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X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures
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The x-ray scattering from relaxed heteroepitaxial layers with the misfit dislocations randomly distributed at
the interface between the layer and the substrate is analyzed theoretically and experimentally. The profiles of
the x-ray-diffraction peaks and the reciprocal space maps of the intensity are measured and simulated for
several heteroepitaxial structures in a wide range of dislocation densities. At large dislocation densities, the
peak position is governed by the mean distortions and the peak width is due to the mean-square variations of
the distortions. The peak widths calculated for uncorrelated distribution of dislocations exceed the widths of
the peaks measured on the heteroepitaxial structures with large mismatch. It is shown that the spatial correla-
tions of the dislocations reduce the peak width and explain the discrepancy. For small dislocation densities, the
coherent and the diffuse components of the intensity are measured and simulated. It is shown that the position
of the coherent peak does not follow the mean distortions. Satellites of the diffuse peak are observed and
explained[S0163-182687)02503-4

[. INTRODUCTION heterostructures are much larger, and have stronger effect on
the peak widths.

The difference between lattice parameters of a desired The intensity of the x-ray scattering is given by the Fou-
epitaxial layer and that of available substrate crystals givesgier transform of the correlation functiorG(ry,r;)=
rise to elastic strains. These can relax by formation of surfacéexdiQ- (u(ry) —u(rz))]1), whereu(r) is the displacement at
undulations, of three-dimensional islaridgind of misfit the siter due to randomly distributed dislocations, and the
dislocations-? The first two mechanisms are often restrictedaverage( ) is performed over their positions. The average
to the initial stages of epitaxy, while formation of misfit dis- cannot be evaluated by treating the dislocation displacements
locations is a dominant mechanism at least for comparativelyi(r) as Gaussian random variables. To prove this statement,
thick layers. The dislocation densities vary from several disone simply can consider the result which the average
locations per sample at initial stages of the relaxation procesgver  the  Gaussian  distribution ~ would  give,
to a dislocation per dozen lattice spacings in completely reexp{—3([ Q- (u(r1) —u(r,))]?}. The latter expression cannot
laxed heteroepitaxial systems with large mismatch. A varietyoe properly specified for the dislocation displacemafr),
of methods are used to evaluate dislocations density and aglefined as multivalued, or alternatively discontinuous at
rangement, such as etching, transmission electrogome arbitrary cut, function. The jump of the displacement at
microscopy* scanning electron microscogglectron-beam- a cutAu(r)=b, whereb is the Burgers vector of the dislo-
induced current, see, e.g., Ref. 3; cathodoluminescence, samtion, does not cause a physical discontinuity, since the
e.g., Ref. 4, x-ray topography(see, e.g., Ref.)5and x-ray  Burgers vector components are multiples of the lattice spac-
diffractometry (see, e.g., Ref.)6 The x-ray techniques are ings, nor a problem in treating the correlation function
nondestructive. X-ray topography can only be applied aG(ry,r,), since the phase jum@- Au(r)=Q-b is a multiple
comparatively low dislocation densities. X-ray diffracto- of 27, whenQ is a reciprocal-lattice vector.
metry is now routinely used, in order to measure very precise The correct method for the calculation of the correlation
values of lattice parameters and to evaluate layer thicknessdsinction was proposed by Krivogld2'! based on the Pois-
by most laboratories which grow epitaxial layéné/hen dis-  son statistics for uncorrelated dislocations and the Kubo cu-
location densities exceed about 1000 tinthe strain relax- mulant expansion to take into account correlations in dislo-
ation can be calculated from the lattice-parameter measur&ation positions. In Appendix A, we follow Ref. 11 to derive
ments. Additional, hitherto unused information can bethe correlation function employed in the present study. The
revealed from the broadening of the diffraction peaks, whichdisplacement(r) enters the correlation function only in the
is due to the nonuniformity of the strain caused by the disterms containing eXpQ- u(r)], thus excluding the problem
locations. Experimental studies usually refer to the mosaienentioned above. Although Krivoglaz’s theory was initially
blocks modef.° with the block sizes related to either the film developed to treat the x-ray-diffraction peak profiles in metal
thickness or the mean distance between threading dislocarystals, its application to misfit dislocations is more straight-
tions. However, misfit dislocations located mainly at the in-forward. The assumption of parallel straight dislocations ly-
terface between the substrate and the layer do not form blodkg in a definite set of glide systems, which hardly can be
boundaries. Even when the threading dislocations densitigsstified in deformed metal crystals, is adequate to networks
are large, the densities of misfit dislocations in the relaxedf misfit dislocations.
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The dimensionless parameter controlling diffraction from
misfit dislocations is the produgtd of the linear dislocation
densityp and the layer thicknesd(in the present study, the
dislocations are assumed to be located at the interface be-
tween the layer and the substrat€his parameter varies in a
very wide range: for example, the experimental results pre-
sented in Sec. V cover the range frgrd~0.1 on the early
stages of relaxation tpd~ 500 for totally relaxed layers in a
heteroepitaxial system with large mismatch. In Sec. Il we
c_onsider the diffraction Pea'_‘s due tp large dislocation den_S|- FIG. 1. Geometry of the network of the misfit dislocations in a
ties, pd>1, the case which is most important for the experi-|ayered heteroepitaxial system.
mental studies, and allows relatively simple theoretical inter-
pretation. In this case, the layer is strongly distorted, andigated systems with large mismatch.
only the closely spaced pointg andr, contribute to the When the dislocation densities vary on distances large in
correlation functionG(rq,r,). The coherent diffraction due comparison withd, two situations are of interest. If the total
to correlations between far pointg andr, is exponentially  densityp varies along the interface, it can be considered as a
small. One can proceed from the difference of the displacerandom functionp(x), wherex is the coordinate along the
ments to the distortion8u(r) and represent the phase factor surface, with subsequent average over statistiggxf. The
asQ- (u(ry) —u(ry))=((ry—ry)-V)(Q-u(r)). The mean dis- result is an additional broadening of the peak. In the sym-
tortion (V(Q-u(r))) determines the position of the diffrac- metrical Bragg reflection it occurs along the diffraction vec-
tion peak. Its shift with respect to that of the strainedtor. Another possibility is the variation of the difference
dislocation-free layer is proportional to the total Burgers vec-6p=p . —p_ between the densities of two types of disloca-
tor per unit lengthpb, and coincides with the value derived tions possessing equal misfit-releasing componeptsf the
considering the mean effect of the misfit dislocati&h¥he  Burgers vector, but opposite tilt componehtsnormal to the
mean-square distortiof[ V(Q- u(r))]?) provides the peak surface, while the total densify=p, +p_ is kept constant.
widths. It can be shown quite generally that the peak width isSuch a variation does not change the local degree of relax-
proportional toQb+/p/d, with the numerical coefficient de- ation, but only causes a local tilt. Its effect on the diffraction
pending on the orientations of the dislocation lines, the Burpeak is an additional broadening in the direction perpendicu-
gers vectors, the diffraction vector, and on the scan directiotar to the diffraction vector.
in the reciprocal space. Analytical estimates of the coeffi- Small dislocation densitiesd<1 are considered in Sec.
cients and some numerical examples of the peak profiles fdWv. In this case, the correlation functidg@(r,,r,) does not
commonly used diffraction vectors and dislocation configu-vanish in the limit of large separationg—r,—c. The long-
rations are given in Sec. IlIB. range order is retained, and the diffraction spectrum contains

Networks of misfit dislocations are expected to possesa §-shaped coherent Bragg peak. The static Debye-Waller
correlations in the dislocation positions, due to kindac-  factor can be estimated #¢~ pd. The intensity of the Bragg
tion of limited number of dislocation sourgeand energetic peak decreases exponentially with increasing dislocation
(rearrangements of the dislocations to minimize elastic eneensity, and practically can be observed if the mean distance
ergy) reasons. The ideal case of randomly distributed uncorbetween dislocationg;, exceeds the layer thickne&er-
related dislocations can be expected only at small dislocatiomally the Bragg peak, albeit exponentially weak, is present
densities. We consider two types of correlations in the dislofor large dislocation densities alsoThe position of the
cation positions: short-range correlations with the correlatiorBragg peak is of special interest. For the reasons discussed
length £ smaller than the layer thickness and long-range above, the dislocation displacemar(tr) enters the expres-
variations of the dislocation density. The correlations do nosions describing the peak position in the terms containing
influence the peak position. The effect of the short-rangeasin(Q-u(r)). As sin(Q-u(r))<(Q-u(r)), the effect of the
spatial correlations on the peak width can be described by adislocation displacements on the diffraction peak position is
integral parameter of the corresponding correlation functionsmaller than their effect on the mean distortions. The regions
since the dislocation distortions vary on a length scale of thevhere the displacements are comparable with the Burgers
order ofd, large in comparison witlf. We show in Sec. IlIC  vector make a large contribution to the mean distortions, but
that the peak width corresponds to an effective dislocatioronly a minor contribution to the peak shift. The position of
density yp, with the factor y=((AN)?)/N given by the the Bragg peak does not follow the mean distortions, con-
short-range correlations. HeM is the mean number of the trary to the case of large dislocation densities, where they
dislocations on an interval large in comparison w§thand  determine the position of the diffuse peak.

