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Spectral properties of the large-negative-U Hubbard model
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Using the formalism introduced by Harris and Lange@Phys. Rev.157, 295 ~1967!# explicit expressions for
partial sum rules of the individual Hubbard bands in the large-negative-U limit are derived. The one-particle
spectrum, optical spectrum, as well as charge- and spin-response functions are considered. The approach gives
a transparent description of the main features of these spectra. The main sum rules depend on only two
independent nearest-neighbor expectation values which are estimated in the ground state using numerical
calculations, exact results, and linear-spin-wave theory. Simple expressions for the intensities of the upper and
lower Hubbard bands in the optical conductivity show that this spectrum is extremely sensitive on details of the
ground state. The charge-density wave and superconducting phases are clearly distinguishable and even the
transition to the broken-symmetry state may have a detectable influence on the conductivity.
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I. INTRODUCTION

In recent years the negative-U Hubbard model1 has at-
tracted considerable attention since it is one of the simp
models leading to (s-wave! superconductivity. The interes
in the Hubbard model has exploded since the discovery
high-Tc superconductivity in the cuprates and bismuthat
raising fundamental questions such as how large the tra
tion temperature might be and what the consequences o
strong correlations in these materials are. For the cuprate
positive-U variant is the most realistic one. On the contra
negative-U models apply more directly to compounds co
taining ‘‘negative-U ’’ ions such as Ga, In, Bi, etc., and to th
superconducting bismuth oxides without copper.2 The
BaPb12xBixO3 and Ba12xK xBiO3 compounds have man
features in common with a negativeU Hubbard model.1,3

They show both charge-density wave~CDW! and singlet su-
perconducting~SS! phases. The parent compound is a d
magnetic insulator, even though it has a half-filled Bi-s
band.4 Bi is known to prefer the valencies 31 and 51 rather
than 41, indicating an effective negativeU. When increas-
ing the attractive on-site coupling strengthuUu, the attractive-
U model will go from a weak-coupling BCS supercondu
ing regime to a regime with a spin gap of the order ofuUu
and preexisting pairs, forming a coherent superconduc
state withTc}t

2/uUu.5,6 The transition is smooth,1,7–9 and
Tc has a maximum for intermediateU.

Optical10 and one-particle11 experiments on the cuprat
materials, as well as the optical spectra of titanium oxide12

show anomalously fast changes of intensity as a function
the hole or electron doping. These experimental findings
well described by the two-dimensional~2D! single-band re-
pulsive Hubbard model withU of the order of the
bandwidth13–16and are now well understood.17–19In this pa-
per we will investigate whether similar weight changes oc
in the attractive model.
550163-1829/97/55~4!/2032~16!/$10.00
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One attractive feature of the negative-U Hubbard model
(t.0),

H5V1T2mN

52uUu(
i
ni↑ni↓2t (

i ,d,s
ais
† ai1d,s ,2m(

is
nis ,

~1.1!

is the existence of a transformation to positive-U Hamil-
tonian for bipartite lattices.1,20 Hereais

† is the fermion cre-
ation operator,nis5ais

† ais , andm is the chemical potential
An electron-hole transformation for the down spins, co
bined with a sign change on one of the sublattice1

ai↓
† 5exp(ipW •RW i)bi↓ @pW 5(p,p, . . . ) for ahypercubic lattice#,
andai↑

† 5bi↑
† leaves the kinetic (T) part of the Hamiltonian

~1.1! unchanged and changes the sign ofU. Apart from an
unimportant density-dependent constant there are no fur
terms appearing. The transformation interchanges charge
spin, and the density operator, or the chemical potential te
in the negative-U model,ni5(sais

† ais , becomes the mag
netization in the positive-U case, ni5bi↑

† bi↑2bi↓
† bi↓11.

Thus the negative-U model for arbitrary filling and zero
magnetization21 maps on the repulsive Hubbard model
half filling with its magnetization in thez direction
;(bi↑

† bi↑2bi↓
† bi↓) depending on the original filling fraction

n. Furthermore, for largeuUu the attractive model maps on
Heisenberg pseudospin model with finite magnetization.
an important consequence there is a direct relation betw
phases in the attractive and repulsive cases.1,22,23Antiferro-
magnetic long-range order~LRO! in the Heisenberg case a
n51 is related to a CDW or SS for the attractive mod
depending whether the order parameter points in thez direc-
tion, or lies in the (x,y) plane. Because of the spin-rotation
symmetry of the Heisenberg model it immediately follow
2032 © 1997 The American Physical Society



g

p

f
of

u
th

e
c-
ai
le
i
th
he

ly
g
d

d

ro
ge
o
ty
se

ec
m
fir
om
.
n
pe
ta

r-
o

in
st
le
fe
c
a
ie
-

r in
ns

he
r

e

the
in-
l

of

he

he
the

55 2033SPECTRAL PROPERTIES OF THE LARGE-NEGATIVE-U . . .
that the CDW and SS are degenerate at half filling. Addin
small positive nearest-neighbor repulsion to Eq.~1.1! will
stabilize the CDW state.

Applying the above transformation to the global spin o
erators @generators of the SU~2! rotational symmetry# the
three ‘‘h ’’ generators of a second SU~2! symmetry are
found. Acting withh15( ie

ipW •RW ici↑
† ci↓

† on an eigenstate o
the Hamiltonian new eigenstates are generated with
diagonal long-range order (h pairing!.24 It has been proven
recently that the ground state resulting from such a proced
is superconducting in a broad region of parameters of
extended Hubbard model with attractiveU.25

Another interesting consequence of the mapping betw
positive-U and negative-U concerns the one-particle spe
trum. For large attractive interactions the system will cont
only doubly occupied and empty sites. When adding an e
tron one has to study the motion of a singly occupied site
this background. Reversing the role of charge and spin
one-particle spectrum for arbitrary filling is equivalent to t
motion of one hole~the added spin! in a spin background
~spin up is identified with an empty site, down with a doub
occupied site! where the density determines the avera
value of Sz.26 Thus it is related to the extensively studie
problem of one hole in thet-J model. In particular, at half
filling the one-particle spectrum in the positive- an
negative-U case are identical.

In this paper we will derive expressions for the spect
scopic intensities of the different Hubbard bands in the lar
negative-U limit. These sum rules are expressed in terms
ground-state~thermal! expectation values and the sensitivi
of the spectra on ground-state properties will be discus
First the perturbation method, conveniently expressed
terms of Hubbard operators, will be briefly explained. In S
III the one-particle spectrum is discussed. Momentu
integrated and momentum-resolved intensities as well as
and second moments of the bands are derived. We will c
pare the results with a two-pole ansatz for the spectrum
Secs. IV and V the partial sums for the optical, spin, a
charge spectra, respectively, are obtained. The optical s
trum is shown to be very sensitive on the exact ground-s
wave function.

II. LARGE- U PERTURBATION THEORY

In this section we will briefly describe how to derive pa
tial sum rules for the Hubbard subbands separately. A m
detailed account can be found in our previous work.19 The
most convenient derivation of the sum rules is found us
HubbardX operators. In short the idea is the following. Fir
large-uUu (t!uUu) perturbation theory is applied to decoup
the various Hubbard sectors. This leads to new effective
mions whose motion conserves the number of doubly oc
pied sites. Then any operator can be decomposed into p
each generating a particular number of doubly occup
sites. Intensities~moments! for the individual bands are ob
tained from these partial operators.

TheX operators are defined as follows:

ais
† 5Xi

s01lsXi
2s̄ ,

Xi
s05ais

† ~12ni s̄ !,
a
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Xi
2s̄5ais

† ni s̄ , ~2.1!

andls571 if the spins is down ~up!. Xi
aA acting to the

right turns stateA on sitei into statea. The label 2 denotes
a doubly occupied site, 0 an empty site.

A canonical transformationS is now introduced to de-
couple the Hubbard sectors to a required particular orde
t/U. This transformation leads to new, effective fermio
cis
† according to

ais
† 5eScis

† e2S, ~2.2!

which, in contrast to the original fermions, conserve t
number of doubly occupied sites.19 For an arbitrary operato
O we define the operatorÕ by

O[O~a!, Õ[O~c!, ~2.3!

i.e., the operatorÕ is obtained fromO by replacing the
Fermi operatorsais by the transformed operatorscis . The
transformationS and the Hamiltonian written in terms of th
new fermions,

H5eSH̃e2S5H̃1@S,H̃#1
1

2
†S,@S,H̃#‡1•••, ~2.4!

are determined by the requirement that

@H,Ṽ#50. ~2.5!

