
PHYSICAL REVIEW B 15 JANUARY 1997-IIVOLUME 55, NUMBER 4
Comparison of the projector augmented-wave, pseudopotential, and linearized
augmented-plane-wave formalisms for density-functional calculations of solids

N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109

~Received 8 July 1996!

The projector augmented-wave~PAW! method was developed by Blo¨chl as a method to accurately and
efficiently calculate the electronic structure of materials within the framework of density-functional theory. It
contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron
calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to
include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same
ideas developed by Vanderbilt in his ‘‘soft pseudopotential’’ formalism and in earlier work by Blo¨chl in his
‘‘generalized separable potentials,’’ and has been successfully demonstrated for several interesting materials.
We have developed a version of the PAW formalism for general use in structural and dynamical studies of
materials. In the present paper, we investigate the accuracy of this implementation in comparison with corre-
sponding results obtained using pseudopotential and linearized augmented-plane-wave~LAPW! codes. We
present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for
several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF2, fcc Ca,
and bcc V. With the exception of CaF2, for which core-electron polarization effects are important, the struc-
tural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential
formalisms.@S0163-1829~97!00404-9#
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I. INTRODUCTION

The ‘‘projector augmented-wave’’~PAW! method was
developed by Blo¨chl1 as a method to accurately and ef
ciently calculate the electronic structure of materials with
the framework of density-functional theory.9,10 It takes ad-
vantage of many of the ideas developed in the pseudopo
tial literature,11,12while retaining information about the cor
rect nodal behavior of the valence electron wave functi
and has the ability to include upper core states in addition
valence states in the self-consistent iterations. It uses m
ideas similar to those developed by Vanderbilt2 in his ‘‘soft
pseudopotential’’ formalism and by Blo¨chl3 in his earlier
work on ‘‘generalized separable potentials,’’ and has be
successfully demonstrated for several interest
materials.1,4–6

We have developed a version of the PAW formalism
general use in structural and dynamical studies of mater
We have investigated this implementation as a function
computational parameters and in comparison with co
sponding results obtained using pseudopotential7,11,13 and
linearized augmented-plane-wave8 ~LAPW! codes. The fo-
cus of this study is the numerical accuracy of the compu
tional technique. Therefore, all calculations described in
work were done using the exchange-correlation functiona
the local density approximation~LDA ! parametrized by Per
dew and Wang.14 Extension of the current formalism to mor
complicated exchange-correlation functionals15, or to include
relativistic and/or spin effects, should be straightforward.

There are several motivations for developing the PA
formalism. A number of physical properties~such as mag-
netic properties, electronic matrix elements, for examp!
should be calculated with a knowledge of the correct no
550163-1829/97/55~4!/2005~13!/$10.00
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behavior of the valence electron wave functions. In additi
there is evidence that it is sometimes necessary to impr
upon the accuracy of the pseudopotential approach for
structural simulations of some materials.

Within the framework of density-functional theory,9,10

pseudopotential methods have been enormously succe
in performing structural studies of a wide variety
materials.11,12 One contributing factor to this success is t
accuracy of the frozen core approximation16 for many of the
materials throughout the Periodic Table. In order to ge
more quantitative assessment of the accuracy of the fro
core approximation, it is helpful to consider a systema
study of atomic total energies calculated with a se
consistent atomic structure code using the LDA parametri
by Perdew and Wang.14 First, considersp bonding materials.
In Fig. 1 the error in calculating the energy to ‘‘promote’’ a
electron from thes to p shell within the frozen core approxi
mation minus that of the fully self-consistent result is plott
versus the numberx of sp valence electrons in the 2nd, 3rd
and 4th rows of the Periodic Table. The error is less tha
meV for elements in the 2nd row of the Periodic Table a
less than 10 meV for most of the other elements. It decrea
with increasingx, being larger for the alkali and alkaline
earth metals than for the halides. There is a jump in the e
at x>3 for Ga because of the completion of the 3d shell.
This error can be essentially eliminated by including thed
states as valence states in the self-consistent calculation
Fig. 2 the error in calculating the energy to ‘‘promote’’ a
electron from thes to d shell within the frozen core approxi
mation minus that of the fully self-consistent result is plott
versus the numberx of sd valence electrons in the 4th an
5th rows of the Periodic Table. Evidently, the frozen co
error is considerably larger forsd materials than it is for
2005 © 1997 The American Physical Society
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2006 55HOLZWARTH, MATTHEWS, DUNNING, TACKETT, AND ZENG
sp materials, and is larger for the 3d transition metals than
for the 4d transition metals. It is interesting that the error i
uniformly positive ~the promotion energy is larger in the
frozen core approximation than in a fully relaxed calcula
tion! even though the promotion energy itself changes si
for the sd materials atx56. For all of these materials, the
configuration energy error can be reduced by several ord
of magnitude by including the upper core states in the se
consistent calculation.

Some examples of systems which have significant co
electron contributions to the structural energy have appea
in the literature. For example, Wright and Nelson17 noted
that it was necessary to include the 3d states to correctly
calculate the structural properties of GaN and other G
containing materials. In our previous work,18 we found that

FIG. 1. Configuration energy error in meV corresponding
frozen core minus all-electron total energy difference
E(nssnpx2s→nss21npx2s11), where x denotes the number of
sp valence electrons in the neutral atom,s is 1 for the alkali metal
atoms and 2 otherwise, andn is the principal quantum number 2, 3
or 4.

FIG. 2. Configuration energy error in meV corresponding
frozen core minus all-electron total energy difference
E@ns2(n21)dx22→ns1(n21)dx21#, wherex denotes the number
of sd valence electrons in the neutral atom andn denotes the prin-
cipal quantum number 4 or 5.
-
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pseudopotential calculations for FeS2 determined the S-S
bond length to be more than 0.1 Å larger than the exp
mental value, while all-electron calculations determined
bond length to be substantially closer to the experimen
value. In the present paper, we find an even larger erro
the pseudopotential prediction of the equilibrium lattice co
stant for CaF2 compared with than that predicted by a
electron calculations. Clearly, it is sometimes necessary
go beyond the pseudopotential approach for structural si
lations, as can be provided by the PAW formalism.

This paper is organized as follows. In Sec. II, we revie
the general features of formalism developed by Blo¨chl.1 In
Sec. III, we describe our method for constructing the ba
and projector functions and present examples. In Sec.
results are presented for calculation of the electronic str
ture of a variety of materials including the insulators Ca2
and diamond; the semiconductors silicon and SiC; and
metals calcium and vanadium. The summary and con
sions are presented in Sec. V. Detailed formulas for
Hamiltonian matrix elements and total valence energy
presented in the Appendix.