AN is the random variation of this number. If the disloca- The geometry employed in the paper, Fig. 1, corresponds
tions are completely uncorrelated, as in the ideal gas of norto the common geometry of the experimental studies. The
interacting particles, one ha§AN)?)=N and y=1. The misfit dislocations are supposed to lie on the interface be-
correlations in dislocation positions reduce fluctuations, andween an epitaxial layer and a substrate at the distance
the width of the diffraction peak decreases, as a result of the=d from the surfacez=0. Straight dislocations extend in
effective decrease of the dislocation density by a factotwo orthogonal directions at the interface, thus defining
y<1. Calculations of the peak widths for various heteroepi-andy directions in its plane, the geometry of 001-oriented
taxial systems studied experimentally, performed in Sec. Vigrystals of zinc-blende structure with dislocations in the two
demonstrate that the dislocations are correlated in all invessrthogonal(110) directions. The plane of incidence for the
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triple-crystal diffraction setup is the plane=const, as the pend on the differenc&=x;—X,/, since the system is as-
{110 planes are usually chosen in the experiments. The difsumed uniform in the plane of the interface. The kinematical
ference between the elastic properties of the layer and sutg@pproximation is justified if the thickness of the layer is
strate is neglected. We restrict ourselves with the displacesmall in comparison with the extinction length. The intensity
ment field of a straight dislocation lying parallel to the Of the substrate reflection can be represented similarly to Eq.
surface of the isotropic half-spat&**The elastic anisotropy (1), by performing an integration oveg andz in the range
does not strongly affect the topographic images of dislocad,=). An absorption factor eXp-u(z+zy)] has to be in-
tions in cubic crystal$® and its effect on the diffracted in- cluded, to ensure the convergence of the integral. Applica-
tensities is expected to be small too. Analytical expressiondility of the kinematical approximation to a calculation of the
for the components of the displacement in an elastically isointensity of the substrate peak is limited to angular deviations
tropic half-space are presented, for the sake of completenedgfge in comparison with the half-width of the dynamical
in Appendix B. The misfit dislocations most commonly ob- rocking curve. The layer and substrate peaks contain the
served in heteroepitaxial systems are 60° glide dislocationsame information about the dislocation ensemble, but the
Accordingly, the dislocations with the line direction along layer peak can be more easily handled both theoretically and
the y axis are assumed to have Burgers vectorgxperimentally. For that reason, we restrict ourselves to a
b=(by,*by,*b,), whereb, is the misfit componentt b, Considergtiorj of the layer peak.. _

are screw components, antdb, are tilt components. The A derivation of the correlation functiorG(x,zs,zs),
densities of the dislocations differing in sign for any compo-Wwhich involves the average over statistics of the defects, was
nent of the Burgers vector are taken equal to each other, geerformed by Krivoglaz>!* The main steps of the deriva-
that the possible effect of a net tilt is not considered. Densition are discussed in Appendix A. The correlation function is
ties of the dislocations extended along thexis are taken represented in the exponential form

equal to densities of thg-directed dislocations. We also

consider edgéLomer type) sessile dislocations with Burgers G(X,2s,2s) =ex — T(X,Zs,2¢/)]. (2)
vectorsb=(b,,0,0), which are formed at large dislocation

densities, as a convenient model example simplifying calcutpe exponenT (x,z,zs) is also called the correlation func-

lations. tion below, whenever this is not confusing. Here we consider
the case of uncorrelated dislocations. The exponent
Il INTENSITY OF X-RAY SCATTERING T(X,zs,zs) consists of two contributions=T,+T,, due
Our aim is to calculate the intensity of x-ray scatteringto two system; of dislocationg, with dislocatiqn lines parallel
from a heteroepitaxial layered structure with the dislocatiorfo X andy axis, correspondingly. For the first system of
network on the interface between the substrate and the layefislocations, the summation over possible positions of the
Fig. 1. The x-ray beams are assumed to be well collimated iffislocations in Eq(A8) can be replaced by the integration,
the incidence planexg plane, while a wide acceptance win- >t—a ~Jdy, wherea is the lattice spacing, and the corre-
dow of the detector in the direction normal to this planeSPonding part of the correlation function is
integrates the scattered intensity over yneomponent of the
wave vector in infinite limits, a common geometry of a o :
triple-crystal diffractometry experiment. In the experiments,Tx(ZSst'):g Paﬁmdy{l_e'Q'[U“(y'zs)fu“(y'zs')]}- 3
the intensity distribution$(Q) are measured as the recipro-
cal space map of th®=(Q,,Q,) plane or along various
directions in this plane.
The intensityl (Q) is concentrated at the reciprocal-lattice
points. It is then convenient to consider the wave-vector de

viation g=Q— Q° from the nearest reciprocal-lattice vector < d - .
a=Q~ Q b dislocation of typea at the origin. This part of the correla-

Q°. More precisely, positiomns of the atoms in a diStortedtion function does not depend oq since the displacement
crystal are given by the su U(R;) of the positionR; of fields of the dislocations lying parallel to the incidence plane

the sth atom in a defect-free reference lattice and its dis- ; L . .
placementu(R) due to the lattice defects. Then the (x,2) arex mdepende_nt. _The contribution due to dislocations
reciprocal-lattice  vectors Q° are defined so that perpendicular to the incidence plane reads
Q°R,=2mXxinteger. We consider, as the reference lattice

{Rs}, the(strained lattice of the unrelaxed layer matched to _ <,

the substrate. In the kinematic approximation, the intensity TV(X'ZS'ZS’)_EC} paﬁwdx

scattered by the layer<0z<d can be represented as the

Fourier integralcf. Eq. (A3)] X {1— QU2 =uX =x25) L - (g)

1(ax,az)

Herep,=c,/a is the linear density of dislocations, the sub-
script @ denotes different types of Burgers vectarg,is the
number density of dislocations introduced in Appendix A,
andu,(y,z) is the displacement at the poing,¢) due to a

and depends OR.
% d(d VR The symmetries ofr, and T, with respect to their argu-
= fﬁwdxfo J; dzdzy eH 195206 (x,25,25). (D ments directly follow from Egs. (3) and (4):
TX(ZZ lzl) = T: (Zl 122) and Ty( —X,Z3 1Zl) = T; (X121 122)1
The correlations between two pointRy(xs,zs) and  where the asterisk denotes complex conjugation. Then inten-
Rs (Xs,Z5) lying in one and the same plane=const de- sity (1) can be represented as an integral of a real function,
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o d (d , and perpendicular to the incidence plane, with the integration
I(qX1qZ):2J dxf J dzdzye " %72 variabley in Eq. (3) is substituted for by. Only dislocations
0 0-0 perpendicular to the incidence plane contributeyo.
X 0§ 0uX+0,(Zs—2s) — T"(X,Z5,25)]. (5) Integrals(9), with the displacements due to dislocations

, " _ i ) lying parallel to the surface of an isotropic half-space given
HereT’ andT" are real and imaginary parts, respectively, ofjy Appendix B, can be calculated analytically. The result is
the correlation functiom=T,+T, .

Some further symmetry of the correlation function can be v

found in the important particular case of symmetrical Bragg Aox=PQ:xbx, o=~ EPQbe’ (10

reflection,Q=(0,0,Q,), with equal densities of dislocations

possessing oppositecomponents of the Burgers vectors. In wherew is the Poisson ratio ang== ,p, is total density of

this case the symmetry properties of the displacement fieldhe dislocations lying parallel or perpendicular to the inci-

given in Appendix B can be exploited: for the displacementdence plane. The mean distortions are constant, despite the

field u® due to thex component of the Burgers vector, one fact that the integrands azedependent, and depend only on

has u{?(—x,2)=-u®(x,z) and u{(—x,z)=u®(x,z), the totalx component of the Burgers vectors per unit length

while for the displacements® due to thez component pby, since the densities of the dislocations witth, are

gives u@(—x,2)=u@(x,z) and uP@(—x,z)=-uP(x,z). taken equal to each other, and the integrals are linear over

Then, in addition one haS(—x,z,,2,)=T(x,z;,2,), and D. On Fourier transformatiofil), the phase factor given by

Eq. (5) reduces to Eq. (8) yields a shift of the diffraction peak by
0do=(Qox,doz)- This value coincides with the well-known re-

o d (d Tz sult of Chuet al,'? who treated a net effect of the disloca-

|(q><"31z)zzj0 dx cosqxxjo fo dzdzge & ot tions without considering their individual displacements. We
note that Chuet al. did not argue, why the position of the

Xcog0,(zs—zg) —T"(X,25,Z5) ] (6) diffraction maximum follows the mean distortions. In the

framework of our considerations, this is a result of the ex-
pansion(7), which implies that only the displacements at
closely spaced points are correlated. This assumption is jus-
tified for large densities of dislocationpd>1, but is not

A. Positions of the peaks valid for the small dislocation densities considered in Sec.

Ill. DIFFRACTION PEAKS AT LARGE
DISLOCATION DENSITIES

In this section we consider large densities of the misfit! V-
dislocations,pd>1. In this case, the exponents and T,
contain large prefactors. When the distance between the B. Shapes of the peaks

points Rs and R/ is not small, and the integrals in EqS) We begin the analysis of the peak shape with the particu-
and (4) are of the order ofl, one can estimat&~pd, and  |ar case of a symmetrical Bragg reflecti®d=(0,0,Q,),

the contribution to the correlation functic@=exp(~T) is  which is of primary experimental interest and also allows us
exponentially small. Thus the correlations between closelfo make calculations transparent by considering a simplest
spaced point&; andRs are of interest only. The differences sjtuation. The real part of the correlation functih can be

of displacements in Eq$3) and (4) can be expanded over received by applying approximatioff) and expanding the
small quantitiex and {=z;—zy,, retaining the linear terms: exponential functions in Eq$4) and(5) up to second order

' , overx and(,
Q'Ua(X ,Zs)_Q'Ua(X —X,Zsr)

&Q'UQ(X,,ZS) aQ'ua(XlrzS)
X ax’ + 9z ' () Then the intensity(1l) can be evaluated by extending the

i i , integration over/ to infinite limits, due to the fast decay of
Then the exponential functions in Eq®) and(4) can also 6 “integrand. Integral(l) with the Gaussian function
be expanded. The first term of the expansion is Imaginarg,n 1) gives

and linear with respect te and/,

T,(szs125’):WX(ZS)X2+W2(ZS)§2- (11)

2 2
TH(X!stZS’):qOXX“"qugv (8) I(qxan):ﬂ' d dz exr{_ (qx qu) . (qz QZO) .
0 VW, W, 4wy 4w,
where (12)

do=— p. ” dX&Q'ua(X'Z), To evaluate the coefficients,(z) andw,(z), let us sepa-
@ —w IX rate the displacements due to different components of the

(99  Burgers vectorsu=u®+u®+u®. We consider disloca-
©  9Q-U,(X,2) tions perpendicular to the incidence plane with the Burgers

oz —2; PaJ_deT vectors b= (by,*b,,*b,) and those parallel to it with

b=(*by,b,,*b,). The componenb,, equal for disloca-
are proportional to the mean distortions due to uniformlytions of all types, releases the mismatch. Other components
distributed dislocations. The factor 2 in the expression fortake opposite values with equal probability, giving a net tilt
0o, is due to the contribution of dislocations both parallel equal to zero. The consideration thus includes the edge and
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FIG. 3. Intensity distributions for 60° dislocations calculated
with Egs. (12) and (16) for 004 and 224 reflectionga) and (c)
scans along and perpendicular to the diffraction vectors(lanahd
d) the reciprocal space maps. The intensity changes between isoin-

nsity contours by a factor of 2.