Restricting the physical processes to acting between
subspaces of various number of double occupancies, we
troduce the operatorOnU defined as that part of an origina
operatorO that changes the potential energyṼ by nU. In
particular, the kinetic energy of the new fermions consists
three parts. In terms of the Hubbard operators,

T̃5T̃01T̃U1T̃2U ,

T̃052t (
i ,d,s

~X̃i1d
2s̄ X̃i

s̄21X̃i1d
s0 X̃i

0s!,

T̃U52t (
i ,d,s

X̃i1d
2s̄ X̃i

0s , T̃2U52t (
i ,d,s

X̃i1d
s0 X̃i

s̄2 , ~2.6!

wheredW is a nearest-neighbor vector. The operatorsX̃ are
defined as in Eq.~2.3!.

The transformation~2.4! is now easily obtained.17,19 To
second order,

S5~ T̃U2T̃2U!
1

U
1@ T̃U1T̃2U ,T̃0#

1

U2 . ~2.7!

Of course the first-order term is well known. It leads to t
strong-coupling Hamiltonian,27 or to the simplert-J model.
It is important to note that everything up to now is on t
operator level, and therefore applies equally well to both
large-negative- and large-positive-U case. The differences
occur only whenexpectation valuesare evaluated. Let us
denote the ground-state~or thermal! average bŷ &, and the
action of an operator on the ground state by&. Then for the
large-negative-U Hubbard model,
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X̃i
aA&50, when A5↑orA5↓, ~2.8!

since there are no sites singly occupied by the transform
fermions. Also note that this is much more restrictive than
the positive-U case, where the respective term only vanish
whenA52 ~for less than half filling!.

The full Hamiltonian on the operator level was given
Ref. 19. Restricting the space to only empty and doubly
cupied sites~large negativeU) this simplifies to the follow-
ing Hamiltonian in second order:

H ~2!52
2t2

uUu(i ,d ~X̃i1d
00 X̃i

221X̃i1d
20 X̃i

02!. ~2.9!

Since there are only two degrees of freedom per site~empty
and doubly occupied site! this can be mapped on a Heise
berg spin model. Identifying the doubly occupied site w
pseudospin up and the empty site with pseudospin down
Hamiltonian can be written in terms of spin operators
using the operator identities,

1

2
~X̃i1d

00 X̃i
221X̃i1d

22 X̃i
00!5

1

4
2Si1d

z Si
z ,

X̃i1d
20 X̃i

0252Si1d
1 Si

2 , ~2.10!

and introducing the superexchange constantJ54t2/uUu,
given as in the positive-U case. A minus sign has been in
troduced, related to the factor exp(ipW •RW i) mentioned in the
Introduction. The full Hamiltonian given by the second-ord
contribution~2.9! and including the chemical potential ter
is then transformed to

H5
J

2(i ,d SSW i•SW i1d2
1

4D2m(
i

~2Si
z11!. ~2.11!

There is of course a similar route to obtain the same re
using the transformation mentioned in the Introductio1

First, one maps the negative-U Hubbard model on the large
positive-U model at half filling. Strong-coupling perturba
tion theory then leads to the Heisenberg model. Equa
~2.11! holds for any filling n5(s^nis&, and the chemica
potentialm plays a role of the external field,B52m, which
imposes the constraint on the pseudospin magnetizatio
z direction away from half filling,1,20

^Si
z&⇔

1

2
~12n!. ~2.12!

We note, however, that the total magnetization commu
with the Hamiltonian and hence the last term in Eq.~2.11!
has no influence on the dynamics, but only defines
ground state depending on the electron filling. Hence we
not includem below, but rather impose the constraint~2.12!.

The classical ground state of the pseudospin Hamilton
~2.11! at half filling (n51) is antiferromagnetic, with the
order parameter pointing in an arbitrary direction. This
variance under pseudospin rotations reflects the degene
of the CDW and SS states~see Fig. 1! at n51.1 Away from
half filling the classical SS ‘‘spin-flop’’ phase has a low
energy than the CDW phase. The constraint given by
~2.12!, determining the anglef in Fig. 1, can be enforced b
d
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adding a magnetic field along thez axis. This acts as a
chemical potential. The order parameter in this case ha
antiferromagnetic component in the (x,y) plane, and a fer-
romagnetic component along the direction of the field.

In the following sections we use the above mapping
the pseudospin model~2.11!. Since the lowest moments ar
related to local expectation values, most of the results w
depend on the nearest-neighbor spin-spin correlation fu
tions calculated in the ground state of the Heisenberg mo
with a finite magnetization in thez direction. Because of the
symmetry of the problem there are only two independ
expectation values,

Szz[^Si1d
z Si

z&,

S12[^Si1d
1 Si

2&. ~2.13!

At half filling S1252Szz, as long as the symmetry is no
spontaneously broken. Note that the total energy is relate

^SW i•SW i1d&5Szz1S12.
The expectation values~2.13! are shown in Fig. 2 as func

tions of the densityn @given by the constraint~2.12!#. The
plot shows the results of numerical cluster calculations
the pseudospin Hamiltonian in one and two dimensions u
20 sites. The nearest-neighbor correlations are only wea
size dependent, and the results should represent the non
ken symmetry state of an infinite lattice to within a few pe
cent.

In the symmetry-broken state atn51 the relation
S1252Szz no longer holds, even though the energy per s
related toS121Szz, will be basically unchanged. We est
mate the deviations from the rotationally symmetric st
using an extension of linear-spin-wave~LSW! theory. The
conventional LSW theory gives a satisfactory estimate of
ground-state energy and the renormalization of the order
rameter. However, the errors for the nearest-neighbor s
spin correlation functionsSzz andS12 are large when the
lowest-order~LSW! expansion is used. Therefore we ha
developed an approximate method to estimate these two
relation functions more accurately. This extension of line
spin-wave theory is described in Appendix A. The numeri
results obtained for the 2D and 3D symmetry-broken sta
are presented in Fig. 2. In the limit ofD→` the quantum
fluctuations vanish and one finds for the classical SS brok
symmetry state,

Szz~D5`!5
1

4
cos2f5

1

4
~12n!2,

FIG. 1. Schematic representation of the symmetry-broken c
sical ground state of the pseudospin Hamiltonian~2.11!. Pseudospin
up ~down! represents an empty~doubly occupied! site. The angle
f between the pseudospin direction and thez axis is a function of
the filling, cosf512n.



ne
an

n-

t

inu
he
o

,

-
e

s

ged
s
d
-
ula

ne

y
tem
e

nd

re

w
ect
sid-

unt
ins

lu

-
pe
si
ne

55 2035SPECTRAL PROPERTIES OF THE LARGE-NEGATIVE-U . . .
S12~D5`!52
1

4
sin2f52

1

4
n~22n!. ~2.14!

III. ONE-PARTICLE SPECTRUM

In this section we consider the momentum-resolved o
particle spectrum, written as the sum of electron addition
removal,

AkWs~v!5(
f

z^ f ,N11uakWs
† u0,N& z2d$v2~Ef

N112E0
N!%

1(
f

z^ f ,N21uakWsu0,N& z2d$v2~E0
N2Ef

N21!%,

~3.1!

whereu f ,N61& denotes a many-particle final state with e
ergy Ef

N61 and u0,N& is the ground state of theN-particle
system. The momentum-integrated spectrum is equal to
local spectrum, withakWs

(†) replaced byais
(†) in Eqs.~3.1!. Note

that the electron-removal energies are defined with a m
sign compared to electron addition. With this in mind t
labeling of the Hubbard bands below should cause no c
fusion.

The l th moment of the spectrum is

FIG. 2. The nearest-neighbor pseudospin expectation va
Szz andS12 as functions of electron densityn in theU,0 Hub-
bard model obtained by~a! exact diagonalization of 1D and 2D
clusters, and~b! RPA for the 2D~solid lines! and 3D~long-dashed
lines! symmetry-broken ground~SS! states. The numerical diago
nalization results of the Heisenberg model are given by the o
circles, empty squares, and full squares for 20-site ring, 2D 16-
and 18-site clusters, respectively, while full and long-dashed li
in ~a! are guides to the eye. The short-dashed lines in~a! and ~b!
show the expectation values in the classical ground state~at
D→`).
-
d

he

s

n-

mkW ,s
~ l !

5E
2`

`

dvv lAkWs~v!

5^$akWs ,†H, . . . @H,akWs
†
‡, ~3.2!

where the number of commutators has to be equal tol . Since
the one-particle basis stateukW & is either empty or occupied
the total sum rule is simplym(0)51. The photoemission in-
tensity is equal to the occupation numbernkW . The first few
moments of the total spectrum are easily derived.28,29

Below we will calculate moments of the individual Hub
bard subbands.17–19 In order to do so we need to know th
potential energy decomposition ofais

† as shown for the ki-
netic energy in Eq.~2.6!. For the transformed fermions this i
simple,

cis
† 5cis;0

† 1cis;U
† , cis;0

† 5X̃i
s0 , cis;U

† 5lsX̃i
2s̄ .

~3.3!

