the functionsf (r ) and f̃ (k) are defined on
logarithmic meshes, i.e., uniformly in variablesr5 lnr,
k5 lnk. In these coordinates, it is possible to compute
transform by two applications of a numerical Fourier tran
form, which can be carried out very efficiently using the FF
algorithm. This approach furthermore yields accurate res
at large values of the transform variable, which are v
difficult to obtain using more conventional methods.

The r and k values are given byr i5rmin1( i21)dr,
k i5kmin1( i21)dr, i51, . . . ,N, N52n. Typically, N will
e
h-

nt
al

e
-

ts
y

be 128 or 256. This method was used to compute all
spherical Hankel transforms, although it is true that the fu
tions f L(r ,a) defined in Eq.~50! can be obtained analytically
for the Slater orbitals used here.

The infinite integrals on the intervals (n,`) and
(n1k2k8,`) required in Eqs.~57!, ~58!, and~59! have been
computed by translating them to the interval (0,`). The in-
tegral on the interval~0,1! is computed using Gauss
Legendre integration onnGL points and the integral on
(1,̀ ) is transformed to (0,̀) by making the change of vari
ables5et and using Gauss-Laguerre integration, again w
nGL points. It is necessary, however, to interpolate the fu
tionsFL(s,k) from the logarithmic mesh to the new integr
tion points. This has been done using six-point polynom
interpolation.

As remarked above, the functionV2(k), as given in Eq.
~31!, is computed by expanding the third factor about t
common center if two of the centers coincide, i.e., ifm50,
n50, orm5n. If the three centers are all different,x(r ) and
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x(r2nd) are expanded about the nuclear center, i.e.,md,
using Eq.~48!. In the first case, only the termL50 contrib-
utes to the integral, and in the second case, the resulting
on L converges rapidly.

The integrations onk andk8 have been computed usin
Gauss-Legendre integration onnk points on the interval@21/
4, 1/4#. A problem arises with this, however, in that th
nonanalytic term inuk2k8u cannot be handled properly b
Gaussian integration, despite the fact that it is multiplied
a function that vanishes atk5k8. These logarithmic terms
arise from the highest degree terms in the Legendre poly
mials in Eq.~59!, which are, forn50,

~2L21!!!

L! Fk2k8

s GL.
Therefore, Eq.~59! has been modified to

K~k!52
C

2pEBZP~k8!dk8 (
n52`

`

(
L50

`

(
L850

`

~21!L8~2L11!

3~2L811!E
un1k2k8u

` 1

s S PL@~n1k2k8!/s#PL8

3@~n1k2k8!/s#FL~s,k!FL8~s,k8!

2dn0~k2k8!L1L8cL~k!cL8~k8!
a8

~s21a2!4Dds
1D~k!, ~60!

where

cL~k!5
~2L21!!!

L!
lim
s→0

s2LFL~s,k!

54pdL0E
0

`

x~r !2r 2dr1
8p

~2L11!L!

3 (
n51

`

cos„2p~nk2L/4!…E
0

`

r LxL~r ,2pn!

3x~r !r 2dr. ~61!

The counterterms involve

E
uk2k8u

` a8

s~s21a2!4
ds52

1

6
Q32

1

4
Q22

1

2
Q2

1

2
lnQ1 lna

2 lnuk2k8u, ~62!

where

Q5
a2

a21uk2k8u2
.

All the terms but the last are analytic ink and k8 and are
included with the original terms in the numerical integratio

The term in lnuk2k8u in the total energy in Eq.~7! is
treated separately by approximating the productP(k)cL(k)
as a polynomial ink and evaluating the resulting integr
analytically using
m

y

o-

.

E
21/4

1/4 E
21/4

1/4

kmk8n~k2k8!llnuk2k8udk dk8

5
1

22m12n1l11(
pq

~21!l1qS npD Sm1n2p

q D
3

2p1q

~p1l11!~p1q1l12!

3F2 ln22
1

p1l11
2

1

p1q1l12G ~63!

if m1n1l is even and is zero ifm1n1l is odd. The
polynomial approximation is obtained by expandin
P(k)cL(k) in Legendre polynomials in 4k using Gaussian
integration on@21/4, 1/4#. Cancellation errors proved to be
problem in the calculation of these counterterms for la
values ofL; however, it was found that it was sufficient t
include only terms withL,L8<2 to overcome the problem
with the numerical integration.