FIG. 2. Intensity distributions for edge dislocations calculated
with Egs. (12) and (16) for 004 and 224 reflectionga) and (c)
scans along and perpendicularly to the diffraction vectors;(ahd
and (d) the reciprocal space maps. The intensity changes betwe
isointensity contours by a factor of 2.

evaluated analytically atz=0. For edge dislocations,
the 60° dislocations with Burgers vecto}é110). The ex- one has w,(0)=pQ2b%/(87d) and w,(0)=[v/(1—

pansion of Egs(3) and(4) gives 1) 1?pQ2b2/(47d). The peak  aspect  ratio
. Aqg,/Ag,=+\2v/(1—v) depends on the Poisson ratio
W, (2)= %inJ dx[u(zfﬁ 2, U(z,ziz]ﬁ only. For v=0.3, one hasAq,/Aqg,~0.6. When _several_
— types of dislocations are present, calculations give

(13 WX(ZO)ijzi(bﬁJeri)/(%d) and w,(0)=pQ3[v/(1-
o v)]°(by+by)/(47d). In particular, the 60° dislocations give
Wz(Z):PQEJWdX[U(zg +u?]. the peak aspect ratidq,/Aq,=6/11v/(1—v)~0.27, in
agreement with the results of the numerical integration.
Here u; j=du;/dx; andi,j=x,z. The integration variable The calculations above show that the peak width of an
was changed frony to x when calculatingT,,. The coef-  epitaxial layer is dominated by the nonuniformity of distor-
ficients atw, andw, differ by a factor 2, which is due to tions in the near-surface part of the layer. In particular, a thin
contribution of dislocations of the two systemsvig, while ~ honrelaxed layer grown on the top of a relaxed buffer layer
only dislocations perpendicular to the diffraction plane con-shows the same nonuniformity of distortions as the buffer
tribute tow, . The screw component?) does not contribute layer. It also follows from the estimate above that the peak
to the symmetrical Bragg reflection. When the edge dislocawidths Agy , are proportional t@Q,b,+/p/d. When the dislo-
tions with the Burgers vectors in the layer plane are considcation density varies, the plots of Figs. 2 and 3 are scaled as
ered, onlyu® is nonzero. Jp. The longitudinal and transverse peak widths for 60° dis-
The intensity distributions calculated by numerical inte-locations found by numerical integration of E@2) are plot-
gration of Eq.(12) for the symmetrical 004 reflection are ted in Fig. 4 as functions of the dislocation density. The
presented in Figs.(d) and 2b) and Fig. 3a) and 3b) for  plotted dependencies can be writtenfeg,=21.3/p/d and
edge and 60° dislocations, respectively. The anisotropic inAq,=6.2\/p/d. The estimates presented above give an accu-
tensity distributions are extended perpendicularly to the difracy of about 10%.
fraction vector(alongq,). The peak aspect ratidq,/Aq, is Expansion(7) is applicable wherx,{<d. With the esti-
0.68 for edge dislocations, and 0.30 for 60° dislocations. matew, ,w,~ (p/d)(Qb)? received above, the real part of
Intensity distribution(12) involves anisotropic Gaussians the correlation function i3’ ~ (p/d)(Qb)?x? (plus the simi-
of different widths, since the factoss, andw, depend on lar term proportional ta?). The behavior of the correlation
z. The smooth functionsv,(z) andw,(z) increase wherz  function is of interest in the range’ <1, since the contribu-
tends tod, while the contribution to the integral decreases.tion of largeT’ to Eq. (2) is exponentially small. Thus, the
The integral(12) can be estimated by taking, andw, at  actual range of distancesxéd= (Qb+/pd) ~1. When the re-
z=0, which gives 1(0y,0,)~exd — (O Cko)?/4w,(0) quirementpd>1 imposed in this section is satisfied, this
—(9,— G50)?/4W,(0)]. In this estimate, the peak is an aniso- range is smallx<<d, thus ensuring the applicability of the
tropic Gaussian with the longitudinal to transverse peakapproximations made above. A comparison of approximation
width ratio Ag,/Aqg,= Vw,(0)/w,(0). Integrals(13) can be (12 with numerical integration of the exact expressidn
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. (G000 =7 [ et~ §w; (0~ a0)(@- )
A= = — 3 W;; (09— 0o)i(d—0o)jJ,
100 X141z OM 4quq0Iq qOJ
~ (16)
%300. wherew is a 2x2 symmetrical matrix with the elements
E w;; given by Eq.(15), andi,j=Xx,z, andwi]1 are elements of
= 2001 the reciprocal matrixv 1. The intensity distributions calcu-
. lated by numerical integration of E(L6) for the asymmetri-
100 cal 224 reflection are presented in Fig$c)2and Zd) and
Fig. 3(c) and 3d). The anisotropic intensity distributions are
0¥ extended perpendicularly to the diffraction vector.

0 100 200 303 400500 To estimate integra(16), one can take, as above, the
P

smooth functionsw;;(z) at z=0. Analytical integration

FIG. 4. Longitudinal and transverse full width at half maximum of Eq. (19 zfor ghe 2 edge dislocations yields
(FWHM) of the calculated diffraction peaks for 60° dislocations W xx (0)=n( sz +Qz) by /(87d), wy,(0) 2= -l
with Burgers vectors(110) in the symmetrical 004 Bragg reflec- (1 —v) p QxQ.05/(87d), and  w,(0)=p(Q5+2[»/
tion. (1-v)1?Q?)b2/(8wd). The orientation of the anisotropic

Gaussian distribution of the intensity follows orientation of
for dislocation densityd= 20 (not presentedgives a differ-  the main axes of the tensa *. The anglep betweere axis
ence of less than 1%, comparable to the accuracy of thend the minor axis of the tensor is given by
calculations. When the dislocation density is smatll<1, tan2e=2w,,/(w,,—W,,). Calculating this angle for the 224
the approximation made in the present section cannot be apeflection, one receive¢=36°. The angle between the dif-
plied. This case is considered in Sec. IV. fraction vector andz axis is arctar®,/Q,)=35°, i.e., the

It is worth noting that the results presented above for misintensity distribution is extended almost perpendicularly to
fit dislocations distributed in the plane of the interface differthe diffraction vector. The isointensity map, Figd® con-
from the results received by Krivoglzfor straight disloca-  firms this conclusion. It is worth noting, however, that there
tions uniformly distributed parallel to each other in a bulkis no symmetry-related restriction for the orientation of the
crystal. The dislocation distortions behaveVas~ 1/r in the  intensity distribution with respect to the diffraction vector.
infinite solid. The integrals similar to Eq13) in the bulk  The two directions occur close to each other for commonly
crystal, [d?r(Vu)?, diverge proportional to In, whereL is  used reflections. Orientations of the intensity distributions
the system size. As a result, the peak width logarithmicallywith respect to the diffraction vector are slightly different for
depends on the system size. One-dimensional integrals of treglge and 60° dislocations, cf. Figgdpand 3d).
present problenydx(Vu)?, with Vu decreasing as f/or
faster, converge, and the peak width is size independent. C. Spatial correlations of dislocations

Let us proceed to a general case of an asymmetric reflec-

tion Q= (Q,,0,Q,). Using expansioif7), one receives The considerations above assume that dislocations take

their positions independently from each other. One can ex-
, _ 2 2 pect, however, that the misfit dislocations are correlated due
T (%025 257) = W 26) X7 2Wil 26 XE+ WA 25) £ (149 to kinetic and energetic reasons: the dislocations are created
To evaluate the coefficients, one takes into account thaty a limited number of the sources and then redistribute to
u®¥(x,z) and u?(x,z) are odd functions ofx, while  minimize the elastic energy. Regular arrays of the misfit dis-
u?(x,z) andu{”(x,z) are even functions of. Then one has locations are reported for large densities of the dislocations.
The spatial correlations of the dislocations can be taken into
p o 2 ()24 2 (o) 2 account in evalgation of. the x-ray cqrrelation function
Wix(2) =5 > dx(Qiuyx “+Qzuz% %), G(x,zs,Zs), as discussed in the Appendix A. However, the
g T correlation functions are not known, and in addition calcula-
) . tions become complicated even if only pair correlations are
7 (0)(4(0) 1 () (o) involved.
Wl 2) ZQXQZU:EX,Z J_de(UX’XUZ’Z+UX’ZUZ'X), For large dislocation densities, when the mean distance
(15 between dislocations is much smaller than the layer thick-
P o 2 ()2 2 ()2 nessd, one can expect that the correlation length of the spa-
Wz{2)= 5 ZX L) OXQuu; T 2Q5u;, ) tial correlations is also small in comparison withThen the
7 effect of spatial correlations can be taken into account rather
N (y) 2 easily, since the characteristic length of the correlation func-
+ f_deQiux,z . tion e, (R;— Ry) entering Eq(A12) is much smaller than
d, while the factorsd,, vary on distances comparable with
For edge dislocations, only the® component of the dis- d and can be kept constant during summation of the corre-

placements contribute to E(L5). lation function. Equation(A12) simplifies to

Performing the Fourier transformatidid) with the real
part of the correl_ation functio(\l4) and the imaginary part T(R,Ry)=2 Cu®iy— 33y €nn Zi@ra® i, (17)
(8), one has the intensity ta
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wheree,, =Ze,.(R;) are constant factors describing the where y,= 1+CI1(611+ €12),Y2= 1+Cil(€11— €19, and
correlations, and®,,=ex{iQ- (Us,—Us'1o)]—1 are the ¢, is the number density of dislocations of each type. Two
same factors as in Eq&) and(4). The first term of Eq(17)  correlation parameterg, and y, can be found in the x-ray-
describes uncorrelated dislocations, and the second term giffraction experiment by measuring the peak widths in di-
due to spatial correlations of the dislocations. Making use ofections along and perpendicular to the diffraction vector.
approximation(7), one expand,, in the first term of Eq. When the correlations between dislocations of different types
(17) up to the terms of the second order oxeand{. Inthe  are absent, i.eg,,=0, one can introduce, as above, a single
second term of Eq(17) the expansion ofb,, can be re- factor y=y,= 1y, related to the mean-square fluctuations of
stricted, with the same accuracy, with the terms linear ovenumber of the dislocations.
x and{. The higher-order correlation functions entering Eq. The dislocation distribution can have, in addition to the
(A11) can be neglected, since they give terms of higher ordegpatial correlations on the length scale small in comparison
overx and{. with the layer thicknesd, nonuniformities with a character-
Let us first consider the case of dislocations with only oneistic length large in comparison with This long-range non-
type of the Burgers vectors, the edge dislocations. Correlauniformity can be taken into account by considering a vary-
tions between dislocations either parallel or perpendicular ting dislocation densityp=p(x). The main effect is due to
the incidence plane are described by a single correlation paecal variations of the peak position, rather than variations of
rametere=23e(R;), and the two systems of dislocations arethe peak width. Including a random variatidip(x) of the
assumed to be uncorrelated with each other. The spatial cogislocation density in Eq(9) and treating it as a Gaussian
relations of the dislocations do not contribute to the imagi-random variable, one has an additional contribution
nary partT” of the x-ray correlation function. Thus, the dif-
fraction peak due to spatially correlated dislocations remains ST’ =3 ((8p!lp)®)(GoxX+0oz{)? 19