The subscript 0 means that the potential energy is unchan
after the particle creation, andU means that the energy i
changed byU due to creation of a single doubly occupie
site. Thereforecis;0

† andcis;U
† describe single-particle exci

tations into different Hubbard subbands. The above form
demonstrates the usefulness of theX-operator formalism. To
get a similar expression for the original fermions first o
has to apply the transformation Eq.~2.2! and then use the
above decomposition. To first order,

ais;0
† 5X̃i

s01
t

U(
d

~X̃i1d
s0 X̃i

s̄ s̄2X̃i1d
s̄0 X̃i

ss̄1X̃i1d
s0 X̃i

22

1X̃i
20X̃i1d

s2 !, ~3.4!

and

ais;U
† 5lsX̃i

2s̄2ls

t

U(
d

~X̃i1d
2s̄ X̃i

001X̃i
20X̃i1d

0s̄ 1X̃i1d
2s̄ X̃i

ss

2X̃i1d
2s X̃i

ss̄ !. ~3.5!

The operatorais;2U5(ais;U
† )† removes a spin from a doubl

occupied site, and changes the potential energy of the sys
by uUu. The operatorais;0

† adds a free spin and leaves th
potential energy unchanged. The transitions due toais;U

† will
then correspond to the lower Hubbard band~LHB!, while
those due toais;0 correspond to the upper Hubbard ba
~UHB!.

Equations~3.4! and~3.5! are operator expressions and a
valid for both large positive and negativeU. Below sum
rules for the attractive case will be derived. As we will sho
below, this amounts to taking expectation values with resp
to a state with no single occupancies, resulting in a con
erable simplification of the final expressions.

A. Momentum integrated

The weight of the UHB is given by

m0
~0!5^$ais;0 ,ais;0

† %&. ~3.6!

This weight is site and spin independent, taking into acco
the translational symmetry and using the fact that the sp

es

n
te
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are paired; hence the subscriptis is dropped inm0
(0) . Add-

ing a spin to a collection of empty and doubly occupied si
will not change the number of doubly occupied sites. The
fore the subscript 0 corresponds to the UHB. On the c
trary, removing an electron implies breaking a pair whi
contributes to the LHB intensity, beingm2U

(0) with U,0. We
note that the pair breaking implies an energy increase
order uUu in the final state.

Using Eqs.~3.4!, ~3.5! and simplifying the resulting ex
pressions for the weights due to the property~2.8! one finds
to first order,

m0
~0!5^X̃i

0sX̃i
s0&5^X̃i

00&512
n

2
1O~ t2/U2!, ~3.7!

and

m2U
~0! 5^X̃i

22&5
n

2
1O~ t2/U2!. ~3.8!

The electron-removal~or photoemission! weight has a
simple sum rule, being equal ton/2. Therefore, to second
order, only the LHB is seen in the electron-removal sp
trum, and the intensity of the bands simply reflects the nu
ber of particles. This is clearly very different from th
positive-U case, where the chemical potential moves in o
of the bands away from half filling, and a nontrivial redist
bution of intensity between the bands follows. In fact, it
easy to prove that to any order in the perturbation series
LHB is purely electron removaland the UHBis purely elec-
tron addition. The fermion operator leaving the band ind
unchanged,ais;0, is given by a sum of products of the Hub
bard operators of the formX̃aAX̃bB

•••. The lower- and
upper-case letters~referring to the final and initial states
respectively! have to obey two constraints:~i! the number of
lower-case 2’s has to be equal to the number of upper-c
2’s in order to leave the number of doubly occupied si
unchanged, and~ii ! the sum of upper-case letters minus t
sum of lower-case letters has to be equal to 1 since
electron is removed. Consequently, there is one mores in
the sequenceA,B, . . . than in a,b, . . . , and ai ,s;0&50.
Hence one finds that there is no electron-removal weigh
the UHB to any order in perturbation theory. Therefore t
chemical potential is always in the gap between the LHB a
UHB, for any filling, and to any order in perturbation theor

Apart from the LHB and UHB, there are higher ban
which will have a finite intensity fort.0. However, because
@ T̃2U ,X̃i

s0#50 and @ T̃U ,X̃i
2s̄ #50, the operatorsais;22U ,

etc., are of order (t/U)2, and the intensity of these bands
fourth or even higher order only.17 This agrees with numeri
cal calculations where hardly any signal of higher bands
observed.

The first moment of the UHB, to ordert, is given by

m0
~1!5^$@ci ,s;0 ,Ṽ1T̃0#,ci ,s;0

† %&. ~3.9!

However, taking the expectation values the term proportio
to t vanishes. The energy difference between the UHB
LHB is therefore
s
-
-

of

-
-

e

e

se
s

e

in
e
d

is

al
d

EUHB2ELHB5
m0

~1!

m0
~0! 2

m2U
~1!

m2U
~0! 5uUu1O~ t2/U !. ~3.10!

There is no energy shift of ordert. Small corrections of order
t2/U will occur. Compare this with the positive-U case
where the separation is larger thanU with a correction of
order t away from half filling.

In a similar way the width of the Hubbard bands is relat
to the second moment. For the UHB, to lowest order

m0
~2!5^$@cis;0 ,T̃0#,@ T̃0 ,cis;0

† #%&5zt2^X̃i
00&, ~3.11!

and

~DEUHB!2[
mis;0

~2!

mis;0
~0! 2Smis;0

~1!

mis;0
~0! D 25zt21O~ t3/U !,

~3.12!

and the same for the LHB. Herez is the number of neares
neighbors. So, to lowest order, the width~second moment!
does not depend on the actual occupationn and is equal to
the free-particle bandwidth for each band individual
Again, this is different from the repulsive case where t
widths depend on the occupation number. Note that the s
result can be obtained by using the mapping to the half-fil
positive-U case, and Eq.~3.12! is consistent with our previ-
ous results.19 These features of the spectra can be compa
with numerical and approximate calculations of the on
particle spectrum.30–35

In Fig. 3 we show the numerical spectrum for a ten-s
one-dimensional ring. The above derived features of
spectrum are clearly observed. The chemical potential is
the gap. The separation of the bands is close touUu and the
width of both bands is roughly independent of the parti
number and is close to theU50 value. The weight of the
LHB is simply n/2, as given by Eq.~3.8!.

B. Momentum resolved

In contrast to the integrated quantities of the preced
section, the terms proportional tot are no longer zero for the
momentum-resolved spectrum. The zeroth moment is ca
lated using Eq.~3.4! and the definition

FIG. 3. The momentum-integrated one-particle spectrum
n51 andn50.6 for a chain of ten sites with periodic bounda
conditions;U5210, t51. The chemical potential is atv50.
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mkW ;0
~0!

5
1

Na
(
i , j

eik
W
•~RW i2RW j !^$ais;0 ,ajs;0

† %&, ~3.13!

whereNa is the number of sites. Assuming translational
variance for the expectation values and using the one-par
energies,

ekW52t(
d

eik
W
•dW , ~3.14!

one finds, up to ordert/U,

mkW ;0
~0!

512
n

2
1
2ekW

uUu ^X̃i
00X̃i1d

22 1X̃i
02X̃i1d

20 &

512
n

2
2
2ekW

uUu S ^SW i•SW i1d&2
1

4D , ~3.15!

for the momentum-dependent weight of the UHB, and

mkW ;2U
~0!

5
n

2
1
2ekW

uUu S ^SW i•SW i1d&2
1

4D
5nkW1O~ t2/U2! ~3.16!

for the respective weight of the LHB. Since the weight of t
LHB is purely electron removal,mkW ;2U

(0) is equal to the occu-
pation numbernkW . The deviations fromn/2 increase when
uUu decreases, andnkW is maximal forkW values close to 0, as
expected.

The calculation of the first moment proceeds in a sim
way. For the UHB,

mkW ;0
~1!

5ekW^X̃i
00X̃i1d

00 2X̃i
20X̃i1d

02 &. ~3.17!

Dividing by the zeroth moment we obtain the average en
gies of the bands. One finds for the UHB

EkW ;05ekWF11
2

22n S ^SW i•SW i1d&2
1

4D G , ~3.18!

and for the LHB

EkW ;2U52uUu1ekWF11
2

n S ^SW i•SW i1d&2
1

4D G . ~3.19!

The above dispersions depend on the pseudospin order i
ground state, as total spin-spin expectation values ente
both the zeroth and the first moment. Note that these exp
sions are not symmetric aroundn51. Nevertheless, the
electron-hole symmetry is preserved in the spectra, as
weights of the dispersive part;ekW are interchanged and th
UHB for n.1 mirrors the LHB forn,1.

At half filling the spectra for positive and negativeU are
identical, and we have

EkW ;2U52ekW S ^SW i•SW i1d&1
1

4D , ~3.20!

as found before in the positive-U case.19 For Néel order the
dispersion vanishes,36,37 and for ~pseudospin! quantum anti-
ferromagnets this average dispersion of the LHB is rever
and narrowed compared to theU50 case.

