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X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures

V. M. Kaganer,* R. Köhler, M. Schmidbauer, and R. Opitz
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The x-ray scattering from relaxed heteroepitaxial layers with the misfit dislocations randomly distributed at
the interface between the layer and the substrate is analyzed theoretically and experimentally. The profiles of
the x-ray-diffraction peaks and the reciprocal space maps of the intensity are measured and simulated for
several heteroepitaxial structures in a wide range of dislocation densities. At large dislocation densities, the
peak position is governed by the mean distortions and the peak width is due to the mean-square variations of
the distortions. The peak widths calculated for uncorrelated distribution of dislocations exceed the widths of
the peaks measured on the heteroepitaxial structures with large mismatch. It is shown that the spatial correla-
tions of the dislocations reduce the peak width and explain the discrepancy. For small dislocation densities, the
coherent and the diffuse components of the intensity are measured and simulated. It is shown that the position
of the coherent peak does not follow the mean distortions. Satellites of the diffuse peak are observed and
explained.@S0163-1829~97!02503-4#
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I. INTRODUCTION

The difference between lattice parameters of a des
epitaxial layer and that of available substrate crystals gi
rise to elastic strains. These can relax by formation of surf
undulations, of three-dimensional islands,1 and of misfit
dislocations.1,2 The first two mechanisms are often restrict
to the initial stages of epitaxy, while formation of misfit di
locations is a dominant mechanism at least for comparativ
thick layers. The dislocation densities vary from several d
locations per sample at initial stages of the relaxation proc
to a dislocation per dozen lattice spacings in completely
laxed heteroepitaxial systems with large mismatch. A vari
of methods are used to evaluate dislocations density and
rangement, such as etching, transmission elec
microscopy,1 scanning electron microscopy~electron-beam-
induced current, see, e.g., Ref. 3; cathodoluminescence,
e.g., Ref. 4!, x-ray topography~see, e.g., Ref. 5! and x-ray
diffractometry ~see, e.g., Ref. 6!. The x-ray techniques ar
nondestructive. X-ray topography can only be applied
comparatively low dislocation densities. X-ray diffract
metry is now routinely used, in order to measure very prec
values of lattice parameters and to evaluate layer thicknes
by most laboratories which grow epitaxial layers.7 When dis-
location densities exceed about 1000 cm21, the strain relax-
ation can be calculated from the lattice-parameter meas
ments. Additional, hitherto unused information can
revealed from the broadening of the diffraction peaks, wh
is due to the nonuniformity of the strain caused by the d
locations. Experimental studies usually refer to the mos
blocks model,8,9 with the block sizes related to either the fil
thickness or the mean distance between threading disl
tions. However, misfit dislocations located mainly at the
terface between the substrate and the layer do not form b
boundaries. Even when the threading dislocations dens
are large, the densities of misfit dislocations in the relax
550163-1829/97/55~3!/1793~18!/$10.00
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heterostructures are much larger, and have stronger effec
the peak widths.

The intensity of the x-ray scattering is given by the Fo
rier transform of the correlation functionG(r1 ,r2)5
^exp@iQ•„u(r1)2u(r2)…#&, whereu(r) is the displacement a
the siter due to randomly distributed dislocations, and t
averagê & is performed over their positions. The avera
cannot be evaluated by treating the dislocation displacem
u(r) as Gaussian random variables. To prove this statem
one simply can consider the result which the avera
over the Gaussian distribution would give
exp$21

2^@Q•„u(r1)2u(r2)…#
2&%. The latter expression canno

be properly specified for the dislocation displacementu(r),
defined as multivalued, or alternatively discontinuous
some arbitrary cut, function. The jump of the displacemen
a cutDu(r)5b, whereb is the Burgers vector of the dislo
cation, does not cause a physical discontinuity, since
Burgers vector components are multiples of the lattice sp
ings, nor a problem in treating the correlation functio
G(r1 ,r2), since the phase jumpQ•Du(r)5Q•b is a multiple
of 2p, whenQ is a reciprocal-lattice vector.

The correct method for the calculation of the correlati
function was proposed by Krivoglaz,10,11 based on the Pois
son statistics for uncorrelated dislocations and the Kubo
mulant expansion to take into account correlations in dis
cation positions. In Appendix A, we follow Ref. 11 to deriv
the correlation function employed in the present study. T
displacementu(r) enters the correlation function only in th
terms containing exp@iQ•u(r)#, thus excluding the problem
mentioned above. Although Krivoglaz’s theory was initial
developed to treat the x-ray-diffraction peak profiles in me
crystals, its application to misfit dislocations is more straig
forward. The assumption of parallel straight dislocations
ing in a definite set of glide systems, which hardly can
justified in deformed metal crystals, is adequate to netwo
of misfit dislocations.
1793 © 1997 The American Physical Society
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1794 55V. M. KAGANER et al.
The dimensionless parameter controlling diffraction fro
misfit dislocations is the productrd of the linear dislocation
densityr and the layer thicknessd~in the present study, the
dislocations are assumed to be located at the interface
tween the layer and the substrate!. This parameter varies in
very wide range: for example, the experimental results p
sented in Sec. V cover the range fromrd;0.1 on the early
stages of relaxation tord'500 for totally relaxed layers in a
heteroepitaxial system with large mismatch. In Sec. III
consider the diffraction peaks due to large dislocation de
ties,rd@1, the case which is most important for the expe
mental studies, and allows relatively simple theoretical int
pretation. In this case, the layer is strongly distorted, a
only the closely spaced pointsr1 and r2 contribute to the
correlation functionG(r1 ,r2). The coherent diffraction due
to correlations between far pointsr1 and r2 is exponentially
small. One can proceed from the difference of the displa
ments to the distortions¹u(r) and represent the phase fact
asQ•„u(r1)2u(r2)…'„(r12r2)•¹…„Q•u(r)…. The mean dis-
tortion ^¹„Q•u(r)…& determines the position of the diffrac
tion peak. Its shift with respect to that of the strain
dislocation-free layer is proportional to the total Burgers v
tor per unit lengthrb, and coincides with the value derive
considering the mean effect of the misfit dislocations.12 The
mean-square distortion̂@¹„Q•u(r)…#2& provides the peak
widths. It can be shown quite generally that the peak widt
proportional toQbAr/d, with the numerical coefficient de
pending on the orientations of the dislocation lines, the B
gers vectors, the diffraction vector, and on the scan direc
in the reciprocal space. Analytical estimates of the coe
cients and some numerical examples of the peak profiles
commonly used diffraction vectors and dislocation config
rations are given in Sec. IIIB.

Networks of misfit dislocations are expected to poss
correlations in the dislocation positions, due to kinetic~ac-
tion of limited number of dislocation sources! and energetic
~rearrangements of the dislocations to minimize elastic
ergy! reasons. The ideal case of randomly distributed unc
related dislocations can be expected only at small disloca
densities. We consider two types of correlations in the dis
cation positions: short-range correlations with the correlat
length j smaller than the layer thicknessd, and long-range
variations of the dislocation density. The correlations do
influence the peak position. The effect of the short-ran
spatial correlations on the peak width can be described b
integral parameter of the corresponding correlation functi
since the dislocation distortions vary on a length scale of
order ofd, large in comparison withj. We show in Sec. IIIC
that the peak width corresponds to an effective disloca
density gr, with the factor g5^(DN)2&/N given by the
short-range correlations. HereN is the mean number of th
dislocations on an interval large in comparison withj, and
DN is the random variation of this number. If the disloc
tions are completely uncorrelated, as in the ideal gas of n
interacting particles, one haŝ(DN)2&5N and g51. The
correlations in dislocation positions reduce fluctuations, a
the width of the diffraction peak decreases, as a result of
effective decrease of the dislocation density by a fac
g,1. Calculations of the peak widths for various heteroe
taxial systems studied experimentally, performed in Sec.
demonstrate that the dislocations are correlated in all inv
e-
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tigated systems with large mismatch.
When the dislocation densities vary on distances large

comparison withd, two situations are of interest. If the tota
densityr varies along the interface, it can be considered a
random functionr(x), wherex is the coordinate along the
surface, with subsequent average over statistics ofr(x). The
result is an additional broadening of the peak. In the sy
metrical Bragg reflection it occurs along the diffraction ve
tor. Another possibility is the variation of the differenc
dr5r12r2 between the densities of two types of disloc
tions possessing equal misfit-releasing componentsbx of the
Burgers vector, but opposite tilt componentsbz normal to the
surface, while the total densityr5r11r2 is kept constant.
Such a variation does not change the local degree of re
ation, but only causes a local tilt. Its effect on the diffracti
peak is an additional broadening in the direction perpend
lar to the diffraction vector.

Small dislocation densitiesrd&1 are considered in Sec
IV. In this case, the correlation functionG(r1 ,r2) does not
vanish in the limit of large separationsr12r2→`. The long-
range order is retained, and the diffraction spectrum conta
a d-shaped coherent Bragg peak. The static Debye-Wa
factor can be estimated asW;rd. The intensity of the Bragg
peak decreases exponentially with increasing disloca
density, and practically can be observed if the mean dista
between dislocations,r21, exceeds the layer thickness~for-
mally the Bragg peak, albeit exponentially weak, is pres
for large dislocation densities also!. The position of the
Bragg peak is of special interest. For the reasons discu
above, the dislocation displacementu(r) enters the expres
sions describing the peak position in the terms contain
sin„Q•u(r)…. As sin„Q•u(r)…,„Q•u(r)…, the effect of the
dislocation displacements on the diffraction peak position
smaller than their effect on the mean distortions. The regi
where the displacements are comparable with the Burg
vector make a large contribution to the mean distortions,
only a minor contribution to the peak shift. The position
the Bragg peak does not follow the mean distortions, c
trary to the case of large dislocation densities, where t
determine the position of the diffuse peak.

