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Spectral properties of the large-negatived Hubbard model
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Using the formalism introduced by Harris and Lariédys. Rev157, 295 (1967)] explicit expressions for
partial sum rules of the individual Hubbard bands in the large-negatilieit are derived. The one-particle
spectrum, optical spectrum, as well as charge- and spin-response functions are considered. The approach gives
a transparent description of the main features of these spectra. The main sum rules depend on only two
independent nearest-neighbor expectation values which are estimated in the ground state using numerical
calculations, exact results, and linear-spin-wave theory. Simple expressions for the intensities of the upper and
lower Hubbard bands in the optical conductivity show that this spectrum is extremely sensitive on details of the
ground state. The charge-density wave and superconducting phases are clearly distinguishable and even the
transition to the broken-symmetry state may have a detectable influence on the conductivity.
[S0163-18207)02404-1

I. INTRODUCTION One attractive feature of the negatileHubbard model
(t>0),

In recent years the negatité-Hubbard modél has at-

tracted considerable attention since it is one of the simplest H=V+T—uN
: o - = M

models leading to -wave superconductivity. The interest
in the Hubbard model has exploded since the discovery of B —|U|2 . —'[2 t o 3 Z _
high-T. superconductivity in the cuprates and bismuthates, = = NNt~y &i6fito.00 ™ e N
raising fundamental questions such as how large the transi-
tion temperature might be and what the consequences of the
strong correlations in these materials are. For the cuprates the
positiveU variant is the most realistic one. On the contrary,is the existence of a transformation to positiveHamil-
negatived models apply more directly to compounds con- tonian for bipartite lattice$?° Here aiTl, is the fermion cre-
taining “negativet” ions such as Ga, In, Bi, etc., and to the ation operatorp;,= al a;,, andu is the chemical potential.
superconducting bismuth oxides without coppeffhe  An electron-hole transformation for the down spins, com-
BaPh_,Bi,O; and Ba_,K,BiO; compounds have many bined with a sign change on one of the sublattices,
features in common with a negativ¢ Hubbard modet: afl=exp¢fr~§i)bil [7;'=(7T,7T, ... ) for ahypercubic latticg
They show both charge-density wa¢@DW) and singlet su- and aiTT= biJrT leaves the kineticT) part of the Hamiltonian
perconductingSS phases. The parent compound is a dia-(1.1) unchanged and changes the signUofApart from an
magnetic insulator, even though it has a half-filled Bi-6 unimportant density-dependent constant there are no further
band? Bi is known to prefer the valenciest3and 5+ rather  terms appearing. The transformation interchanges charge and
than 4+, indicating an effective negativie. When increas-  SPin, and the density operator, or the chemical potential term,
ing the attractive on-site coupling strength|, the attractive- i the negatived model,n;==,a/,a;,, becomes the mag-
U model will go from a weak-coupling BCS superconduct- Netization in the positivés case, n;=b/ by —b b +1.
ing regime to a regime with a spin gap of the order df Thus the negativ®} model for arbitrary filling and zero
and preexisting pairs, forming a coherent superconductingiagnetizatiod® maps on the repulsive Hubbard model at
state with T,=t%/|U|.>® The transition is smooth/™® and  half filling with its magnetization in thez direction
T, has a maximum for intermediate. ~(bf;bj; —b{b;,) depending on the original filling fraction

Optical® and one-particfé experiments on the cuprate n. Furthermore, for largéJ| the attractive model maps on a
materials, as well as the optical spectra of titanium oxides, Heisenberg pseudospin model with finite magnetization. As
show anomalously fast changes of intensity as a function ofin important consequence there is a direct relation between
the hole or electron doping. These experimental findings arphases in the attractive and repulsive cdgég? Antiferro-
well described by the two-dimension@D) single-band re- magnetic long-range ordéLRO) in the Heisenberg case at
pulsive Hubbard model withU of the order of the n=1 is related to a CDW or SS for the attractive model,
bandwidtt®~1®and are now well understodd-1°In this pa-  depending whether the order parameter points irettizec-
per we will investigate whether similar weight changes occuttion, or lies in the k,y) plane. Because of the spin-rotational
in the attractive model. symmetry of the Heisenberg model it immediately follows
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that the CDW and SS are degenerate at half filling. Adding a X20 = af N, (2.2)
small positive nearest-neighbor repulsion to Ef.1) will ' e
stabilize the CDW state. and\,=¥1 if the spino is down (up). X** acting to the

Applying the above transformation to the global spin op-right turns statéA on sitei into statea. The label 2 denotes
erators[generators of the S) rotational symmetrjythe  a doubly occupied site, 0 an empty site.

three “»” generators of a second PB) symmetry are A canonical transformatiors is now introduced to de-
found. Acting with 77+:2ieiﬁ‘RiCiTTCiTj, on an eigenstate of couple the Hubbard sectors to a required particular order in
the Hamiltonian new eigenstates are generated with off[/U This transformation leads to new, effective fermions
diagonal long-range ordery(pairing.?* It has been proven Cj, according to

recently that the ground state resulting from such a procedure t st _s

is superconducting in a broad region of parameters of the i, =€7Cj& 7 2.2

extended Hubbard model with attractie which, in contrast to the original fermions, conserve the

A.r.IOtrE’r intderesting %3nsequence (;]f the mappiln? betweeR mper of doubly occupied sité$For an arbitrary operator
positiveU and negafivad concerns the one-particle Spec- '\ oo the operatdd by

trum. For large attractive interactions the system will contain
only doubly occupied and empty sites. When adding an elec- _ =_
tron one has to study the motion of a singly occupied site in S—O(a), 0=0(c), 23

this background. Reversing the role of charge and spin thge | the operatoO is obtained fromO by replacing the
one-particle spectrum for arbitrary filling is equivalent to the Fermij operators;, by the transformed operatocs, . The

motion of one hole(the added spinin a spin background  transformatior and the Hamiltonian written in terms of the
(spin up is identified with an empty site, down with a doubly new fermions,

occupied site where the density determines the average

value of $2.2° Thus it is related to the extensively studied « s = ~ 1 -
problem of one hole in the-J model. In particular, at half H=eHe °=H+[SH]+ S [S[SHII+ --, (24
filling the one-particle spectrum in the positive- and
negativet) case are identical. are determined by the requirement that
In this paper we will derive expressions for the spectro- ~
scopic intensities of the different Hubbard bands in the large- [H,V]=0. (2.9

negatived limit. These sum rules are expressed in terms of o . )
ground-statdtherma) expectation values and the sensitivity ~ Restricting the physical processes to acting between the
of the spectra on ground-state properties will be discussegUPSpaces of various number of double occupancies, we in-
First the perturbation method, conveniently expressed ifroduce the operatdd,, defined as that part of an original
terms of Hubbard operators, will be briefly explained. In SecoperatorO that changes the potential energyby nU. In

Il the one-particle spectrum is discussed. Momentum-particular, the kinetic energy of the new fermions consists of
integrated and momentum-resolved intensities as well as firdfree parts. In terms of the Hubbard operators,

and second moments of the bands are derived. We will com- _~ _- o~ o~

pare the results with a two-pole ansatz for the spectrum. In T=To+ Tyt Ty,

Secs. IV and V the partial sums for the optical, spin, and
charge spectra, respectively, are obtained. The optical spec-
trum is shown to be very sensitive on the exact ground-state
wave function.

To= _ti; (XPY X724+ X2 X07),

Il. LARGE- U PERTURBATION THEORY Tu= _ti;(, XX, Tou= _ti;r X[2X%, (26

In this section we will briefly describe how to derive par-
tial sum rules for the Hubbard subbands separately. A mor
detailed account can be found in our previous workhe
most convenient derivation of the sum rules is found usingSe
HubbardX operators. In short the idea is the following. First
large{U| (t<|U|) perturbation theory is applied to decouple - - 1 - - -1
the various Hubbard sectors. This leads to new effective fer- S=(TU—T,U)U+[TU+T,U ’TO]F' (2.7
mions whose motion conserves the number of doubly occu-
pied sites. Then any operator can be decomposed into par®f course the first-order term is well known. It leads to the
each generating a particular number of doubly occupiedtrong-coupling Hamiltoniaf or to the simplett-J model.
sites. Intensitie$moment$ for the individual bands are ob- It is important to note that e\/erything up to now is on the

where & is a nearest-neighbor vector. The operatdérare
defined as in Eq(2.3.