in the same position due to uncorrelated dislocations. In th§0 the correlation functiof11) and an additional broadening

real partT’ of the x-ray correlation function, the second term of the diffraction peaks. In the symmetrical Braad reflection
of Eq. (17) contributes by changing the number density of. P : y 99 '

dislocationsc by c+ €. Equations(14)—(16) remain appli- in particular, the _pg_ak l_oroadeng n tt;gcﬂrecﬂon.
L ) . . Another possibility is a variationSp=p,—p_ of the
cable after multiplying the dislocation densjtyby a factor . o ; . .
— ) A relative densitiep. of the two types of dislocations with
y=1+c™ “e. Thus the peak width is influenced by the cor- . "
. . i . . Burgers vectorst{, ,b,,*=b,) with the same misfit compo-
relations by replacing the dislocation densityby an effec- Y .
. ; . . ; nentb, and the opposite tilt componentsb,, which is en-
tive density yp. As shown in Appendix A, the correlation X . .
. . ergetically less costly, since it does not change the local de-
parametery can be quite generally related to fluctuations of . . .
) A 5 : gree of relaxation. Keeping the total densjiy=p. . +p_
the number of dislocationsy={(AN)“)/N, whereN is the . . I
; . \ . . constant, one obtains an additional contribution to .
mean number of dislocations in some interval, &M is a
random variation of this quantity. Positionally uncorrelated »  g0.u? "
dislocations can be considered as a gas of noninteracting 5P(Xf dx—22 +§f dx
particles, which give$(AN)?)=N, and thusy=1. The cor- - X -
related Q|slocat|ons can be Freated ;lmllarly to' a IIquId’The integrals of Eq(20), calculated with the displacements
where distances between particles deviate only slightly from.. : .
: . iven in Appendix B, are equal te Q,b, andQ,b,, respec-
the mean distance, and fluctuations of the number of parg . : z7z
. . 2 tively. Averaging over a Gaussian distribution &$(x), one
ticles are smaller than in the gaqAN)“)<N. Then the 2 . .
. . . : finds the contribution to the correlation function,
correlation parametey<<1 and the diffraction peak is nar-
rower than at the same density of uncorrelated dislocations. r_ 1 2 2p2
: ST =3 {(op/ X— bz, 21
In Secs. V and VI we compare the experimental data for 2{(8p/p)")(Qex= Q)" @D
several heteroepitaxial systems with ca'lculation's in thewvhich gives rise to an additional broadening of the diffrac-
framework of the present approach, and find that in the retion peak in the direction orthogonal to the diffraction vector
laxed systems possessing large mismatch, the observedl due to local variations of the filt.
peaks are considerably narrower than the peaks calculated
for uncorrelated dislocations, so that the correlation param- ,, DIFERACTION PEAKS AT SMALL DENSITIES
eter y<1. _ _ _ OF DISLOCATIONS
For several types of dislocations with the Burgers vectors
b=(by,*by,*b,), one can introduce correlation factors The approximations of Sec. Il are developed for large
€14 for correlations between dislocations with one and thedensities of dislocations. For small dislocation densities
same Burgers vector, ang, for dislocations with different pd=<1, a general analysis based on the equations of Sec. I
Burgers vectors. Then, for a symmetrical Bragg reflectionhas to be performed. The presence or absence of the coher-
Egs.(13) are replaced by ently scattered wave depends on the long-range limit of the
correlation functiort! Let us consider the limit of the corre-
o lation function T(x,z5,z¢) on large separations,
— 2 2 2 . . .
Wy(2)= %Pszide[)’lU(zﬁ + v, T.(zs,zg)=lim, .. T(X,Zs,zs). The contribution due to
(19) dislocations parallel to the incidence plafg(zg,z;) does
not depend orx. The limit T.., due to dislocations perpen-
N (x) 2 (2)2 dicular to the incidence plane is finite, as will be shown
W,(2)= dx| yu,, <+ you ) : . ;!
A2)=pQ; f_oc Lystzz ™+ 72Uiz27] below. Then the intensity(q,,q,) contains a term propor-

Q,u'?
0z

) . (20
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tional to the delta functio(q,), which reflects presence of peak is abserlt To estimateT, and W, one takes into ac-
the long-range order in the layer and can be referred to as th®unt that the terms in the wavy brackets of E§3.and(25)
coherent intensity. One can present the intensity as are of the order of unity fofx|<d, and decrease for larger
x fast enough. Then the estimatei§ T, ~ pd. The coherent
1(0x,02) = 278(Q) 1 cor(A2) +1airt(Ax,G2), (22 jntensity is exponentially small when the dislocation density
where is large, pd>1. For that reason the coherent intensity was
not taken into account in Sec. Ill.
d(d , In a symmetrical Bragg reflection, the imaginary part
leor(Q2) = fo fo dzdzye'9l% e T=0 20 (23) T, can be represented in a similar way,
_ _ _ _ _ T.y(2s,25) =V(25) —V(zs), where
is the coherent intensity. In a dislocation-free layered system
T=0, one has the well-known resultl.{q,)=
4qz‘zsin2(qzd/2). The remaining part of the intensity, which
does not exhibit singularities,

V(z)= —Ea: paf:dx sin(Q- u,(x,2)). (26)

The displacement componeuf) decreases asxf at large

(™ d(d i X0 (2o 21) X, and the integral converges. Let us make an unphysical
'diff(qx’qZ)_ffxdxfo fo dzdzy e s assumption for a moment, postulating that the product
Q-u, is always small in comparison with unity. This as-
X[ e~ 22 — @~ TaelZs 25)] (24)  sumption implies that the misfit is dissolved in infinitesimal
] ) ) ) dislocations whose Burgers vectors are much smaller than
is the diffuse intensity. the lattice spacing. Then the integrand of Eg6) can be

The calculations involve several infinity limits: the corre- expanded up to the term linear ov@Fu,,, and the integra-
lation functionT(x,zs,2/) is a result of the integratio) in o, yieldsV(z) = 40,2, Whereqy, is given by Eq.(10). Sub-
the infinite limits, while its limit atx— is applied in the  gityting this expression into ER3), one finds that the peak
integral(1) also taken in the infinite limits. The hierarchy can ¢ the coherent intensity is located @i=qo,, the position
be imposed as follows. The integred) for the correlation  giyen by the mean distortions. However, this result is based
function T(x,zs,zy) is taken, as is shown in Appendix A on an ynphysical assumption. The prod@tu, can be of
[Eq. (A8)], over all possible positions of the dislocations in e order of unity,V(z) is smaller thange,z, and thus the
the samplexe(=Ls,Ls), where 2,X2L; is the lateral  gpift of the coherent peak due to the misfit dislocations is
sample size. The Fourier transformatidn corresponds to a smaller tharg, .
summation over the area |Ilum|nat§d by the X rays, pf. Ed- The coherent intensity.(q,) calculated by Eq(23) in
(A3), xe (—L;,L), where 2, X 2L, is the size of the illu- e symmetrical 004 Bragg reflection is presented in Fig. 5.
minated area. We take, as it is usually realized experimenrpe peak width is given by the reciprocal thickness of the
tally, Li<Ls. The limit x—c of the correlation function |averd-1 and does not depend on the dislocation density.
T(x,z5,2y) impliesd<x~L;<Ls. Therefore, one can con- g the dislocation density increases, the peak intensity expo-
sider the correlation functiof(x,zs,2y) as a result of the  pentig|ly decreases, and the peak shifts. The shift of the co-
integration(4) in the infinite limits for a finitex, and proceed perent peak is smaller than the vald®) given by the mean
to the limit x—c on the next stage. The delta function gistortions, which is shown in Fig.(B) by crosses. It is
5(qy) in Eq. (22) represents a peak with the height propor-syally assumed, without any progee, e.g., Ref. 12that

: : -1 .. . . . .

tional toL;, and a half-width of the order df; . positions of the diffraction peaks follow the mean distortions
~To find the limit T..,, one takes into account that the in the crystal. We showed in Sec. Ill that this statement is

dislocation displacements,(x’,z) tend to zero at large’,  correct when the dislocation density is large. In that case, the

and either one or the other of the two displacements enteringeak is diffuse, and is governed by correlations of displace-
Eq. (4) is small during integration at infinitely large separa- ments at closely spaced lattice sites, i.e., by the mean local
tion x. The real partT., can be represented as a sumdistortions in the crystal. The coherent peak observed at low
T;y(zs,zs,)=W(zs)+W(zS,), where dislocation densities is due to correlations between displace-
ments at the sites separated by large distances. When the
* relative displacement is as large as the lattice spacing, it has
W(z)= % paf_mdx{l_ coS(Q- Uy(x,2))} (25 no effect or?the peak position,gbut makes a Iargepcont?ibution
to the mean distortion. As a result, the shift of the coherent
is a static Debye-Waller factor due to dislocations perpenpeak due to the misfit dislocations is smaller than the value
dicular to the incidence plane. The contributibf(zs,zs/) to  given by the mean distortions.
the coherent peak due to dislocations parallel to the inci- The Debye-Waller factof25) and the phase factdg6)
dence plane cannot be represented in this way. Wheoan also be applied for the calculation of rocking curves
x—o, the dislocation displacements, decrease as 2/or  under dynamical diffraction conditions, by employing them
faster, the cosine term in E(R5) can be expanded in power in the Takagi-Taupin equations. It is worth noting, however,
series and the integrgl(Q- u)®dx converges, thus ensuring that these factors describe the effect of the dislocations per-
that the Debye-Waller factdi/(z) is finite. This is dissimilar  pendicular to the incidence plane. The dislocations parallel to
to the dislocations uniformly distributed in a bulk crystal, the incidence plane produce displacements which do not de-
where the two-dimensional integrf(Q- u)?d?r diverges at pend on the lateral coordinaein that plane, but depend on
r—oo, the Debye-Walller factor is infinite, and the true Braggthe coordinatey normal to it. Then the solution of the dy-



55 X-RAY DIFFRACTION PEAKS DUE TO MISFT . .. 1801

layer which adopts additional atomic plang@ise dislocation

2 1.00 N L . . .
2 pd:gz half-plane$, while its length remains fixed. The uniform
gorsy [\ 04 strain would give rise to a layer incommensurate with the
fa‘ substrate, a state which is never observed in the epitaxial
£ 050 L ; ; . .
£ growth. The state which is realized is essentially nonuni-
5 025 form, with strains concentrated at the misfit dislocations. At
° a the dislocation, the displacement jumps by the Burgers vec-
0.0 0 15 tor. Considering the mean distortions, one uniformly dis-

solves the jumps among all atomic planes, and the mean
strain effect is treated to cause a shift of the diffraction peak.
However, the Burgers vector is equal to a lattice translation.
An insertion of the dislocation extra half-plane does not di-
rectly influence the x-ray diffraction, but causes nonuniform
distortions around the dislocation, which decrease as the dis-
tance from the dislocation increases. The mean effect of the
elastic distortions is calculated above. The displacements de-
crease fast enough and do not change the mean lattice spac-
ing. Thus, when the mean distance between dislocations ex-
ceeds the layer thickness, the layer contains slightly distorted
regions between dislocations which give rise to the coherent
Bragg peak, laterally unshifted with respect to the substrate
peak. The strongly distorted regions around the dislocations
cause diffuse scattering, whose peak position does not coin-
cide with that of the coherent peak. As the dislocation den-
sity increases, the coherent peak intensity exponentially de-
creases, while the diffuse peak reaches the position given by
the mean distortions.