The geometry employed in the paper, Fig. 1, correspo
to the common geometry of the experimental studies. T
misfit dislocations are supposed to lie on the interface
tween an epitaxial layer and a substrate at the dista
z5d from the surfacez50. Straight dislocations extend i
two orthogonal directions at the interface, thus definingx
and y directions in its plane, the geometry of 001-orient
crystals of zinc-blende structure with dislocations in the t
orthogonal^110& directions. The plane of incidence for th

FIG. 1. Geometry of the network of the misfit dislocations in
layered heteroepitaxial system.
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55 1795X-RAY DIFFRACTION PEAKS DUE TO MISFIT . . .
triple-crystal diffraction setup is the planey5const, as the
$110% planes are usually chosen in the experiments. The
ference between the elastic properties of the layer and
strate is neglected. We restrict ourselves with the displa
ment field of a straight dislocation lying parallel to th
surface of the isotropic half-space.13,14The elastic anisotropy
does not strongly affect the topographic images of dislo
tions in cubic crystals,15 and its effect on the diffracted in
tensities is expected to be small too. Analytical expressi
for the components of the displacement in an elastically
tropic half-space are presented, for the sake of completen
in Appendix B. The misfit dislocations most commonly o
served in heteroepitaxial systems are 60° glide dislocatio
Accordingly, the dislocations with the line direction alon
the y axis are assumed to have Burgers vect
b5(bx ,6by ,6bz), wherebx is the misfit component,6by
are screw components, and6bz are tilt components. The
densities of the dislocations differing in sign for any comp
nent of the Burgers vector are taken equal to each othe
that the possible effect of a net tilt is not considered. Den
ties of the dislocations extended along thex axis are taken
equal to densities of they-directed dislocations. We als
consider edge~Lomer type! sessile dislocations with Burger
vectorsb5(bx,0,0), which are formed at large dislocatio
densities, as a convenient model example simplifying ca
lations.

II. INTENSITY OF X-RAY SCATTERING

Our aim is to calculate the intensity of x-ray scatteri
from a heteroepitaxial layered structure with the dislocat
network on the interface between the substrate and the la
Fig. 1. The x-ray beams are assumed to be well collimate
the incidence plane (xz plane!, while a wide acceptance win
dow of the detector in the direction normal to this pla
integrates the scattered intensity over they component of the
wave vector in infinite limits, a common geometry of
triple-crystal diffractometry experiment. In the experimen
the intensity distributionsI (Q) are measured as the recipr
cal space map of theQ5(Qx ,Qz) plane or along various
directions in this plane.

The intensityI (Q) is concentrated at the reciprocal-lattic
points. It is then convenient to consider the wave-vector
viation q5Q2 Q0 from the nearest reciprocal-lattice vect
Q0. More precisely, positions of the atoms in a distort
crystal are given by the sumsRs1u(Rs) of the positionRs of
the sth atom in a defect-free reference lattice and its d
placement u(Rs) due to the lattice defects. Then th
reciprocal-lattice vectors Q0 are defined so tha
Q0Rs52p3 integer. We consider, as the reference latt
$Rs%, the ~strained! lattice of the unrelaxed layer matched
the substrate. In the kinematic approximation, the inten
scattered by the layer 0,z,d can be represented as th
Fourier integral@cf. Eq. ~A3!#

I ~qx ,qz!

5E
2`

`

dxE
0

dE
0

d

dzsdzs8e
iqxx1 iqz~zs2zs8!G~x,zs ,zs8!. ~1!

The correlations between two pointsRs(xs ,zs) and
Rs8(xs8,zs8) lying in one and the same planey5const de-
if-
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pend on the differencex5xs2xs8, since the system is as
sumed uniform in the plane of the interface. The kinemati
approximation is justified if the thickness of the layer
small in comparison with the extinction length. The intens
of the substrate reflection can be represented similarly to
~1!, by performing an integration overzs andzs8 in the range
(d,`). An absorption factor exp@2m(zs1zs8)# has to be in-
cluded, to ensure the convergence of the integral. Appl
bility of the kinematical approximation to a calculation of th
intensity of the substrate peak is limited to angular deviatio
large in comparison with the half-width of the dynamic
rocking curve. The layer and substrate peaks contain
same information about the dislocation ensemble, but
layer peak can be more easily handled both theoretically
experimentally. For that reason, we restrict ourselves t
consideration of the layer peak.

A derivation of the correlation functionG(x,zs ,zs8),
which involves the average over statistics of the defects,
performed by Krivoglaz.10,11 The main steps of the deriva
tion are discussed in Appendix A. The correlation function
represented in the exponential form

G~x,zs ,zs8!5exp@2T~x,zs ,zs8!#. ~2!

The exponentT(x,zs ,zs8) is also called the correlation func
tion below, whenever this is not confusing. Here we consi
the case of uncorrelated dislocations. The expon
T(x,zs ,zs8) consists of two contributions,T5Tx1Ty , due
to two systems of dislocations, with dislocation lines para
to x and y axis, correspondingly. For the first system
dislocations, the summation over possible positions of
dislocations in Eq.~A8! can be replaced by the integratio
( t→a21*dy, wherea is the lattice spacing, and the corre
sponding part of the correlation function is

Tx~zs ,zs8!5(
a

raE
2`

`

dy$12eiQ•[ua~y,zs!2ua~y,zs8!]%. ~3!

Herera5ca /a is the linear density of dislocations, the su
scripta denotes different types of Burgers vectors,ca is the
number density of dislocations introduced in Appendix
andua(y,z) is the displacement at the point (y,z) due to a
dislocation of typea at the origin. This part of the correla
tion function does not depend onx, since the displacemen
fields of the dislocations lying parallel to the incidence pla
(x,z) arex independent. The contribution due to dislocatio
perpendicular to the incidence plane reads

Ty~x,zs ,zs8!5(
a

raE
2`

`

dx8

3$12eiQ•[ua~x8,zs!2ua~x82x,zs8!]%, ~4!

and depends onx.
The symmetries ofTx andTy with respect to their argu-

ments directly follow from Eqs. ~3! and ~4!:
Tx(z2 ,z1)5Tx* (z1 ,z2) and Ty(2x,z2 ,z1)5Ty* (x,z1 ,z2),
where the asterisk denotes complex conjugation. Then in
sity ~1! can be represented as an integral of a real functi
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1796 55V. M. KAGANER et al.
I ~qx ,qz!52E
0

`

dxE
0

dE
0

d

dzsdzs8e
2T8~x,zs ,zs8!

3cos@qxx1qz~zs2zs8!2T9~x,zs ,zs8!#. ~5!

HereT8 andT9 are real and imaginary parts, respectively,
the correlation functionT5Tx1Ty .

Some further symmetry of the correlation function can
found in the important particular case of symmetrical Bra
reflection,Q5(0,0,Qz), with equal densities of dislocation
possessing oppositez components of the Burgers vectors.
this case the symmetry properties of the displacement fi
given in Appendix B can be exploited: for the displaceme
field u(x) due to thex component of the Burgers vector, on
has ux

(x)(2x,z)52ux
(x)(x,z) and uz

(x)(2x,z)5uz
(x)(x,z),

while for the displacementsu(z) due to thez component
gives ux

(z)(2x,z)5ux
(z)(x,z) and uz

(z)(2x,z)52uz
(z)(x,z).

Then, in addition one hasT(2x,z1 ,z2)5T(x,z1 ,z2), and
Eq. ~5! reduces to

I ~qx ,qz!52E
0

`

dx cosqxxE
0

dE
0

d

dzsdzs8e
2T8~x,zs ,zs8!

3cos@qz~zs2zs8!2T9~x,zs ,zs8!#. ~6!

III. DIFFRACTION PEAKS AT LARGE
DISLOCATION DENSITIES

A. Positions of the peaks

In this section we consider large densities of the mi
dislocations,rd@1. In this case, the exponentsTx and Ty
contain large prefactors. When the distance between
pointsRs andRs8 is not small, and the integrals in Eqs.~3!
and ~4! are of the order ofd, one can estimateT;rd, and
the contribution to the correlation functionG5exp(2T) is
exponentially small. Thus the correlations between clos
spaced pointsRs andRs8 are of interest only. The difference
of displacements in Eqs.~3! and ~4! can be expanded ove
small quantitiesx andz5zs2zs8, retaining the linear terms

Q•ua~x8,zs!2Q•ua~x82x,zs8!

'x
]Q•ua~x8,zs!

]x8
1z

]Q•ua~x8,zs!

]zs
. ~7!

Then the exponential functions in Eqs.~3! and ~4! can also
be expanded. The first term of the expansion is imagin
and linear with respect tox andz,

T9~x,zs ,zs8!5q0xx1q0zz, ~8!

where

q0x52(
a

raE
2`

`

dx
]Q•ua~x,z!

]x
,

~9!

q0z522(
a

raE
2`

`

dx
]Q•ua~x,z!

]z

are proportional to the mean distortions due to uniform
distributed dislocations. The factor 2 in the expression
q0z is due to the contribution of dislocations both paral
f

e
g

ds
t

t

he

ly

ry

r
l

and perpendicular to the incidence plane, with the integra
variabley in Eq. ~3! is substituted for byx. Only dislocations
perpendicular to the incidence plane contribute toq0x .

Integrals~9!, with the displacements due to dislocatio
lying parallel to the surface of an isotropic half-space giv
in Appendix B, can be calculated analytically. The result

q0x5rQxbx , q0z52
2n

12n
rQzbx , ~10!

wheren is the Poisson ratio andr5(ara is total density of
the dislocations lying parallel or perpendicular to the in
dence plane. The mean distortions are constant, despite
fact that the integrands arez dependent, and depend only o
the totalx component of the Burgers vectors per unit leng
rbx , since the densities of the dislocations with6bz are
taken equal to each other, and the integrals are linear o
b. On Fourier transformation~1!, the phase factor given by
Eq. ~8! yields a shift of the diffraction peak by
q05(q0x ,q0z). This value coincides with the well-known re
sult of Chuet al.,12 who treated a net effect of the disloca
tions without considering their individual displacements. W
note that Chuet al. did not argue, why the position of th
diffraction maximum follows the mean distortions. In th
framework of our considerations, this is a result of the e
pansion~7!, which implies that only the displacements
closely spaced points are correlated. This assumption is
tified for large densities of dislocations,rd@1, but is not
valid for the small dislocation densities considered in S
IV.

B. Shapes of the peaks

We begin the analysis of the peak shape with the part
lar case of a symmetrical Bragg reflectionQ5(0,0,Qz),
which is of primary experimental interest and also allows
to make calculations transparent by considering a simp
situation. The real part of the correlation functionT8 can be
received by applying approximation~7! and expanding the
exponential functions in Eqs.~4! and~5! up to second order
over x andz,

T8~x,zs ,zs8!5wx~zs!x
21wz~zs!z

2. ~11!

Then the intensity~1! can be evaluated by extending th
integration overz to infinite limits, due to the fast decay o
the integrand. Integral~1! with the Gaussian function
exp(2T) gives

I ~qx ,qz!5pE
0

d dz

Awxwz

expF2
~qx2qx0!

2

4wx
2

~qz2qz0!
2

4wz
G .
~12!