The transformatior(2.4) is now easily obtained*® To
cond order,

tained from these partial operators. operator level, and therefore applies equally well to both the
The X operators are defined as follows: large-negative- and large-positite-case. The differences
4 ”0 oo occur only whenexpectation valuesre evaluated. Let us
i, =X+ AKX, denote the ground-stater therma) average by ), and the

b0 1 action of an operator on the ground state)byhen for the
X =aj,(1-ni5), large-negativéd Hubbard model,
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X2%=0, when A=forA=], (2.9 :\
since there are no sites singly occupied by the transformed * * - — N~ . ¢/(
fermions. Also note that this is much more restrictive than in !
the positivetJ case, where the respective term only vanishes CDW. n=1 SS, n=1 S8, n<1

whenA=2 (for less than half filling.

The full Hamiltonian on the operator level was given in  FIG. 1. Schematic representation of the symmetry-broken clas-
Ref. 19. Restricting the space to only empty and doubly ocsical ground state of the pseudospin Hamiltor(r11). Pseudospin
cupied siteglarge negative)) this simplifies to the follow- up (down) represents an emptigloubly occupiell site. The angle
ing Hamiltonian in second order: ¢ between the pseudospin direction and thexis is a function of

) the filling, cosp=1—n.

2t o~
2_ _ 00 {22, %20 02
H |U|i,2,s (X5 X X4 5X7). 2.9 adding a magnetic field along the axis. This acts as a
) ) chemical potential. The order parameter in this case has an
Since there are only two degrees of freedom per(sitepty  antiferromagnetic component in the,y) plane, and a fer-

and doubly occupied sitehis can be mapped on a Heisen- \omagnetic component along the direction of the field.

berg spln'model. Identifying th_e dogbly occupleq site with | the following sections we use the above mapping on
pseudospin up and the empty site with pseudospin down, thgye pseudospin modé2.11). Since the lowest moments are
Hamiltonian can be written in terms of spin operators byre|ated to local expectation values, most of the results will

using the operator identities, depend on the nearest-neighbor spin-spin correlation func-
1 1 tions calculated in the ground state of the Heisenberg model
(X% X224 X2 X0 =" g7, &F with a finite magnetization in the direction. Because of the
2 4 symmetry of the problem there are only two independent
~20 =02 o expectation values,
XisXi=—S,s5 , (2.10
and introducing the superexchange constamt4t?/|U], S*=(S. sS).
given as in the positivé} case. A minus sign has been in-
troduced, related to the factor ekp(R) mentioned in the St =(S". ;S ). (2.13

Introduction. The full Hamiltonian given by the second-order
contribution(2.9) and including the chemical potential term At half filling S*~=2S?% as long as the symmetry is not

is then transformed to spontaneously broken. Note that the total energy is related to
3 L (S-Sio=5*+S"".
H=— 2. & _T|_ 224 1). (2.1 The expectation valug®.13 are shown in Fig. 2 as func-
2i,25 (Si S+s 4) MZ (25+1). (219 tions of the densityr [given by the constrain2.12)]. The

) o ) lot shows the results of numerical cluster calculations for

There is of course a similar route to obtain the same resulhe pseudospin Hamiltonian in one and two dimensions up to
using the transformation mentioned in the Introducfion. 20 sites. The nearest-neighbor correlations are only weakly
First, one maps the negatiié-Hubbard model on the large- size dependent, and the results should represent the nonbro-
positiveU model at half filling. Strong-coupling perturba- ken symmetry state of an infinite lattice to within a few per-
tion theory then leads to the Heisenberg model. Equatiogent.
(2.11) holds for any fillingn=X ,(n;,), and the chemical In the symmetry-broken state at=1 the relation
potential u plays a role of the external fiel=2u, which  5*~=252ng longer holds, even though the energy per site,
imposes the constraint on the pseudospin magnetization ilated toS* ~+ S?2 will be basically unchanged. We esti-

z direction away from half filling;*° mate the deviations from the rotationally symmetric state
using an extension of linear-spin-wayeSW) theory. The

(e E (1-n). (2.12 conventional LSW theory gives a satisfactory estimate of the

2 ground-state energy and the renormalization of the order pa-

We note, however, that the total magnetization Commutegameter. However, the errors for the nearest-neighbor spin-

i i i 727 +—
with the Hamiltonian and hence the last term in E211) So?/'vrésctc_)grzlsrtéﬁg\;\l;)nggogfsioﬁng Suse dar'e}r:zg?o:gh\?vg tr?:ve
has no influence on the dynamics, but only defines thé P '

ground state depending on the electron filling. Hence we dgevgloped an approximate method to estlmate 'Fhese tyvo cor-
not includey below, but rather impose the constrai@it12. relation functions more accurately. This extension of linear-

The classical ground state of the pseudospin Hamiltoniaﬁpin'\'\'ave theory is described in Appendix A. The numerical
(2.11) at half filligg (n=1) is antifer?omagneaic with the results obtained for the 2D and 3D symmetry-broken states

order parameter pointing in an arbitrary direction. This in-21€ pregented n Fig. 2. In the limit @ — oo th'e guantum
variance under pseudospin rotations reflects the degenera‘gycmat'tonstv?n'Sh and one finds for the classical SS broken-
of the CDW and SS statdsee Fig. 1atn=11 Away from >/ "metry state,
half filling the classical SS “spin-flop” phase has a lower
energy than the CDW phase. The constraint given by Eq.

1 1
Z =)= — =_(1—-n)2
(2.12), determining the anglé in Fig. 1, can be enforced by SAD==) 4CO§¢ 4(1 "%



55 SPECTRAL PROPERTIES OF THE LARGE-NEGATIVE- . .. 2035

" ” N
02} le,(r: f_mdwwlAka(w)

01 |
0.0
=01

:<{aEU"[H’ -t '[H’aEO—]I (32)

where the number of commutators has to be equhl &nce

the one-particle basis stakE) is either empty or occupied,
the total sum rule is simplyn®=1. The photoemission in-
tensity is equal to the occupation numbigr. The first few
moments of the total spectrum are easily deri¢4.

Below we will calculate moments of the individual Hub-
bard subband¥~'° In order to do so we need to know the
potential energy decomposition an as shown for the ki-
netic energy in Eq(2.6). For the transformed fermions this is
simple,

-02

-03

01} ~ -
t_ ot t t _To0 o T2
Civ=Cir:0T Cig:us  Cig:o=Xi +  Ciguu=NeXi ™ .

st = | (3.3

The subscript 0 means that the potential energy is unchanged
after the particle creation, anld means that the energy is
changed byU due to creation of a single doubly occupied
site. Therefora:fg;o and CL;U describe single-particle exci-
FIG. 2. The nearest-neighbor pseudospin expectation valuetions into different Hubbard subbands. The above formula
S?ZandS*~ as functions of electron density in the U<0 Hub- ~ demonstrates the usefulness of ¥w@perator formalism. To
bard model obtained bya) exact diagonalization of 1D and 2D get a similar expression for the original fermions first one
clusters, andb) RPA for the 2D(solid lines and 3D(long-dashed has to apply the transformation E(.2) and then use the
lines) symmetry-broken groun@SS states. The numerical diago- above decomposition. To first order,
nalization results of the Heisenberg model are given by the open
circles, empty squares, and full squares for 20-site ring, 2D 16-site
and 18-site clusters, respectively, while full and long-dashed lines
in (a) are guides to the eye. The short-dashed line&jrand (b)
show the expectation values in the classical ground state + X202 ), (3.4)
D — ).