Calculation of the diffuse intensity is considerably simpli-

d in the limit of very small dislocation densitigsd<<1. In

that case, the correlation functidi(x,zs,zs,) is small, and

the expansion exp{T)~1—T can be applied in Eq(24).

namical problem involves numerical integration of the . . . .
; ; . ; ) : Changing the sequence of the integrations, one receives, for
Takagi-Taupin equations in each scattering plane with sub-
[ ooz gui
— o 0

sequent average of the intensities. The corresponding ave(flﬁﬁo’
2
. (28

100

— — —
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FIG. 5. Intensity of the coherent peak, E3), in the symmetri-
cal 004 reflection presented on linday and logarithmigb) scales.
The crosses mark positions of the peak maxima given by the mea‘[?e
distortions.

age in the framework of the kinematical theory is given by
Eq. (3).

In an asymmetrical reflection, the integi@6) diverges L (0e . 02) = 2 Pa
logarithmically, due to the contribution of the displacement “
ul® which decreases as xl/at large x. The difference
V(zs) —V(zs) converges, however. The imaginary part of
the limit 'I;;’cy can be written as a difference
T;y(zs,zs,)=V(zs)—V(zsr) of two finite quantities, to de-
fine

X [eiQua(x,z)_ l]

In this limiting case, the dislocations perpendicular to the
incidence plane contribute to the diffuse intensity additively,
. and the intensity is proportional to their density. The dislo-
V(7)= — (0. _ cations parallel to the incidence plane do not contribute to
V(@) ; paf_de[SIn(Q Ua(x,2))=u(x)]. (27) the diffuse scattering. Figure 6 presents distributions of the
diffuse intensity calculated by E@28). In the symmetrical
Here v(x) is an arbitrary regular function possessing theBragg reflection(Fig. 6, left column, the main spot of the
same asymptotic behavior ox—e as the product diffuse intensity is elongated in thg, direction, normal to
QU  namely, Qu{¥~2Q,bd/(mx). We use the the layer surface. It is accompanied by two satellite spots of
function v(x)=(2Q.b,/m)xd/(x?*+d?). The integral lower intensity extending in thg, direction[see Figs. @)
IZ.dX [v(x")—v(x’ —x)] is zero for large but finit&. This  and &c)]. Comparing contributions of different types of the
result is applied in Eg(23), and means that the coherent dislocations to suni28), we found that each satellite is due
peak does not shift in thg, direction but remains in the to 60° dislocations with a definite tilt componenf of the
same position as for the strained dislocation-free referencBurgers vector. Dislocations with opposite tilt components
layer. Note that the unphysical assumption of dislocationgive rise to different satellites. These satellites are absent for
with infinitesimal Burgers vectors would lead, in the sameedge dislocations(not presented The satellites in the
way as above, to the displacement of the Bragg peak by,-direction in Figs. @) and Gc) are the layer truncation
Jox: EQ.(10), as given by the mean distortions. effect. In the asymmetrical reflectiqfrig. 6, right column,
The common treatment of the lateral position of thethe diffuse spot is extended in two directions, perpendicular
peak? is based on a consideration of the mean strain in théo the surface and perpendicular to the diffraction vector. The
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2 FIG. 7. Scans of the diffuse intensity in directions aldagand
@ l004 perpendiculargb)—(d) to the diffraction vector for dislocation den-
10- @ sitiespd=0.5 (b), 1.0(c), and 2.0(d). 004 reflection.
S ¢§ space maps is shown in Fig. 8. As the dislocation density
'&kJ. increases, yhe di]‘fuse spots extend iq gdirection perpendicu-
@ lar to the diffraction vector, thus receiving the shape charac-
107 ¥ teristic of large dislocation densities, cf. Figs. 2 and 3. In the
@ c asymmetric reflection, the peak shifts both laterally and nor-
mally to the layer. Let us remind the reader that the peak of

T v r T T -20 T T $ v
0505 0 A5 0 S 0 S 15 coherent scatterindi.,(q,) is located atg,=0. The posi-
* * tions of the coherent and diffuse peaks in the asymmetric
reflection do not coincide, and represent a doublet. Such a
FIG. 6. Calculated diffuse intensities for small dislocation den-doublet can be observed in a limited range of the dislocation
sities, pd<1, of 60° misfit dislocations in the scans along the dif- densities, since the coherent intensity exponentially de-
fraction vector(a) and (d) and perpendicular to i) and(e), and  creases with increasing dislocation density. g&>1, the
the reciprocal space maps and(f) in the symmetrical 004 Bragg position of the diffuse peak follows the mean distortions
reflection(left) and asymmetrical 224 reflectidnight). The inten-  (10).
sity changes between isointensity contours by a factor of 2. Separation of the coherent and the diffuse components of

the scattered intensity in Eq22) implies infinitely good

scans along and perpendicular to the diffraction vector ar&esolution of the measurements, allowing us to distinguish a
asymmetric, and possess complicated structure with severah@’P diffuse peak from the infinitely shafgshaped coher-
satellites. ent peak. The effect of the instrumental resolution can be
The transformation of the diffuse intensity distribution directly included into the calculations. The intensity
with increasing dislocation density is shown in Figs. 7 and 8Z(0x,0z) measured in the experiment is the convolution of
Calculations were performed on the basis of &4). Figure  the intensityl(qy,q;) due to the ideal plane wave illumina-
7 presents scans of the intensity in theandg, directions,  tion with the resolution functiofk(qy,d_),
which correspond to the andw/26 scans in the experiment,
in the symmetrical 004 Bragg reflection. Thye scan[Fig.
7(a)] demonstrates a continuous shift of the diffuse peak in
the direction of the diffraction vector, when the dislocation
density increases. At low dislocation densities, the shift is
slightly smaller than the valu€l0) given by the mean dis-
tortions, but practically reaches this value @d>1. The
width of the peaks is determined by the reciprocal thicknes
of the layer,Aq,~2/d. Figures Tb) and 7d) presentq,
scans of the peaks. Two satellites, which are clearly sepa-
rated from the main part of the diffuse peak at very low
dislocation densitiefFig. 6(a)], transform to “shoulders” of
the peak. At dislocation densitiggl>1, the peaks become
Gaussian-like ones. The transformation of the reciprocal

I(qx.qz)=J fdq;dqél(q;,qé)R(qx—q;,qz—qé)-
(29

Expressing the intensity(q,,q,) via the correlation func-
tion, Eqg. (1), and calculating the convolution integral, one
Teceives

o d(d . .
I(qx,qz)=J dxf f dzdzg et 1922s~251)
— o0 0Jo

X G(X,Zs,Zs )R(X,Zs— Zg/ ), (30
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0 0 10 30 6 10 20 30 0 20 FIG. 9. Diffraction peaks for 004top) and 224(bottom reflec-
ad ad qd tions of a heteroepitaxial system AlAs/GaAs. The thickness of the

AlAs layer is 1.5um. Dislocation density=0.073um 1, as mea-
sured by x-ray topographya) and (d) Scans along the diffraction
)(/ectors: measuremen(ill lines), simulations for uncorrelated uni-
formly distributed 60° dislocationébroken line$, and the resolu-
tion function measured with a GaAs samptiotted ling. (b)—(f)
Reciprocal space map&) and(e) measured an¢c) and (f) simu-
lated. The intensity changes between isointensity contours by a fac-
tor of 2.

whereR(x,z) is the Fourier transform of the resolution func-

tion R(qx.q;). Equation(30) does not contain @-function  growth of the AlAs was(2x3). The dislocation density

FIG. 8. Calculated reciprocal space maps of the diffuse intensit
in the symmetrical 004 Bragg reflectidn)—(c) and asymmetrical
224 reflection(d)—(f) for dislocation densitiepd=0.5 (a) and(d),
1.0(b) and(e), and 2.0(c) and(f). The intensity changes between
isointensity contours by a factor of 2.

term, sinceR(X,zs—2zy)—0 asx—. p=0.073 um ! was directly measured by x-ray topogra-
phy, so that the produgid=0.11 was determined prior to
V. EXPERIMENTAL RESULTS the x-ray-diffractometry measurements. Measured and simu-

lated scans of the peaks and the reciprocal space maps are

The heteroepitaxial structures for the experimental studgompared on Fig. 9. The experimental resolution is compa-
were chosen to cover a wide range of dislocation densitiegable with the angular scale of the features of the diffuse
In the results presented below, the paramptevaries in the  scattering distribution, and the simulation was performed
range from 0.1 to 500. That can be achieved only with dif-with the aid of Eq.(30), where the resolution function was
ferent heteroepitaxial systems, by varying the mismatch anghken as a Gaussian function with the half-width coinciding
layer thicknesses. The results are presented in the order @fith that of the measured resolution function. In the sym-
increasing dislocation density. We describe the experimentahetrical 004 Bragg reflection, Figs(8-9(c), the satellites
setup first. The information concerning the heteroepitaxiabf the peak are revealed. In the asymmetrical 224 Bragg
systems is presented together with the corresponding x-rayeflection, Figs. &)—9(f), the distribution of the diffuse in-
diffraction data. tensity is asymmetric. The fine structdie. Fig. 6d)] is not