To evaluate the coefficientswx(z) andwz(z), let us sepa-
rate the displacements due to different components of
Burgers vectors:u5u(x)1u(y)1u(z). We consider disloca-
tions perpendicular to the incidence plane with the Burg
vectors b5(bx ,6by ,6bz) and those parallel to it with
b5(6by ,bx ,6bz). The componentbx , equal for disloca-
tions of all types, releases the mismatch. Other compon
take opposite values with equal probability, giving a net
equal to zero. The consideration thus includes the edge
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55 1797X-RAY DIFFRACTION PEAKS DUE TO MISFIT . . .
the 60° dislocations with Burgers vectors12^110&. The ex-
pansion of Eqs.~3! and ~4! gives

wx~z!5 1
2 rQz

2E
2`

`

dx@uz,x
~x! 21uz,x

~z! 2#,

~13!

wz~z!5rQz
2E

2`

`

dx@uz,z
~x! 21uz,z

~z! 2#.

Here ui , j5]ui /]xj and i , j5x,z. The integration variable
was changed fromy to x when calculatingTx8 . The coef-
ficients atwx andwz differ by a factor 2, which is due to
contribution of dislocations of the two systems towz , while
only dislocations perpendicular to the diffraction plane co
tribute towx . The screw componentu(y) does not contribute
to the symmetrical Bragg reflection. When the edge dislo
tions with the Burgers vectors in the layer plane are con
ered, onlyu(x) is nonzero.

The intensity distributions calculated by numerical in
gration of Eq.~12! for the symmetrical 004 reflection ar
presented in Figs. 2~a! and 2~b! and Fig. 3~a! and 3~b! for
edge and 60° dislocations, respectively. The anisotropic
tensity distributions are extended perpendicularly to the
fraction vector~alongqx). The peak aspect ratioDqz /Dqx is
0.68 for edge dislocations, and 0.30 for 60° dislocations

Intensity distribution~12! involves anisotropic Gaussian
of different widths, since the factorswx andwz depend on
z. The smooth functionswx(z) andwz(z) increase whenz
tends tod, while the contribution to the integral decrease
The integral~12! can be estimated by takingwx andwz at
z50, which gives I (qx ,qz);exp@2(qx2qx0)

2/4wx(0)
2(qz2qz0)

2/4wz(0)#. In this estimate, the peak is an anis
tropic Gaussian with the longitudinal to transverse pe
width ratioDqz /Dqx5Awz(0)/wx(0). Integrals~13! can be

FIG. 2. Intensity distributions for edge dislocations calcula
with Eqs. ~12! and ~16! for 004 and 224 reflections:~a! and ~c!
scans along and perpendicularly to the diffraction vectors; and~b!
and ~d! the reciprocal space maps. The intensity changes betw
isointensity contours by a factor of 2.
-

-
-

-

-
f-

.

k

evaluated analytically atz50. For edge dislocations
one has wx(0)5rQz

2bx
2/(8pd) and wz(0)5@n/(12

n)#2rQz
2bx

2/(4pd). The peak aspect ratio
Dqz /Dqx5A2n/(12n) depends on the Poisson ration
only. For n50.3, one hasDqz /Dqx'0.6. When severa
types of dislocations are present, calculations g
wx(0)5rQz

2(bx
215bz

2)/(8pd) and wz(0)5rQz
2@n/(12

n)#2(bx
21bz

2)/(4pd). In particular, the 60° dislocations giv
the peak aspect ratioDqz /Dqx5A6/11n/(12n)'0.27, in
agreement with the results of the numerical integration.

The calculations above show that the peak width of
epitaxial layer is dominated by the nonuniformity of disto
tions in the near-surface part of the layer. In particular, a t
nonrelaxed layer grown on the top of a relaxed buffer la
shows the same nonuniformity of distortions as the buf
layer. It also follows from the estimate above that the pe
widthsDqx,z are proportional toQzbxAr/d. When the dislo-
cation density varies, the plots of Figs. 2 and 3 are scale
Ar. The longitudinal and transverse peak widths for 60° d
locations found by numerical integration of Eq.~12! are plot-
ted in Fig. 4 as functions of the dislocation density. T
plotted dependencies can be written asDqx521.3Ar/d and
Dqz56.2Ar/d. The estimates presented above give an ac
racy of about 10%.

Expansion~7! is applicable whenx,z!d. With the esti-
matewx ,wz; (r/d)(Qb)2 received above, the real part o
the correlation function isT8;(r/d)(Qb)2x2 ~plus the simi-
lar term proportional toz2). The behavior of the correlation
function is of interest in the rangeT8&1, since the contribu-
tion of largeT8 to Eq. ~2! is exponentially small. Thus, the
actual range of distances isx/d&(QbArd)21. When the re-
quirementrd@1 imposed in this section is satisfied, th
range is small,x!d, thus ensuring the applicability of th
approximations made above. A comparison of approximat
~12! with numerical integration of the exact expression~1!

en

FIG. 3. Intensity distributions for 60° dislocations calculat
with Eqs. ~12! and ~16! for 004 and 224 reflections:~a! and ~c!
scans along and perpendicular to the diffraction vectors, and~b! and
~d! the reciprocal space maps. The intensity changes between i
tensity contours by a factor of 2.
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for dislocation densityrd520 ~not presented! gives a differ-
ence of less than 1%, comparable to the accuracy of
calculations. When the dislocation density is small,rd&1,
the approximation made in the present section cannot be
plied. This case is considered in Sec. IV.

It is worth noting that the results presented above for m
fit dislocations distributed in the plane of the interface dif
from the results received by Krivoglaz11 for straight disloca-
tions uniformly distributed parallel to each other in a bu
crystal. The dislocation distortions behave as¹u;1/r in the
infinite solid. The integrals similar to Eq.~13! in the bulk
crystal,*d2r (¹u)2, diverge proportional to lnL, whereL is
the system size. As a result, the peak width logarithmica
depends on the system size. One-dimensional integrals o
present problem*dx(¹u)2, with ¹u decreasing as 1/x or
faster, converge, and the peak width is size independen

Let us proceed to a general case of an asymmetric re
tion Q5(Qx,0,Qz). Using expansion~7!, one receives

T8~x,zs ,zs8!5wxx~zs!x
212wxz~zs!xz1wzz~zs!z

2. ~14!

To evaluate the coefficients, one takes into account
ux
(x)(x,z) and uz

(z)(x,z) are odd functions ofx, while
ux
(z)(x,z) anduz

(x)(x,z) are even functions ofx. Then one has

wxx~z!5
r

2 (
s5x,z

E
2`

`

dx~Qx
2ux,x

~s! 21Qz
2uz,x

~s! 2!,

wxz~z!5
r

2
QxQz (

s5x,z
E

2`

`

dx~ux,x
~s!uz,z

~s!1ux,z
~s!uz,x

~s!!,

~15!

wzz~z!5
r

2 H (
s5x,z

E
2`

`

dx~Qx
2ux,z

~s! 212Qz
2uz,z

~s! 2!

1E
2`

`

dxQx
2ux,z

~y! 2J .
For edge dislocations, only theu(x) component of the dis-
placements contribute to Eq.~15!.

Performing the Fourier transformation~1! with the real
part of the correlation function~14! and the imaginary par
~8!, one has the intensity

FIG. 4. Longitudinal and transverse full width at half maximu
~FWHM! of the calculated diffraction peaks for 60° dislocatio
with Burgers vectors12^110& in the symmetrical 004 Bragg reflec
tion.
e

p-

-
r

y
he

c-

at

I ~qx ,qz!5pE
0

d dz

Adetŵ
exp@2 1

4 wi j
21~q2q0! i~q2q0! j #,

~16!

where ŵ is a 232 symmetrical matrix with the element
wi j given by Eq.~15!, andi , j5x,z, andwi j

21 are elements of
the reciprocal matrixŵ21. The intensity distributions calcu
lated by numerical integration of Eq.~16! for the asymmetri-
cal 224 reflection are presented in Figs. 2~c! and 2~d! and
Fig. 3~c! and 3~d!. The anisotropic intensity distributions ar
extended perpendicularly to the diffraction vector.

To estimate integral~16!, one can take, as above, th
smooth functionswi j (z) at z50. Analytical integration
of Eq. ~15! for the edge dislocations yield
w xx ( 0 ) 5 r ( Q x

2 1 Q z
2 ) b x

2 / (8 p d), w xz (0) 5 21/
(1 2n ) r Q xQzbx

2/(8pd), and wzz(0)5r„Qx
212@n/

(12n)#2Qz
2
…bx

2/(8pd). The orientation of the anisotropi
Gaussian distribution of the intensity follows orientation
the main axes of the tensorŵ21. The anglew betweenz axis
and the minor axis of the tensor is given b
tan2w52wxz /(wzz2wxx). Calculating this angle for the 224
reflection, one receivesw536°. The angle between the dif
fraction vector andz axis is arctan(Qx /Qz)535°, i.e., the
intensity distribution is extended almost perpendicularly
the diffraction vector. The isointensity map, Fig. 2~d!, con-
firms this conclusion. It is worth noting, however, that the
is no symmetry-related restriction for the orientation of t
intensity distribution with respect to the diffraction vecto
The two directions occur close to each other for commo
used reflections. Orientations of the intensity distributio
with respect to the diffraction vector are slightly different f
edge and 60° dislocations, cf. Figs. 2~d! and 3~d!.

C. Spatial correlations of dislocations

The considerations above assume that dislocations
their positions independently from each other. One can
pect, however, that the misfit dislocations are correlated
to kinetic and energetic reasons: the dislocations are cre
by a limited number of the sources and then redistribute
minimize the elastic energy. Regular arrays of the misfit d
locations are reported for large densities of the dislocatio
The spatial correlations of the dislocations can be taken
account in evaluation of the x-ray correlation functio
G(x,zs ,zs8), as discussed in the Appendix A. However, t
correlation functions are not known, and in addition calcu
tions become complicated even if only pair correlations
involved.

For large dislocation densities, when the mean dista
between dislocations is much smaller than the layer thi
nessd, one can expect that the correlation length of the s
tial correlations is also small in comparison withd. Then the
effect of spatial correlations can be taken into account ra
easily, since the characteristic length of the correlation fu
tion «aa8(Rt2Rt8) entering Eq.~A12! is much smaller than
d, while the factorsF ta vary on distances comparable wit
d and can be kept constant during summation of the co
lation function. Equation~A12! simplifies to

T~Rs ,Rs8!5(
ta

caF ta2 1
2 (aa8eaa8( tF taF ta8, ~17!
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whereeaa85( t«aa8(Rt) are constant factors describing th
correlations, andF ta5exp@iQ•(usta2us8ta)#21 are the
same factors as in Eqs.~3! and~4!. The first term of Eq.~17!
describes uncorrelated dislocations, and the second ter
due to spatial correlations of the dislocations. Making use
approximation~7!, one expandsF ta in the first term of Eq.
~17! up to the terms of the second order overx andz. In the
second term of Eq.~17! the expansion ofF ta can be re-
stricted, with the same accuracy, with the terms linear o
x andz. The higher-order correlation functions entering E
~A11! can be neglected, since they give terms of higher or
over x andz.