-02 |
-03

00 02 04 06 08 1.0
n

~ t _ — e
o0 00 oo g0 oo 00 /22
af,.0= X7+ U%: (XTEeXi 7 = Xie s X7+ XX

and

1 1
T = =— —Si =-7 - Y20 t Y20 Y2000 | Y20 woo
ST (D=x)= 4S|n2¢ 4n(2 n. (214 al,.u=NoX? _)\GU% (XZZ X0+ XEOXPY 5+ X7 X

e
IIl. ONE-PARTICLE SPECTRUM — X7 sX77). (3.5

In this section we consider the momentum-resolved onel N€ operatosy,. -y=(a{,.;)" removes a spin from a doubly
particle spectrum, written as the sum of electron addition an@ccupied site, and changes the potential energy of the system
removal, by |U|. The operatoraf,,;0 adds a free spin and leaves the

potential energy unchanged. The transitions dwqt;q, will

" 5 NA1 N then correspond to the lower Hubbard bahdHB), while

Aﬁg(w):Z [(f,N+1lag [ON)[?6{w—(Ef " —Eq)} those due taa,.q correspond to the upper Hubbard band
(UHB).

Equationq3.4) and (3.5 are operator expressions and are

ON)Po{w—(Eg—Ef )}, valid for both large positive and negatit¢. Below sum
rules for the attractive case will be derived. As we will show

(3.2 below, this amounts to taking expectation values with respect

_ i ) to a state with no single occupancies, resulting in a consid-
where|f,N*+ 1) denotes a many-particle final state with en- grgple simplification of the final expressions.

ergy Ef** and |ON) is the ground state of thi-particle

system. The momentum-integrated spectrum is equal to the

local spectrum, Witragr) replaced byii(p in Egs.(3.1). Note

that the electron-removal energies are defined with a minus

+2> [(fN—1]ag,
f

A. Momentum integrated

The weight of the UHB is given by

sign compared to electron addition. With this in mind the mO=(fa . af. 36
labeling of the Hubbard bands below should cause no con- 0" = {00300 39
fusion. This weight is site and spin independent, taking into account

Thelth moment of the spectrum is the translational symmetry and using the fact that the spins
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are paired; hence the subscript is dropped inm{®). Add-

ing a spin to a collection of empty and doubly occupied sites
will not change the number of doubly occupied sites. There- n=1
fore the subscript O corresponds to the UHB. On the con-
trary, removing an electron implies breaking a pair which
contributes to the LHB intensity, beirrg(,ol)J with U<0. We
note that the pair breaking implies an energy increase of >
order|U| in the final state. 2 A . A
Using Egs.(3.4), (3.5 and simplifying the resulting ex- g
pressions for the weights due to the propdyd) one finds - n=0.6
to first order,
M= (XX = (X% =1- 5 + O(IU?), (3.7
and -10.0 -5.0 0.0 5.0 10.0
olt
v n FIG. 3. The momentum-integrated one-particle spectrum for
m(—OEJ:<Xi22>: §+(’)(t2/U2). (3.8 n=1 andn=0.6 for a chain of tgn sites Witrﬁ) periodicpboundary
conditions;U=—10,t=1. The chemical potential is ai=0.
The electron-removal(or photoemission weight has a md  m®
simple sum rule, being equal 2. Therefore, to second EUHB_pLHB_ O _ Y _ 1|+ O(t¥/U). (3.10
order, only the LHB is seen in the electron-removal spec- m<00) m(%

trum, and the intensity of the bands simply reflects the nuMere is no energy shift of order Small corrections of order
ber of particles. This is clearly very different from the 2,y will occur. Compare this with the positivi- case
positiveU case, where the chemical potential moves in ongynpere the separation is larger thehwith a correction of

of the bands away from hallf filling, and a nontrivial redistri- ordert away from half filling.

bution of intensity between the bands follows. In fact, it is  |n a similar way the width of the Hubbard bands is related

easy to prove that to any order in the perturbation series thg the second moment. For the UHB, to lowest order
LHB is purely electron removaind the UHBIs purely elec-

tron addition The fermion operator leaving the band index My =({[Cis:0. Tol.[ To.ClolD=2t2(X7%), (3.1D)
unchangeda; .o, is given by a sum of products of the Hub- 44

bard operators of the fornx®*XPB.... The lower- and 2 W 2

upper-case lettergreferring to the final and initial states, (AEUHB)2=M— Migo — 224+ O(t3/U)
respectively have to obey two constrainté) the number of - mi(g?o mfg?o '
lower-case 2's has to be equal to the number of upper-case ’ ' (3.12

2’s in order to leave the number of doubly occupied sites

h d ) th f lett . th and the same for the LHB. Hemis the number of nearest
unchanged, andi) the sum of upper-case letters minus ©neighbors. So, to lowest order, the widtsecond momeit

sum of lower-case letters has to be equal to 1 since Ong,es not depend on the actual occupatioand is equal to
electron is removed. Consequently, there is one moil&  {he free-particle bandwidth for each band individually.
the sequenceA,B, . .. than_ ina,b, ..., and ai,o:0>=Q' _Again, this is different from the repulsive case where the
Hence one finds that there is no electron-removal weight ifyidths depend on the occupation number. Note that the same
the UHB to any order in perturbation theory. Therefore theresult can be obtained by using the mapping to the half-filled
chemical potential is always in the gap between the LHB anghositiveU case, and Eq:3.12) is consistent with our previ-
UHB, for any filling, and to any order in perturbation theory. ous results? These features of the spectra can be compared
Apart from the LHB and UHB, there are higher bandswith numerical and approximate calculations of the one-
which will have a finite intensity fot>0. However, because particle spectruni®-3°
[T_y.X°]=0 and[Ty,X2°]=0, the operators; . oy , In Fig. 3 we show the numerical spectrum for a ten-site
etc., are of ordert(U)?, and the intensity of these bands is ©ne-dimensional ring. The above derived features of the
fourth or even higher order onl/.This agrees with numeri- spectrum are clearly observed. The chemical potential is in

; i ; .the gap. The separation of the bands is closfoand the
| calcul h hardl | of high
gzsgfvcé'l:jétmns where hardly any signal of higher bands I‘%/vidth of both bands is roughly independent of the particle

The first moment of the UHB, to ordér is given by Eurgbigrsiar:gl;snleozes tgi\}gg E)?qu"’zl;g) The weight of the

mgl>:<{[ci'0;0,T/+?O],CIU;O}>_ (3.9 B. Momentum resolved

In contrast to the integrated quantities of the preceding
However, taking the expectation values the term proportionagection, the terms proportional tare no longer zero for the
to t vanishes. The energy difference between the UHB an#homentum-resolved spectrum. The zeroth moment is calcu-
LHB is therefore lated using Eq(3.4) and the definition
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1

(0) ik (R —R: 2.0
m|2;0: N_IE elk( ! RJ)<{aia;0'a]To;O}>v (313)
al,j 1.0 F n=0.2
whereN, is the number of sites. Assuming translational in- 00 b N E
variance for the expectation values and using the one-particle '
energies, -10F
. -2.0 . *
€i=—t>, ek? (3.14
B 10}
) L
one finds, up to ordet/U, & 00
]
n 2e ~ ~ -1.0 }
(0) k v
Meo=1-75 +m<xi06;{izi s XIXE 5 20
1 n 2e/ - - 1 31 10}
=173 710 (S-Sva— 7] (3.19 0o
for the momentum-dependent weight of the UHB, and -1.0 }
0) _n+26|; R 1 -2.0 . : t
Mi-u= 3" U] (S-S4a) =3 0 1; 2n
=ng+ O(t?/U?) (3.19

. . . . FIG. 4. The momentum-resolved average energy of the LHB in
for the respective weight of the LHB. Since the weight of thethe one-particle spectrum for three different values of the density

; (N . . .
LHB is purely electron removamm,.” , is equal to the occu- . prawn curve is Eq(3.19 with the expectation values taken from
pation numbemg. The deviations froom/2 increase when a 20-site Heisenberg ring. Dots are obtained by integrating the LHB

|U| decreases, ana; is maximal fork values close to 0, as Part of the momentum-dependent spectrum obtained by exact di-
expected. agonalization of a ten-site ring with = —20,t=1.