The x-ray-diffraction measurements were performed withrevealed, due to the resolution limitation. Measured and
a triple-crystal x-ray diffractometer using G, radiation.  simulated intensity distributions are in a good agreement. We
A four-reflection Bartels-type monochromator provides astress that simulations do not involve any fitting parameter.
highly monochromatic x-ray beanA@/\ = 1.3-10~%) with  All parameters(dislocation density, layer thickness, angular
an angular spread of less than 0.06 mrad. The direction of thesolution were measured independently.
incident beam with respect to the sample surface is changed Figure 10 presents measured and simulated intensity dis-
by rocking the samplé¢angle w), whereas the direction of tributions for another sample of the AlAs/GaAs heteroepi-
the diffracted beam can be measured with an analyzer crystéxial system showing a higher dislocation density. The 3-
in front of the detector(angle @). By tuning these two um-thick AlAs layer was grown at essentially the same
angles a reciprocal space mapping can be performed with growth conditions as the previous sample. Only the growth
resolutionAQ/Q = 10 %, velocity was slightly higheX0.57 um/h). The relaxation of

An initial stage of relaxation of an AlAs layer on a GaAs 22% was measured from the layer and substrate peak posi-
substrate provided us with a system of very low dislocationtions, which givespd=4.6. The peaks, Fig. 10, are close to
density. The 1.5tm-thick AlAs layer was grown by anisotropic Gaussians, oriented perpendicularly to the corre-
molecular-beam epitaxfYMBE) on a low miscut semi- sponding diffraction vector. A good agreement between
insulating GaAs substrate, and covered by 20 nm of GaAsmeasured and simulated intensity distributions was found
The growth temperature was 510 °C and the growth velocitwithout any fitting parameter.
was 0.46 um/h. The surface reconstruction during the To reveal the satellite peaks of diffuse scattering at low
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FIG. 10. Diffraction peaks for 004top) and 224(bottom) re-
flections of a heteroepitaxial system AlAs/GaAs. The thickness of
the AlAs layer is 3um, the relaxation is 22%. Dislocation density
p=16 um~1. (@ and (d) Scans along and perpendicular to the
diffraction vectors: measurementfull lines), simulations for un-
correlated uniformly distributed 60° dislocatiofsoken lines, and
the resolution function measured with a GaAs santgtted ling. . . .
(b)—(f) Reciprocal space map&) and(e) measured an¢t) and(f) FIG. 11, lef_ractlon peaks for OOG.Eﬂ (_:olumrﬁ and 22_4(r|ght_
simulated. The intensity changes between isointensity contours by plumn) reflections O_f a he_teroepltaX|aI system ; SGe/Si

x=25%). The layer thickness is 0.12m. (a) and(c) Scans along

factor of 2. the diffraction vectors: measuremeiisgjuaresand simulations for
uncorrelated uniformly distributed 60° dislocatiofimoken lines.

dislocation densities separately from the central peak, thghe dislocation density is taken in simulatiopd=0.15. (b) and
Si;_,Ge,/Si sample of a small layer thickneds=0.12 um  (d) Measured reciprocal space maps.
was investigated. The layer was grown by low-pressure rapid
thermal chemical vapor depositighP/RTCVD) at 500 °C  reciprocal space maps measured in symmetrical and asym-
with x=25%. The measured reciprocal space maps, Figsnetrical Bragg reflections, Fig. 13, are extended in the
11(b) and 11d), are in a good agreement with the mapsdirection perpendicular to the corresponding diffraction vec-
calculated for low dislocation densities, Figgcpand &f). tors. The maps simulated in approximatioi®) and (16),
The satellite peaks in the diffuse scattering pattern are reare in a good agreement with the measured ones. A more
vealed in both symmetrical and asymmetrical reflectionsprecise comparison of the measured and simulated peaks was
The measured and simulated intensity distributions inghe performed in the scans along and perpendicular to the dif-
scans(perpendicularly to the diffraction vectgrare com- fraction vectors, Fig. 1@). In the scans along diffraction
pared in Figs. 1) and 11c). The angular distance between vectors /26 scarn), the widths of the peaks calculated for
the satellite maxima on the simulated curve does not deperghcorrelated 60° dislocations are in a good agreement with
on the dislocation density, and occurs about 20% larger thathe observed peaks. However, in the scans along diffraction
the measured one. The discrepancy can be due to the elastiectors @ scan$, the observed peaks are broader in both
anisotropy, which was not taken into account in the simulasymmetrical 004 and asymmetrical 224 reflections. The dif-
tions. Both coherent and diffuse components of the scatterefgérence has been treated as a non-uniform tilt due to local
intensity were included in the simulatiofsee Eq(30)], and  variation of the differencép=p_ — p_ between densities of
the dislocation densitp=1.25um ! was determined from the dislocations with the opposi'ecomponents of the Bur-
the valuepd=0.15 found in the fit. gers vectors. The mean variatigtsp/ p)2)?=0.12 in Eq.

A Si;_,Ge,/Si sample grown by liquid phase epitaxy (21) gives an agreement between the widths of the measured
(LPE) was chosen as an example of a system possessingaad the calculated peaks.
larger dislocation density. During the growthsing an in- The AISb/GaAs sample grown by molecular-beam epi-
dium mel) the sample was cooled down from 958 to 940 taxy on a semi-insulating001) GaAs substrate was chosen
°C. The layer thickness 5:50.5 um was measured by scan- as an example of system with very large mismatch and ac-
ning electron microscopySEM), the uncertainty is due to cordingly large dislocation density. This sample contains a
thickness variations over the sample. Figure 12 presentsuperlattice with 50 periods of 6 ML InAs and 6 ML AISb
measured and calculated diffraction peaks for this(overall thickness 0.2:m) on top of a 1um-thick relaxed
Si,Ge;_,/Si system. The degree of relaxation measuredAlSb buffer layer. The growth temperatures for the buffer
from the relative peak positions of the layer and the substratiayer and the superlattice were 570 and 425 °C, respectively.
peaks is 98%. Using Vegard's law, an atomic concentratiomhe AlSb layers were grown at Am/h, and the InAs layers
of the germanium in the layer of = 4.3% was calculated. at 0.25um/h. The group-V-lll beam flux ratio in both types
The lattice mismatch is 0.18%, and the linear dislocatiorof layers was 5:1. The superlattice is not relaxed with respect
densityp=9 um %, so thatpd~50. The layer peaks on the to the buffer layet® The misfit of 7.9% between the GaAs
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: FIG. 13. Comparison between measured and calculated x-ray-
diffraction peak profileg004 reflection of the InAs/AISb superlat-
tice (thickness 0.2um) and the fully relaxed AISb buffer layer

/4 (thickness 1um) on a GaAs substrate. The measured inter(&itly
224 lines) agrees with the calculations for the correlation parameter
b v=0.03 (broken line. The calculation of thes scan for uncorre-

lated dislocationgdotted line, buffer layer reflectioris shown for
comparison.
Layer Layer
The peak widths of the superlattice and the buffer layer are
comparable, in agreement with the results of Sec. IlIB show-
c 40 L % ing that the peak widths can be estimateq from the dis'.[or—
pm tions at the surface. Thus one can determine the nonunifor-
' mity of the strains at the top of the layer, caused by the misfit
_ ) _ dislocations at its bottom interface, by just measuring the
FIG. 12. Diffraction peaks for 004 and 224 reflections of the peak width of the layer. Approximationd2) and (16) are

Siy - Ge,/Si heteroepitaxial systenx4.3%. (@) Scans along and ot gyfficient to evaluate the superlattice peak profile along
perpendicular to the diffraction vectors: measureméhit lines), q,, since they do not take into account the peak broadening
calculations for uncorrelated uniformly distributed 60° dislocationsda’e to the layer thickness. This profile was calculated by

(broken line$, and taking into account the local tilt due to variation integration of Eq.(24) Whilel for all other calculations pre-

of the densities of dislocations with opposiecomponents of the - . :
Burgers vectors with( 8p/p)?)Y?=0.12 (dotted liney. (b) and(c): sented in Figs. 12 and 13 approximatid€) and (16) are
sufficiently accurate.

Measured and calculatédssuming uncorrelated uniformly distrib-
uted dislocationsreciprocal space maps. The intensity changes be-
tween isointensity contours by a factor of 2. VI. DISCUSSION

substrate and AISb buffer layer, which is totally relaxed, The problem considered in the present paper originates
gives rise to a linear density of the misfit dislocationsfrom the fact that the mismatch between the substrate and the
p=400 um~1, so thatpd=480. A transmission-electron- layer possessing different lattice parameters is released by
microscopy(TEM) study reveals a complicated defect struc-discrete portions, the dislocations, whose Burgers vectors are
ture, including threading dislocations, microtwins and stackdattice translation vectors. A uniformly strained layer, which
ing faults (although this sample is the best in the series, Nowould be incommensurate to the substrate, is never realized
5 in Ref. 16. However, the densities of these defects aren epitaxy. Having a pronounced mean effect, the lattice pa-
much smaller than the misfit dislocation density. For ex-rameter relaxation, one can evaluate the mean-square effect
ample, the mean distance between threading dislocations ofue to nonuniformity of the strains concentrated at the dis-
the superlattice is about @m, while the mean distance be- location lines. Comparison with the experimental results
tween the misfit dislocations is only 2.5 nm. The strain fieldsshows that in the case of large mismatch the observed peaks
of the misfit dislocations give an evident mean effect, theare narrower than follows from calculations for uncorrelated
relaxation, and the mean-square variation of these fieldeandomly distributed misfit dislocations. We explain the dis-
given by Eq.(15) provides the essential contribution to the crepancy by a spatial correlation of the dislocations.
peak width. The observed peaks, Fig. 13, are more than five Threading dislocations are frequently considéfetfas a
times narrower than the ones calculated under assumption ofain source of distortions causing broadening of the diffrac-
uncorrelated dislocations. We conclude that the misfit dislotion peaks. However, the mean distances between threading
cations are strongly positionally correlated, in agreementlislocations are reported to be of the order qirh, compa-
with the TEM observations of periodic arrays of misfit dis- rable with the layer thickness, while the mean distances be-
locations[cf. Fig. 7(c) in Ref. 16. An agreement between tween the misfit dislocations in the same systems are more
measured and calculated peak widths can be achieved withan two orders of magnitude smaller. As the calculations for
the correlation parameter equal to 0.03. uncorrelated misfit dislocations give peaks even broader than
The presence of the InAs/AISb superlattice on top of theare observed, we restricted ourselves to the analysis of the
AISb buffer layer provides us with the possibility to compare misfit dislocations only and do not consider other defects
the strain variations in the layer with that in its upper part.which may dive additional peak broadening. When the
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threading dislocations contribute to the peak width, the de- Kidd, Fewster, and Andref¥  investigated
gree of spatial correlations between the misfit dislocation$n,Ga _,As/GaAs heteroepitaxial system with low disloca-
has to be even higher than follows from the estimates belowtion densities,pd<<1. The observed reciprocal space maps
It was found in Sec. lll B that the half-widths of the agree with our Figs. 6, 8, and 11. The diffraction patterns
diffraction peaks at large densities of misfit dislocations arecontain two components; the Bragg peaks of the coherent