Let us first consider the case of dislocations with only o
type of the Burgers vectors, the edge dislocations. Corr
tions between dislocations either parallel or perpendicula
the incidence plane are described by a single correlation
rametere5( t«(Rt), and the two systems of dislocations a
assumed to be uncorrelated with each other. The spatial
relations of the dislocations do not contribute to the ima
nary partT9 of the x-ray correlation function. Thus, the di
fraction peak due to spatially correlated dislocations rema
in the same position due to uncorrelated dislocations. In
real partT8 of the x-ray correlation function, the second ter
of Eq. ~17! contributes by changing the number density
dislocationsc by c1e. Equations~14!–~16! remain appli-
cable after multiplying the dislocation densityr by a factor
g511c21e. Thus the peak width is influenced by the co
relations by replacing the dislocation densityr by an effec-
tive densitygr. As shown in Appendix A, the correlatio
parameterg can be quite generally related to fluctuations
the number of dislocations:g5^(DN)2&/N, whereN is the
mean number of dislocations in some interval, andDN is a
random variation of this quantity. Positionally uncorrelat
dislocations can be considered as a gas of noninterac
particles, which giveŝ(DN)2&5N, and thusg51. The cor-
related dislocations can be treated similarly to a liqu
where distances between particles deviate only slightly fr
the mean distance, and fluctuations of the number of p
ticles are smaller than in the gas,^(DN)2&,N. Then the
correlation parameterg,1 and the diffraction peak is nar
rower than at the same density of uncorrelated dislocatio
In Secs. V and VI we compare the experimental data
several heteroepitaxial systems with calculations in
framework of the present approach, and find that in the
laxed systems possessing large mismatch, the obse
peaks are considerably narrower than the peaks calcu
for uncorrelated dislocations, so that the correlation para
eterg!1.

For several types of dislocations with the Burgers vect
b5(bx ,6by ,6bz), one can introduce correlation facto
e11 for correlations between dislocations with one and
same Burgers vector, ande12 for dislocations with different
Burgers vectors. Then, for a symmetrical Bragg reflecti
Eqs.~13! are replaced by

wx~z!5 1
2 rQz

2E
2`

`

dx@g1uz,x
~x! 21g2uz,x

~z! 2#,

~18!

wz~z!5rQz
2E

2`

`

dx@g1uz,z
~x! 21g2uz,z

~z! 2#,
is
f

r
.
er

e
a-
to
a-

or-
-

s
e

f

f

ng

,

r-

s.
r
e
-
ed
ed
-

s

e

,

where g1511c1
21(e111e12),g2511c1

21(e112e12), and
c1 is the number density of dislocations of each type. T
correlation parametersg1 andg2 can be found in the x-ray-
diffraction experiment by measuring the peak widths in
rections along and perpendicular to the diffraction vect
When the correlations between dislocations of different ty
are absent, i.e.,e1250, one can introduce, as above, a sing
factor g5g15g2 related to the mean-square fluctuations
number of the dislocations.

The dislocation distribution can have, in addition to t
spatial correlations on the length scale small in compari
with the layer thicknessd, nonuniformities with a character
istic length large in comparison withd. This long-range non-
uniformity can be taken into account by considering a va
ing dislocation densityr5r(x). The main effect is due to
local variations of the peak position, rather than variations
the peak width. Including a random variationdr(x) of the
dislocation density in Eq.~9! and treating it as a Gaussia
random variable, one has an additional contribution

dT85 1
2 ^~dr/r!2&~q0xx1q0zz!2 ~19!

to the correlation function~11! and an additional broadenin
of the diffraction peaks. In the symmetrical Bragg reflectio
in particular, the peak broadens in theqz direction.

Another possibility is a variationdr5r12r2 of the
relative densitiesr6 of the two types of dislocations with
Burgers vectors (bx ,by ,6bz) with the same misfit compo
nentbx and the opposite tilt components6bz , which is en-
ergetically less costly, since it does not change the local
gree of relaxation. Keeping the total densityr5r11r2

constant, one obtains an additional contribution to Eq.~8!:

drS xE
2`

`

dx
]Qzuz

~z!

]x
1zE

2`

`

dx
]Qxux

~z!

]z D . ~20!

The integrals of Eq.~20!, calculated with the displacemen
given in Appendix B, are equal to2Qzbz andQxbz , respec-
tively. Averaging over a Gaussian distribution ofdr(x), one
finds the contribution to the correlation function,

dT85 1
2 ^~dr/r!2&~Qzx2Qxz!2bz

2 , ~21!

which gives rise to an additional broadening of the diffra
tion peak in the direction orthogonal to the diffraction vect
Q, due to local variations of the tilt.

IV. DIFFRACTION PEAKS AT SMALL DENSITIES
OF DISLOCATIONS

The approximations of Sec. III are developed for lar
densities of dislocations. For small dislocation densit
rd&1, a general analysis based on the equations of Se
has to be performed. The presence or absence of the co
ently scattered wave depends on the long-range limit of
correlation function.11 Let us consider the limit of the corre
lation function T(x,zs ,zs8) on large separations
T`(zs ,zs8)5 limx→`T(x,zs ,zs8). The contribution due to
dislocations parallel to the incidence planeTx(zs ,zs8) does
not depend onx. The limit T`y due to dislocations perpen
dicular to the incidence plane is finite, as will be show
below. Then the intensityI (qx ,qz) contains a term propor
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tional to the delta functiond(qx), which reflects presence o
the long-range order in the layer and can be referred to as
coherent intensity. One can present the intensity as

I ~qx ,qz!52pd~qx!I coh~qz!1I diff~qx ,qz!, ~22!

where

I coh~qz!5E
0

dE
0

d

dzsdzs8e
iqz~zs2zs8!e2T`~zs ,zs8! ~23!

is the coherent intensity. In a dislocation-free layered sys
T50, one has the well-known resultI coh(qz)5
4qz

22sin2(qzd/2). The remaining part of the intensity, whic
does not exhibit singularities,

I diff~qx ,qz!5E
2`

`

dxE
0

dE
0

d

dzsdzs8e
iqxx1 iqz~zs2zs8!

3@e2T~x,zs ,zs8!2e2T`~zs ,zs8!#, ~24!

is the diffuse intensity.
The calculations involve several infinity limits: the corr

lation functionT(x,zs ,zs8) is a result of the integration~4! in
the infinite limits, while its limit atx→` is applied in the
integral~1! also taken in the infinite limits. The hierarchy ca
be imposed as follows. The integral~4! for the correlation
function T(x,zs ,zs8) is taken, as is shown in Appendix A
@Eq. ~A8!#, over all possible positions of the dislocations
the sample,xP(2Ls ,Ls), where 2Ls32Ls is the lateral
sample size. The Fourier transformation~1! corresponds to a
summation over the area illuminated by the x rays, cf. E
~A3!, xP(2Li ,Li), where 2Li32Li is the size of the illu-
minated area. We take, as it is usually realized experim
tally, Li!Ls . The limit x→` of the correlation function
T(x,zs ,zs8) impliesd!x;Li!Ls . Therefore, one can con
sider the correlation functionT(x,zs ,zs8) as a result of the
integration~4! in the infinite limits for a finitex, and proceed
to the limit x→` on the next stage. The delta functio
d(qx) in Eq. ~22! represents a peak with the height propo
tional toLi , and a half-width of the order ofLi

21 .
To find the limit T`y , one takes into account that th

dislocation displacementsua(x8,z) tend to zero at largex8,
and either one or the other of the two displacements ente
Eq. ~4! is small during integration at infinitely large separ
tion x. The real partT`y8 can be represented as a su
T`y8 (zs ,zs8)5W(zs)1W(zs8), where

W~z!5(
a

raE
2`

`

dx$12cos„Q•ua~x,z!…% ~25!

is a static Debye-Waller factor due to dislocations perp
dicular to the incidence plane. The contributionTx8(zs ,zs8) to
the coherent peak due to dislocations parallel to the in
dence plane cannot be represented in this way. W
x→`, the dislocation displacementsua decrease as 1/x or
faster, the cosine term in Eq.~25! can be expanded in powe
series and the integral*„Q•u…2dx converges, thus ensurin
that the Debye-Waller factorW(z) is finite. This is dissimilar
to the dislocations uniformly distributed in a bulk crysta
where the two-dimensional integral*„Q•u…2d2r diverges at
r→`, the Debye-Waller factor is infinite, and the true Bra
he

m

.

n-

-

g

-

i-
n

peak is absent.11 To estimateTx8 andW, one takes into ac-
count that the terms in the wavy brackets of Eqs.~3! and~25!
are of the order of unity foruxu&d, and decrease for large
x fast enough. Then the estimate isW,Tx8;rd. The coherent
intensity is exponentially small when the dislocation dens
is large,rd@1. For that reason the coherent intensity w
not taken into account in Sec. III.

In a symmetrical Bragg reflection, the imaginary pa
T`y9 can be represented in a similar wa
T`y9 (zs ,zs8)5V(zs)2V(zs8), where

V~z!52(
a

raE
2`

`

dx sin„Q•ua~x,z!…. ~26!

The displacement componentuz
(x) decreases as 1/x2 at large

x, and the integral converges. Let us make an unphys
assumption for a moment, postulating that the prod
Q•ua is always small in comparison with unity. This a
sumption implies that the misfit is dissolved in infinitesim
dislocations whose Burgers vectors are much smaller t
the lattice spacing. Then the integrand of Eq.~26! can be
expanded up to the term linear overQ–ua , and the integra-
tion yieldsV(z)5q0zz, whereq0z is given by Eq.~10!. Sub-
stituting this expression into Eq.~23!, one finds that the peak
of the coherent intensity is located atqz5q0z , the position
given by the mean distortions. However, this result is ba
on an unphysical assumption. The productQ•ua can be of
the order of unity,V(z) is smaller thanq0zz, and thus the
shift of the coherent peak due to the misfit dislocations
smaller thanq0z .