The calculation of the first moment proceeds in a similar, |5 is plotted. The numerically obtained weighted average
way. For the UHB, of the pole energies which belong to the LHB for a 1D ten-
(1) _ /00300 20902 site ring(the momentum-resolved analog of Fig.i8 shown
Mo = ekl O;(i”_xi &”9' (3.17 and compared with the expressions above. The dispersion
Dividing by the zeroth moment we obtain the average enerchanges sigmoughly arounch=1.25, and the largest differ-
gies of the bands. One finds for the UHB ences between the numerical and perturbative results occur
around half filling. At half filling thek=0 spectrum lies on
1 i - _} 31 average at higher energy than tke 7 spectrum.

Ry (Si-Si+s al | (3.18 The density dependence of the dispersion of the LHB is
plotted in Fig. 5, represented by the prefackan the energy
expression,Eg._,=Aeg. The expectation values are ob-

R 1 tained from the numerical ground state of a 20-spin Heisen-

<Si'Si+5>_Z) . (319  berg ring. Using the Bethe ansatz Griffithsalculated the
energy of Heisenberg chain in a magnetic field. His results
The above dispersions depend on the pseudospin order in t§@n be directly used and agree very well with the numerical
ground state, as total spin-spin expectation values enter i#ata. The 2D results are from 16- and 18-site spin clusters.
both the zeroth and the first moment. Note that these expres- The limits can be discussed explicitly. One finds in one
sions are not Symmetric around=1. Nevertheless, the dimension at half fllllngA= 1/2—2In2 from the Bethe solu-
electron-hole symmetry is preserved in the spectra, as tHéon of the Heisenberg chain. For smalln,

EIE;O: €k
and for the LHB

2
1+~
n

EIZ;7U:_|U|+€IZ

weights of the dispersive part e; are interchanged and the S7’=1/4—n/2+0(n%) andS*~=—n/2+0O(n?). It follows
UHB for n>1 mirrors the LHB forn<1. that E._y=— eg+O(n) andEg.o=|U|+ e 1-n+O(n?)]

At half filling the spectra for positive and negatiteare ~ for small n, independent of dimension. The dashed line in
identical, and we have Fig. 5, showing the dispersion in the absence of quantum

fluctuations, reproduces the limiting behavior fog 2. Note
that the curve suggests that the correction for smatl in
' (320 fact higher order im, indicating that doubly occupied sites

_ N 0 i avoid being nearest neighbors.
as found before in the positive-case:’ For Neel order the An approach which is very similar in spirit is the two-pole

dispersion vanishe;*" and for (pseudospinquantum anti-  ansatz for the one-particle spectrdf?®for more references

ferromagnets this average dispersion of the LHB is reversedee Ref. 19. Two poles are determined by two energies and

and narrowed compared to the=0 case. two weights. These four parameters are fixed by demanding
In Fig. 4 thek dependence of the average energy of thethat they should be consistent with the first four moments of

S o 1
Ek-u=2¢ ((Si'si+§>+Z
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LHB

c(w)

UHB (x 10)

e ——

2 4 6

FIG. 6. The optical spectrum at half fillingnE&1) of a 2D
4x 3 cluster with open boundary conditions, far=-10 and
n t=1.

8 10 12 14 16
o/t

FIG. 5. PrefactorA of the average energy in the LHB
(Ex.—u=Aeg) as a function of electron density. Solid line was
obtained using the energy of 1D Heisenberg chain in finite fiel
given in Ref. 38. The numerical results obtained for a 1D 20-sit
Heisenberg ring, and 16-sit@8-site 2D Heisenberg clusters are

More complicated next-nearest-neighbor correlation func-
OItions enter into the second moment. The result for the UHB
Jn terms of theX operators is, to order,

shown by circles and emptfilled) squares, respectively. Dashed m(~2)=zt22_n+t2i 2 e“z'(‘;’ 3,)6«(00 00500
line indicates the limit of the classical statelato°. k;0 2 Naissss i+ N+
i i 02 275,20 300 025,20
the spectral functiorithe zeroth to thirfd For largeU the +X%2 X320 —2X %0 XX ). (3.2

poles can be identified as giving the energy averages and
weights of the two Hubbard bands. Taking the formulas forat half filling this again is equal to the second moment for
the energies and positions from Ref. 29 and expanding t@ositive U. The explicit result for one dimension amd=1
first order we recover precisely the results given by Eqswas calculated in our previous paper, Ref. 19. We would like
(3.19—(3.19, as shown in Appendix B. We note that the to emphasize that the spectra are mainly incoherent and the
correct coefficient okg can be obtained only when the com- width of the momentum-resolved spectra of the two Hubbard
plete expression for the third moment is used. In contrast, ibands is on average close to the momentum-integrated one-
the averaging procedure over the Brillouin zone is adopted tparticle bandwidth at)=0, and fork= /2 even exceeds
calculate the third moment, the results are equivalent to Hubthis by ~20%. This incoherent width of the spectra is thus
bard | approximatiorf**° very large, a feature completely neglected by the two-pole

The two-pole approach has the advantage that it is noransatz. Such an incoherent spectrum results from the bag
perturbative and gives better results for intermediate valuegreated by the added free spin which modifies locally the
of U (see Ref. 19 for a more extended discusgi@n the superconducting order parame%@r_
contrary, the two poles can no longer be identified with Hub-
bard bands for smaller values bf. Already at ordert?/U
the two-pole and perturbation method give different results
(the poles will acquire some weight from the other band  As in the large-positivéd Hubbard model, the optical
The two-pole approach clearly cannot be used to study theonductivity of the negativé} Hubbard model consists of
second and higher momentwidth and structure of the  two distinct parts, the LHB and the UHB-**°For illustra-
Hubbard subbands, unless one would include the lifetimeion, we show in Fig. 6 an example of such a spectrum ob-
effects in the model spectral function. tained with a 2D 4 3 cluster at half filling. The LHB, which

As mentioned in the Introduction, the one-particle speccorresponds to pair motion, is quite narrow with a width of
trum for all fillings n is equivalent to the problem of one hole ordert?/U. The UHB has roughly a width tGelated to the
moving in a spin backgrouri. The filling is related to the convoluted kinetic energy of two single electrons. A Hartree-
magnetization by Eq(2.12. This one-hole problem is well Fock calculation predicts an UHB bandwidth of ordétU
understood in the context of theJ model, and a self- and therefore underestimates the width of these interband
consistent diagrammatic approadmear-spin-wave “self-  transitions. The current operator is a one-particle operator
consistent Born) has been shown to give accurate resultsand therefore necessarily breaks up pairs to lowest order. It is
Therefore the spectrum can be discussed in more detail thaRerefore quite remarkable that, in spite of a large value of
just the few lowest moments listed above. However, ity which promotes local pairing, the LHB has the largest
should be kept in mind that the original fermions are relatedntensity, while the UHB contains in the present case only
to the transformed ones by means of E(B4) and (3.5,  ~16% of the total spectral weight. We note that the total
which changes th&-dependent intensities according to Eq. weight is underestimated by 25% due to the open bound-
(3.13. For not too large values of U this correction to the ary conditions in the cluster, but as we explain below the
intensity is considerabléSee, for instance, the plot of in  results of Fig. 6 are representative for the ratio between the
Ref. 19) weights in the LHB and UHB for a 2D system.

IV. OPTICAL SPECTROSCOPY
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Sum rules for the UHB and LHB features in the Only the pseudospir- — part, leading to charge transport, is
frequency-dependent optical conductivity can be derived in @nfluenced by the vector potential. Compare this with the
similar way as for the one-particle spectra. The vector potentarge-positivet) case at half filling. The exchange of two
tial is coupled to the electrons via the usual Peierls phaseeal spins does not give rise to charge transport and the

factor, changing the Hubbard Hamiltonigh1) to Heisenberg Hamiltonian is then found to be field indepen-
dent.
H= UE nygni — 2 t(é)a;rgawaa, 4.1) Since the Hilbert space for lar¢¥| is restricted to empty

and doubly occupied sites, and since the “bare” kinetic en-
ergy breaks up pairgT)=0 and the kinetic energy expec-
tation value is of ordet?/U. Using Eq.(2.6) and the trans-
formationS one finds

) 4.2

where

5 e 5.3
t(6)=tex Pyl

: =— (D= ([Ty=T-y, TH+O(tU?)
A is the vector potential on the bond betweeandi+ §. ZN, ZUN,
This expression is gauge invariant in the usual way: the ef-

1
fects of a tern¥ f added toA can be compensated by adding —J( —(SSi;s)
the appropriate phase factor to the wave function.