II. GENERAL FORMALISM

In density functional theory9 for periodic solids, it is nec-
essary to calculate the self-consistent Bloch wave functi
Cnk(r ), wheren andk denote band index and wave vecto
respectively. In the PAW formalism, all variational calcul
tions are performed on smooth wave functionsC̃nk(r ),
which are designed to be represented in plane-wave ex
sions. The conversion between the smooth wave functi
and the corresponding wave functions having the corr
nodal form is achieved through the use of a set of three ty
of functions defined for each atoma: the ‘‘all-electron’’
~AE! basis functionsf i

a(r ),19 the ‘‘pseudo’’ ~PS! basis func-
tions f̃ i

a(r ), and the projector functionsp̃i
a(r ). Blöchl1 de-

fined these functions to have the following properties. T
AE and PS basis functions are chosen such that

f̃ i
a~r !5f i

a~r ! for r>r c
a , ~1!

wherer c
a is the radius of a nonoverlapping sphere about

atomic sitea. Because of the cancellation property~1!, the
basis functionsf i

a and f̃ i
a are never evaluated beyon

r.r c
a , although they are continuous for allr . The projector

functions vanish forr.r c
a and satisfy the complementary

orthogonality property:

^ p̃i
auf̃ j

a&5d i j . ~2!

Within the constraints defined in Eqs.~1,2!, there is consid-
erable freedom in the choice of the atomic functio
$f i

a, f̃ i
a , andp̃i

a%. The choices used in the present work w
be described in Sec. III below. In terms of these functio
the full Bloch wave functionCnk(r ) can be calculated from
the smooth wave functionC̃nk(r ) using the relation

Cnk~r !5C̃nk~r !1(
a,i

@f i
a~r2Ra!2f̃ i

a~r2Ra!#^ p̃i
auC̃nk&,

~3!

whereRa denotes the atomic position within a unit cell.
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55 2007COMPARISON OF THE PROJECTOR AUGMENTED WAVE . . .
The PAW formalism is designed so that the valen
electron density can be calculated as a sum of three co
butions:

n~r !5ñ~r !1n1~r !2ñ1~r !. ~4!

In Eq. ~4!, the first term represents the pseudodensity wh
can be represented by a plane-wave expansion throug
the unit cell. Specifically, the smooth density is given by

ñ~r ![(
nk

f nkuC̃nk~r !u2, ~5!

wheref nk denotes the occupancy factor. The last two con
butions to Eq.~4! are designed to exactly cancel each oth
in the region outside the atomic spheres and to correct
density for the correct nodal behavior in the vicinity of ea
atom. The ‘‘one-center’’ terms can each be represented
sum of atomic contributionsn1(r )[(an

a(r2Ra) and
ñ1(r )[(añ

a(r2Ra). The atomic density terms are given b

na~r ![ (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&f i
a~r !*f j

a~r !, ~6!

for the contribution having the correct nodal form, and

ña~r ![ (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&f̃ i
a~r !* f̃ j

a~r !, ~7!

for the corrections toñ.
Blöchl derived the PAW formalism by writing the valenc

energy for the system in terms of three contributions co
sponding to the density form:

E5Ẽ1E12Ẽ1. ~8!

The valence energy Eq.~8! represents the energy of the v
lence electrons interacting with themselves, with the ato
nuclei having atomic numberZa, and with the core electron
of the system which are assumed to be ‘‘frozen’’ in the sa
functional form as in the atom.20 The three contributions ca
be written as follows.

Ẽ depends upon the evaluation of the smooth den
functions throughout the unit cell:

Ẽ5(
nk

f nkK C̃nkU2 \2

2m
¹2UC̃nkL

1
e2

2 E E d3r d3r 8
@ ñ~r !1n̂~r !#@ ñ~r 8!1n̂~r 8!#

ur2r 8u

1e2E E d3r d3r 8
ñ~r !ñcore~r 8!

ur2r 8u
1E d3r ñ~r !ṽ loc~r !

1
e2

2 E E d3r d3r 8
ñcore~r !ñcore~r 8!

ur2r 8u
1Exc@ ñ1ñcore#.

~9!

The ‘‘one-center’’ contributions to Eq.~8! can each be
represented as a sum of atomic termsE1[(aE

a and
Ẽ1[(aẼ

a, wherea indexes all the atoms of the unit cel
Each one-center contribution,Ea and Ẽa, is evaluated with
all integrals involved with evaluating the valence dens
-
ri-
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contributions, confined within a sphere of radiusr c
a about the

atom a. It can be shown that integrand of the differen
energyEa2Ẽa converges smoothly to zero at the sphe
boundary atr c

a .
Ea represents the energy contribution inside the atom

spherea:

Ea5 (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&K f i
aU2 \2

2m
¹2Uf j

aL
1
e2

2 E E
r ,r 8<r c

a
d3r d3r 8

na~r !na~r 8!

ur2r 8u

1E
r<r c

a
d3r na~r !@v ion

a ~r !1 ṽcore~r !#

1Exc@n
a1ncore

a 2ñcore
a 1ñcore#2Exc@ncore

a #. ~10!

Ẽa subtracts out the smooth density contributions
cluded in Eq.~9! within atomic spherea and includes addi-
tional Coulombic corrections terms:

Ẽa5 (
nk,i , j

f nk^C̃nku p̃i
a&^ p̃ j

auC̃nk&K f̃ i
aU2 \2

2m
¹2Uf̃ j

aL
1
e2

2 E E
r ,r 8<r c

a
d3r d3r 8

ña~r !ña~r 8!

ur2r 8u

1E
r<r c

a
d3r ña~r !@ v̂a~r !1 ṽcore~r !#

1E
r<r c

a
d3r ña~r !ṽ loc

a ~r !

1Êa1Ẽcore
a 1Ẽcore

a0 1Exc@ ñ
a1ñcore#. ~11!

In the above equations,Exc denotes the exchange
correlation energy function which depends on the den
argument.10,21 In addition to depending on the valence de
sity contributions~5, 6, and 7!, the energy evaluation in
cludes the frozen core density, a ‘‘compensation’’ char
density, and an arbitrary localized potential as discussed
low.

The frozen core densityncore
a (r ) associated with sitea is

expected to be mostly contained within the atomic sph
r c
a , however, because electrostatic effects are strong, a s
extension of the core density beyondr c

a can have an appre
ciable effect on the binding energy. We approximate th
effects within the spirit of the frozen core approximation,
superposing the atomic core densities. For this purpose,
convenient to define a spherically symmetric smooth c
tail function associated with sitea:

ñcore
a ~r ![H Gae2gar2/4p for r<r c

a

ncore
a ~r ! for r>r c

a , ~12!

where Ga and ga are adjustable constants. This form h
been previously used for LAPW calculations.22 In terms of
the smooth core tail function, a smooth frozen core den
function ñcore(r ) can be formed from a lattice superpositio
which can be easily evaluated in Fourier space:
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ñcore~r !5
1

V(G nD core~G!eiG–r,

where

nD core~G![(
a

e2 iG–RanD core
a ~G!,

with

nD core
a ~G![E

0

`

dr 4pr 2ñcore
a ~r ! j 0~Gr !, ~13!

whereV is the volume of the unit cell,Ra denotes a lattice
site, andj 0(Gr) denotes the spherical Bessel function. T
core tail potential which appears in Eqs.~10! and ~11! is
easily evaluated in Fourier space:

ṽcore~r !5
4pe2

V (
GÞ0

nD core~G!