The coherent intensityI coh(qz) calculated by Eq.~23! in
the symmetrical 004 Bragg reflection is presented in Fig
The peak width is given by the reciprocal thickness of t
layer d21, and does not depend on the dislocation dens
As the dislocation density increases, the peak intensity ex
nentially decreases, and the peak shifts. The shift of the
herent peak is smaller than the value~10! given by the mean
distortions, which is shown in Fig. 5~b! by crosses. It is
usually assumed, without any proof~see, e.g., Ref. 12!, that
positions of the diffraction peaks follow the mean distortio
in the crystal. We showed in Sec. III that this statemen
correct when the dislocation density is large. In that case,
peak is diffuse, and is governed by correlations of displa
ments at closely spaced lattice sites, i.e., by the mean l
distortions in the crystal. The coherent peak observed at
dislocation densities is due to correlations between displa
ments at the sites separated by large distances. When
relative displacement is as large as the lattice spacing, it
no effect on the peak position, but makes a large contribu
to the mean distortion. As a result, the shift of the coher
peak due to the misfit dislocations is smaller than the va
given by the mean distortions.

The Debye-Waller factor~25! and the phase factor~26!
can also be applied for the calculation of rocking curv
under dynamical diffraction conditions, by employing the
in the Takagi-Taupin equations. It is worth noting, howev
that these factors describe the effect of the dislocations
pendicular to the incidence plane. The dislocations paralle
the incidence plane produce displacements which do not
pend on the lateral coordinatex in that plane, but depend o
the coordinatey normal to it. Then the solution of the dy
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namical problem involves numerical integration of t
Takagi-Taupin equations in each scattering plane with s
sequent average of the intensities. The corresponding a
age in the framework of the kinematical theory is given
Eq. ~3!.

In an asymmetrical reflection, the integral~26! diverges
logarithmically, due to the contribution of the displaceme
ux
(x) which decreases as 1/x at large x. The difference
V(zs)2V(zs8) converges, however. The imaginary part
the limit T`y9 can be written as a differenc
T`y9 (zs ,zs8)5Ṽ(zs)2Ṽ(zs8) of two finite quantities, to de-
fine

Ṽ~z!52(
a

raE
2`

`

dx@sin„Q•ua~x,z!…2y~x!#. ~27!

Here y(x) is an arbitrary regular function possessing t
same asymptotic behavior onx→` as the product
Qxux

(x) namely, Qxux
(x);2Qxbxd/(px). We use the

function y(x)5(2Qxbx /p)xd/(x
21d2). The integral

*2`
` dx8@y(x8)2y(x82x)# is zero for large but finitex. This
result is applied in Eq.~23!, and means that the cohere
peak does not shift in theqx direction but remains in the
same position as for the strained dislocation-free refere
layer. Note that the unphysical assumption of dislocatio
with infinitesimal Burgers vectors would lead, in the sam
way as above, to the displacement of the Bragg peak
q0x , Eq. ~10!, as given by the mean distortions.

The common treatment of the lateral position of t
peak12 is based on a consideration of the mean strain in

FIG. 5. Intensity of the coherent peak, Eq.~23!, in the symmetri-
cal 004 reflection presented on linear~a! and logarithmic~b! scales.
The crosses mark positions of the peak maxima given by the m
distortions.
b-
er-

t

ce
s

y

e

layer which adopts additional atomic planes~the dislocation
half-planes!, while its length remains fixed. The uniform
strain would give rise to a layer incommensurate with t
substrate, a state which is never observed in the epita
growth. The state which is realized is essentially nonu
form, with strains concentrated at the misfit dislocations.
the dislocation, the displacement jumps by the Burgers v
tor. Considering the mean distortions, one uniformly d
solves the jumps among all atomic planes, and the m
strain effect is treated to cause a shift of the diffraction pe
However, the Burgers vector is equal to a lattice translati
An insertion of the dislocation extra half-plane does not
rectly influence the x-ray diffraction, but causes nonunifo
distortions around the dislocation, which decrease as the
tance from the dislocation increases. The mean effect of
elastic distortions is calculated above. The displacements
crease fast enough and do not change the mean lattice s
ing. Thus, when the mean distance between dislocations
ceeds the layer thickness, the layer contains slightly disto
regions between dislocations which give rise to the cohe
Bragg peak, laterally unshifted with respect to the substr
peak. The strongly distorted regions around the dislocati
cause diffuse scattering, whose peak position does not c
cide with that of the coherent peak. As the dislocation d
sity increases, the coherent peak intensity exponentially
creases, while the diffuse peak reaches the position give
the mean distortions.

Calculation of the diffuse intensity is considerably simp
fied in the limit of very small dislocation densities,rd!1. In
that case, the correlation functionT(x,zs ,zs8) is small, and
the expansion exp(2T)'12T can be applied in Eq.~24!.
Changing the sequence of the integrations, one receives
qxÞ0,

I diff~qx ,qz!5(
a

raU E
2`

`

dxE
0

d

dz eiqxx1 iqzz

3@eiQ•ua~x,z!21#U2. ~28!

In this limiting case, the dislocations perpendicular to t
incidence plane contribute to the diffuse intensity additive
and the intensity is proportional to their density. The dis
cations parallel to the incidence plane do not contribute
the diffuse scattering. Figure 6 presents distributions of
diffuse intensity calculated by Eq.~28!. In the symmetrical
Bragg reflection~Fig. 6, left column!, the main spot of the
diffuse intensity is elongated in theqz direction, normal to
the layer surface. It is accompanied by two satellite spots
lower intensity extending in theqx direction @see Figs. 6~a!
and 6~c!#. Comparing contributions of different types of th
dislocations to sum~28!, we found that each satellite is du
to 60° dislocations with a definite tilt componentbz of the
Burgers vector. Dislocations with opposite tilt componen
give rise to different satellites. These satellites are absen
edge dislocations~not presented!. The satellites in the
qz-direction in Figs. 6~b! and 6~c! are the layer truncation
effect. In the asymmetrical reflection~Fig. 6, right column!,
the diffuse spot is extended in two directions, perpendicu
to the surface and perpendicular to the diffraction vector. T
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1802 55V. M. KAGANER et al.
scans along and perpendicular to the diffraction vector
asymmetric, and possess complicated structure with sev
satellites.

The transformation of the diffuse intensity distributio
with increasing dislocation density is shown in Figs. 7 and
Calculations were performed on the basis of Eq.~24!. Figure
7 presents scans of the intensity in theqx andqz directions,
which correspond to thev andv/2u scans in the experimen
in the symmetrical 004 Bragg reflection. Theqz scan@Fig.
7~a!# demonstrates a continuous shift of the diffuse peak
the direction of the diffraction vector, when the dislocati
density increases. At low dislocation densities, the shif
slightly smaller than the value~10! given by the mean dis
tortions, but practically reaches this value atrd.1. The
width of the peaks is determined by the reciprocal thickn
of the layer,Dqz'2p/d. Figures 7~b! and 7~d! presentqx
scans of the peaks. Two satellites, which are clearly se
rated from the main part of the diffuse peak at very lo
dislocation densities@Fig. 6~a!#, transform to ‘‘shoulders’’ of
the peak. At dislocation densitiesrd.1, the peaks becom
Gaussian-like ones. The transformation of the recipro

FIG. 6. Calculated diffuse intensities for small dislocation de
sities,rd!1, of 60° misfit dislocations in the scans along the d
fraction vector~a! and ~d! and perpendicular to it~b! and ~e!, and
the reciprocal space maps~c! and~f! in the symmetrical 004 Bragg
reflection~left! and asymmetrical 224 reflection~right!. The inten-
sity changes between isointensity contours by a factor of 2.
re
ral

.

n

s

s

a-

al

space maps is shown in Fig. 8. As the dislocation den
increases, the diffuse spots extend in a direction perpend
lar to the diffraction vector, thus receiving the shape char
teristic of large dislocation densities, cf. Figs. 2 and 3. In
asymmetric reflection, the peak shifts both laterally and n
mally to the layer. Let us remind the reader that the peak
coherent scatteringI coh(qz) is located atqx50. The posi-
tions of the coherent and diffuse peaks in the asymme
reflection do not coincide, and represent a doublet. Suc
doublet can be observed in a limited range of the disloca
densities, since the coherent intensity exponentially
creases with increasing dislocation density. Atrd.1, the
position of the diffuse peak follows the mean distortio
~10!.

Separation of the coherent and the diffuse component
the scattered intensity in Eq.~22! implies infinitely good
resolution of the measurements, allowing us to distinguis
sharp diffuse peak from the infinitely sharpd-shaped coher-
ent peak. The effect of the instrumental resolution can
directly included into the calculations. The intensi
I(qx ,qz) measured in the experiment is the convolution
the intensityI (qx ,qz) due to the ideal plane wave illumina
tion with the resolution functionR(qx ,qz),

I~qx ,qz!5E E dqx8dqz8I ~qx8 ,qz8!R~qx2qx8 ,qz2qz8!.

~29!

Expressing the intensityI (qx ,qz) via the correlation func-
tion, Eq. ~1!, and calculating the convolution integral, on
receives

I~qx ,qz!5E
2`

`

dxE
0

dE
0

d

dzsdzs8e
iqxx1 iqz~zs2zs8!

3G~x,zs ,zs8!R~x,zs2zs8!, ~30!

-

FIG. 7. Scans of the diffuse intensity in directions along~a! and
perpendicular~b!–~d! to the diffraction vector for dislocation den
sitiesrd50.5 ~b!, 1.0 ~c!, and 2.0~d!. 004 reflection.
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55 1803X-RAY DIFFRACTION PEAKS DUE TO MISFIT . . .
whereR(x,z) is the Fourier transform of the resolution fun
tion R(qx ,qz). Equation~30! does not contain ad-function
term, sinceR(x,zs2zs8)→0 asx→`.

V. EXPERIMENTAL RESULTS

The heteroepitaxial structures for the experimental st
were chosen to cover a wide range of dislocation densit
In the results presented below, the parameterrd varies in the
range from 0.1 to 500. That can be achieved only with d
ferent heteroepitaxial systems, by varying the mismatch
layer thicknesses. The results are presented in the orde
increasing dislocation density. We describe the experime
setup first. The information concerning the heteroepitax
systems is presented together with the corresponding x-
diffraction data.

The x-ray-diffraction measurements were performed w
a triple-crystal x-ray diffractometer using CuKa1 radiation.
A four-reflection Bartels-type monochromator provides
highly monochromatic x-ray beam (Dl/l 5 1.3•1024) with
an angular spread of less than 0.06 mrad. The direction o
incident beam with respect to the sample surface is chan
by rocking the sample~anglev), whereas the direction o
the diffracted beam can be measured with an analyzer cry
in front of the detector~angle 2u). By tuning these two
angles a reciprocal space mapping can be performed w
resolutionDQ/Q 5 1024.