The expression for the conductivity is obtained from lin- The kinetic energy sum rule is equal to the total spin-spin
ear response theofy=*® The electric field is taken to be correlation function, including the part. This is so because
homogeneous and pointing in tixedirection. Furthermore, also theS?? term originates from virtual excitations of pairs
we seth =c=1. Also the lattice constart is set to 1. In the into two spins which delocalizes the spins and therefore de-
Hamiltonian the field couples linearly to the paramagneticcreases the kinetic energy.
particle current, The most systematic way to derive tewest-ordeyr sum

rule for the LHB and UHB consists of expanding the current
P T operator inx direction in an analogous way as the kinetic
b=t 2 8@l 500 4.3 energy(2.6). To zeroth order,

+O(t3/U?). (4.9

where as beforeS is a vector connecting nearest-neighbor ix=IxoTixutix-u,
sites. The conductivity per site is related to the current-

current correlation functiong=0), oy p
io=it 2 a2 XX XTP) +OIL),
2

e . 2
o(@)=D(w)+ = 2, Kf,N|j[ON)8(w—E+Eo).
WINg f£0

(4.4 un_utE SAXET X7+ O(12/U),
The charge stiffnesB (or “Drude weight”) is given by
5 27Te2< > 2me®  [(f,N|j/ON)2 s j_u=it ; SAXO X2+ O(?IU).  (4.10
=— — . i,0,0
ZN;:1 U)Naf;t() Ef—EO ’
We consider a finite system with open boundary conditions.
and the total sum rulgV, The polarization in thex direction, P,=3,; ;R ,n; ,, is
1 (= 1 similarly decomposed as follows:
W= EEJO dwa‘x(w)=—Z—Na<T>, (4.6 Py=Pyot Puut Py o,
is proportional to the expectation value of the kinetic energy. _ _
Note that only half of the Drude contribution is counigor Pro=> Ri,x( 2XZ2+ D) X7 |+ O(t3U?),
w>0). : v
In the presence of a vector potential the transformation )
Sis still given by Eq.(2.7) but with the kinetic energy terms P = Sh X207 X004 12/
changed to XU Ui;,(r N o XY 5K+ O( ),
F o Ayv20 0o
Tum = 3, HOXEXY, @7 == 53, SAKIX+OWIV?), (413

and similarly for T_;. The effective Hamiltonian acting
within the low energy subspace restricted to doubly occupie
and empty sites only is now

he paramagnetic current operator is the time derivative of
he polarization. Using,=i[H,P,] this is identical to Eq.
(4.3. For a finite system with open boundaries the Drude
) ) contribution to the conductivity shifts to finite frequency.
ﬂ( zcZ _}) 2t%(5) S'S: } 4.9 Replace one of the current operators in E4.4) by the
U\ T2+ o 4] " Ul o above commutator. Then thé term cancels the &/ term

-

1,6
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and the sum rule is easily seen to be equal to
W=i{[jx,Px])/(2N,)=—(T,)/(2N,). The sum rules for
LHB and UHB become

[
WLHB:_ZN ([ix:0.Px:0l)
a

i .
WUHBZZN <]x;UPx;7U_Px;UJx;7U>- (4.12
a

These expressions lead to

4t% 1 _—
Wipg=— U N_a% (5x)2<xi28 5Xi02>

=-2JS" "+ O(t3/U?), (4.13
2t2 1 2/v22 Y00 20 02
WUHBZWN_azﬁ (8 XE X — X5 sXi)
1
=J(Z—SZZ+5+)+O(t3/U2). (4.14 n

FIG. 7. A comparison of the largég-perturbation results for the
total optical sum rulen/J (a), and the intensity of the UHRb),
with integrated intensities obtained for finitefrom 2D clusters, as
a function of band fillingh. Numerical results, obtained by integrat-
1 1 ing the UHB and LHB parts o&(w) for a 2D ten-site cluster, are
G P N represented by empty and filled circles fde= — 10 andU = —20
Bo= g [Tusbx-ul u [T-uibxul- (419 (t=1). The squares show the sum rules obtained from the Lanczos

Note that, since the intensity is of ordét/U and since
Py.o is of zeroth orderj,.q is needed to first order for the
LHB sum rule,

. . (1) diagonalization of the 2D Heisenberg clusters of 16 sigmpty
Three-site processEsdo not contribute tg{?} in the sub- squaresand 18 sitegfilled squares

space of no singly occupied sites and therefore
4t? t2
. 4it? ~20 =0 Wyns==—(1—In2)~0.4—. 4.17
o) =~ g2 SXE XD (416 I 0]

. . . . Unlike in the positivet) Hubbard modet®1%4%he weight in
As could be expected, this describes the motion of pairs "Nfhe LHB does not vanish at half filling, but represents the

tsr:ead Otf _S|tn%le|_|_ellbecttrons. The a:jbove |sI thebcur[)ein_t o%e(;gtort: ominatingcontribution.
€ restricted Hilbert space, and can also be obtained irectly: o gy ryles derived above are valid in the laigé-

from Eq.(4.8. Using now Eq(4.12 one immediately finds limit. However, the perturbation approach still gives reason-

the above result foV) ., given by Eq.(4.13). . able results for intermediaté of the order of the bandwidth.
The result forWg (4.14 contradicts the naive expecta- rpiq s shown in Fig. 7, where the sum rule expressions in

. o : 'S Mwo dimensions are compared with numerically integrated
lowest order. The intensity in UHB is related to the longitu- (w) spectra of a ten-site Hubbard cluster. Ebe — 10 (the

dinal pseudospin corre_lations_, or to the nearest-neighbo[gandwidth is 8) the intensities differ from the largJ|
charge correlation function. It is enhanced by antiferromag-

. . : S expressions by typically 20%, and the laijg#- approach
:‘he;'(znzseal{{q%ws"l _cor'rot‘elatan mglre::glon,t;and r%qfl:ced by converges to the numerical sums whHeH increases, as ex-
W, isgin Iélleneral duitz sgr’lr:/:IInin t}éle SeS Sh(a)l\s/g aLdeLZr;Ci;egeCted' AN=0.2, Wyyg Is exactly zero. This is a finite-size

UHB , i i i i
in the limit of D— for any filling [see Egs(2.14]. In ffect, since the system contains only a single local pair. We

: L - have obtained an equally favorable comparison between the
contrast, the intensity in the LHB depends only $h™ <0 numerically integrated sum rules and the lajgg-expres-

which measures the kinetic energy of the doubly occupie%iOnS in one dimension

sites and is thus finite for n<2. For low densities one The dependence of :[he spectral weights in the LHB and

: — 2 — 2

finds W=Jzn2+ O(n"), andWyg=O(n%). UHB on the dimensionality is illustrated in Fig. 8. The over-
At half filling the global spln-[ofatlonal symmetry can be all weight in the LHB is largest in one dimension, as the

combined with the 1D resu'(SiSi+l_%/4>:_ln2' This  qguantum fluctuations are there particularly strdsge Eq.

gives atn=1 the total sum ruleNV=4t*n2/U|, and the (4.13]. The observations made above for one dimension

LHB and UHB weight, respectively, concerning the relative intensitigsee Eqs(4.17)] turn out

to be quite general—because of the coherent propagation of

_ 1\~ local pairs there is very little weight in the UHB, and only

Wire 3|U| (4In2=1)~2. ul’ near half filling does the weight increase significantly. For

2 t2
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TABLE I. Spin correlation functionss?* and S*~ and optical
intensities of the LHB WV, 4z /J) and UHB W4z /J) for different
ground states and dimensionsrat 1. The two-site singlet state is
represented byD =0, S=0. Rotationally invariantRI) states in
D=1 andD=2 were obtained by Lanczos diagonalization of the
Heisenberg model for a 20-site ring and 18-site 2D cluster, respec-
tively. The symmetry-broken singlet superconductit®S and
charge-density wavéCDW) states, all below the line, are calcu-
lated in RPA forD=2 andD =3 and compared with the classical
states aD =.