VI. NUMERICAL RESULTS

In this section we present results of the application
these methods for the cases thatx(r ) is a linear combination
of GTO’s and a Slater orbital. The former is much mo
tractable numerically, since the Gaussian functions
smoother and decrease much more rapidly than Slater f
tions in both position and momentum space.

Initially we look at the single GTO case considered
DH:

x~r !5e2zr2, ~64!

with z50.362 08, and an internuclear spacing of 1.915. T
numerical accuracy is governed by a large number of par
eters. These are the parameters that govern the nume
meshes:N52n, the number of mesh points in ther andk
meshes;nk , the number of mesh points in@21/4, 1/4# in the

TABLE I. Dependence of results onns .

ns T Vd Vx E

8 0.474 461 20.648 750 20.298 578 20.472 867
10 9 20.648 753 20.298 592 20.472 884
12 9 20.648 746 20.298 594 20.472 879
14 9 20.648 747 9 20.472 880

TABLE II. Dependence of results onnk .

nk T Vd Vx E

4 0.474 455 20.648 745 20.298 486 20.472 776
6 0.474 461 20.648 747 20.298 595 20.472 881
8 9 9 20.298 594 20.472 880
10 9 9 9 9
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k andk8 meshes;ns the number of mesh points in the inte
grations on s; and parameters that govern the truncation
the infinite summations:nmax, the maximum ofm andn in
Eqs. ~30! and ~53!; Lmax, the maximum ofL in angular
momentum sums;nmax, the maximum ofn in Eqs. ~57!,
~58!, and~59!.

We consider first the dependence of the results on
numerical meshes. The results that are given are for tru
tion parametersLmax56, nmax54, andnmax52. The quanti-
ties computed are the kinetic energyT, the direct potential
energyVd , the exchange energyVx , and the total energy
E.

Results obtained forN5128 andN5256 withns520 and
nk510 differed by at most 1026 for Vd . Presumably, then
results obtained withN5256 are valid to 1026; since the
times required for the two calculations were virtually t
same, all the calculations have been made withN5256.

Table I shows the dependence of the results onns , with
nk520. It is evident that results accurate to 1026 can be
obtained withns'12. Table II shows the dependence of t
results onnk , the number of points in the integrations onk
and k8. It is seen that six-figure accuracy can be obtain
with a very modest value ofnk'10. This excellent resul
requires the careful treatment of the terms in lnuk2k8u de-
scribed above; calculations without this treatment did
yield comparable accuracy with much larger values ofnk .

Table III shows the effect of truncating the infinite sum
mations on the accuracy. It is observed that 1026 accuracy is

TABLE III. Dependence of results onnmax, Lmax, andnmax.

nmax Lmax nmax T Vd Vx E

1 2 0 0.454 27120.645 73120.289 16920.480 628
1 2 1 9 20.645 82320.289 18520.480 737
1 2 2 9 9 9 9
2 2 2 0.472 14520.648 04420.297 21320.473 111
3 2 2 0.474 47020.648 09820.297 40020.471 028
4 2 2 0.474 46120.648 09920.297 39920.471 037
5 2 2 0.474 46020.648 09920.297 39920.471 038
5 3 2 9 20.648 18120.298 51120.472 231
5 4 2 9 20.648 78220.298 58420.472 906
5 5 2 9 20.648 78420.298 59820.472 921
5 6 2 9 20.648 74720.298 59420.472 880
5 7 2 9 20.648 74720.298 59220.472 879
5 8 2 9 20.648 73620.298 59120.472 867
5 9 2 9 9 9 9
5 10 2 9 20.648 734 9 20.472 865

TABLE IV. Dependence of results onns in the Slater orbital
case.