G2 eiG–r, ~14!

where theG50 contribution must be treated separately
discussed below. The localized portion of the frozen c
density contributes to Eq.~10! in the form of the ionic Cou-
lomb potential for atoma ~with atomic numberZa):

v ion
a ~r ![e2E

r 8<r c
a
d3r 8

nion
a ~r 8!

ur2r 8u
,

where

nion
a ~r ![2Za d~r !1@ncore

a ~r !2ñcore
a ~r !#. ~15!

Blöchl introduced a ‘‘compensation’’ charge densityn̂a in
order to represent, in a physically correct and mathematic
convenient form, the total charge within each atomic sph
a other than that represented by the smooth charge dens
ña and ñcore

a The total compensation charge density is giv
as the sum of atomic contributionsn̂(r )[(an̂

a(r2Ra) de-
fined according to

n̂a~r2Ra![(
LM

QLM
a YLM~r2Râ)gL

a~ ur2Rau!. ~16!

In Eq. ~16!, the coefficientsQLM
a represent the multipole

moments of the compensation charge:

QLM
a [~2Za1Qcore

a !dL0dM0

1A4pE
~r<r c

a
!
d3r YLM* ~ r̂ !r L@na~r !2ña~r !#,

~17!

whereQcore
a is the core charge localized within the atom

sphere,

Qcore
a [E

r<r c
a
d3r @ncore

a ~r !2ñcore
a ~r !#, ~18!

and where the integrals in Eqs.~17! and ~18! are taken over
a sphere of radiusr c

a centered at atoma. Since the compen
sation charge is used to represent the correct Coulombic
tential outside the atomic spheres, its functional form ins
s
e

ly
re
ies

o-
e

the spheres is arbitrary. It is convenient to choose a norm
ized form based on a Gaussian timesr L:

gL
a~r ![NLr

Le2r2/sa
2
,

where

NL[FA4pE
0

`

dr r 2~L11!e2r2/sa
2G21

. ~19!

Heresa is a width parameter adjusted so thatgL
a(r )'0 for

r>r c
a . In Eq. ~11!, v̂a denotes the Coulomb potential of th

compensation charge densityn̂a, and Êa denotes the corre
sponding self-energy correction:

v̂a~r ![e2E d3r 8
n̂a~r 8!

ur2r 8u
and

Êa[
e2

2 E d3r d3r 8
n̂a~r !n̂a~r 8!

ur2r 8u
. ~20!

Additional Coulombic correction terms appear in E
~11!. The termẼcore

a represents ion-core interactions min
the corresponding self-energy corrections:

2Ẽcore
a [E d3r n ion

a ~ ur2Rau!@ ṽcore~r !2 ṽcore
a ~ ur2Rau!#

2
e2

2 E E d3r d3r 8
ñcore
a ~r !ñcore

a ~r 8!

ur2r 8u
. ~21!

In this expressionṽcore ~14! represents the potential due
the superposed core densities, while theṽcore

a term subtracts
out the potential due to the smooth core density funct
ñcore
a associated with the sitea. By subtracting out self-

Coulomb interactions, the net ionic contributions of this c
culation are equivalent to that evaluated via an Ewald23 sum-
mation in other formulations.24

Because the analysis represents a system with no
charge, the Coulomb energy is well defined. However, s
cial care is needed for evaluating theG50 contributions.
The compensation charge~16! has been defined so that th
sum of the smooth charge density plus the core tail den
plus the compensation charge density represent a neutral
tem: * d3r @ ñ(r )1ñcore(r )1n̂(r )#50. Also by construction
~16!, the sum of ionic charges plus valence difference cha
minus the compensation charge also form a neutral sys
* d3r @nion

a (r )1na(r )2ña(r )2n̂a(r )#50. However, in col-
lecting all the terms involved with evaluating the Coulom
interaction in reciprocal space, one finds a nonvanishing c
tribution of the form

2Ẽcore
a0

[
4pe2ñcore~0!

V lim
G→0

F @ n̄ion
a ~G!1n̄a~G!2nD a~G!2 n̂̄ a~G!#

G2 G .
~22!

The energy expressions of Eqs.~9!, ~11! include an extra
potential term introduced in the original formulation o
Blöchl1 of the formṽ loc(r )[(aṽ loc

a (r2Ra), whereṽ loc
a is an

arbitrary potential localized within ther c
a radius of atoma.
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55 2009COMPARISON OF THE PROJECTOR AUGMENTED WAVE . . .
This localized potential introduces no net contribution to
energy and in the present work was set identically to zer

The self-consistent Schro¨dinger equations were obtaine
by Blöchl1 by applying the variational principle for th
smooth wave functionsC̃nk(r ) to minimize the valence en
ergy ~8! subject to the appropriate orthonormality co
straints. The resulting equations take the form of a gene
ized eigenvalue problem:

H̃ C̃nk~r !5«nkÕ C̃nk~r !. ~23!

The effective Hamiltonian operator can be expressed in
form

H̃[H̃PW1 (
a,~ i , j !

u p̃i
a&Di j

a ^ p̃ j
au. ~24!

The first term has the form of a local pseudopotential Ham
tonian:

H̃PW[2
\2

2m
¹21 ṽeff~r !, ~25!

where the smooth effective potential is given by

ṽeff~r ![e2E d3r 8
@ ñ~r 8!1ñcore~r 8!1n̂~r 8!#

ur2r 8u
1 ṽ loc~r !

1mxc@ ñ~r !1ñcore~r !#, ~26!

where mxc represents the exchange-correlation potentia10

The orthonormality matrix in Eq.~23! is given by

Õ[11 (
a,~ i , j !

u p̃i
a&Oi j

a ^ p̃ j
au,

where

Oi j
a[^f i uf j&2^f̃ i uf̃ j&. ~27!

The one-center contributions to the effective Hamilton
~24! are functionally similar to nonlocal pseudopotent
terms. For each atom, they can be expressed in terms o
or PS matrix elements:

Di j
a5Hi j

a2H̃ i j
a ,

where,

Hi j
a[^f i

auHauf j
a&

and

H̃ i j
a[^f̃ i

auH̃auf̃ j
a&. ~28!