o012 | D State s2 St Wis/d  Wyne/d

010 | 0 S=0 -0.25 —0.50 1.0 0.0
0.08 | 1 RI —-0.1484 —0.2968  0.5936 0.1016
0.06 2 RI -0.1157 —0.2313  0.4626 0.1344
004l 2 SS  —0.0820 —0.2470  0.4940 0.0850
CDW -0.1650 —0.1639  0.3278 0.2511
0.02 ¢ 3 SS —0.0526 —0.2460  0.4920 0.0566
CDW -0.1935 —0.1051  0.2102 0.3384

% Ss 0.0 -0.25 0.5 0.0

n CDW  —0.25 0.0 0.0 0.5

FIG. 8. The optical conductivity sum rules for the LHB,

mL:S/i g’ Sr;dlfog tge ;g%\c,)\:utfe/ilgéis:’l ];utgtcég]t: O?f $§2d contributes to the conductivity which has the maximal total
spectral weights are obtained from the spin-spin correlation funcyve'ght‘ In cor_1trast, a triplet stg(mot _shovv_r) would give
tions S*2 and S*~ of the Heisenberg model at finite field. The zero total weight and a negative weight in the LHB. The

results obtained for the rotationally invariant staidted circles for ~ N€gative weight occurs because the triplet is an excited state
the 1D 20-site ring, empty and filled squares for the 2D clusters oftNd therefore the LHB conductivity is dominated &pnis-
16 and 18 sites, respectivélare compared with the symmetry- sioninstead of absorption. Going from the singlet through a

broken SS state in twésolid lineg, three(long-dashed lingsand 1D to a 2D system, the weight in the UHB increases gradu-

infinite dimensiongdashed line in@)]. ally, but the total weight goes down. In one dimension the
correlation functionsS**—1/4 andS* ~ almost cancel each

instance, in two dimensions one finds at half filling other, while in two dimensions the quantum fluctuations are

y less strong and the UHB intensity is larger. The symmetry-

Wyne/W=23% (see Fig. J. The increase of the total weight . ;
W, Eq. (4.9, reflects the increase of the kinetic energy with brokgn superconductlngSS) states have.thelr order param-
eter in the K,y) planes, which gives again a fast decrease of

increasing filling. The data points obtained with 2D clusters ) o ; : .
show a maximum otV atn=0.87 (Fig. 8). Unlike in one the UHB weight with increasing dimension, and @t

dimension, this reflects the precursor effect of the symmetr;? : 4 .
breaking, a$S* ~|>2|S for the 2D clusters, except at half only the coherent motion of the pairs contributes to the con-

filing where |S*~|=2|S*7 due to the rotational symmetry ductivity in this limit. The opposite limit is found for the

of the ground state in the pseudospin space. The weigh DW state, where the spins point along thdirection. Here

; ductivity is dominated by pair breaking. Note that the
found for the LHB in the symmetry-broken SS ground state € con . . A o
in two and three dimensions are very similar and approac PA-CDW state in 2D still has most of the intensity in the

the analytic resulV,us=n(2—n)/2 in the limitD— . The LHB due to the sizable admixture of spin fluctuations. To

symmetry breaking increases the value of the transvers%ummarize' by cgntin_g the spins from the}() pla_ne (SS
c)(;mponeynls+* Whigch has a large contribution from the or- phase to the z direction (CDW phasg the intensity gets

der parameter in the SS phasee Fig. 1, and therefore the transferred from the LHE to the UHB
weight in the UHB is reduced. This trend is reproduced cor-
rectly by our random-phase approximatidRPA) calcula- V. CHARGE AND SPIN EXCITATIONS
tion cloiei to half filling, but for smalh the difference be- The dynamical, momentum-dependent charge structure
tweenS"~ andS*in the RPA approach turns out to be not ¢, o, is defined as
accurate enough, anty 5 is overestimated. The weight of
the UHB vanishes for the classical state in the-c limit. .
This provides the sum rule for the dynamical mean-field C(d,w)=2, [f,NngloN)Ps(w—Ef+Ep), (5.0
theory'® for the attractive Hubbard model. f

The strong sensitivity of the intensities on the groundyth
state of the system is well demonstrated by the data for the
rotationally invariant and symmetry-broken statesnatl 1
collected in Table I. In the extreme quantum limit, given by ndz—z e'dRin, (5.2
the singlet ground state of a two-site cluster, only the LHB \/N—a i
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and the sum rule is simply X22 X22+ E N (Xzaxoa % Xaz) 55
s i+6 i+& .

J doC(q,0)=(n_gng). (5.3  Using the charge conservation constraint,
- n;=2X%+3 X7 and the above expressions, the derivation
For the partial sums we need the transforXé¢ operators. is straightforward. The intensity is mainly in the LHB,
One finds to first order the number operator for singly occu-
pied sites, w0
J dwCLHB(a'w)__E e|q (Rj— R)<x22x22>
o Na 17

t ~— o~
X{7= er__)\ E Xlz-fﬁxou- Xzaxuofﬁ Xi(rfa‘xi(rz

+O(t?1U?). (5.6)
4+ X0y 02 ) (5.4 This is simply the response function for bosons on a lattice.
iEah The charge 2 is reflected by the prefactor 4 in Eg6). The
and for doubly occupied sites, UHB intensity is second order iU,

f_ dwCY"®(q,0) = 4—22 [1-cos(q- §)1(X72 X0 X7 XP?)

4% (1 + — 3.5 37113
=F(Z—SZZ+S )E&) [1-cogq- 8)]+O(t3/U3). (5.7)

The response vanishesét: 0 and is maximal aﬁ= . Fora homogeneous system the expectation value can be taken outside

the sum and the dependence is just a simple cosine function. The density dependence is the same as for the UHB in the
optical conductivity(see Fig. 7. Because the UHB intensity is second order and because of the small density-dependent
prefactor, the UHB will be barely visible in the 3D SS st3tds in the optical case the UHB will be more intense in the CDW
phase.

The longitudinal spin dynamical structure factor is

S|(a,w)=§f: Kf.NISHON)PS(w—Ef'+ED), (5.9

where

4

1 e
Si=— e'q‘RiE(Xi”—Xi“). (5.9

4 N, T
The intensity of the LHB is determined by the expressions of the f8fg), i.e., on the left and on the right there is a state

with no singly occupied sites. The intermediate states in second and higher order, obtained by acfl'nngn:bntam singly
occupied sites. However, since up and down spins occur in a completely symmetric manner, each up spin contribution is
canceled by an identical down spin contribution. Therefore one find:Ssz)\t:O, and

JidwsﬂLHB(a,wFo, (5.10

to any order int/U. This result proves the existence of a spin gap in the large-nedatidelbbard modéf—making a spin
excitation implies breaking up pairs and changing the energjuthy
The operator in Eq(5.4) does not break up pairs to lowest order and therefore the weight of the UHB is of second order,

® - t2 oy =00 =90 = 2 (1 . . -
f,wdw%ﬁ’“%,w):WiE& [1—cos<q-6>]<XEE§XP°+X?E§X?2>=m(z—@q-&m)g [1-cosq-8)]+O(t%/U3).
(5.11
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Again the expectation value factorizes intogadependent dispersion and its momentum dependence decreases with
and a density-dependent part. The density dependence iRcreasing filling. At somen<1 this average dispersion
given by the full spin-spin correlation functiaisee Fig. 2  changes sigmand goes to- ¢ for n=2. We have shown that
and the g dependence is the same as for the chargdhis behavior is correctly reproduced by the two-pole ansatz.
responsé? The negativdd Hubbard model has a spin gap and there-
Finally, we consider the transverse spin structure factor,fore the LHB is missing in the frequency-dependent spin
structure factof5.10. The UHB response is second order in
t/U, and the density and frequency dependence of the weight
factorize. The frequency dependence is a simple cosine func-

(5.12  tion and it vanishes zﬁ: 0. The density dependence is given
where by the total spin-spin correlation function and the weight is
proportional to the energy gain due to quantum fluctuations
st _ 1 E iRy | in the H_ei_senberg system. The charg_e response is almost
q W : X, (5.13 purely within the LHB. The UHB occurs in second order, but
a with only a small prefactor in the superconducting state.
The calculation involves the transformed spin-flip operator, The most spectacular changes as function of electron fill-
ing and system dimension were found in the optical spec-
inFI')'(ia?_%ME (X209 X074 X07 Y27 00 02 trum. The relative weights of the UHB and LHB in(w)
s depend very sensitively on the actual initial statgee Table
_Ro2 ggo) (5.14 I. Even though these intensities dependlaral expectation
i+o I ' values, subtle effects such as a broken symmetry may have a
Since X! turns a down spin into an up spin, this operatornoticeable effect on the spectra. The LHB intensity is related
breaks at least one pair to any order in perturbation theoryto the dynamics of double occupancies expressed by the
Thus there is again no spectral weight in the LHB to anypseudospin fluctuationéS’S ;) in the effective Hamil-
order int/U, tonian(2.11). Itis quite remarkable that the LHB has most of
the intensity, both for the rotationally invariant and for the
- LHB, S \_ SS state, since the current is a one-particle operator and
f,mdwsi (4,0)=0. (5.19 therefore might be expected to act mair?ly as a pgir breaker.