An initial stage of relaxation of an AlAs layer on a GaA
substrate provided us with a system of very low dislocat
density. The 1.5-mm-thick AlAs layer was grown by
molecular-beam epitaxy~MBE! on a low miscut semi-
insulating GaAs substrate, and covered by 20 nm of Ga
The growth temperature was 510 °C and the growth velo
was 0.46 mm/h. The surface reconstruction during th

FIG. 8. Calculated reciprocal space maps of the diffuse inten
in the symmetrical 004 Bragg reflection~a!–~c! and asymmetrical
224 reflection~d!–~f! for dislocation densitiesrd50.5 ~a! and~d!,
1.0 ~b! and~e!, and 2.0~c! and~f!. The intensity changes betwee
isointensity contours by a factor of 2.
y
s.

-
d
of
al
l
y-

h

he
ed

tal

a

n

s.
y

growth of the AlAs was~233!. The dislocation density
r50.073 mm21 was directly measured by x-ray topogr
phy, so that the productrd50.11 was determined prior to
the x-ray-diffractometry measurements. Measured and si
lated scans of the peaks and the reciprocal space map
compared on Fig. 9. The experimental resolution is com
rable with the angular scale of the features of the diffu
scattering distribution, and the simulation was perform
with the aid of Eq.~30!, where the resolution function wa
taken as a Gaussian function with the half-width coincidi
with that of the measured resolution function. In the sy
metrical 004 Bragg reflection, Figs. 9~a!–9~c!, the satellites
of the peak are revealed. In the asymmetrical 224 Bra
reflection, Figs. 9~d!–9~f!, the distribution of the diffuse in-
tensity is asymmetric. The fine structure@cf. Fig. 6~d!# is not
revealed, due to the resolution limitation. Measured a
simulated intensity distributions are in a good agreement.
stress that simulations do not involve any fitting parame
All parameters~dislocation density, layer thickness, angul
resolution! were measured independently.

Figure 10 presents measured and simulated intensity
tributions for another sample of the AlAs/GaAs heteroe
taxial system showing a higher dislocation density. The
mm-thick AlAs layer was grown at essentially the sam
growth conditions as the previous sample. Only the grow
velocity was slightly higher~0.57mm/h!. The relaxation of
22% was measured from the layer and substrate peak p
tions, which givesrd54.6. The peaks, Fig. 10, are close
anisotropic Gaussians, oriented perpendicularly to the co
sponding diffraction vector. A good agreement betwe
measured and simulated intensity distributions was fou
without any fitting parameter.

To reveal the satellite peaks of diffuse scattering at l

ty

FIG. 9. Diffraction peaks for 004~top! and 224~bottom! reflec-
tions of a heteroepitaxial system AlAs/GaAs. The thickness of
AlAs layer is 1.5mm. Dislocation densityr50.073mm21, as mea-
sured by x-ray topography.~a! and ~d! Scans along the diffraction
vectors: measurements~full lines!, simulations for uncorrelated uni
formly distributed 60° dislocations~broken lines!, and the resolu-
tion function measured with a GaAs sample~dotted line!. ~b!–~f!
Reciprocal space maps:~b! and ~e! measured and~c! and ~f! simu-
lated. The intensity changes between isointensity contours by a
tor of 2.
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1804 55V. M. KAGANER et al.
dislocation densities separately from the central peak,
Si12xGex/Si sample of a small layer thicknessd50.12mm
was investigated. The layer was grown by low-pressure ra
thermal chemical vapor deposition~LP/RTCVD! at 500 °C
with x525%. The measured reciprocal space maps, F
11~b! and 11~d!, are in a good agreement with the ma
calculated for low dislocation densities, Figs. 6~c! and 6~f!.
The satellite peaks in the diffuse scattering pattern are
vealed in both symmetrical and asymmetrical reflectio
The measured and simulated intensity distributions in thev
scans~perpendicularly to the diffraction vectors! are com-
pared in Figs. 11~a! and 11~c!. The angular distance betwee
the satellite maxima on the simulated curve does not dep
on the dislocation density, and occurs about 20% larger t
the measured one. The discrepancy can be due to the e
anisotropy, which was not taken into account in the simu
tions. Both coherent and diffuse components of the scatte
intensity were included in the simulations@see Eq.~30!#, and
the dislocation densityr51.25mm21 was determined from
the valuerd50.15 found in the fit.

A Si 12xGex/Si sample grown by liquid phase epitax
~LPE! was chosen as an example of a system possess
larger dislocation density. During the growth~using an in-
dium melt! the sample was cooled down from 958 to 94
°C. The layer thickness 5.560.5mm was measured by scan
ning electron microscopy~SEM!, the uncertainty is due to
thickness variations over the sample. Figure 12 pres
measured and calculated diffraction peaks for t
SixGe12x/Si system. The degree of relaxation measu
from the relative peak positions of the layer and the subst
peaks is 98%. Using Vegard’s law, an atomic concentra
of the germanium in the layer ofx 5 4.3% was calculated
The lattice mismatch is 0.18%, and the linear dislocat
densityr59 mm21, so thatrd'50. The layer peaks on th

FIG. 10. Diffraction peaks for 004~top! and 224~bottom! re-
flections of a heteroepitaxial system AlAs/GaAs. The thickness
the AlAs layer is 3mm, the relaxation is 22%. Dislocation densi
r516 mm21. ~a! and ~d! Scans along and perpendicular to t
diffraction vectors: measurements~full lines!, simulations for un-
correlated uniformly distributed 60° dislocations~broken lines!, and
the resolution function measured with a GaAs sample~dotted line!.
~b!–~f! Reciprocal space maps:~b! and~e! measured and~c! and~f!
simulated. The intensity changes between isointensity contours
factor of 2.
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reciprocal space maps measured in symmetrical and as
metrical Bragg reflections, Fig. 12~b!, are extended in the
direction perpendicular to the corresponding diffraction ve
tors. The maps simulated in approximations~12! and ~16!,
are in a good agreement with the measured ones. A m
precise comparison of the measured and simulated peaks
performed in the scans along and perpendicular to the
fraction vectors, Fig. 12~a!. In the scans along diffraction
vectors (v/2u scan!, the widths of the peaks calculated fo
uncorrelated 60° dislocations are in a good agreement w
the observed peaks. However, in the scans along diffrac
vectors (v scans!, the observed peaks are broader in bo
symmetrical 004 and asymmetrical 224 reflections. The
ference has been treated as a non-uniform tilt due to lo
variation of the differencedr5r12r2 between densities o
the dislocations with the oppositez components of the Bur-
gers vectors. The mean variation^(dr/r)2&1/250.12 in Eq.
~21! gives an agreement between the widths of the meas
and the calculated peaks.

The AlSb/GaAs sample grown by molecular-beam e
taxy on a semi-insulating~001! GaAs substrate was chose
as an example of system with very large mismatch and
cordingly large dislocation density. This sample contain
superlattice with 50 periods of 6 ML InAs and 6 ML AlS
~overall thickness 0.2mm! on top of a 1-mm-thick relaxed
AlSb buffer layer. The growth temperatures for the buff
layer and the superlattice were 570 and 425 °C, respectiv
The AlSb layers were grown at 1mm/h, and the InAs layers
at 0.25mm/h. The group-V-III beam flux ratio in both type
of layers was 5:1. The superlattice is not relaxed with resp
to the buffer layer.16 The misfit of 7.9% between the GaA

f

a

FIG. 11. Diffraction peaks for 004~left column! and 224~right
column! reflections of a heteroepitaxial system Si12xGex/Si
(x525%!. The layer thickness is 0.12mm. ~a! and~c! Scans along
the diffraction vectors: measurements~squares! and simulations for
uncorrelated uniformly distributed 60° dislocations~broken lines!.
The dislocation density is taken in simulationsrd50.15. ~b! and
~d! Measured reciprocal space maps.
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55 1805X-RAY DIFFRACTION PEAKS DUE TO MISFIT . . .
substrate and AlSb buffer layer, which is totally relaxe
gives rise to a linear density of the misfit dislocatio
r5400 mm21, so thatrd5480. A transmission-electron
microscopy~TEM! study reveals a complicated defect stru
ture, including threading dislocations, microtwins and sta
ing faults~although this sample is the best in the series, N
5 in Ref. 16!. However, the densities of these defects
much smaller than the misfit dislocation density. For e
ample, the mean distance between threading dislocation
the superlattice is about 3mm, while the mean distance be
tween the misfit dislocations is only 2.5 nm. The strain fie
of the misfit dislocations give an evident mean effect,
relaxation, and the mean-square variation of these fie
given by Eq.~15! provides the essential contribution to th
peak width. The observed peaks, Fig. 13, are more than
times narrower than the ones calculated under assumptio
uncorrelated dislocations. We conclude that the misfit dis
cations are strongly positionally correlated, in agreem
with the TEM observations of periodic arrays of misfit di
locations@cf. Fig. 7~c! in Ref. 16#. An agreement betwee
measured and calculated peak widths can be achieved
the correlation parameterg equal to 0.03.

The presence of the InAs/AlSb superlattice on top of
AlSb buffer layer provides us with the possibility to compa
the strain variations in the layer with that in its upper pa

FIG. 12. Diffraction peaks for 004 and 224 reflections of t
Si12xGex/Si heteroepitaxial system (x54.3%!. ~a! Scans along and
perpendicular to the diffraction vectors: measurements~full lines!,
calculations for uncorrelated uniformly distributed 60° dislocatio
~broken lines!, and taking into account the local tilt due to variatio
of the densities of dislocations with oppositez components of the
Burgers vectors witĥ(dr/r)2&1/250.12 ~dotted lines!. ~b! and~c!:
Measured and calculated~assuming uncorrelated uniformly distrib
uted dislocations! reciprocal space maps. The intensity changes
tween isointensity contours by a factor of 2.
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The peak widths of the superlattice and the buffer layer
comparable, in agreement with the results of Sec. IIIB sho
ing that the peak widths can be estimated from the dis
tions at the surface. Thus one can determine the nonun
mity of the strains at the top of the layer, caused by the mi
dislocations at its bottom interface, by just measuring
peak width of the layer. Approximations~12! and ~16! are
not sufficient to evaluate the superlattice peak profile alo
qz , since they do not take into account the peak broaden
due to the layer thickness. This profile was calculated
integration of Eq.~24!, while for all other calculations pre
sented in Figs. 12 and 13 approximations~12! and ~16! are
sufficiently accurate.

VI. DISCUSSION

The problem considered in the present paper origina
from the fact that the mismatch between the substrate and
layer possessing different lattice parameters is released
discrete portions, the dislocations, whose Burgers vectors
lattice translation vectors. A uniformly strained layer, whi
would be incommensurate to the substrate, is never real
in epitaxy. Having a pronounced mean effect, the lattice
rameter relaxation, one can evaluate the mean-square e
due to nonuniformity of the strains concentrated at the d
location lines. Comparison with the experimental resu
shows that in the case of large mismatch the observed p
are narrower than follows from calculations for uncorrelat
randomly distributed misfit dislocations. We explain the d
crepancy by a spatial correlation of the dislocations.