These terms are discussed in more detail in the Appendix
the present work, studying systems with fixed atomic po
tions $Ra%, self-consistent solutions to Eq.~23! were ob-
tained with a combination of direct diagonalization using
combination of the Davidson-Liu algorithm25 and conjugate
gradient12 techniques.
e
.

l-

e

l-

l
E

In
i-

III. PAW BASIS AND PROJECTOR FUNCTIONS

A. Formalism

The PAW method depends upon finding basis and pro
tor functions. There have been several suggestions
Blöchl1 and his collaborators4 for constructing the basis an
projector functions. The procedure that we have found
work well is similar to that developed by Vanderbilt2 in his
soft pseudopotential technique and is also similar to ‘‘gen
alized separable potentials’’ developed in an earlier work
Blöchl.3

The starting point of the construction is the solution of t
all-electron self-consistent Schro¨dinger equation for the
atom.26,27 Since the atom has spherical symmetry, the int
esting part of a AE basis function is its radial functio
fni l i
a (r ), although the complete set of basis functions is co

posed of products of the radial function and the appropr
spherical harmonic functions: f i

a(r )
[„fni l i

a (r )/r …Yl imi
( r̂ ).19 In general, the radial AE basis func

tions $fni l i
a (r )% are chosen as the valence eigenstates of

AE Schrödinger equation; their corresponding energies
denoted by$«ni l i

a %. For atoms with upper core states whic

are involved in the bonding, it is necessary to include th
states among the basis functions. In some cases, it may
be necessary to include some unbound states among the
functions. For simplicity in notation, the indexni is used to
denote the principal quantum number for bound states an
extended to enumerate any continuum states included in
basis set. All evaluations with these functions are confined
the regionr<r c

a . For eachl value, at most two radial basi
functions were needed for all of the systems we have stud
so far.

For each radial AE basis functionfni l i
a (r ), the corre-

sponding radial PS basis function is chosen to have a p
nomial form

f̃ni l i
a ~r !5r l i11 (

n50

N21

anr
2n, ~29!

whereN is an even number between 4 and 10, and where
coefficients an are determined from the following two
matching sets of conditions:

f̃ni l i
a ~r k!5fni l i

a ~r k!, ~30!

and

2
\2

2m S d2drk2 2
l i~ l i11!

r k
2 D f̃ni l i

a ~r k!

5@«ni l i
a 2veff

a ~r k!#fni l i
a ~r k!, ~31!

whereveff
a (r ) is the all-electron self-consistent effective p

tential for the spherically symmetric atom, which is given

veff
a ~r ![2

e2Za

r
1e2E d3r 8

@na~r 8!1ncore
a ~r 8!#

ur2r 8u

1mxc@n
a~r !1ncore

a ~r !#. ~32!
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2010 55HOLZWARTH, MATTHEWS, DUNNING, TACKETT, AND ZENG
The N equations corresponding to Eqs.~30! and ~31!,
expressed in terms of the polynomial expansion~29!, are
solved simultaneously atN/2 consecutive numerical mes
points $r k%, where k0<k,k01N/2, and r k0<r c

a to deter-

mine theN coefficients$an%. The first set of equations~30!
ensures that the cancellation condition~1! is satisfied for the
first (N21)/2 derivatives of the PS basis function, while t
second set of equations~31! ensures that the projector func
tions are well behaved.

Using the radial PS basis functions~29!, we can construct
the radial projector functions using the same functions de
oped by Vanderbilt2 for his soft nonlocal pseudopotentia
which are also very similar to Blo¨chl’s ‘‘generalized sepa-
rable potentials.’’3 For each atoma and angular momentum
l , the matrix elements of the PS basis functions can be
fined:

Bnn8
al [E

0

r c
a

dr f̃nl
a ~r !F2

\2

2m S d2dr2 2
l ~ l11!

r 2 D
1 ṽeff

a ~r !2«n8 l
a G f̃n8 l

a
~r !, ~33!

whereṽeff
a (r ) is the atomic PS effective potential given by

ṽeff
a ~r ![ v̂a~r !1e2E d3r 8

@ ña~r 8!1ñcore
a ~r 8!#

ur2r 8u
1 ṽ loc

a ~r !

1mxc@ ñ
a~r !1ñcore

a ~r !#, ~34!

where the potential due to the ‘‘compensation’’ charge of
atom is given byv̂a(r )5e2 Q00

a erf(r /sa)/r . In the present
work, we have set the arbitrary localized potentialṽ loc

a (r )
identically equal to zero. Since, by constructio
veff
a (r )[ ṽeff

a (r ) for r>r c
a , the integrand in Eq.~33! vanishes

as r→r c
a . The radial projector functions can be defined:

p̃nl
a ~r ![(

n8
F2

\2

2m S d2dr2 2
l ~ l11!

r 2 D
1 ṽeff

a ~r !2«n8 l
a G f̃n8 l

a
~r ! ~Bal!n8n

21 . ~35!

For the same reason that the argument of Eq.~33! vanishes
asr→r c

a , the radial projector function,p̃nl
a (r ), also vanishes

for r.r c
a . The radial projector functions calculated from E

~35! are related to the full projector functions according
p̃i
a(r )[„p̃ni l i

a (r )/r …Yl imi
( r̂ ). This construction of the projec

tor functions is very similar to the ‘‘local wave function’
ub i& defined by Vanderbilt.2 With this choice, the second
term of the effective Hamiltonian~24! is essentially the sam
as the nonlocal potential operator defined by Vanderb2

Provided thatn̂a(r )[0 for r>r c
a , the projector function~35!

vanishes forr>r c
a and satisfies the quasiorthonormality co

dition ~2!. It is constructed so that the PS basis functio
$f̃ i

a(r )% are exact solutions to the PAW Schro¨dinger Eq.
~23!. This formulation of the projector functions is consiste
with the guidelines developed by Blo¨chl.

With the above scheme for constructing the atomic fu
tions, the accuracy and convergence of the calculation is c
trolled by the following considerations.
l-

e-

e

,

.

s

t

-
n-

~a! The set of the radial AE basis functions$fni l i
a % should

be chosen to completely represent the valence wave fu
tions within the atomic spheres. As discussed below, i
sometimes necessary to augment this set of functions
the upper core functions and some continuum functions
higher angular momentum components.

~b!The atomic radiir c
a should be chosen to be as large

possible to facilitate the convergence of the smooth functi
in Fourier space, but there must be no overlap of atom
spheres for all structures to be studied.

~c! The shape of each PS basis functions$f̃ni l i
a % and the

corresponding projector function$ p̃ni l i
a % can be controlled by

adjusting the matching pointr k0 and the numberN of match-

ing coefficients$an% used to satisfy equations~30! and~31!.
In general the best numerical properties are obtained by
suring that for a given angular momentum componentl i , the
first projector function$ p̃ni l i

a % has no nodes, the second h

one node, etc., since the projector functions take the role
an approximate orthogonal function expansion.

It is convenient to choose one value of the atomic rad
r c
a for each atom, while the parametersr k0 and N can be

different for each radial AE functionfni l i
a . Although the

shapes of the functions are sensitive to the choice of th
parameters, the total energy is not sensitive.