8.(d,@)= 2 KT.NIS;ION)I8(0—Ef'+ ED),

. . . This demonstrates the substantial gain in kinetic energy due
The weight of the UHB is of second order, and we simplyq the quantum coherence of the local pairs which represents
find that in this case the leading contribution to the optical conductiv-
- w ity. On the contrary, a CDW state gives an intense UHB and
f defHB(ﬁ,w)=2f dwS’"®(q,w). (5.1 & much reduced but still sizable contribution due to local
- - pairs. The latter results from quantum fluctuations and van-
This reflects the rotational symmetry of tifeea) spin re-  ishes completely in the classical limit of the CDW st
sponse, as the ground state is nonmagnetic. Note, howevd?,~*)- This shows that the optical spectra of the attractive
that thepseudospiraveragess?? andS* ~ are highly aniso- H_ubbard model in two or three dimensions are qualltatlyely
tropic away from half filling, as we have shown in Fig(@  different from theD — < limit, as calculated by the dynami-

even at half filling due to symmetry breaking cal mean-field theor§? We hope that future calculations will
provide more information about the frequency dependence of
VI. SUMMARY AND DISCUSSION the optical conductivity in this limit.

It is interesting to compare the optical conductivity in

In conclusion we have derived sum rules for the UHB andarge{U]| limit with the RPA results of Taraphdet al., who
LHB of the Hubbard model in the limit of large attractive found a much stronger weight in the UHB than that of the
interactions. In this limit only two degrees of freedom perLHB.® However, the ratio of the UHB to the LHB is over-
site are left, namely, each site can be either doubly occupiedstimated by a factor close to 6. We have verified that the
or empty, and the low energy behavior is determined by aalculation of the spectral weight in the LHB based on the
(pseudospinHeisenberg Hamiltonian. The sum rules follow split-band picture in the CDW state underestimates the pair
from local correlationgat short time scalesand are written  contribution to the optical conductivity. This follows from
in terms of only two independent correlation functions: thethe applied mean-field treatment neglecting the quantum
nearest-neighbd®”? and S~ spin-spin correlationg2.13. fluctuations of pseudospins, while in this state the latter de-

The momentum-integrated one-particle spectrum is insertermine the weight in the LHB due to the spin-spin correla-
sitive to ground-state correlations. The intensity of the LHBtion function S*~. Therefore the larg&) limit value of
(UHB) is given simply by the number of electroffsoleg in W, 5 (4.13 is not reproduced quantitatively using E&11)
the system. The chemical potential is in the gap, the energgf Ref. 3.
separation between the band$ll, and the width of each of It is tempting to compare the results obtained above with
the bandgsecond momepts equal to thdJ =0 width. The = experiments on Ba ,K,BiO; and BaPh_,Bi,O;. These
momentum-resolved energy average, however, is determinesbmpounds show a phase diagram which is very similar to
by the nearest-neighbor spin correlation function. Rer0  the negativdd Hubbard model with an extra nearest-
the first moment of the UHB is equal te; (free-particle neighbor Coulomb repulsion added. Around half filling
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(BaBiO;) the materials are diamagnetic and insulating,transformation which leaves the spins An sublattice un-
while after roughly 30% doping they become superconductchanged, while it rotates the spin components onBtsib-
ing. In BaBiOj; there is a gap of about 2 eV which suggestslattice (j € B),

that Coulomb interactions are quite large. In the optical con-

ductivity one observes a strong rearrangement of weight S{=S{cog2¢) + S{sin(2¢),
from high to low energy when increasing the dopfigom- N —
paring with our sum rules this signals a transition from the S/=—Sjsin(2¢) +S;cog2¢). (A2)

CDW to SS phase. Although a quantitative comparison is Nohg 5 resylt, one finds the following transformed Hamil-
possible due to ambiguous experimental resolution of th?onian'

LHB and UHB features in the optical conductivity, we find it

very encouraging that the UHB gradually vanishes under — S —
doping in Ba_,K BiO 3. However, these changes are ac- H=J2 [c0(2¢)S'S/+sin(2¢)(S'S'~S'S))
companied by strong shifts in peak energies, while in the (i

largeU Hubbard model the UHB would stay at a roughly +%CO§¢(§+§; +§§)—%Sin2¢(§.+§ +§§f)]
constant energy). Moreover, in undoped BaBi9Qno LHB

signal is observed in the conductivity. In Table | we show _ R oo P NPT

that even for the CDW in 3D one still expects a considerable BZCO&Z’Z Si—Bising EA S J;B S (A3)

LHB signal. We tentatively interpret this difference as origi- . . i i e
nating either from polaronic trapping, or from the reductionW't_h ieAandje B. The summation ovefij) includes each
of effective |U| by doping. Another possibility is that a P& of nearest neighbors only once..
nearest-neighbor repulsion suppresses the quantum fluctua- 1€ SPin waves for the Hamiltoniafh3) are found by
tions. writing the equations of motion for the Green functidfls,

We believe that more information about electronic inter- 1
actions in Bi compounds is needed for making a more quan- (SIS N==(SHe +{([S" . HIIS)), (A4
titative analysis of the experimental data. It is straightfor- ™
ward to include a nearest-neighbor interactionin the  and performing the random-phase approximation, which in
Hamiltonian. Even a small repulsive interaction will stabilize our case means the decoupling
the CDW state near half filling, and lead to a phase diagram
which is very similar to that of doped BaBiQcompounds. (S S1S N=(SH(SIs ), (A5)

However, the coupling to the lattice, which occurs in the
CDW state® is exgectge d to modify the kinetic energy and etc. The reference symmetry-broken state for the rotated
' Hamiltonian(A3) has the spins on both sublattices pointing

influence the spectral weights in the optical spectroscopy. : X .
Thus a purely electronic model might not suffice to repro-UpwardS’ and thus we implement in E@5) the classical

duce the spectra of these compounds. averages for all,
(sH=s. (AB)

The RPA problem is now a4 matrix, since thes" and
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lin, Roman Micnas, and Jan Zaanen for stimulating discusequivalent to the present problem at half filling, the RPA
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APPENDIX A: LINEAR-SPIN-WAVE THEORY CYk 0 —byy —a-w <<Sg| . >>
FOR THE SPIN-FLOP PHASE (A7)

The classical ground state of the pseudospin miéll)  where we made use of E¢A1) to eliminate the external
is given by a two-sublatticélabeled A and B) spin-flop ~ field B, (Al) imposing the constraint, and we have intro-
phase(see Fig. L The relative angle @ between the spins duced the following definitions:
on the two sublattices is directly related to the constraint Eq.