proportional to scattering, whose intensity decreases with increasing disloca-
tion density, and the diffuse spot. At low dislocation densi-
Ag~Qby/p/d, (31 ties, the diffuse spot is extended along the diffraction vector

and accompanied by the satellites in tipe direction. The

with a numerical factor depending on the orientations of theangular range between the intensity minima separating the
diffraction vector, the scan direction in the reciprocal spacegentral diffuse peak and the satellites of the 700-A-thick
Burgers vectors of the involved dislocations, etc. Proceedingample, transformed to the dimensionless units used in the
to the angular units wj=\qy/4m cosy and present paper, isAg,d=~6.5, to be compared with
w, =\q, /47 sing for directions along and perpendicular to Agq,d~6.4 derived from the experimental curve of our Fig.
the diffraction vector(here\ is the x-ray wavelength and  11(a). A discrepancy with the value 7.4 which follows from
is the Bragg angk and keeping in mind that the simulations, Figs. (8 and 11a), can be due to elastic
Q=(4m/\)sing according to the Bragg law, one finds anisotropy, neglected in the simulations. It is worth noting
w|~tand, while w, does not depend on the Bragg angle.that the 1400-A-thick sample of Ref. 23 gives the value
The generic dependenda)~ Q does not refer to a particular Ad,d=8.2, but the accuracy of its determination from the
type of defect, but is inherent for nonuniform strains. Theexperimental data is lower.
same dependencies were found in the framework of the mo- Holy et al?* evaluated the scattering from misfit disloca-
saic block model, witho| andw, treated as due to the strain tions by treating the dislocation displacementér) as
and the misorientation effects of randomly distributedGaussian random variables, and representing the corre-
dislocation€°% In comparison, the finite sizé&, of the lation function G(r,r')=(expiQ-[u(r)—u(r')]}) as
sample or relevant blocks givesq~Lg ! independent on  exp(—%{Q-[u(r)—u(r')1}?)). As discussed in the Sec. |,
the diffraction vector. The triple crystal measurem&htd  such an approach is not generally valid, since dislocation
show directly thatw;~tand and w, do not depend on the displacements are not small and contain jumps by tht_a Bur-
Bragg angle(The double-crystal rocking curves give only a 9€rs vectord on the cuts. The result.of .further. approxima-
combination ofw; and w,.% tion, u(r)—'u(r’_)~[(r—r’)~V]u(r), coques W|tk_1 our Eq.

Kyutt and co-worker$*® studied several heteroepitaxial (11). The imaginary part of the correlation functi¢d) and
systems with large mismatch. Comparing the measured pedRe corresponding shift of the diffraction peak is missing,
widths of GaAs layers on silicon substrate with the calcula-nowever. Note that the opposite sequence of approximations
tions based on the results of Sec. Ill B, we find that the ratids correct for a crystal containing large dislocation densities
of the simulatedfor uncorrelated dislocatiohgo observed With equal densities of dislocations with opposite Burgers
peak widths vary from 1 to 2, depending on the sample. Forectors® For small dislocation densities, the correct ap-
the GaSb/GaAs system, the widths of the peaks are similar teroach, discussed in Appendix A, is based on Poisson statis-
the results of present study for the AISb/AlAs system, Fig.tics. The spatial correlations of the dislocations can also be
13, and about 6 times narrower than calculated for the untaken into account in this way. It is worth noting that the
correlated misfit dislocations. The discrepancy can be exstress components presented in Ref. 24 give only strains, the
plained by spatial correlations of the dislocations, as dissymmetrical part of the distortion tensor, while integr@s
cussed in Secs. Il C and V. (13), and(15) involve distortions. We use the displacement

Westwoodet al?! investigated the IgGa,_,As layers on  fields of the dislocation in half-space to determine the distor-
GaAs, and found that the widths of double-crystal diffractiontions, see Appendix B.
curves increase wher increases up tx~0.5. A further Hausler and Ebeff derived correlation function equiva-
decrease of the peak width at-0.5 is accompanied by an lent to Krivoglaz’ for spatially uncorrelated dislocations, Eqg.
increasing order in the network of misfit dislocations, ob-(A8), and applied it to simulations of the double-crystal
served by transmission electron microscopy. This behaviofocking curves of partially relaxed ®a;_ P/GaAs het-
agrees well with the effect of spatial correlations of the misfiteroepitaxial systems. Their simulations are in good agree-
dislocations described in Sec. Il C. It is worth noting, how- ment with the observations indicating the absence of corre-
ever, that the density of threading dislocations also decreaséa{ions in dislocation positions.
when x increases ak>0.5. The effects of threading and

misfit dislocations have not been resolved in the experiment.
. . VIl. CONCLUSION
The peak widths of partially relaxed In GaAs/GaAs mul-
tilayers observed by Rose and PietSchgree with the cal- The lattice mismatch between the substrate and the epi-

culations for uncorrelated dislocations for small dislocationtaxial layer is relaxed by discrete portions, the dislocations.
densities pd~1). In almost relaxed systemgd~30) the  The nonuniformity of the strains concentrated at the disloca-
observed peaks are two times narrower, which can be exion lines gives rise to diffuse scattering. When the disloca-
plained with the correlation parameter=0.25. This result tion density is large, the diffraction peak from the layer is

also can be explained by the expected increase of the spatidiie to short-range correlations in positions of the atoms, and
correlations of dislocations with increased dislocation denthus it is a diffuse peak. The intensity of the coherent peak
sity. reflecting the long-range correlations is exponentially small.
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The position of the diffuse peak is governed by the mearBarbara for the AISb/GaAs sample. We also appreciate the
distortions, and can be found without considering individualhelp of U. Jahn(Paul-Drude-Institut fu Festkaperelek-
dislocations. The peak width is a mean-square effect due toonik, Berlin and H. Raidt(Max-Planck Arbeitsgruppe
nonuniformity of the strains, and depends on the Burger§Rontgenbeugung,” Berlipfor performing the SEM mea-
vectors of individual dislocations. The peak shapes are clossurements. We thank K. 'ldaler (Max-Planck-Institut fu
to anisotropic Gaussians extended in the direction perperFestkaoperforschung, Stuttgarfor helpful discussions. The
dicular to the diffraction vector. The nonuniformity of the work was supported by the German Bundesministerium fu
distortions in the topmost part of the layer is readily given byForschung und TechnologiMFT) under Contract No. 01
the peak half-width of the whole layer. The peak width for M 2929.
spatially uncorrelated dislocations is proportional to the
square root of the dislocation dens{gee Fig. 4. Deviations APPENDIX A: CORRELATION FUNCTION
of the observed peak widths from the calculated ones are due ) ] )
to correlations in the dislocation positions. The short-range In this appendix, we follow Ref. 11 to derive general ex-
correlations give rise to the peak narrowing, in comparisorPressions for intensity scattered by a crystal containing a
W|th the uncorre'ated dis|ocati0r]S, by a factor Of I‘andom d|Str|bUt|0n Of. defects. In the framework of the ki-
V((AN)Z)/N, equal to the rms fluctuations of the dislocation "ématical approximation, the amplitude of the wave scat-
number. The long-range nonuniformity of the dislocationtered by a crystalline object is proportional to the sum
distribution causes a broadening of the peak. Variation of thé\(Q) =2exdiQ- (Rs+us)] taken over all atoms of the
dislocation density broadens the peak of symmetrical Brag§'ystal- HereR; is the position ofsth atom in a defect-free
reflection in the direction along the diffraction vector. Varia- 'éference crystal, ands=u(Rs) is its displacement due to
tion of the relative densities of the 60° dislocations with defects. The intensity(Q)=(|A(Q)|?) is the result of the
different tilt components of the Burgers vectors, while the@verage over random positions of the defects. It can be pre-
total dislocation density is constant, broadens the peak in thgented as a double sum over all atoms,
tangential direction.
At low dislocation densities, the diffraction pattern con- 1(Q)=, eRRIG(R,Ry), (A1)
tains both coherent and diffuse components. The intensity of s.s’
the cohgrent pgak decreasg; exponentially with increasing. ..« the correlation function is
dislocation density. The position of the coherent peak does
not follow the mean distortions. The shift of the peak in the G(Rs,Ry)=(exdiQ- (us—ug)1). (A2)
direction normal to the surface is smaller than given by the
mean distortions. The lateral shift is absent, despite the non- In a triple-crystal diffraction experiment, the beams are
zero mean lateral strain. At very low dislocation densities,collimated in the incidence plane, while the acceptance win-
the diffuse scattering is extended along the diffraction vectotiow of the detector is large in the direction perpendicular to
and is accompanied by the satellites in direction perpendicuhat plane. Taking thed,,Q,) plane as the incidence plane,
lar to the diffraction vector. As the dislocation density in- we assume that integration of the intensi§Q) over the
creases, the peak continuously transforms to an anisotroptgy component of the wave vector can be performed in the
Gaussian extended in a direction perpendicular to the diffracnfinite limits. The integration of Eq(Al) gives rise to the
tion vector. delta function §(Rs,—R/y), meaning that the two points
Almost all features of the calculated diffraction patternsr, andR,, lie in one and the same plarye= const. Thus the
are confirmed experimentally. We observed satellites of thentensity can be represented as
diffuse scattering peak at low dislocation densities, and the

transformation of the peak to an anisotropic Gaussian with v
increasing dislocation density. At low dislocation densities, 1(Qx,Q,) =2 €URTRIG(R,,Ry), (A3)
measured and simulated diffraction patterns are in good s;s'