In Fig. 4 thekW dependence of the average energy of
-
le

r

r-

the
in
s-

he

d

e

LHB is plotted. The numerically obtained weighted avera
of the pole energies which belong to the LHB for a 1D te
site ring~the momentum-resolved analog of Fig. 3! is shown
and compared with the expressions above. The disper
changes signroughly aroundn51.25, and the largest differ
ences between the numerical and perturbative results o
around half filling. At half filling thek50 spectrum lies on
average at higher energy than thek5p spectrum.

The density dependence of the dispersion of the LHB
plotted in Fig. 5, represented by the prefactorA in the energy
expression,EkW ;2U5AekW . The expectation values are ob
tained from the numerical ground state of a 20-spin Heis
berg ring. Using the Bethe ansatz Griffiths38 calculated the
energy of Heisenberg chain in a magnetic field. His resu
can be directly used and agree very well with the numer
data. The 2D results are from 16- and 18-site spin cluste

The limits can be discussed explicitly. One finds in o
dimension at half fillingA51/222ln2 from the Bethe solu-
tion of the Heisenberg chain. For smalln,
Szz51/42n/21O(n2) andS1252n/21O(n2). It follows
thatEkW ;2U52ekW1O(n) andEkW ;05uUu1ekW@12n1O(n2)#
for small n, independent of dimension. The dashed line
Fig. 5, showing the dispersion in the absence of quan
fluctuations, reproduces the limiting behavior forn&2. Note
that the curve suggests that the correction for smalln is in
fact higher order inn, indicating that doubly occupied site
avoid being nearest neighbors.

An approach which is very similar in spirit is the two-po
ansatz for the one-particle spectrum;28,29 for more references
see Ref. 19. Two poles are determined by two energies
two weights. These four parameters are fixed by demand
that they should be consistent with the first four moments

FIG. 4. The momentum-resolved average energy of the LHB
the one-particle spectrum for three different values of the den
n. Drawn curve is Eq.~3.19! with the expectation values taken from
a 20-site Heisenberg ring. Dots are obtained by integrating the L
part of the momentum-dependent spectrum obtained by exac
agonalization of a ten-site ring withU5220, t51.
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2038 55HENK ESKES AND ANDRZEJ M. OLES´
the spectral function~the zeroth to third!. For largeU the
poles can be identified as giving the energy averages
weights of the two Hubbard bands. Taking the formulas
the energies and positions from Ref. 29 and expanding
first order we recover precisely the results given by E
~3.15!–~3.19!, as shown in Appendix B. We note that th
correct coefficient ofekW can be obtained only when the com
plete expression for the third moment is used. In contras
the averaging procedure over the Brillouin zone is adopte
calculate the third moment, the results are equivalent to H
bard I approximation.34,35

The two-pole approach has the advantage that it is n
perturbative and gives better results for intermediate va
of U ~see Ref. 19 for a more extended discussion!. On the
contrary, the two poles can no longer be identified with Hu
bard bands for smaller values ofU. Already at ordert2/U
the two-pole and perturbation method give different resu
~the poles will acquire some weight from the other ban!.
The two-pole approach clearly cannot be used to study
second and higher moments~width and structure! of the
Hubbard subbands, unless one would include the lifet
effects in the model spectral function.

As mentioned in the Introduction, the one-particle sp
trum for all fillingsn is equivalent to the problem of one ho
moving in a spin background.26 The filling is related to the
magnetization by Eq.~2.12!. This one-hole problem is wel
understood in the context of thet-J model, and a self-
consistent diagrammatic approach~linear-spin-wave ‘‘self-
consistent Born’’! has been shown to give accurate resu
Therefore the spectrum can be discussed in more detail
just the few lowest moments listed above. However,
should be kept in mind that the original fermions are rela
to the transformed ones by means of Eqs.~3.4! and ~3.5!,
which changes thekW -dependent intensities according to E
~3.13!. For not too large values of2U this correction to the
intensity is considerable.~See, for instance, the plot ofnk in
Ref. 19.!

FIG. 5. PrefactorA of the average energy in the LHB
(EkW ;2U5AekW) as a function of electron densityn. Solid line was
obtained using the energy of 1D Heisenberg chain in finite fi
given in Ref. 38. The numerical results obtained for a 1D 20-
Heisenberg ring, and 16-site~18-site! 2D Heisenberg clusters ar
shown by circles and empty~filled! squares, respectively. Dashe
line indicates the limit of the classical state atD5`.
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More complicated next-nearest-neighbor correlation fu
tions enter into the second moment. The result for the U
in terms of theX operators is, to ordert2,

mkW ;0
~2!

5zt2
22n

2
1t2

1

Na
(

i ,d,d8,dÞd8
eik

W
•~dW 2dW 8!^X̃i1d

00 X̃i
00X̃i1d8

00

1X̃i1d
02 X̃i

22X̃i1d8
20

22X̃i1d
00 X̃i

02X̃i1d8
20 &. ~3.21!

At half filling this again is equal to the second moment f
positiveU. The explicit result for one dimension andn51
was calculated in our previous paper, Ref. 19. We would l
to emphasize that the spectra are mainly incoherent and
width of the momentum-resolved spectra of the two Hubb
bands is on average close to the momentum-integrated
particle bandwidth atU50, and fork5p/2 even exceeds
this by;20%. This incoherent width of the spectra is th
very large, a feature completely neglected by the two-p
ansatz. Such an incoherent spectrum results from the
created by the added free spin which modifies locally
superconducting order parameter.26

IV. OPTICAL SPECTROSCOPY

As in the large-positive-U Hubbard model, the optica
conductivity of the negative-U Hubbard model consists o
two distinct parts, the LHB and the UHB.39–41,19For illustra-
tion, we show in Fig. 6 an example of such a spectrum
tained with a 2D 433 cluster at half filling. The LHB, which
corresponds to pair motion, is quite narrow with a width
order t2/U. The UHB has roughly a width 10t related to the
convoluted kinetic energy of two single electrons. A Hartre
Fock calculation predicts an UHB bandwidth of ordert2/U
and therefore underestimates the width of these interb
transitions. The current operator is a one-particle opera
and therefore necessarily breaks up pairs to lowest order.
therefore quite remarkable that, in spite of a large value
U which promotes local pairing, the LHB has the large
intensity, while the UHB contains in the present case o
;16% of the total spectral weight. We note that the to
weight is underestimated by;25% due to the open bound
ary conditions in the cluster, but as we explain below t
results of Fig. 6 are representative for the ratio between
weights in the LHB and UHB for a 2D system.

d
e

FIG. 6. The optical spectrum at half filling (n51) of a 2D
433 cluster with open boundary conditions, forU5210 and
t51.
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Sum rules for the UHB and LHB features in th
frequency-dependent optical conductivity can be derived
similar way as for the one-particle spectra. The vector pot
tial is coupled to the electrons via the usual Peierls ph
factor, changing the Hubbard Hamiltonian~1.1! to

H5U(
i
ni↑ni↓2 (

i ,d,s
t~dW !ais

† ai1d,s , ~4.1!

where

t~dW !5texpS 2
ie

\c
AW •dW D . ~4.2!

AW is the vector potential on the bond betweeni and i1d.
This expression is gauge invariant in the usual way: the
fects of a term¹W f added toAW can be compensated by addin
the appropriate phase factor to the wave function.

The expression for the conductivity is obtained from li
ear response theory.42–45 The electric field is taken to be
homogeneous and pointing in thex direction. Furthermore
we set\5c51. Also the lattice constanta is set to 1. In the
Hamiltonian the field couples linearly to the paramagne
particle current,

j x5 i t (
i ,d,s

dxai1d,s
† ai ,s , ~4.3!

where as beforedW is a vector connecting nearest-neighb
sites. The conductivity per site is related to the curre
current correlation function (v>0),

sx~v!5Dd~v!1
pe2

vNa
(
fÞ0

z^ f ,Nu j xu0,N& z2d~v2Ef1E0!.

~4.4!

The charge stiffnessD ~or ‘‘Drude weight’’! is given by

D52
2pe2

zNa
^T&2

2pe2

vNa
(
fÞ0

z^ f ,Nu j xu0,N& z2

Ef2E0
, ~4.5!

and the total sum ruleW,

W[
1

pe2E0
`

dvsx~v!52
1

zNa
^T&, ~4.6!

is proportional to the expectation value of the kinetic ener
Note that only half of the Drude contribution is counted~for
v.0).