ns T Vd Vx E

8 0.548 187 20.776 814 20.300 003 20.528 574
10 9 20.777 080 20.299 916 20.528 809
12 9 20.777 030 20.299 929 20.528 773
14 9 20.777 035 20.299 929 20.528 776
16 9 20.777 034 20.299 928 20.528 775
of

e
a-

d

t

evidently obtained including only termsn50 and61 in the
summation, and that comparable accuracy is obtained
limiting the sums onm and n in Eqs. ~53! and ~31! by
nmax54. The results also indicate that the convergence of
sums onL is slower, although the summation for the e
change energy could apparently be restricted byLmax56 to
obtain 1026 accuracy, and byLmax54 to obtain 1024 accu-
racy. It may be noted that the sums in Eqs.~57! and ~58!
scale likeLmaxwhereas the calculation of Eq.~59! scales like
Lmax
2 . It would therefore be more efficient to use a larg

value of Lmax in the first two than in the third. It would
apparently also be quite feasible to use a convergence a
eration technique on theL8 andL sums in Eq.~57! and the
L sum in Eq.~58!.

An accurate value ofE520.472 139 has been calculate
by Delhalleet al.12 for the abovex(r ) andd52.0. The cor-
responding numerical result, computed withN5256,
ns514, nk510, nmax55, Lmax510, and nmax51 is
E520.472 141. The small discrepancy apparently ari
largely from the truncation of the angular momentum sum

Similar calculations have been carried out for the Sla
orbital

x~r !5e2zr , ~65!

wherez51.156. Because of the long-range behavior of
Slater orbital in momentum space, it is difficult to obta
accuracies comparable to those obtained for the GTO’s.
example, for N5128, 256, and 512, values ofVd of

TABLE V. Dependence of results onnk in the Slater orbital
case.

nk T Vd Vx E

4 0.548 021 20.776 975 20.314 386 20.534 340
6 0.548 192 20.777 036 20.299 832 20.528 677
8 0.548 187 20.777 034 20.299 932 20.528 779
10 9 9 20.299 928 20.528 775

TABLE VI. Dependence of results onnmax, Lmax, andnmax in
the Slater orbital case.

nmax Lmax nmax T Vd Vx E

2 2 2 0.536 18420.771 43820.296 15020.531 404
3 2 2 0.549 26920.775 99120.298 96120.525 683
4 2 2 0.548 18720.775 57820.298 62320.526 014
5 2 2 0.547 85720.775 49520.298 54620.526 148
6 2 2 0.547 87120.775 47020.298 55020.526 150
6 2 3 9 20.775 472 9 20.526 152
6 2 4 9 20.775 473 9 20.526 152
6 3 4 9 20.775 61720.299 95220.527 699
6 4 4 9 20.776 84420.299 92120.528 894
6 5 4 9 20.776 85820.299 93520.528 923
6 6 4 9 20.776 93620.299 86620.528 932
6 7 4 9 9 20.299 84020.528 908
6 8 4 9 20.776 90220.299 81420.528 846
6 9 4 9 9 20.299 70320.528 835
6 10 4 9 20.776 87420.299 79420.528 797
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TABLE VII. Total energyE, kinetic energyT, direct potential energyVd , exchange potential energ
Vx , the single-particle energy at 0,e(0), and thesingle-particle energy at the top of the Fermi surfa
e(1/4), for approximations to the H 1s orbital given as a linear combination ofN GTO’s. The results are
calculated ford51.8861 andz51.1253.

N E T Vd Vx e(0) e(1/4)

1 20.472 606 0.469 104 20.643 740 20.297 970 20.6731 20.0779
2 20.514 150 0.503 001 20.721 506 20.295 645 20.7216 20.1000
3 20.525 423 0.524 186 20.752 618 20.296 991 20.7279 20.1133
4 20.528 021 0.528 108 20.759 021 20.297 109 20.7294 20.1165
5 20.529 042 0.529 044 20.760 940 20.297 146 20.7298 20.1203
` 20.529 471 0.529 479 20.761 806 20.297 144 20.7300 20.1305
.
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20.776 797,20.776 511, and20.776 558 are obtained
~The values ofT and Vx are much less dependent onN.!
These results suggest that the errors forN5512 may be of
the order of 531026. The calculations discussed below ha
been carried out with this value ofN. Again, there is very
little increase in computing time in going fromN5256 to
N5512, so that if memory limitations are not a conside
ation, this presents no difficulty.