(2.12. This constraint can be enforced by introducing an a=Jz§
external magnetic fiel®, acting in thez direction(2.12. On B
the mean-field level b=JzS0g ¢,
c=JzSirt . (A8)

B,=2zJS0sp. (A1) . _
From Eq.(A7) one finds easily the RPA spectrum,
The linear-spin-wave calculation of the elementary excita-

L N2 22912
tions may be conveniently performed by using a canonical wg=*[(axbyp—c 7;211 ' (A9)
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defined in the folded Brillouin zone which corresponds to the Eo=Jcog2¢)((S— bini)(S_ bTbj)>
two-sublattice magnetic structure. The dispersion relation is .

linear in k at k—0, with the stiffness constant decreasing +JS<(b_Tbj+bTbi)(l_ ib_Tbi_ ib_’rb_)>
i i 4S-i .

when the spins approach the ferromagnetic orderQ), 45717
. (A16)
wi=5V1-coq2¢) K, (A10)  Keeping only the terms containing up to four boson opera-

tors, factorizing the higher-order averages by implementing
and one finds the usual logarithmic term in the guantunthe Wicks theorem, and making use of the symmetry be-
correction of the order parameter of a 2D system. The ordeiween the two sublattices, one finds a simplified relation
parameter is related to the local spin-flip correlation function[heren,=(bb;) is the reduction of the magnetization, see
Eq. (A13)],

(ShH=s—(s's), (AL1) e .
_ _ _ Eo=Jcog2¢)[(S—np)“+(bjb;}]+2I(S—np)(b;b;).
calculated from the respective Green function using the (A17)

fluctuation-dissipation theoremi, i i ) i
Equation(A17) is used to determine the off-diagonal average

e 2Im(SYIS ) u of the boson operator$bfbj>. Using the values of the en-
<3|*$>:J dw 2 'E, (A12) ergy Eq and of the order parameté®’) found in RPA, one
* exp(fw) —1 is able to determine the nearest-neighbor spin correlations

with B=1/kgT. The ground-state enerdy, is found in the from the two terms which contribute to E(A\17),
standard wa}f by calculating the individual correlation 27 2 T2
functions which enter in the expansion of the Hamiltonian §%=cod2¢)[(S—np) “+(byb;)7],
(A3) up to lowest order, and making use of relations similar e +
to Eq. (A12). This is equivalent to rewriting the effective S"T=2(S—np)(bjb;). (A18)
RPA Hamiltonian in normal order and next summing up theThe quality of this approximation may be best illustrated on
zero-point motion contributions. _ the example of a 2D antiferromagnet, where it gives
Unfortunately, the lowest-order RPA calculation of the(SZS-Z>=—0 1650, which is a considerably lower value than
T ; .- + ZZ (| . '
individual off-diagonal quantities,S”S;) and(S'S)), Ed.  one-third of the scalar product of spin operators in LSW
(2.13, does not give satisfactory answers, in spite of rathe{heory,(ééj)LSWz—0.3290, expected for a rotationally in-

accuratf (e;';rlr;agon of bOt? thf t?tal fenergyzaDnggetord Variant ground state in the pseudospin space. The above re-
paramete - PO exampie, starting from a al® sult for % correlation function agrees very well with the

W't_h the moments an_d|rect~|on one finds for thf Znearest perturbation expansion in local spin-flip processes based on a
neighbors — that (8'S >RPA_—0'2756.’ and <S'.SJ'>F?PA variational ~ Bartkowski ~ wave  function, (S/S)yar
= —0.0534, while the assumed LRO in tkedirection im- ~ —0.162852 !

; + o A
plies that|(S" S )| <2[(S{S])|. Calculating the correlation function8*Z and S*~ from

To obtain more accurate numbers for these intersite SpinEqs.(A18) one has to keep in mind that tizeaxis has been

spin correlation functions we extend the LSW and InCIUdechosen along the magnetization direction. This choice would

also second-order terms. First, we expand the local magnet&:'orrespond to the CDW ground state at half filling=(1).
zation in terms of Holstein-Primakoff bosob$ andb; ,%°

On the contrary, the spins lie within thg,§) plane in the SS

, N phase at half filling, and form an angte ¢ with the field
Si=S—bjb;. (A13) B, atn<1. Thus the spin-spin correlation functio8& and
Sgs_ are calculated in the SS phase by projecting the quan-
tities found above Eq(A18) on the directions parallel and

b perpendicular to the field direction, respectively,
S'=125\/1- 5 bi,

1
2= cog PSP+ Esin2¢s+ -,

The corresponding representationSyf operators is

b;'b;
S =V2sh \/1- == Al4 1
= V2sh 28 (149 Sis = — sSSP+ 5(1+co§¢)s+—. (A19)
The ground-state energl, is given by the longitudinal ) ] o,
and S{g) away from the limit of quantum antiferromagnet
E.=cog2¢)SZ 4+ St A15 (n=1) are shown in Fig. @), and applied in Sec. IV to
0 %26)Skeat Srea (A15) calculate the weight of the LHB and UHB in optical spec-
We express the enerdsy in terms of the Holstein-Primakoff troscopy for 2D and 3D lattices. In the classicé) ()
bosons using EqA11), and the expansion of the square rootlimit the quantum fluctuations vanisB,” ~ =0, and the spin-
in Egs. (A14) up to lowest order~b/b;. As a result one spin correlations in the ground state are directly obtained
finds that the ground-state ener@y15) per one bond reads from Eqgs.(A19) using S**=1/4.
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APPENDIX B: TWO-POLE ANSATZ As the ground state consists only of local pairs and empty

The b il o el q sites in the large-negativg- limit, all kinetic expectation
e best possible approximation to thelepen ?E?;gone' values are zero and trfeindependent part dBg, vanishes.

particle spectral function using only tw® functions; - , ,
Thek-dependent part @, , howeverjs crucial and cannot
i S i i be replaced by its average over the Brillouin zdre0). In
Ak”(w)_i:m Wi ks 0@~ 2i o) B fact, thek-dependent term contains in this case information
) ) o ) about nearest-neighbor correlation functions which makes
is obtained when the four coefficients are determined by the,e two-pole ansatz more realistic than the Hubbard | ap-
four lowest momentsgzeroth to third of the spectr_um. Tgrlis proximation. By expanding the pole energies given by Egs.
two-pole ansatz has been used recently by M';‘g‘aﬁl- (77) of Ref. 19 in the large-attractivi- limit one recovers
and by Schneider, Penderson, and Rgm_iez-l\fme ~Who  the momentum-dependent energies E8<L9 and(3.19. If
showed that it agrees well with the-matrix approximation i, momentum-dependent term By, is neglected, as is
in the low density limit. ) o often done in a self-consistent two-pole treatment, incorrect
The spectral weightsv; i, and the pole energies; .,  and qualitatively different results are obtairfé®y expand-
depend not only on the lattice structure;X and particle ng the pole energies given by Eqd7) of Ref. 18 in the
density f1,=(n;,)), as in the Hubbard | approachbut also |argelu] limit one finds
on the two-site correlation functions. These correlations en-
ter via the third moment,

fasod)

€1ko™ €k
M =U3%ng+U2[ngtng+2) ei+ By, ]+ 3Ungea+ ec,
(B2)
20 5 . 1
where eaio=—|Ul+ |1+ (S-S 0-Z]| B9
BLZUZLE [<(1_niu)ar_ai+§_(1_ni+5 )) Thus we recover Eq¢3.18 and(3.19 derived in Sec. III B.
f g N Nos

Nai3 for the UHB and LHB, respectively, withS- S, ;) being

/. ata _ . 2 the pseudospin correlation function which follows from the
<nmaiﬁ|+a,?’h+a,o>]+6k(<n|m|+a,ﬁ ns mapping of Sec. II.
—(af‘aa;ﬂr(s;ai;ai+5’0)—(afygai‘i;aiw;aiw’o))_ In the classical D—) limit one has (S-S, ;)
=—n(1—n/2)+1/4, and thus

(B3)
If |U|>t, the two poles will correspond to the LHB and e1ko=(1—nN)eg,
UHB. Their spectral intensities can be identifiedaas,, and
Wy, , respectively. We have shown before, for positive g2ke=—|U[+(N—1)¢;. (B5)

that an expansion to first order iU of the two-pole ansatz R

is equivalent to the perturbation thed?* Expanding Eq. This is plotted in Fig. 5. Thek dependence vanishes at
(B1) for large negative U, one finds the weights n=1 as the motion of a single electron or holeUr<0 case

Wi g,=1—n/2 andw,k,=n/2. Thus the weights found in becomes then equivalent to the result of Brinkman and Rice
Sec. Il B are reproduced. for the motion of a hole doped to classical antiferromadhet.
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