In the presence of a vector potential the transformat
S is still given by Eq.~2.7! but with the kinetic energy term
changed to

T̃U52 (
i ,d,s

t~dW !X̃i1d
2s̄ X̃i

0s , ~4.7!

and similarly for T2U . The effective Hamiltonian acting
within the low energy subspace restricted to doubly occup
and empty sites only is now

H5(
i ,d

F 2t2uUu S SizSi1d
z 2

1

4
D 1

2t2~dW !

uUu
Si

1Si1d
2 G . ~4.8!
a
n-
e

f-

c

r
t-

.

n

d

Only the pseudospin12 part, leading to charge transport,
influenced by the vector potential. Compare this with t
large-positive-U case at half filling. The exchange of tw
real spins does not give rise to charge transport and
Heisenberg Hamiltonian is then found to be field indepe
dent.

Since the Hilbert space for largeuUu is restricted to empty
and doubly occupied sites, and since the ‘‘bare’’ kinetic e
ergy breaks up pairs,̂T̃&50 and the kinetic energy expec
tation value is of ordert2/U. Using Eq.~2.6! and the trans-
formationS one finds

W52
1

zNa
^T&52

1

zUNa
^@ T̃U2T̃2U ,T̃#&1O~ t3/U2!

5JS 142^SW i•SW i1d& D1O~ t3/U2!. ~4.9!

The kinetic energy sum rule is equal to the total spin-s
correlation function, including thez part. This is so becaus
also theSzz term originates from virtual excitations of pair
into two spins which delocalizes the spins and therefore
creases the kinetic energy.

The most systematic way to derive the~lowest-order! sum
rule for the LHB and UHB consists of expanding the curre
operator inx direction in an analogous way as the kine
energy~2.6!. To zeroth order,

j x5 j x;01 j x;U1 j x;2U ,

j x;05 i t (
i ,d,s

dx~X̃i1d
s0 X̃i

0s1X̃i1d
2s̄ X̃i

s̄2!1O~ t2/U !,

j x;U5 i t (
i ,d,s

dxlsX̃i1d
2s̄ X̃i

0s1O~ t2/U !,

j x;2U5 i t (
i ,d,s

dxlsX̃i1d
s0 X̃i

s̄21O~ t2/U !. ~4.10!

We consider a finite system with open boundary conditio
The polarization in thex direction, Px5( i ,sRi ,xni ,s , is
similarly decomposed as follows:

Px5Px;01Px;U1Px;2U ,

Px;05(
i
Ri ,xS 2X̃i

221(
s

X̃i
ssD 1O~ t2/U2!,

Px;U5
t

U (
i ,d,s

dxlsX̃i1d
2s̄ X̃i

0s1O~ t2/U2!,

Px;2U52
t

U (
i ,d,s

dxlsX̃i1d
s0 X̃i

s̄21O~ t2/U2!. ~4.11!

The paramagnetic current operator is the time derivative
the polarization. Usingj x5 i @H,Px# this is identical to Eq.
~4.3!. For a finite system with open boundaries the Dru
contribution to the conductivity shifts to finite frequenc
Replace one of the current operators in Eq.~4.4! by the
above commutator. Then theH term cancels the 1/v term
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2040 55HENK ESKES AND ANDRZEJ M. OLES´
and the sum rule is easily seen to be equal
W5 i ^@ j x ,Px#&/(2Na)52^Tx&/(2Na). The sum rules for
LHB and UHB become

WLHB5
i

2Na
^@ j x;0 ,Px;0#&,

WUHB5
i

2Na
^ j x;UPx;2U2Px;U j x;2U&. ~4.12!

These expressions lead to

WLHB52
4t2

U

1

Na
(
i ,d

~dx!
2^X̃i1d

20 X̃i
02&

522JS121O~ t3/U2!, ~4.13!

WUHB5
2t2

uUu
1

Na
(
i ,d

~dx!
2^X̃i1d

22 X̃i
002X̃i1d

20 X̃i
02&

5JS 142Szz1S12D1O~ t3/U2!. ~4.14!

Note that, since the intensity is of ordert2/U and since
Px;0 is of zeroth order,j x;0 is needed to first order for th
LHB sum rule,

j x;0
~1!51

1

U
@ T̃U , j̃ x;2U#2

1

U
@ T̃2U , j̃ x;U#. ~4.15!

Three-site processes19 do not contribute toj x;0
(1) in the sub-

space of no singly occupied sites and therefore

j x;0
~1!&52

4i t 2

U (
i ,d

dxX̃i1d
20 X̃i

02&. ~4.16!

As could be expected, this describes the motion of pairs
stead of single electrons. The above is the current operat
the restricted Hilbert space, and can also be obtained dire
from Eq. ~4.8!. Using now Eq.~4.12! one immediately finds
the above result forWLHB given by Eq.~4.13!.

The result forWUHB ~4.14! contradicts the naive expecta
tion that it would dominate as the current breaks up pairs
lowest order. The intensity in UHB is related to the longit
dinal pseudospin correlations, or to the nearest-neigh
charge correlation function. It is enhanced by antiferrom
netic pseudospin correlations inz direction, and reduced by
the ~negative! S12. As given by the above difference
WUHB is in general quite small in the SS phase, and vanis
in the limit of D→` for any filling @see Eqs.~2.14!#. In
contrast, the intensity in the LHB depends only onS12,0
which measures the kinetic energy of the doubly occup
sites and is thus finite for 0,n,2. For low densities one
findsW5Jzn/21O(n2), andWUHB5O(n2).

At half filling the global spin-rotational symmetry can b
combined with the 1D result̂SW iSW i1121/4&52 ln2. This
gives atn51 the total sum ruleW54t2ln2/uUu, and the
LHB and UHB weight, respectively,

WLHB5
4t2

3uUu ~4ln221!'2.4
t2

uUu
,

o

-
in
tly

n

or
-

es

d

WUHB5
4t2

3uUu ~12 ln2!'0.4
t2

uUu
. ~4.17!

Unlike in the positive-U Hubbard model,18,19,40the weight in
the LHB does not vanish at half filling, but represents t
dominatingcontribution.

The sum rules derived above are valid in the large-uUu
limit. However, the perturbation approach still gives reaso
able results for intermediateU of the order of the bandwidth
This is shown in Fig. 7, where the sum rule expressions
two dimensions are compared with numerically integra
s(v) spectra of a ten-site Hubbard cluster. ForU5210 ~the
bandwidth is 8t) the intensities differ from the large-uUu
expressions by typically 20%, and the large-uUu approach
converges to the numerical sums whenuUu increases, as ex
pected. Atn50.2,WUHB is exactly zero. This is a finite-size
effect, since the system contains only a single local pair.
have obtained an equally favorable comparison between
numerically integrated sum rules and the large-uUu expres-
sions in one dimension.

The dependence of the spectral weights in the LHB a
UHB on the dimensionality is illustrated in Fig. 8. The ove
all weight in the LHB is largest in one dimension, as t
quantum fluctuations are there particularly strong@see Eq.
~4.13!#. The observations made above for one dimens
concerning the relative intensities@see Eqs.~4.17!# turn out
to be quite general—because of the coherent propagatio
local pairs there is very little weight in the UHB, and on
near half filling does the weight increase significantly. F

FIG. 7. A comparison of the large-U perturbation results for the
total optical sum ruleW/J ~a!, and the intensity of the UHB~b!,
with integrated intensities obtained for finiteU from 2D clusters, as
a function of band fillingn. Numerical results, obtained by integra
ing the UHB and LHB parts ofs(v) for a 2D ten-site cluster, are
represented by empty and filled circles forU5210 andU5220
(t51). The squares show the sum rules obtained from the Lanc
diagonalization of the 2D Heisenberg clusters of 16 sites~empty
squares! and 18 sites~filled squares!.
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55 2041SPECTRAL PROPERTIES OF THE LARGE-NEGATIVE-U . . .
instance, in two dimensions one finds at half fillin
WUHB /W.23% ~see Fig. 7!. The increase of the total weigh
W, Eq. ~4.9!, reflects the increase of the kinetic energy w
increasing filling. The data points obtained with 2D cluste
show a maximum ofWLHB atn.0.87~Fig. 8!. Unlike in one
dimension, this reflects the precursor effect of the symme
breaking, asuS12u.2uSzzu for the 2D clusters, except at ha
filling where uS12u52uSzzu due to the rotational symmetr
of the ground state in the pseudospin space. The wei
found for the LHB in the symmetry-broken SS ground sta
in two and three dimensions are very similar and appro
the analytic resultWLHB5n(22n)/2 in the limitD→`. The
symmetry breaking increases the value of the transv
componentS12 which has a large contribution from the o
der parameter in the SS phase~see Fig. 1!, and therefore the
weight in the UHB is reduced. This trend is reproduced c
rectly by our random-phase approximation~RPA! calcula-
tion close to half filling, but for smalln the difference be-
tweenS12 andSzz in the RPA approach turns out to be n
accurate enough, andWUHB is overestimated. The weight o
the UHB vanishes for the classical state in theD→` limit.
This provides the sum rule for the dynamical mean-fi
theory46 for the attractive Hubbard model.