B. Example functions

Blöchl1,3 showed and we have verified that it is genera
possible to perform accurate calculations with a minimal
sis including one set of PAW functions for eachni l i upper
core and valence orbital. In addition, it is sometimes imp
tant to augment this ‘‘minimal’’ basis with some continuu
states. For example, for Si, it was necessary to includ
continuuml52 function which we denoteed. In Table I are
listed some representative PAW basis parameters and
corresponding configuration energy errors. From this table
is apparent that for atomic calculations, this procedure ma
it possible to achieve an accuracy close to the accuracy o
frozen core approximation itself. With the exception of t
valence-only basis set of V, all of these functions correspo
to a configuration energy error of less than a few meV. F
the valence-only basis set of V, the configuration energy
ror is less than14th of the error in the frozen core approxima
tion.

Plots of the PAW functions are shown for V in Figs.
and 4, comparing the set including the valence functio
$4s, 4p, 3d% only and the more complete set including th
upper core and valence functions$3s, 4s, 3p, 4p, 3d%,
respectively. These functions were constructed using the
rameters listed in Table I. The shapes of these functions
representative of those of the other atoms listed in Table

From the atomic analysis of the accuracy of the config
ration energies, as well as the accuracy of the energy eig
values and logarithmic derivatives, we expect that the
including the upper core states~Fig. 4! will give more accu-
rate results than the valence only set~Fig. 3!. In fact, the
valence-only set was found to suffer from ‘‘ghost’’ states28,29

and therefore yielded no meaningful results.
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TABLE I. List of PAW basis function parameters for atoms in this study. Radial parametersr c
a andr k0 are

given in bohr units. Errors in thesp or sd ‘‘promotion’’ energies~as defined in the figure captions of Fig
1 and 2! are listed in order to indicate the accuracy of the calculations.DEPAW ~in meV units! indicates the
magnitude of the difference between the ‘‘promotion’’ energy calculated using the PAW formalism re
to that of a frozen core calculation.DErelax ~in meV units! indicates the magnitude of the difference betwe
the ‘‘promotion’’ energy calculated using the frozen core approximation relative to that of the fully rel
result.

Atom (Z) r c
a $Basis functions (r k0)% DEPAW DErelax Ghost states ?

C ~6! 1.2 $2s(1.2),2p(0.85)% 0.04 0.46 no

F ~9! 1.2 $2s(1.2),2p(0.8)% 2.04 0.47 no

Si ~14! 2.2 $3s(2.2),3p(2.0),ed(1.4)% 0.95 0.78 no

Ca ~20! 3.6 $4s(3.6),4p(3.6),3d(2.0)% 0.88 3.06 yes

Ca ~20! 2.7 $3s(2.7),4s(2.7),3p(2.7),4p(2.7),3d(1.5)% 0.06 0.00 no

V ~23! 2.3 $4s(2.3),4p(2.3),3d(1.25)% 17.05 85.99 yes

V ~23! 2.1 $3s(2.1),4s(2.1),3p(2.1),4p(2.1),3d(1.0)% 3.01 0.28 no
ca
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The problem of ghost states for separable nonlo
pseudopotentials has been well documented in
literature.8,28,29 Since the PAW Hamiltonian has the sam
mathematical form, it is also subject to this problem. Tab
indicates which of the PAW function sets are found to ha
caused ghost states in solid state calculations involving
atom. For both Ca and V, we investigated a range of PA
parameters in an unsuccessful attempt to generate ghos

FIG. 3. Vanadium PAW functions for a minimal basis set~va-
lence only!, including 4s, 4p, and 3d functions; with the dashed
line indicatingfni l i

(r ), the thin solid line indicatingf̃ni l i
(r ), and a

thick solid line indicating a scaled plot ofp̃ni l i(r ). This set of func-
tions was constructed using the calculational parameters liste
Table I, and has ghost state difficulties.
l
e

I
e
at

ree

valence-only basis sets. However, for each of these mate
the more complete basis set, which included the upper c
states, was not only ghost free but also more accurate acc
ing to the atomic criteria.

However, since the ghost problem has been identified
this formulation of the PAW formalism, one is motivated t
find ways of improving the PAW basis function constructio
algorithm. One possibility might be that a convenient for
for the localized potential functionsṽ loc

a (r ) could reduce the
ghost problem. This will be considered in future work.

in

FIG. 4. Vanadium PAW functions for an accurate basis set~in-
cluding upper core states!, including 3s, 4s, 3p, 4p, and 3d func-
tions; with the dashed line indicatingfni l i

(r ), the thin solid line

indicating f̃ni l i
(r ), and the thick solid line indicating a scaled plo

of p̃ni l i(r ). This set of functions was constructed using the calcu
tional parameters listed in Table I, and has no ghost state diffic
ties.



or
ity
th

-
d
on
ls

-
.

n
a
o
u

si
e
th
t
io

re
lcu-
dii,
er,
y

es

at-

d
va-

ms.

W

2012 55HOLZWARTH, MATTHEWS, DUNNING, TACKETT, AND ZENG
IV. RESULTS FOR SOME REPRESENTATIVE COVALENT
AND IONIC MATERIALS

In order to check the accuracy of the PAW formalism f
bulk materials, we have carried out a series of dens
functional calculations, comparing results obtained using
PAW code with that obtained using LAPW~Ref. 8! and
mixed-basis pseudopotential7,13 codes. The PAW calcula
tions were performed using the larger basis sets describe
Table I. Care was taken to ensure that all the calculati
were equivalently converged. All Brillouin zone integra
were performed using a uniform sampling ofk points with a
Gaussian weighting scheme.30 Results for the calculated co
hesive energies versus lattice constant are plotted in Fig
showing results for diamond, silicon, SiC, and CaF2, fcc Ca,
and bcc V. These results were fit to Murnaghan’s equatio31

to obtain values of the cohesive energy, lattice constant,
bulk modulus summarized in Table II. In calculating the c
hesive energies, no corrections were made for atomic m
tiplet energies, or zero point motion. As expected,15 the LDA
results predict a smaller lattice constant and larger cohe
energies and bulk moduli than the experimental valu
While focus of the present study is on the comparison of
three calculation schemes to each other, it is gratifying
note that the present results are also consistent with prev

FIG. 5. Plot of the negative of the cohesive energy per atom~in
eV! versus lattice constant~in Å! for all of the materials in this
study, comparing results obtained using pseudopotential, LAP
and PAW codes. Results include V~bcc structure!, C and Si~dia-
mond structure!, SiC ~zinc blende structure!, Ca~fcc structure!, and
CaF2 ~fluorite stucture!.
-
e
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nd
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calculations.34–36Uniform shifts of the cohesive energies a
due to small sensitivies of the three methods to their ca
lational parameters such as muffin-tin or atomic sphere ra
plane-wave cutoff’s, or partial-wave convergence. Howev
with the exception of CaF2, the three methods give nearl
identically shaped plots of cohesive energy (2Ecoh) versus
lattice constant (a), as shown in Fig. 5, and very close valu
for the equilibrium lattice constants~within 1%) and bulk
moduli ~within 5%), asshown in Table II.