Table IV presents results comparable to Table I, show
the dependence onns , and Table V, comparable to Table I
shows the dependence onnk . These results indicate that fo
the integrations ons, and the integrations onk and k8, the
Slater orbital does not present significantly greater difficu

Table VI shows the dependence of the results onnmax,
Lmax, andnmax. It is observed that it is necessary to go
much larger values ofnmax in order to obtain accuracie
comparable to the GTO case. The reason for this is cl
nmax governs the summations in Eqs.~31! and~53! and over-
laps of Slater orbital are significant at much larger sepa
tions than are those of the GTO’s. It is apparent also that
convergence of the angular momentum summations is slo
than in the GTO case. These summations are governe
the behavior of the orbitals in momentum space, for wh
the Slater orbitals fall off much more slowly than the GTO

The energy minimum computed with the parameters
given in the last line of Table VI andnk512 is
20.529 471, obtained at a spacingd51.8861 for
z51.1252. The kinetic, direct potential, and exchange pot
tial energies are, respectively, 0.529 479,20.761 806, and
20.297 144. Since these results are obtained optimizing
both the spacing andz, the virial theorem should be satisfie
exactly; the ratioT/E is in fact21.000 015.

We have also carried out the calculation at the ene
minimum with the H 1s orbital approximated by linear com
binations of from 1 to 5 GTO’s as given by Stewart.17 Re-
sults for the energy, the three contributions to the ene
and the single-particle energy at 0 and at the top of the Fe
surface are given in Table VII. The percentage deviatio
from the accurate results have been found to be compar
to the percentage deviations of the approximate orbita
given by Stewart.

VII. DISCUSSION

The results presented in Tables I–III indicate that
GTO’s the numerical methods discussed can give results
curate to one part in 1026 with fairly modest calculationa
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effort. Analytic methods are undoubtedly more economic
however, for linear combinations ofn GTO’s, the computa-
tional effort behaves liken4, the purely numerical approac
may become competitive for basis functions contracted
even a rather small number of GTO’s.

The situation is more difficult for the Slater orbital calc
lation, for which the numerical approach can apparently g
reliable results at the 1024 level, but is open to some ques
tion at the 1026 level. Certain improvements can probably b
made in the approach. An obvious one is to introduce a c
vergence acceleration technique in the angular momen
sums in the direct Coulomb energy. It may also be noted
the computational effort in computingVd is proportional to
Lmax, whereas forVx it is proportional toLmax

2 so that it is
possible to include much largerL values in the sum.

It is important to remember, however, that the proble
with the Slater orbital arise because it gives a better rep
sentation of the actual single-particle wave function; i.e.
the parameters are chosen to conform to the nuclear cha
it can represent the cusp at the nucleus properly, and it g
a more reasonable representation of the wave function
large momenta. Another viewpoint is that although the en
gies are calculated much more accurately in the GTO c
they are actually in error by more than 0.05 a.u.

An important question is whether these methods can
extended to realistic polymers. Both the separation ofV(k)
into V1(k) andV2(k) and the elimination of the logarithmic
singularity in K(k) can apparently be generalized to mo
complicated systems. A limitation that may be important
in data storage; the quantitiesFL(s,k) require a large
amount of memory that scales with the square of the num
of basis orbitals. Another difficulty can arise for nuclei
large Z, for which the range of the orbitals in momentu
space becomes large, and the calculation of the funct
f L(r ,a) defined in Eq.~49! becomes difficult, essentially be
cause of the oscillatory behavior of the spherical Bes
functions. The problem of extending the methods to m
complex chain systems will be considered in future studi
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nautéFrançaise de Belgique~C.G.R.I.! and Canada.



.
se
va
s-
M.
g
ox
ad
rg

G.
, i
tr

nd

m.

, J.

2088 55J. D. TALMAN, J. G. FRIPIAT, AND J. DELHALLE
1GAUSSIAN 94, Revision B.1, M.J. Frisch, G.W. Trucks, H.B
Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Chee
man, T. Keith, G.A. Petersson, J.A. Montgomery, K. Ragha
chari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Fore
man, J. Cioslowski, B.B. Stefanov, A. Nanayakkara,
Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Won
J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. F
J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. He
Gordon, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Pittsbu
PA, 1995.
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