The strong sensitivity of the intensities on the grou
state of the system is well demonstrated by the data for
rotationally invariant and symmetry-broken states atn51
collected in Table I. In the extreme quantum limit, given
the singlet ground state of a two-site cluster, only the LH

FIG. 8. The optical conductivity sum rules for the LHB
WLHB /J ~a!, and for the UHBWUHB /J ~b!, as functions of band
filling n for D51, 2, 3, and for the classical state atD5`. The
spectral weights are obtained from the spin-spin correlation fu
tions Szz and S12 of the Heisenberg model at finite field. Th
results obtained for the rotationally invariant states~filled circles for
the 1D 20-site ring, empty and filled squares for the 2D cluster
16 and 18 sites, respectively! are compared with the symmetry
broken SS state in two~solid lines!, three~long-dashed lines!, and
infinite dimensions@dashed line in~a!#.
s

ry

ts
s
h

se

-

e

contributes to the conductivity which has the maximal to
weight. In contrast, a triplet state~not shown! would give
zero total weight and a negative weight in the LHB. T
negative weight occurs because the triplet is an excited s
and therefore the LHB conductivity is dominated byemis-
sion instead of absorption. Going from the singlet through
1D to a 2D system, the weight in the UHB increases gra
ally, but the total weight goes down. In one dimension t
correlation functionsSzz21/4 andS12 almost cancel each
other, while in two dimensions the quantum fluctuations
less strong and the UHB intensity is larger. The symmet
broken superconducting~SS! states have their order param
eter in the (x,y) planes, which gives again a fast decrease
the UHB weight with increasing dimension, and atD5`
only the LHB with half of the singlet weight is left. Thu
only the coherent motion of the pairs contributes to the c
ductivity in this limit. The opposite limit is found for the
CDW state, where the spins point along thez direction. Here
the conductivity is dominated by pair breaking. Note that t
RPA-CDW state in 2D still has most of the intensity in th
LHB due to the sizable admixture of spin fluctuations. T
summarize, by canting the spins from the (x,y) plane ~SS
phase! to the z direction ~CDW phase! the intensity gets
transferred from the LHB to the UHB.

V. CHARGE AND SPIN EXCITATIONS

The dynamical, momentum-dependent charge struc
factor is defined as

C~qW ,v!5(
f

z^ f ,NunqW u0,N& z2d~v2Ef
N1E0

N!, ~5.1!

with

nqW5
1

ANa
(
i
eiq

W
•RW ini , ~5.2!

c-

f

TABLE I. Spin correlation functionsSzz andS12 and optical
intensities of the LHB (WLHB /J) and UHB (WUHB /J) for different
ground states and dimensions atn51. The two-site singlet state is
represented byD50, S50. Rotationally invariant~RI! states in
D51 andD52 were obtained by Lanczos diagonalization of t
Heisenberg model for a 20-site ring and 18-site 2D cluster, resp
tively. The symmetry-broken singlet superconducting~SS! and
charge-density wave~CDW! states, all below the line, are calcu
lated in RPA forD52 andD53 and compared with the classica
states atD5`.

D State Szz S12 WLHB /J WUHB /J

0 S50 20.25 20.50 1.0 0.0
1 RI 20.1484 20.2968 0.5936 0.1016
2 RI 20.1157 20.2313 0.4626 0.1344

2 SS 20.0820 20.2470 0.4940 0.0850
CDW 20.1650 20.1639 0.3278 0.2511

3 SS 20.0526 20.2460 0.4920 0.0566
CDW 20.1935 20.1051 0.2102 0.3384

` SS 0.0 20.25 0.5 0.0
CDW 20.25 0.0 0.0 0.5
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and the sum rule is simply

E
2`

`

dvC~qW ,v!5^n2qWnqW&. ~5.3!

For the partial sums we need the transformedXi
ab operators.

One finds to first order the number operator for singly oc
pied sites,

Xi
ss5X̃i

ss2
t

U
ls(

d
~X̃i1d

2s̄ X̃i
0s2X̃i

2sX̃i1d
0s̄ 2X̃i1d

s̄0 X̃i
s2

1X̃i
s0X̃i1d

s̄2 !, ~5.4!

and for doubly occupied sites,
-

Xi
225X̃i

221
t

U(
d,s

ls~X̃i
2s̄X̃i1d

0s 1X̃i1d
s0 X̃i

s̄2!. ~5.5!

Using the charge conservation constrai
ni52Xi

221(sXi
ss and the above expressions, the derivati

is straightforward. The intensity is mainly in the LHB,

E
2`

`

dvCLHB~qW ,v!5
4

Na
(
i , j

eiq
W
•~RW j2RW j !^X̃i

22X̃j
22&

1O~ t2/U2!. ~5.6!

This is simply the response function for bosons on a latti
The charge 2 is reflected by the prefactor 4 in Eq.~5.6!. The
UHB intensity is second order int/U,
utside
B in the
endent
W

te

bution is

order,
E
2`

`

dvCUHB~qW ,v!5
4t2

NaU
2(
i ,d

@12cos~qW •dW !#^X̃i1d
22 X̃i

002X̃i1d
20 X̃i

02&

5
4t2

U2 S 142Szz1S12D(
d

@12cos~qW •dW !#1O~ t3/U3!. ~5.7!

The response vanishes atqW 50 and is maximal atqW 5pW . For a homogeneous system the expectation value can be taken o
the sum and theqW dependence is just a simple cosine function. The density dependence is the same as for the UH
optical conductivity~see Fig. 7!. Because the UHB intensity is second order and because of the small density-dep
prefactor, the UHB will be barely visible in the 3D SS state.32 As in the optical case the UHB will be more intense in the CD
phase.

The longitudinal spin dynamical structure factor is

Si~qW ,v!5(
f

z^ f ,NuSqW
zu0,N& z2d~v2Ef

N1E0
N!, ~5.8!

where

SqW
z
5

1

ANa
(
i
eiq

W
•RW i
1

2
~Xi
↑↑2Xi

↓↓!. ~5.9!

The intensity of the LHB is determined by the expressions of the formSi ;0
z &, i.e., on the left and on the right there is a sta

with no singly occupied sites. The intermediate states in second and higher order, obtained by acting withT̃2U , contain singly
occupied sites. However, since up and down spins occur in a completely symmetric manner, each up spin contri
canceled by an identical down spin contribution. Therefore one finds thatSi ;0

z &50, and

E
2`

`

dvSi
LHB~qW ,v!50, ~5.10!

to any order int/U. This result proves the existence of a spin gap in the large-negative-U Hubbard model47—making a spin
excitation implies breaking up pairs and changing the energy byuUu.

The operator in Eq.~5.4! does not break up pairs to lowest order and therefore the weight of the UHB is of second

E
2`

`

dvSi
UHB~qW ,v!5

t2

NaU
2(
i ,d

@12cos~qW •dW !#^X̃i1d
22 X̃i

001X̃i1d
20 X̃i

02&5
t2

U2 S 142^SW i•SW i1d& D(
d

@12cos~qW •dW !#1O~ t3/U3!.

~5.11!
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Again the expectation value factorizes into aqW -dependent
and a density-dependent part. The density dependenc
given by the full spin-spin correlation function~see Fig. 2!
and the qW dependence is the same as for the cha
response.32

Finally, we consider the transverse spin structure fact

S'~qW ,v!5(
f

z^ f ,NuSqW
1u0,N& z2d~v2Ef

N1E0
N!,

~5.12!

where

SqW
1

5
1

ANa
(
i
eiq

W
•RW iXi

↑↓ . ~5.13!

The calculation involves the transformed spin-flip operato

Xi
ss̄5X̃i

ss̄2
t

U
ls(

d
~X̃i1d

2s̄ X̃i
0s̄1X̃i1d

0s̄ X̃i
2s̄2X̃i1d

s0 X̃i
s2

2X̃i1d
s2 X̃i

s0!. ~5.14!

SinceXi
↑↓ turns a down spin into an up spin, this opera

breaks at least one pair to any order in perturbation the
Thus there is again no spectral weight in the LHB to a
order in t/U,

E
2`

`

dvS'
LHB~qW ,v!50. ~5.15!

The weight of the UHB is of second order, and we simp
find that

E
2`

`

dvS'
UHB~qW ,v!52E

2`

`

dvSi
UHB~qW ,v!. ~5.16!

This reflects the rotational symmetry of the~real! spin re-
sponse, as the ground state is nonmagnetic. Note, how
that thepseudospinaveragesSzz andS12 are highly aniso-
tropic away from half filling, as we have shown in Fig. 2~or
even at half filling due to symmetry breaking!.

VI. SUMMARY AND DISCUSSION

In conclusion we have derived sum rules for the UHB a
LHB of the Hubbard model in the limit of large attractiv
interactions. In this limit only two degrees of freedom p
site are left, namely, each site can be either doubly occu
or empty, and the low energy behavior is determined b
~pseudospin! Heisenberg Hamiltonian. The sum rules follo
from local correlations~at short time scales! and are written
in terms of only two independent correlation functions: t
nearest-neighborSzz andS12 spin-spin correlations~2.13!.