Threading dislocations are frequently considered17–20as a
main source of distortions causing broadening of the diffr
tion peaks. However, the mean distances between threa
dislocations are reported to be of the order of 1mm, compa-
rable with the layer thickness, while the mean distances
tween the misfit dislocations in the same systems are m
than two orders of magnitude smaller. As the calculations
uncorrelated misfit dislocations give peaks even broader t
are observed, we restricted ourselves to the analysis of
misfit dislocations only and do not consider other defe
which may dive additional peak broadening. When t

s

-

FIG. 13. Comparison between measured and calculated x-
diffraction peak profiles~004 reflection! of the InAs/AlSb superlat-
tice ~thickness 0.2mm! and the fully relaxed AlSb buffer laye
~thickness 1mm! on a GaAs substrate. The measured intensity~full
lines! agrees with the calculations for the correlation parame
g50.03 ~broken lines!. The calculation of thev scan for uncorre-
lated dislocations~dotted line, buffer layer reflection! is shown for
comparison.
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1806 55V. M. KAGANER et al.
threading dislocations contribute to the peak width, the
gree of spatial correlations between the misfit dislocati
has to be even higher than follows from the estimates bel

It was found in Sec. III B that the half-widths of th
diffraction peaks at large densities of misfit dislocations
proportional to

Dq;QbAr/d, ~31!

with a numerical factor depending on the orientations of
diffraction vector, the scan direction in the reciprocal spa
Burgers vectors of the involved dislocations, etc. Proceed
to the angular units v i5lqi/4p cosu and
v'5lq'/4p sinu for directions along and perpendicular
the diffraction vector~herel is the x-ray wavelength andu
is the Bragg angle!, and keeping in mind tha
Q5(4p/l)sinu according to the Bragg law, one find
v i;tanu, while v' does not depend on the Bragg ang
The generic dependenceDq;Q does not refer to a particula
type of defect, but is inherent for nonuniform strains. T
same dependencies were found in the framework of the
saic block model, withv i andv' treated as due to the stra
and the misorientation effects of randomly distribut
dislocations.8,9,20 In comparison, the finite sizeLs of the
sample or relevant blocks givesDq;Ls

21 independent on
the diffraction vector. The triple crystal measurements18,19

show directly thatv i;tanu andv' do not depend on the
Bragg angle.~The double-crystal rocking curves give only
combination ofv i andv'.

20!
Kyutt and co-workers18,19 studied several heteroepitaxi

systems with large mismatch. Comparing the measured p
widths of GaAs layers on silicon substrate with the calcu
tions based on the results of Sec. III B, we find that the ra
of the simulated~for uncorrelated dislocations! to observed
peak widths vary from 1 to 2, depending on the sample.
the GaSb/GaAs system, the widths of the peaks are simila
the results of present study for the AlSb/AlAs system, F
13, and about 6 times narrower than calculated for the
correlated misfit dislocations. The discrepancy can be
plained by spatial correlations of the dislocations, as d
cussed in Secs. III C and V.

Westwoodet al.21 investigated the InxGa12xAs layers on
GaAs, and found that the widths of double-crystal diffracti
curves increase whenx increases up tox;0.5. A further
decrease of the peak width atx.0.5 is accompanied by a
increasing order in the network of misfit dislocations, o
served by transmission electron microscopy. This beha
agrees well with the effect of spatial correlations of the mi
dislocations described in Sec. III C. It is worth noting, ho
ever, that the density of threading dislocations also decre
when x increases atx.0.5. The effects of threading an
misfit dislocations have not been resolved in the experim

The peak widths of partially relaxed In GaAs/GaAs mu
tilayers observed by Rose and Pietsch22 agree with the cal-
culations for uncorrelated dislocations for small dislocat
densities (rd'1). In almost relaxed systems (rd'30) the
observed peaks are two times narrower, which can be
plained with the correlation parameterg50.25. This result
also can be explained by the expected increase of the sp
correlations of dislocations with increased dislocation d
sity.
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Kidd, Fewster, and Andrew23 investigated
InxGa12xAs/GaAs heteroepitaxial system with low disloc
tion densities,rd,1. The observed reciprocal space ma
agree with our Figs. 6, 8, and 11. The diffraction patte
contain two components; the Bragg peaks of the cohe
scattering, whose intensity decreases with increasing disl
tion density, and the diffuse spot. At low dislocation den
ties, the diffuse spot is extended along the diffraction vec
and accompanied by the satellites in theqx direction. The
angular range between the intensity minima separating
central diffuse peak and the satellites of the 700-Å-th
sample, transformed to the dimensionless units used in
present paper, isDqxd'6.5, to be compared with
Dqxd'6.4 derived from the experimental curve of our Fi
11~a!. A discrepancy with the value 7.4 which follows from
the simulations, Figs. 6~a! and 11~a!, can be due to elastic
anisotropy, neglected in the simulations. It is worth noti
that the 1400-Å-thick sample of Ref. 23 gives the val
Dqxd58.2, but the accuracy of its determination from t
experimental data is lower.

Holý et al.24 evaluated the scattering from misfit disloc
tions by treating the dislocation displacementsu(r) as
Gaussian random variables, and representing the co
lation function G(r,r8)5^exp$iQ•@u(r)2u(r8)#%& as
exp(2 1

2^$Q•@u(r)2u(r8)#%2&). As discussed in the Sec.
such an approach is not generally valid, since dislocat
displacements are not small and contain jumps by the B
gers vectorsb on the cuts. The result of further approxim
tion, u(r)2u(r8)'@(r2r8)•¹#u(r), coincides with our Eq.
~11!. The imaginary part of the correlation function~8! and
the corresponding shift of the diffraction peak is missin
however. Note that the opposite sequence of approximat
is correct for a crystal containing large dislocation densit
with equal densities of dislocations with opposite Burge
vectors.25 For small dislocation densities, the correct a
proach, discussed in Appendix A, is based on Poisson st
tics. The spatial correlations of the dislocations can also
taken into account in this way. It is worth noting that th
stress components presented in Ref. 24 give only strains
symmetrical part of the distortion tensor, while integrals~9!,
~13!, and ~15! involve distortions. We use the displaceme
fields of the dislocation in half-space to determine the dist
tions, see Appendix B.

Häusler and Eberl26 derived correlation function equiva
lent to Krivoglaz’ for spatially uncorrelated dislocations, E
~A8!, and applied it to simulations of the double-cryst
rocking curves of partially relaxed InxGa12xP/GaAs het-
eroepitaxial systems. Their simulations are in good agr
ment with the observations indicating the absence of co
lations in dislocation positions.

VII. CONCLUSION

The lattice mismatch between the substrate and the
taxial layer is relaxed by discrete portions, the dislocatio
The nonuniformity of the strains concentrated at the dislo
tion lines gives rise to diffuse scattering. When the dislo
tion density is large, the diffraction peak from the layer
due to short-range correlations in positions of the atoms,
thus it is a diffuse peak. The intensity of the coherent pe
reflecting the long-range correlations is exponentially sm
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The position of the diffuse peak is governed by the me
distortions, and can be found without considering individu
dislocations. The peak width is a mean-square effect du
nonuniformity of the strains, and depends on the Burg
vectors of individual dislocations. The peak shapes are c
to anisotropic Gaussians extended in the direction perp
dicular to the diffraction vector. The nonuniformity of th
distortions in the topmost part of the layer is readily given
the peak half-width of the whole layer. The peak width f
spatially uncorrelated dislocations is proportional to t
square root of the dislocation density~see Fig. 4!. Deviations
of the observed peak widths from the calculated ones are
to correlations in the dislocation positions. The short-ran
correlations give rise to the peak narrowing, in comparis
with the uncorrelated dislocations, by a factor
A^(DN)2&/N, equal to the rms fluctuations of the dislocatio
number. The long-range nonuniformity of the dislocati
distribution causes a broadening of the peak. Variation of
dislocation density broadens the peak of symmetrical Br
reflection in the direction along the diffraction vector. Vari
tion of the relative densities of the 60° dislocations w
different tilt components of the Burgers vectors, while t
total dislocation density is constant, broadens the peak in
tangential direction.

At low dislocation densities, the diffraction pattern co
tains both coherent and diffuse components. The intensit
the coherent peak decreases exponentially with increa
dislocation density. The position of the coherent peak d
not follow the mean distortions. The shift of the peak in t
direction normal to the surface is smaller than given by
mean distortions. The lateral shift is absent, despite the n
zero mean lateral strain. At very low dislocation densiti
the diffuse scattering is extended along the diffraction vec
and is accompanied by the satellites in direction perpend
lar to the diffraction vector. As the dislocation density i
creases, the peak continuously transforms to an anisotr
Gaussian extended in a direction perpendicular to the diff
tion vector.

Almost all features of the calculated diffraction patter
are confirmed experimentally. We observed satellites of
diffuse scattering peak at low dislocation densities, and
transformation of the peak to an anisotropic Gaussian w
increasing dislocation density. At low dislocation densiti
measured and simulated diffraction patterns are in g
agreement. When all parameters are controlled indep
dently, the simulations performed without any fitting para
eter agree well with the experiment. At large dislocation d
sities, introduction of long- and short-range correlations
positions of the dislocations allows us to reach an agreem
between measurements and simulations.
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APPENDIX A: CORRELATION FUNCTION

In this appendix, we follow Ref. 11 to derive general e
pressions for intensity scattered by a crystal containin
random distribution of defects. In the framework of the k
nematical approximation, the amplitude of the wave sc
tered by a crystalline object is proportional to the su
A(Q)5(sexp@iQ•(Rs1us)# taken over all atoms of the
crystal. HereRs is the position ofsth atom in a defect-free
reference crystal, andus5u(Rs) is its displacement due to
defects. The intensityI (Q)5^uA(Q)u2& is the result of the
average over random positions of the defects. It can be
sented as a double sum over all atoms,

I ~Q!5(
s,s8

eiQ•~Rs2Rs8!G~Rs ,Rs8!, ~A1!

where the correlation function is

G~Rs ,Rs8!5^exp@ iQ•~us2us8!#&. ~A2!

In a triple-crystal diffraction experiment, the beams a
collimated in the incidence plane, while the acceptance w
dow of the detector is large in the direction perpendicular
that plane. Taking the (Qx ,Qz) plane as the incidence plane
we assume that integration of the intensityI (Q) over the
Qy component of the wave vector can be performed in
infinite limits. The integration of Eq.~A1! gives rise to the
delta functiond(Rsy2Rs8y), meaning that the two points
Rs andRs8 lie in one and the same planey5const. Thus the
intensity can be represented as

I ~Qx ,Qz!5(
s,s8

~y!

eiQ•~Rs2Rs8!G~Rs ,Rs8!, ~A3!

where the superscript (y) at the sum indicates tha
(Rs2Rs8)y50, and the summation runs over the pla
y5const.