For CaF2, the pseudopotential calculation predicts a l
tice constant which is 2%~more than 0.1 Å! smaller and a
bulk modulus which is 10220 % smaller than the PAW an
LAPW results. Since the pseudopotential calculation is a

TABLE II. Comparison of cohesive energies,Ecoh ~eV/atom!;
equilibrium lattice constants,a0 ~Å!; and bulk moduli,B ~GPa!
calculated using the PAW, LAPW, and pseudopotential formalis

Ecoh a0 B

Diamond PAW 10.16 3.54 460

LAPW 10.13 3.54 470

pseudopotential 10.13 3.54 460

experiment 7.37a 3.56a 443a

Silicon PAW 6.03 5.38 98

LAPW 5.92 5.41 98

pseudopotential 5.99 5.39 98

experiment 4.63a 5.43a 99a

SiC PAW 8.39 4.32 220

LAPW 8.29 4.33 230

pseudopotential 8.35 4.33 230

experiment 6.34b 4.36b 224b

CaF2 PAW 6.36 5.34 100

LAPW 6.30 5.33 110

pseudopotential 6.42 5.21 90

experiment 5.36c 5.445c 85-90c

fcc Ca PAW 2.24 5.32 19

LAPW 2.20 5.33 19

pseudopotential 2.14 5.37 20

experiment 1.84a 5.58a 15a

bcc V PAW 9.39 2.94 200

LAPW 9.27 2.94 200

pseudopotential 9.46 2.94 210

experiment 5.31a 3.03a 162a

aReference 32.
bReference 34.
cReference 33.

,
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lence only calculation, while both the PAW and LAPW ca
culations include the relaxation of the upper core electro
we can conclude that core effects are important for desc
ing the structural properties of this system. This conclus
is consistent with the configuration energy errors discus
in Sec. I. An additional contributing factor for this system
the fact that the valence levels of F~especially the 2s state!
are energetically close to the upper core levels (3s and 3p
states! of Ca.

One might have expected core relaxation effects to
important in more of the systems that we have studied.
fcc Ca, the structural errors of the valence-only~pseudopo-
tential! calculation are much smaller than that of CaF2. Fig-
ure 2 would lead one to expect a large core relaxation ef
for bcc V, but as shown in Fig. 5, this is not the case. W
would also have expected KF to have appreciable core re
ation effects. However, preliminary results indicate that c
relaxation effects are much less important for KF than
CaF2.

V. SUMMARY AND CONCLUSIONS

In summary, we have successfully implemented a vers
of the PAW method for electronic structure calculations. W
have calculated the cohesive energy as a function of la
constant for six representative crystals—diamond, silic
SiC, CaF2, fcc Ca, and bcc V. The results are consistent w
results obtained with the well-established LAPW a
pseudopotential electronic structure methods. For diamo
silicon, SiC, fcc Ca, and bcc V the PAW results were ess
tially the same as the LAPW and pseudopotential results.
CaF2, there is an indication that the PAW approach is able
represent the cohesive properties more accurately than
the pseudopotential approach by including the contributi
from the upper core states of Ca. Further work is neede
fine tune the construction algorithm for the PAW basis a
projector functions in order to avoid the problem of gho
states.28,29

The present implementation is not yet optimized for e
ciency, and is similar in computation effort to the pseudop
tential approach. The results are encouraging for both
inherent accuracy and efficiency of the PAW algorith
making it a very attractive method first-principles dynamic
calculations.4–6
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APPENDIX: HAMILTONIAN MATRIX ELEMENTS

In using the PAW method for periodic systems, t
smooth wave functionC̃nk(r ) are conveniently represente
in terms of a plane-wave expansion:

C̃nk~r !5A1

V(G Ank~G!ei ~k1G!•r, ~A1!
s,
b-
n
d

e
or

ct
e
x-
e
r

n
e
ce
,
h
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-
or
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s
to
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t

-
-
e
,
l

F
r

whereV denotes the volume of the unit cell. The plane-wa
expansion coefficientsAnk(G) are then the variational pa
rameters of the problem which are determined by evalua
Eq. ~23! in a plane-wave representation. TheH̃PW contribu-
tion of the PAW Hamiltonian~25! can easily then be evalu
ated in Fourier space using a formalism similar to that
veloped for pseudopotentials.24 The Fourier transform of the
smooth density ~5! can be represented by

nD ~G![E
V
d3r ñ~r !e2 iG–r. ~A2!

The Fourier transform of the compensation charge~16! den-
sity takes the form

n̄̂~G!5 (
a,LM

QLM
a YLM~Ĝ!e2 iG–Ra ḡL

a~G!, ~A3!

where

ḡL
a~G!5

A4p i2L

~2L11!!!
GLe2G2 sa

2/4. ~A4!

The Fourier transform of the core tail density has been
fined in Eq.~13!. The Fourier transform of the arbitrary lo
calized potential function can be represented by

vD loc~G!5(
a

e2 iG–Ra vD loc
a ~G!,

where

vD loc
a ~G![E

0

`

dr 4pr 2ṽ loc
a ~r ! j 0~Gr !. ~A5!

In these terms, the smooth energy contribution~9! can be
evaluated using the same techniques as used in the pse
potential formalism:24

Ẽ5
\2

2m(
nk

f nkS (
G

uAnk~G!u2 uk1Gu2D
1
2pe2

V (
GÞ0

unD ~G!1nD ~G!u21unD core~G!u2

G2

1
4pe2

V (
GÞ0

nD * ~G!nD core~G!

G2

1
1

V(G nD * ~G!vD loc~G!

1E
V
d3r @ ñ~r !1ñcore~r !#exc@ ñ~r !1ñcore~r !#,

~A6!

where the last term~the exchange-correlation contribution! is
evaluated by trapezoidal rule integration using the real sp
fast Fourier transform grid.7 The corresponding Hamiltonian
function H̃PW ~25! can be written
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H̃PW52
\2

2m
¹21

4pe2

V (
GÞ0

@nD ~G!1 n̂̄~G!1nD core~G!#

G2 eiG–r1
1

V(G vD loc~G! eiG–r1mxc@ ñ~r !1ñcore~r !#. ~A7!
n
o
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to
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The contributions to the PAW Hamiltonian~23! from the
atomic basis and projector functions need some additio
consideration. In general, it is convenient to make use
atomic parameters calculated and stored during the pro
of constructing the basis and projector functions for ea
atom.