The momentum-integrated one-particle spectrum is ins
sitive to ground-state correlations. The intensity of the LH
~UHB! is given simply by the number of electrons~holes! in
the system. The chemical potential is in the gap, the ene
separation between the bands isuUu, and the width of each o
the bands~second moment! is equal to theU50 width. The
momentum-resolved energy average, however, is determ
by the nearest-neighbor spin correlation function. Forn50
the first moment of the UHB is equal toekW ~free-particle
is

e

,

,

r
y.
y

er,

d

r
ed
a

n-

y

ed

dispersion! and its momentum dependence decreases w
increasing filling. At somen,1 this average dispersio
changes signand goes to2ekW for n52. We have shown tha
this behavior is correctly reproduced by the two-pole ans

The negative-U Hubbard model has a spin gap and the
fore the LHB is missing in the frequency-dependent s
structure factor~5.10!. The UHB response is second order
t/U, and the density and frequency dependence of the we
factorize. The frequency dependence is a simple cosine fu

tion and it vanishes atqW 50W . The density dependence is give
by the total spin-spin correlation function and the weight
proportional to the energy gain due to quantum fluctuatio
in the Heisenberg system. The charge response is alm
purely within the LHB. The UHB occurs in second order, b
with only a small prefactor in the superconducting state.

The most spectacular changes as function of electron
ing and system dimension were found in the optical sp
trum. The relative weights of the UHB and LHB ins(v)
depend very sensitively on the actual initial state—see Table
I. Even though these intensities depend onlocal expectation
values, subtle effects such as a broken symmetry may ha
noticeable effect on the spectra. The LHB intensity is rela
to the dynamics of double occupancies expressed by
pseudospin fluctuationŝSi

1Si1d
2 & in the effective Hamil-

tonian~2.11!. It is quite remarkable that the LHB has most
the intensity, both for the rotationally invariant and for th
SS state, since the current is a one-particle operator
therefore might be expected to act mainly as a pair brea
This demonstrates the substantial gain in kinetic energy
to the quantum coherence of the local pairs which repres
in this case the leading contribution to the optical conduc
ity. On the contrary, a CDW state gives an intense UHB a
a much reduced but still sizable contribution due to lo
pairs. The latter results from quantum fluctuations and v
ishes completely in the classical limit of the CDW state~at
D→`). This shows that the optical spectra of the attract
Hubbard model in two or three dimensions are qualitativ
different from theD→` limit, as calculated by the dynami
cal mean-field theory.46We hope that future calculations wi
provide more information about the frequency dependenc
the optical conductivity in this limit.

It is interesting to compare the optical conductivity
large-uUu limit with the RPA results of Taraphderet al., who
found a much stronger weight in the UHB than that of t
LHB.3 However, the ratio of the UHB to the LHB is over
estimated by a factor close to 6. We have verified that
calculation of the spectral weight in the LHB based on t
split-band picture in the CDW state underestimates the
contribution to the optical conductivity. This follows from
the applied mean-field treatment neglecting the quan
fluctuations of pseudospins, while in this state the latter
termine the weight in the LHB due to the spin-spin corre
tion function S12. Therefore the large-U limit value of
WLHB ~4.13! is not reproduced quantitatively using Eq.~F11!
of Ref. 3.

It is tempting to compare the results obtained above w
experiments on Ba12xK xBiO3 and BaPb12xBi xO3. These
compounds show a phase diagram which is very simila
the negative-U Hubbard model with an extra neares
neighbor Coulomb repulsion added. Around half fillin
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(BaBiO3) the materials are diamagnetic and insulatin
while after roughly 30% doping they become supercondu
ing. In BaBiO3 there is a gap of about 2 eV which sugge
that Coulomb interactions are quite large. In the optical c
ductivity one observes a strong rearrangement of we
from high to low energy when increasing the doping.48 Com-
paring with our sum rules this signals a transition from t
CDW to SS phase. Although a quantitative comparison is
possible due to ambiguous experimental resolution of
LHB and UHB features in the optical conductivity, we find
very encouraging that the UHB gradually vanishes un
doping in Ba12xK xBiO3.

48 However, these changes are a
companied by strong shifts in peak energies, while in
large-U Hubbard model the UHB would stay at a rough
constant energyU. Moreover, in undoped BaBiO3 no LHB
signal is observed in the conductivity. In Table I we sho
that even for the CDW in 3D one still expects a considera
LHB signal. We tentatively interpret this difference as orig
nating either from polaronic trapping, or from the reducti
of effective uUu by doping. Another possibility is that a
nearest-neighbor repulsion suppresses the quantum flu
tions.

We believe that more information about electronic int
actions in Bi compounds is needed for making a more qu
titative analysis of the experimental data. It is straightf
ward to include a nearest-neighbor interactionV in the
Hamiltonian. Even a small repulsive interaction will stabili
the CDW state near half filling, and lead to a phase diagr
which is very similar to that of doped BaBiO3 compounds.

1

However, the coupling to the lattice, which occurs in t
CDW state,49 is expected to modify the kinetic energy an
influence the spectral weights in the optical spectrosco
Thus a purely electronic model might not suffice to rep
duce the spectra of these compounds.
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APPENDIX A: LINEAR-SPIN-WAVE THEORY
FOR THE SPIN-FLOP PHASE

The classical ground state of the pseudospin model~2.11!
is given by a two-sublattice~labeledA and B) spin-flop
phase~see Fig. 1!. The relative angle 2f between the spins
on the two sublattices is directly related to the constraint
~2.12!. This constraint can be enforced by introducing
external magnetic fieldBz acting in thez direction~2.12!. On
the mean-field level

Bz52zJScosf. ~A1!

The linear-spin-wave calculation of the elementary exc
tions may be conveniently performed by using a canon
,
t-

-
ht

ot
e

r
-
e

e

ua-

-
n-
-

m

y.
-

-
el

p-

.

-
l

transformation which leaves the spins inA sublattice un-
changed, while it rotates the spin components on theB sub-
lattice (jPB),

Sj
z5S̄j

zcos~2f!1S̄j
xsin~2f!,

Sj
x52S̄j

zsin~2f!1S̄j
xcos~2f!. ~A2!

As a result, one finds the following transformed Ham
tonian:

H5J(̂
i j &

@cos~2f!S̄i
zS̄j

z1sin~2f!~S̄i
zS̄j

x2S̄i
xS̄j

z!

1 1
2 cos

2f~S̄i
1S̄j

21S̄i
2S̄j

1!2 1
2 sin

2f~S̄i
1S̄j

11S̄i
2S̄j

2!#

2Bzcosf(
i
S̄i
z2BzsinfS (

iPA
S̄i
x2 (

jPB
S̄j
xD , ~A3!

with iPA and jPB. The summation over̂i j & includes each
pair of nearest neighbors only once.

The spin waves for the Hamiltonian~A3! are found by
writing the equations of motion for the Green functions,50

^^Si
1uSl

2&&5
1

p
^Si

z&d i l1^^@Si
1 ,H#uSl

2&&, ~A4!

and performing the random-phase approximation, which
our case means the decoupling

^^Si
1Sj

zuSl
2&&.^Sj

z&^^Si
1uSl

2&&, ~A5!

etc. The reference symmetry-broken state for the rota
Hamiltonian~A3! has the spins on both sublattices pointi
upwards, and thus we implement in Eq.~A5! the classical
averages for alli ,

^Si
z&5S. ~A6!

The RPA problem is now a 434 matrix, since theSi
1 and

Si
2 operators are coupled.~In the quantum antiferromagne
equivalent to the present problem at half filling, the RP
problem is 232.! Taking the sequence of operators:SA

1 ,

SB
1 , SA

2 , SB
2 , one finds inkW space the eigenvalue problem

S a2v bgkW 0 2cgkW

bgkW a2v 2cgkW 0

0 cgkW 2a2v 2bgkW

cgkW 0 2bgkW 2a2v

D S ^^SA
1u•••&&

^^SB
1u•••&&

^^SA
2u•••&&

^^SB
2u•••&&

D 50,

~A7!

where we made use of Eq.~A1! to eliminate the externa
field Bz ~A1! imposing the constraint, and we have intr
duced the following definitions:

a5JzS,

b5JzScos2f,

c5JzSsin2f. ~A8!