To perform the statistical average^ &, one has to conside
us as a sum of contributions due to all defects of the crys
and average over their random positions. Let us first cons
the case when all defects produce displacements of one
the same type, i.e., defects differ only by their position, a
then generalize the result to different types of defects. O
can present the displacement of thesth atom as a sum ove
all defectsus5( tust , whereust[u(Rs2Rt) is the displace-
ment at the positionRs due to a defect in the positionRt .
The summation can be extended to all possible position
the defects by introducing the occupation numbersct equal
to 1 if a defect is present in positiont, and 0 otherwise. The
subscriptt denotes positions which can be occupied by
defects, and its meaning depends on the type of the def
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For straight dislocations lying in the plane of the interfac
which are considered in the present paper, it counts the
sitions along the line in the plane of the interface perpend
lar to the dislocation lines. Other general examples
straight dislocations in a bulk crystal, where possible po
tions are given by lattice points in the plane normal to d
location lines, or dislocation loops, determined by positio
of their centers. The mean valuec5^ct& is the number den-
sity of the defects.

Thus one hasus5( tctust . Substituting this sum into Eq
~A2!, one can present the exponential function as a prod

G~Rs ,Rs8!5K)
t
exp@ ictQ•~ust2us8t!#L . ~A4!

Let us assume first that the defects are not correlated. T
Eq. ~A4! contains a product of statistically independe
terms. The average of each term is

^exp@ ictQ•~ust2us8t!#&5c exp@ iQ•~ust2us8t!#112c,
~A5!

sincect takes on only two values, 1 with probabilityc and
0 with probability 12c. One can rewrite Eq.~A4! as

G~Rs ,Rs8!5)
t

$c exp@ iQ•~ust2us8t!#112c%

5exp(
t
ln$c exp@ iQ•~ust2us8t!#112c%

[exp@2T~Rs ,Rs8!#. ~A6!

For small concentrations,c!1, one can expand the loga
rithm to receive

T~Rs ,Rs8!5c(
t

$12exp@ iQ•~ust2us8t!#%. ~A7!

Generally, several types of defects producing differ
displacement fields contribute tous . For example, one can
consider inclusions of different sizes, dislocation loops
different orientations, straight dislocations of different lin
directions, etc., as different types of defects, and write
displacement as a sumus5(ausa where the subscripta
counts defect types present in the crystal. In this paper,
locations lying parallel or perpendicular to the inciden
plane, as well as dislocations with the same line direction
differing by orientation of the Burgers vector, are conside
as different types of defects. One can introduce occupa
numberscta equal to 1 if the defect of typea is present in
position t, and 0 otherwise, and the number densit
ca5^cta& of defects of typea. Then Eq.~A7! is substituted
for by

T~Rs ,Rs8!5(
a

ca(
t

$12exp@ iQ•~usta2us8ta!#%.

~A8!

This correlation function is used in this paper.
,
o-
-
e
i-
-
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Let us proceed now to the general case of spatially co
lated defects, when the numberscta are statistically depen
dent. We start from the case of only one type of defect, a
make use of the equality

exp@ ictQ•~ust2us8t!#511ct$exp@ iQ•~ust2us8t!#21%
~A9!

which is identically valid for bothct50 and 1. An effective
way of evaluating the correlation function~A4! is to apply
the Kubo cumulant expansion.11,27,28 Instead of expanding
product ~A4! over the correlation functionŝctct8•••&, one
represents the x-ray correlation function
G(Rs ,Rs8)5exp@2T(Rs ,Rs8)# and expandsT(Rs ,Rs8) over
the correlation functionŝ(ct2c)(ct82c)•••&.

The first term of the expansion depends on the mean c
centrationc and is given by Eqs.~A6! and ~A7!. The next
term is expressed via the pair correlation functi
^(ct2c)(ct82c)&:

T~2!~Rs ,Rs8!52 (
t,t8

lnF11
F tF t8^~ct2c!~ct82c!&

~11cF t!~11cF t8!
G ,

~A10!

whereF t5exp@iQ•(ust2us8t)#21. Further terms of the ex
pansion become more bulky. The expansion can be sim
fied when the concentrationc and also the correlation
^(ct2c)(ct82c)•••& are small. Retaining the terms linea
over these quantities, one has

T~Rs ,Rs8!52(
l51

`

(
t1,t2,-•••,t l

F t1
F t2

•••F t l

3^~ct12c!•••~ctl2c!&. ~A11!

Extension to cases of several types of defects is strai
forward, and we present the first two terms only:

T~Rs ,Rs8!52(
ta

caF ta2
1

2(aa8
(
tÞt8

«aa8~Rt2Rt8!

3F taF t8a8, ~A12!

where «aa8(Rt2Rt8)5^(cta2ca)(ct8a82ca8)& and F ta5
exp@iQ•(usta2us8ta)#21.

The correlation function~A12! was applied in Sec. IIIC.
As discussed in that section, when the correlation length
«aa8(Rt2Rt8) is small compared with the length scale of th
variation of the displacement fields, one can keep the te
F ta constant during summation of«aa8(Rt2Rt8). Then the
sums eaa85( tÞ0«aa8(Rt) are of special interest. Thes
sums can be quite generally related to the mean square v
tion of the number of the defects.29 Consider first defects o
only one type. The correlation function«(Rt2Rt8)5
^(ct2c)(ct82c)& is defined fortÞt8. The coinciding sites
can be included in the summation~A12! by setting
«aa8(0)50. On the other hand, one directly find
^(ct2c)(ct2c)&5c(12c), since^ct

2&5^ct&5c for the bi-
modal spectrum of$ct% consisting of 0 and 1. We restric
ourselves to small defect densitiesc!1, and write

^~ct2c!~ct82c!&5«^Rt2Rt8&1cd tt8, ~A13!
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whered tt8 is the Kronecker’s delta. Let us sum up the le
and right-hand sides of Eq.~A13! over t and t8. The sum
( t1 is equal to the number of the lattice sites on the sum
tion interval, andc( t15N is the mean number of the defec
on this interval. The sum( t(ct2c) is equal toDN, the ran-
dom variation of the number of defects on the interval. O
has( t^(ct2c)(ct82c)&5^(DN)2&, the mean-square varia
tion of the number of the defects, and thus

e[(
t

«~Rt!5cS ^~DN!2&
N

21D . ~A14!

The factorg511c21e, employed in Sec. III C, is equal to
^(DN)2&/N. When spatial correlations of the defects are a
sent, one haŝ(DN)2&5N, as in the ideal gas of noninter
acting particles. In that limit,e50 andg51. The correla-
tions of the defect positions decrease the fluctuatio
g,1.

The generalization to several types of the defects
straightforward: one has, instead of Eq.~A13!,

^~cta2c!~ct8a82c!&5«aa8^Rt2Rt8&1cadaa8d tt8
~A15!

and the summation overt and t8 gives

eaa8[(
t

«aa8^Rt&5caS ^DNaDNa8&
Na

2daa8D . ~A16!

APPENDIX B: DISPLACEMENTS DUE TO DISLOCATION
PARALLEL TO SURFACE OF THE HALF-SPACE

Here, for the sake of completeness, we present the
placement due to a dislocation lying parallel to the surface
the isotropic half-space on a given distanced from it. This
problem was first solved by Head13 ~see also Ref. 14!. In the
case of a screw dislocation, the condition of the stress-
surface is fulfilled by means of the image dislocation. In t
case of an edge dislocation, the image dislocation comp
sates for only one component of the stress at the surface~the
compressive stress, when the Burgers vector is perpendic
to the surface or shear stress when the Burgers vecto
parallel to the surface!. Thus the solution consists of thre
parts: displacement due to a dislocation in the infinite m
dium, the image dislocation, and an additional term.

We use the frame of Fig. 1 with the origin at the surfa
thez axis is normal to the surface and the dislocation line
parallel to they axis. The parametera51/@2(12n)# is in-
troduced, wheren is the Poisson ratio.

The displacements due to an edge dislocation with
Burgers vector parallel to the surfaceb5(bx,0,0) consist of
the dislocation displacements in the infinite medium,

u1x52
bx
2p Farctanz2d

x
1

ax~z2d!

x21~z2d!2G , ~B1!

u1z5
bx
2p F12a

2
ln~x21~z2d!2!1

ax2

x21~z2d!2G ,
~B2!
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the image dislocation

u2x5
bx
2p Farctanz1d

x
1

ax~z1d!

x21~z1d!2G , ~B3!

u2z52
bx
2p F12a

2
ln~x21~z1d!2!1

ax2

x21~z1d!2G ,
~B4!

and the additional relaxation term

u3x5
bxd

p F ~12a!x

x21~z1d!2
2

2axz~z1d!

„x21~z1d!2…2G , ~B5!

u3z52
bxd

p F z1d

x21~z1d!2
1

az~~z1d!22x2!

„x21~z1d!2…2 G . ~B6!

For an edge dislocation with the Burgers vector perp
dicular to the surfaceb5(0,0,bz), the displacements due to
dislocation in the infinite medium are

u1x52
bz
2p F12a

2
ln„x21~z2d!2…1

a~z2d!2

x21~z2d!2G ,
~B7!

u1z5
bz
2p Farctan x

z2d
1

ax~z2d!

x21~z2d!2G , ~B8!

the image dislocation gives

u2x5
bz
2p F12a

2
ln„x21~z1d!2…1

a~z1d!2

x21~z1d!2G , ~B9!

u2z52
bz
2p Farctan x

z1d
1

ax~z1d!

x21~z1d!2G , ~B10!

and the additional terms are

u3x52
bzd

p F ~12a!
z1d

x21~z1d!2

1a
2x2z1d„x21~z1d!2…

„x21~z1d!2…2 G , ~B11!

u3z52
bzd

p F ~12a!x

x21~z1d!2
1

2axz~z1d!

„x21~z1d!2…2G . ~B12!

The screw dislocation with the Burgers vect
b5(0,by,0) has only one displacement component

u1y5
by
2p

arctan
x

z2d
, ~B13!

and the image dislocation

u2y52
by
2p

arctan
x

z1d
~B14!

provides zero stresses at the surface.
Using the displacementsu5u11u21u3 for any compo-

nent of the Burgers vector presented above, one finds tha
stresses szz;(12n)(]uz /]z)1n(]ux /]x),sxz;(]ux /]z)
1(]uz /]x) are equal to zero at the surfacez50.
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