The scalar constants that need to be stored for each a
are Za, the atomic number;Qcore

a , the frozen core charge
r c
a , the PAW matching radius;sa , the compensation charg
width parameter; andGa and ga, the core tail function pa-
rameters. The radial functions that need to be stored on ra
grid for each atom arencore

a (r ), the core density;$fni l i
a %, the

atomic AE basis functions;$f̃ni l i
a %, the corresponding PS ba

sis functions; and$ p̃ni l i
a %, the corresponding projector func

tions.
The ‘‘one-center’’ radial integrals that are needed in t

evaluation of the overlap and Hamiltonian matrix elemen
Oi j
a @Eq. ~27!# andDi j

a @Eq. ~28!#, are conveniently calcu
lated and stored in the atomic calculation. Since the ato
problem is spherically symmetric, all of the atomic matr
elements are diagonal in themi andmj quantum numbers
and can be evaluated as radial integrals. In order to ana
the necessary matrix elements for the full problem, it is he
is

g
x
m

al
f
ss
h

m

ial

e
,
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-

ful to decompose the difference Hamiltonian matrix eleme
Di j
a into the following terms:

Di j
a5Ki j

a1^f i
auv ion

a uf j
a&2^f̃ i

auṽ loc
a uf̃ j

a&2^f̃ i
auv̂auf̃ j

a&

1@ ṽcore
a # i j1@VH

a # i j1@v0
a# i j1@VXC

a # i j , ~A8!

which will be defined below.
The Oi j

a @Ka# i j , ^f i
auv ion

a uf j
a&, and ^f̃ i

auṽ loc
a uf̃ j

a& matrix
elements are diagonal in thel i and l j quantum numbers. The
overlap matrix elements~27! depend on the integrals:

Oi j
a5d l i l jdmimj

Oni l i nj l j
a ,

where

Oni l i nj l j
a [E

0

r c
a

dr@fni l i
a ~r !fnj l j

a ~r !2f̃ni l i
a ~r !f̃nj l j

a ~r !#.

~A9!

The kinetic energy matrix elements~A8! depend on the in-
tegrals:

Ki j
a5d l i l jdmimj

Kni l i nj l j
a ,

where
Kni l i nj l j
a [S 2

\2

2mD E
0

r c
a

dr Ffni l i
a ~r !S d2dr2 2

l j~ l j11!

r 2 Dfnj l j
a ~r !2f̃ni l i

a ~r !S d2dr2 2
l j~ l j11!

r 2 D f̃nj l j
a ~r !G . ~A10!
tion
r-

ral
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be
The AE ionic potential~15! matrix element is given by

^f i
auv ion

a uf j
a&5d l i l jdmimj

@v ion
a #ni l i nj l j ,

where

@v ion
a #ni l i nj l j[E

0

r c
a

dr fni l i
a ~r !v ion

a ~r !fnj l j
a ~r !. ~A11!

The matrix element of the arbitrary localized potential
given by

^f̃ i
auṽ loc

a uf̃ j
a&5d l i l jdmimj

@ ṽ loc
a #ni l i nj l j ,

where

@ ṽ loc
a #ni l i nj l j[E

0

r c
a

dr f̃ni l i
a ~r !ṽ loc

a ~r !f̃nj l j
a ~r !. ~A12!

The remaining Hamiltonian matrix elements are not dia
onal in l i and l j . It is useful to define intermediate matri
elements which depend upon a ‘‘total’’ angular momentu
-

L, whereu l i2 l j u<L<( l i1 l j ). For example, theLth moment
of the density matrix element:

nni l inj l j
aL [E

0

r c
a

dr r L@fni l i
a ~r !fnj l j

a ~r !2f̃ni l i
a ~r !f̃nj l j

a ~r !#

~A13!

is used in calculating the moments of the compensa
charge~17!. The radial part of the electrostatic potential co
responding to the Gaussian form~19!

v̂L
a~r ![

4pe2

2L11 F 1

r L11E
0

r

dr8 r 8L12gL
a~r 8!

1r LE
r

`

dr8 r 812LgL
a~r 8!G , ~A14!

can be evaluated analytically. In principle, this integ
should be confined within the atomic sphere, but becaus
the localization of the Gaussian function, the integral can
extended to infinity. The first few functions are
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v̂0
a~r ! 5

A4pe2

sa

erf~r /sa!

r /sa
,

v̂1
a~r ! 5

A4pe2

3sa
2 S erf~r /sa!

~r /sa!
2 2

2

Ap

e2~r /sa!2

~r /sa!
D ,

v̂2
a~r ! 5

A4pe2

5sa
3 Ferf~r /sa!

~r /sa!
3

2
2

3Ap
e2~r /sa!2S 21

3

~r /sa!
2D G . ~A15!

Then, the matrix elements involving the compensat
charge potential depend upon

v̂ni l inj l j
aL [E

0

r c
a

dr f̃ni l i
a ~r !v̂L

a~r !f̃nj l j
a ~r !. ~A16!

Finally, the matrix elements of the Hartree potenti
@VH

a # i j , depend on the four-index matrix elements:

Vni l inj l j ;nkl knl l l
aL [

4pe2

2L11E0
r c
a

dr E
0

r c
a

dr8
r,
L

r.
L11

3@fni l i
a ~r !fnj l j

a ~r !fnkl k
a ~r 8!fnl l l

a ~r 8!

2f̃ni l i
a ~r !f̃nj l j

a ~r !f̃nkl k
a ~r 8!f̃nl l l

a ~r 8!#.

~A17!

In summary, the following radial matrix elements are calc
lated and stored in the atomic calculation for each atom
the extended system:$Oni l i nj l j

a %, $Kni l i nj l j
a %, $@v ion

a #ni l i nj l j%,

$@ ṽ loc
a #ni l i nj l j%, $@ ṽcore

a #ni l i nj l j%, $nni l inj l j
aL %, $v̂ni l inj l j

aL %, and

$Vni l inj l j ;nkl knl l l
aL %.

In order to evaluate the last five contributions to Eq.~A8!,
it is necessary to introduce intermediate quantities which
pend upon the angular variables of the problem. T
‘‘Gaunt’’ 37 coefficients are defined to be

Gl imi l jmj

LM [A4p E dV Yl imi
* ~ r̂ ! YLM* ~ r̂ ! Yl jmj

~ r̂ !.

~A18!

These coefficients are nonzero only whenM5mj2mi .
It is also useful to define projected occupation coefficie

according to the definition

Wij
a[(

nk
f nk^C̃nku p̃i

a&^ p̃ j
auC̃nk&. ~A19!

In order to evaluate these coefficients it is necessary to
culate the projector overlap matrix elements^ p̃i

auC̃nk&. These
can then be evaluated as a sum over plane-wave coeffici

^ p̃i
auC̃nk&5A1

V(G „4p i l iYl imi
* ~k1Ĝ!ei ~k1G!•Ra

3pD ni l i~ uk1Gu!… Ank~G!, ~A20!
n

,

-
f

e-
e

s

l-

ts:

where the Fourier transform of the radial part of the projec
function in the above equation is given by

pD ni l i~q!5E
0

r c
a

drr p̃ni l i~r ! j l i~qr !. ~A21!