From Eq.~A7! one finds easily the RPA spectrum,

vkW56@~a6bgkW !
22c2gkW

2
#1/2, ~A9!
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defined in the folded Brillouin zone which corresponds to
two-sublattice magnetic structure. The dispersion relatio
linear in k at kW→0W , with the stiffness constant decreasin
when the spins approach the ferromagnetic order (f→0),

vkW.
1

2
A12cos~2f! k, ~A10!

and one finds the usual logarithmic term in the quant
correction of the order parameter of a 2D system. The or
parameter is related to the local spin-flip correlation functi

^Si
z&5S2^Si

2Si
1&, ~A11!

calculated from the respective Green function using
fluctuation-dissipation theorem,50

^Si
2Si

1&5 È2`

dv
2 Im^^Si

1uSi
2&&v2 i e

exp~bv!21
, ~A12!

with b51/kBT. The ground-state energyE0 is found in the
standard way50 by calculating the individual correlation
functions which enter in the expansion of the Hamiltoni
~A3! up to lowest order, and making use of relations simi
to Eq. ~A12!. This is equivalent to rewriting the effectiv
RPA Hamiltonian in normal order and next summing up t
zero-point motion contributions.51

Unfortunately, the lowest-order RPA calculation of th
individual off-diagonal quantities,̂Si

1Sj
2& and ^Si

zSj
z&, Eq.

~2.13!, does not give satisfactory answers, in spite of rat
accurate estimation of both the total energy and the o
parameter~A11!. For example, starting from a 2D Ne´el state
with the moments inz direction one finds for the neare
neighbors that ^Si

1Sj
2&RPA.20.2756, and ^Si

zSj
z&RPA

.20.0534, while the assumed LRO in thez direction im-
plies thatu^Si

1Sj
2&u,2u^Si

zSj
z&u.

To obtain more accurate numbers for these intersite s
spin correlation functions we extend the LSW and inclu
also second-order terms. First, we expand the local mag
zation in terms of Holstein-Primakoff bosonsbi

† andbi ,
20

Si
z5S2bi

†bi . ~A13!

The corresponding representation ofSi
6 operators is

Si
15A2SA12

bi
†bi
2S

bi ,

Si
25A2Sbi1A12

bi
†bi
2S

. ~A14!

The ground-state energyE0 is given by the longitudinal
(Szz) and transverse (S12) spin-spin correlation functions,

E05cos~2f!SRPA
zz 1SRPA

12 . ~A15!

We express the energyE0 in terms of the Holstein-Primakof
bosons using Eq.~A11!, and the expansion of the square ro
in Eqs. ~A14! up to lowest order;bi

†bi . As a result one
finds that the ground-state energy~A15! per one bond read
e
is

er
,

e

r

r
er

n-
e
ti-

t

E05Jcos~2f!^~S2bi
†bi !~S2bj

†bj !&

1JSK ~bi
†bj1bj

†bi !S 12
1

4S
bi
†bi2

1

4S
bj
†bj D L .

~A16!

Keeping only the terms containing up to four boson ope
tors, factorizing the higher-order averages by implement
the Wicks theorem, and making use of the symmetry
tween the two sublattices, one finds a simplified relat
@herenb5^bi

†bi& is the reduction of the magnetization, se
Eq. ~A13!#,

E05Jcos~2f!@~S2nb!
21^bi

†bj&
2#12J~S2nb!^bi

†bj&.
~A17!

Equation~A17! is used to determine the off-diagonal avera
of the boson operators,^bi

†bj&. Using the values of the en
ergyE0 and of the order parameter^Si

z& found in RPA, one
is able to determine the nearest-neighbor spin correlat
from the two terms which contribute to Eq.~A17!,

Szz5cos~2f!@~S2nb!
21^bi

†bj&
2#,

S1252~S2nb!^bi
†bj&. ~A18!

The quality of this approximation may be best illustrated
the example of a 2D antiferromagnet, where it giv
^Si

zSj
z&.20.1650, which is a considerably lower value th

one-third of the scalar product of spin operators in LS
theory,^SW iSW j&LSW.20.3290, expected for a rotationally in
variant ground state in the pseudospin space. The abov
sult for Szz correlation function agrees very well with th
perturbation expansion in local spin-flip processes based
variational Bartkowski wave function, ^Si

zSj
z&var

.20.1628.52

Calculating the correlation functionsSzz and S12 from
Eqs.~A18! one has to keep in mind that thez axis has been
chosen along the magnetization direction. This choice wo
correspond to the CDW ground state at half filling (n51).
On the contrary, the spins lie within the (x,y) plane in the SS
phase at half filling, and form an angle6f with the field
Bz at n,1. Thus the spin-spin correlation functionsSSS

zz and
SSS

12 are calculated in the SS phase by projecting the qu
tities found above Eq.~A18! on the directions parallel and
perpendicular to the field direction, respectively,

SSS
zz5cos2fSzz1

1

2
sin2fS12,

SSS
1252sin2fSzz1

1

2
~11cos2f!S12. ~A19!

The numerical results for these correlation functions (SSS
zz

andSSS
12) away from the limit of quantum antiferromagne

(n51) are shown in Fig. 2~b!, and applied in Sec. IV to
calculate the weight of the LHB and UHB in optical spe
troscopy for 2D and 3D lattices. In the classical (D→`)
limit the quantum fluctuations vanish,S1250, and the spin-
spin correlations in the ground state are directly obtain
from Eqs.~A19! usingSzz51/4.



-

th

en

d

pty

ion
kes
ap-
qs.

rect

he

at

ice
t.

2046 55HENK ESKES AND ANDRZEJ M. OLES´
APPENDIX B: TWO-POLE ANSATZ

The best possible approximation to thekW -dependent one
particle spectral function using only twod functions,28,29

AkWs~v!5 (
i51,2

wi ,kWsd~v2« i ,kWs!, ~B1!

is obtained when the four coefficients are determined by
four lowest moments~zeroth to third! of the spectrum. This
two-pole ansatz has been used recently by Micnaset al.34

and by Schneider, Penderson, and Rodrı´guez-Núñez35 who
showed that it agrees well with theT-matrix approximation
in the low density limit.

The spectral weightswi ,kWs and the pole energies« i ,kWs

depend not only on the lattice structure (ekW) and particle
density (ns5^nis&), as in the Hubbard I approach,53 but also
on the two-site correlation functions. These correlations
ter via the third moment,

mkWs
~3!

5U3ns̄1U2@ns̄~ns̄12!ekW1BkWs#13Uns̄ekW
2
1ekW

3 ,
~B2!

where

BkWs5
t

Na
(
i ,d

@^~12nis!ai s̄
† ai1d,s̄~12ni1d,s!&

2^nisai s̄
† ai1d,s̄ni1d,s&#1ekW~^ni s̄ni1d,s̄&2ns̄

2

2^ais
† ai1d,s̄

† ai s̄ai1d,s&2^ai ,s
† ai ,s̄

† ai1d,s̄ai1d,s&!.

~B3!

If uUu@t, the two poles will correspond to the LHB an
UHB. Their spectral intensities can be identified asw1,kWs and
w2,kWs , respectively. We have shown before, for positiveU,
that an expansion to first order int/U of the two-pole ansatz
is equivalent to the perturbation theory.19,54 Expanding Eq.
~B1! for large negative U, one finds the weights
w1,kWs512n/2 andw2,kWs5n/2. Thus the weights found in
Sec. III B are reproduced.
e

-

As the ground state consists only of local pairs and em
sites in the large-negative-U limit, all kinetic expectation
values are zero and thekW -independent part ofBkWs vanishes.
ThekW -dependent part ofBkWs , however,is crucial and cannot
be replaced by its average over the Brillouin zone(50). In
fact, thekW -dependent term contains in this case informat
about nearest-neighbor correlation functions which ma
the two-pole ansatz more realistic than the Hubbard I
proximation. By expanding the pole energies given by E
~77! of Ref. 19 in the large-attractive-U limit one recovers
the momentum-dependent energies Eqs.~3.18! and~3.19!. If
the momentum-dependent term inBkWs is neglected, as is
often done in a self-consistent two-pole treatment, incor
and qualitatively different results are obtained.35 By expand-
ing the pole energies given by Eqs.~77! of Ref. 18 in the
large-uUu limit one finds

«1,kWs5ekW F11
2

22nS ^SW i•SW i1d&2
1

4D G ,
«2,kWs52uUu1ekW F11

2

nS ^SW i•SW i1d&2
1

4D G . ~B4!

Thus we recover Eqs.~3.18! and~3.19! derived in Sec. III B.
for the UHB and LHB, respectively, witĥSW i•SW i1d& being
the pseudospin correlation function which follows from t
mapping of Sec. II.

In the classical (D→`) limit one has ^SW i•SW i1d&
52n(12n/2)11/4, and thus

«1,kWs5~12n!ekW ,

«2,kWs52uUu1~n21!ekW . ~B5!

This is plotted in Fig. 5. ThekW dependence vanishes
n51 as the motion of a single electron or hole inU,0 case
becomes then equivalent to the result of Brinkman and R
for the motion of a hole doped to classical antiferromagne36
a,

.

v.
.

.
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