agreement. When all parameters are controlled indepefwhere the superscripty] at the sum indicates that
dently, the simulations performed without any fitting param-(r_— Ry),=0, and the summation runs over the plane
eter agree well with the experiment. At large dislocation deny: const.
sities, introduction of long- and short-range correlations in' 7o perform the statistical average), one has to consider
positions of the dislocations allows us to reach an agreemeny, as a sum of contributions due to all defects of the crystal,
between measurements and simulations. and average over their random positions. Let us first consider
the case when all defects produce displacements of one and
the same type, i.e., defects differ only by their position, and
then generalize the result to different types of defects. One
The authors thank R. Hey and M. Hcke (Paul-Drude-  can present the displacement of sta atom as a sum over
Institut fir Festkoperelektronik, Berlin for the preparation all defectsus==Xug;, whereug=u(Rs—R;) is the displace-
of the AlAs/GaAs samples, P. Zaumseil and G. Fisdler ~ ment at the positiolRg due to a defect in the positioR; .
stitut fur Halbleiterphysik, Frankfurt/Odgrfor the prepara- The summation can be extended to all possible positions of
tion of the LP/RTCVD SiGe/Si sample, E. Bauser and P. Othe defects by introducing the occupation numbgrequal
Hanssorn(Max-Planck-Institut fu Festkaperforschung, Stut- to 1 if a defect is present in positidnand 0 otherwise. The
tgard for the preparation of the SiGe/Si LPE sample, as wellsubscriptt denotes positions which can be occupied by the
as B. Brar and H. KroemgUniversity of California, Santa defects, and its meaning depends on the type of the defects.
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For straight dislocations lying in the plane of the interface, Let us proceed now to the general case of spatially corre-
which are considered in the present paper, it counts the pdated defects, when the numbarg, are statistically depen-
sitions along the line in the plane of the interface perpendicudent. We start from the case of only one type of defect, and
lar to the dislocation lines. Other general examples arenake use of the equality
straight dislocations in a bulk crystal, where possible posi-
tions are given by lattice points in the plane normal to dis- exdic{Q- (Us;—Ug)]=1+c{exdiQ- (Us—Ug)]— 1}
location lines, or dislocation loops, determined by positions (A9)
of their centers. The mean valge=(c;) is the number den-
sity of the defects.

Thus one hasigz= 2;cUg;. Substituting this sum into Eq.
(A2), one can present the exponential function as a produc

which is identically valid for botlc,=0 and 1. An effective
way of evaluating the correlation functig@4) is to apply
the Kubo cumulant expansidh?”?8 Instead of expanding
broduct(A4) over the correlation functionéc,c,---), one
represents the  x-ray correlation  function as

_ A, _ G(Rs,Ry) =exgd —T(Rs,Rs/)] and expandd (Ry,Ry/) over

G(Rs.Rs) l_t[ XHICQ (Us—Usr)] ). (A4) the correlation functiong(c,—c)(c, —c)---).
The first term of the expansion depends on the mean con-

Let us assume first that the defects are not correlated. Thetentrationc and is given by Eqs(A6) and (A7). The next
Eqg. (A4) contains a product of statistically independentterm is expressed via the pair correlation function
terms. The average of each term is ((ci—c)(cy—c)):

(exfic,Q- (Ug—Ug)])=c exfiQ- (Ug—Ug)]+1—c, . D d((c—c)(cy—c))
t o o (A5) T2(R,Ry)=~ 2, I 1+ (1+cd,)(1+cdy)

sincec; takes on only two values, 1 with probabilityand (A10)

0 with probability 1-c. One can rewrite EqA4) as where®,=exdiQ- (ug;— Ugy) ] — 1. Further terms of the ex-
pansion become more bulky. The expansion can be simpli-
fied when the concentratiom and also the correlations

t<t’

G(Rs,Rs) =1 {c exdiQ: (ug—ug)]+1-c} {(c;—c)(cp—c)--+) are small. Retaining the terms linear
! over these quantities, one has
=expY, Infc exiQ- (us—Ug)]+1—c} ”
t

TReRy)==2 > Oy d Dy
=1 t1<tr<---- <t
=exd —T(Rs,Rs)]. (AB)
X((Ctl_c)“‘(ctl_c)>- (Al1)
For small concentrationg;<<1, one can expand the loga-
rithm to receive Extension to cases of several types of defects is straight-
forward, and we present the first two terms only:

T(Rs,Ry)=c2 {1-exfiQ- (Us—ug )]} (A7) 1
t S TR R)= =3 €53, 3, ca(RR0)

aa’ t#t’
Generally, several types of defects producing different <P, P (A12)
displacement fields contribute to,. For example, one can taFtaly
consider inclusions of different sizes, dislocation loops OfWhereSaa’(Rt_Rt’):<(Cta_ca)(ct’a’_ca’)> and ®,,=
different orientations, straight dislocations of different line exdiQ- (ugy, — Us1,)1— 1.
directions, etc., as different types of defects, and write the The correlation functiofA12) was applied in Sec. IIIC.
displacement as a sums=ZX ,Us, where the subscriptr  As discussed in that section, when the correlation length of
counts defect types present in the crystal. In this paper, dis:,_,(R,—R,/) is small compared with the length scale of the
locations lying parallel or perpendicular to the incidenceyariation of the displacement fields, one can keep the terms
plane, as well as dislocations with the same line direction buip, = constant during summation ef,,,,(R,— R;/). Then the
differing by orientation of the Burgers vector, are consideredsyms ¢, =3,.¢,.(R) are of special interest. These
as different types of defects. One can introduce occupatiogyms can be quite generally related to the mean square varia-
numbersc,, equal to 1 if the defect of type is present in  tion of the number of the defect® Consider first defects of
position t, and O otherwise, and the number densitiesonly one type. The correlation functiom(R,—R,/)=
C,=(Ctq) Of defects of typen. Then Eq.(A7) is substituted  ((¢c,—c)(c,,—c)) is defined fort#t’. The coinciding sites
for by can be included in the summatiofAl2) by setting
€,0'(0)=0. On the other hanzd, one directly finds
B . ((cy—c)(c—c))=c(1—c), since{c;)={c;)=c for the bi-
T(RS’RS')_; C“Z {1=exliQ (Usta = Ustta) I} modal spectrum ofc;} consisting of 0 and 1. We restrict
(A8) ourselves to small defect densitie€1, and write

This correlation function is used in this paper. ((c;—c)(cp—c))=e(R—Ry/)+CSy, (A13)
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where &, is the Kronecker’s delta. Let us sum up the left- the image dislocation
and right-hand sides of EqA13) overt andt’. The sum

>:1 is equal to the number of the lattice sites on the summa- b, z+d  ax(z+d)
tion interval, anct=,1= N is the mean number of the defects =5 | arctan— +x2+(z+d)2 , (B3)
on this interval. The sunx(c;—c) is equal toAN, the ran-
dom variation of the number ofzdefects on the interval. One b. 11 ,
has>{(c;—c)(c; —c))={(AN)<), the mean-square varia- _ |tme 2 axX
tion of<the number of>the< defect>s, and thus U2z= 277[ 2 IO+ (z4d)") + X2+ (z+d)?|’
(B4)
2
652 S(Rt):(;(%_ 1)_ (A14) and the additional relaxation term
t
b,d| (1—a)x 2axz(z+d)
The factory=1+c~ ‘e, employed in Sec. Il C, is equal to Yo i @rzr a2~ Zr vy Y
((AN)?)/N. When spatial correlations of the defects are ab-
sent, one hag(AN)?) =N, as in the ideal gas of noninter- b,d[  z+d az((z+d)*>—x?)
acting particles. In that limite=0 andy=1. The correla- Usz =~ 7 | X2+ (z+d)? + %+ (z+d)?)? (B6)
tions of the defect positions decrease the fluctuations,
y<1. For an edge dislocation with the Burgers vector perpen-
The generalization to several types of the defects iglicular to the surface=(0,0b,), the displacements due to a
straightforward: one has, instead of E413), dislocation in the infinite medium are
b, 1-«a a(z—d)?
<(Cta’_c)(ct’a’ - C)>:8aa’<Rt_ Rt’>+ca5aa’5tt’ Uix=— _[_ln(X2+ (Z_d)2)+ ﬁ}
(B7)
and the summation ovérandt’ gives i X ax(z—d)
U =5~ arctanz_d+xz+(z_d)2}, (B8)
(AN,AN,/) _ _ o
E““’EZ €qa'{Rt)=Cyq — N Spat |- (A16) the image dislocation gives
b, l—al ) 02 a(z+d)?
APPENDIX B: DISPLACEMENTS DUE TO DISLOCATION UZX_E 2 N+ (z+d)9+ X+ (z+d)7|’ (B9)
PARALLEL TO SURFACE OF THE HALF-SPACE
_ b, X ax(z+d)
Here, for the sake of completeness, we present the dis- Uy, = — > arctar'.Zer +x2+(z+d) , (B10
placement due to a dislocation lying parallel to the surface of ™
the isotropic half-space on a given distarttérom it. This  and the additional terms are
problem was first solved by He&tsee also Ref. 14In the
case of a screw dislocation, the condition of the stress-free Uno = — @ (1- ) z+d
surface is fulfilled by means of the image dislocation. In the 3 X2+ (z+d)?
case of an edge dislocation, the image dislocation compen- 5 2 2
sates for only one component of the stress at the sutthee +a 2x°z+d(x"+ (z+d) )} (B11)
compressive stress, when the Burgers vector is perpendicular (C+(z+d)?)? ’
to the surface or shear stress when the Burgers vector is
parallel to the surfade Thus the solution consists of three e — bdl (1-a)x n 2axz(z+d) (B12)
parts: displacement due to a dislocation in the infinite me- 3z 7 | X2+ (z+d)? T (C+(z+d)?)?|

dium, the image dislocation, and an additional term.

We use the frame of Fig. 1 with the origin at the surface,
the z axis is normal to the surface and the dislocation line i~ (0:y,
parallel to they axis. The parametex=1[2(1—v)] is in- b X
troduced, where is the Poisson ratio. u1y=2—yarctan_—d, (B13)

The displacements due to an edge dislocation with the & z
Burgers vector parallel to the surfabe= (b,,0,0) consist of and the image dislocation
the dislocation displacements in the infinite medium,

The screw dislocation with the Burgers vector
0) has only one displacement component

b X
S— n—
b z—d ax(z—d) Uzy= Zwarcta z+d (B14
U= — -—| arctan +— AR (B1)
2m X X*+(z—d) provides zero stresses at the surface.

5 Using the displacements=u, +u,+ uz for any compo-
2) 4 ax nent of the Burgers vector presented above, one finds that the
X2+ (z—d)?|’ stresses o,,~ (1— v)(du,/9z) + v(Iuy ! IX),oy,~ (IUy/ IZ)
(B2) +(du,/ox) are equal to zero at the surfaze 0.

by |[1-« 5
ulZ—E[TIn(x +(z—d)
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