In terms of the angular and radial matrix elements defin
above, the multipole moments of the compensation cha
~17! can be calculated from

QLM
a 5~2Za1Qcore

a !dL0dM01(
i , j

Wi j
aGl imi l jmj

LM nni l inj l j
aL .

~A22!

From a knowledge of these multipole coefficients, the fou
term of Eq.~A8! can be calculated according to

^f̃ i
auv̂auf̃ j

a&5(
LM

QLM
a ~21!MGl imi l jmj

L 2M v̂ni l inj l j
aL .

~A23!

The fifth ~core tail! term of Eq.~A8! involves contribu-
tions from both the AE and PS matrix elements:

@ ṽcore
a # i j[

4pe2

V (
GÞ0

nD core~G!

G2 eiG–R
a

3(
LM

Gl imi l jmj

LM i LA4pYLM~Ĝ!Jni l inj l j
aL ~G!.

~A24!

This term does not depend upon the self-consistent vale
density and is designed to converge rapidly withG. The
radial Fourier integrals used in this equation are defined

Jni l inj l j
aL ~G![E

0

r c
a

dr j L~Gr !@fni l i
a ~r !fnj l j

a ~r !

2f̃ni l i
a ~r !f̃nj l j

a ~r !#. ~A25!

The sixth ~Hartree! term of Eq. ~A8! can be calculated
according to

@VH
a # i j5 (

LM ,~k,l !
~21!MGl imi l jmj

L 2M Glkmk l lml

LM

3Wkl
a Vni l inj l j ;nkl knl l l

aL . ~A26!

In this equation, the sum overL andl k andl l is restricted by
u l k2 l l u<L< l k1 l l and u l i2 l j u<L< l i1 l j . The sum over
mk and ml is restricted by M5mj2mi
5mk2ml .

The Coulomb shift term of Eq. ~A8! formally comes
from the variation of the energy with respect to the multipo
moment contributions which can be written1

@v0
a# i j5(

LM

]E

]QLM
a Gl imi l jmj

LM nni l inj l j
aL

2d l i l jdmimj

4pe2nD core~0!nni l inj l i
a2

6V . ~A27!
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The coefficients]E/]QLM
a have several contributions whic

can be written

]E

]QLM
a 5

4pe2

V (
GÞ0

@nD ~G!1 n̂̄~G!#*

G2 YLM~Ĝ! e2 iG–Ra ḡL
a~G!

2(
i , j

Wi j
a ~21!MGl imi l jmj

L2M v̂ni l inj l j
aL

2e2A2

p

QLM
a *

~2L11!~2L11!!! sa
2L11

1dL0dM0

4pe2nD core~0!sa
2

4V . ~A28!

The last term of the two equations above come from
G50 energy term discussed below

In order to evaluate the exchange-correlation contri
tions to the matrix elements@last term of Eq.~A8!# it is
convenient to perform the integration using a numerical g
based on a product of angular and radial points. The ang
points were distributed according to Gauss-Legendre qua
ture for the cos(u) variable and uniformly for thew variable,
with 12 quadrature points for each~in order to accurately
represent integrals for basis functions withl<3). The radial
points were chosen to be the same as those used in the r
integration in the atomic program. Denoting each angu
integration mesh point byr̂a, and its corresponding integra
tion weight bywa ~where(awa54p), the matrix element
can be evaluated according to

@VXC
a # i j5(

a
waYl imi

* ~ r̂a!Yl jmj
~ r̂a!

3E
0

r c
a

dr$mxc@n
a~ r̂ar !1ncore

a ~r !2ñcore
a ~r !

1ñcore~ r̂ar !#fni l i
a ~r !fnj l j

a ~r !

2mxc@ ñ
a~ r̂ar !1ñcore~ r̂ar !#f̃ni l i

a ~r !f̃nj l j
a ~r !%,

~A29!

where the radial integral overr is performed for each angula
mesh pointr̂a. The efficiency of evaluating~A29! can be
improved by separating the angular and radial contributi
in the atomic density functions~6! and ~7! according to

na~ r̂ar !5(
i , j

Wi j
a Yl imi

* ~ r̂a!Yl jmj
~ r̂a!

fni l i
a ~r !fnj l j

a ~r !

r 2
,

and

ña~ r̂ar !5(
i , j

Wi j
a Yl imi

* ~ r̂a!Yl jmj
~ r̂a!

f̃ni l i
a ~r !f̃nj l j

a ~r !

r 2
.

~A30!
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The PAW atomic matrix elements that are needed
evaluate the Hamiltonian can also be used to evaluate
total valence energy~8!. The ‘‘one-center’’ contributions are
given by

Ea2Ẽa5(
i , j

Wi j
a Fd l i l jdmimj

~Kni l inj l j
a 1@v ion

a #ni l inj l j

2@ ṽ loc
a #ni l inj l j !2^f̃ i

auv̂auf̃ j
a&1@ ṽcore

a # i j

1
1

2
@VH

a # i j G2Êa2Ẽcore
a 2Ẽcore

a0

1~Exc@n
a1ncore

a 2ñcore
a 1ñcore#2Exc@ncore

a #

2Exc@ ñ
a1ñcore# !. ~A31!

The self-Coulomb repulsion of the compensation charge
the analytic form:

Êa5
e2

2
A2

p (
LM

uQLM
a u2

~2L11!~2L11!!! sa
2L11 . ~A32!

The core energy contribution can be evaluated according

2Ẽcore
a 5

4pe2

V (
GÞ0

nD core~G!

G2 eiG–R
a

3E
0

r c
a

dr 4pr 2nion
a ~r ! j 0~Gr !2Ẽself-core

a ,

~A33!

where

Ẽself-core
a [e2E d3r

nion
a ~r !ñcore

a ~r !

ur2r 8u

1
e2

2 E E d3r d3r 8
ñcore
a ~r !ñcore

a ~r 8!

ur2r 8u
.

~A34!

TheG50 energy term takes the value

2Ẽcore
a0 5

4pe2nD core~0!

V

3FQ00
a sa

2

4
2
1

6(i , j d l i l jdmimj
Wi j

a nni l inj l i
a2

2
1

6E0r c
a

dr 4pr 4@ncore
a ~r !2ñcore

a ~r !#G ,
~A35!

wherenni l inj l i
a2 is defined by Eq. ~A13!, for each value of

l i . The exchange-correlation terms (Exc@n
a1ncore

a 2ñcore
a

1ñcore#2Exc@ ñ
a1ñcore#) are evaluated using a scheme sim

lar to that used in the evaluation of the Hamiltonian con
butions~A29!, while Exc@ncore

a # is a constant for each atom
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