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Scattering of vibrational waves in perturbed quasi-one-dimensional multichannel waveguides
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We investigate the scattering properties of vibrational waves in perturbed quasi-one-dimensional multichan-
nel waveguides in the harmonic approximation. Local defects are introduced by changing the masses or the
spring constants of the perfect waveguide. For both types of defects we find resonances in the continuum.
These are due to the coherent coupling between local defect states and propagating states. Beyond the simi-
larity with the quantum-mechanical case of electron scattering and associated Fano resonances, the scattering
behavior of vibrational waves appears to be more complex. This complexity can be attributed to the vector
character of the vibrational amplitudes and to additional possibilities for mode-mode coupling by the defects.
To illustrate the method a detailed discussion of the transmission spectra is presented for the generic case of a
double chain containing defects, which shows already the essential characteristic features of a multichannel
system[S0163-1827)05104-7

I. INTRODUCTION in one-dimensional disordered mesoscopic atomic chains
was studied.

Scattering and localization phenomena in disordered low- While strong similarities between electronic scattering
dimensional systems have been of interest for a long time2@nd the scattering of vibrational waves may be expected

They are now of renewed interest owing to advances in techs!Nce, mathematically speaking, we just replace the Schro

nology that permit the construction of devices at the nanogmger equation by the dynamical equation, it should be

metric scale. Most of the recent research has been orien'[n ted, however, that the case of the vibrational waves is
' ore complicated. Here one is confronted with the scattering

towards the study of electronic scattering in quasi-ON€q yecior fields described by the Cartesian amplitudes of the
dimensional systems, the basic motivation being to undery,q\eg on the lattice sites, instead of scalar fields in the elec-
syand the limitations that structurgl d|sorder,_or other_klnds Otronic case. Also, for the same bundle of atomic chains, the
disorder, may have on the physical properties of microelechymper of available channels in the vibrational case is
tronics devices. greater than in the electronic case, which gives rise to a
The basis of the understanding of dc electronic transporficher complexity.
in the mesoscopic regime and its generalization to multiter- |n the following we shall demonstrate that the different
minal systems have been provided by Landdweno related  nature of vibrational waves gives rise to some interesting
the conductance of the system to its scattering matrix. Morgcattering properties. As in the electron case, we find that the
recently, several authcYs have shown that multiple scatter- transmission spectra of vibrational waves can be regarded as
ing and quantum interference become very important to deidentifying characteristics of the structural properties of the
scribe such transport phenomena. considered system. Multiple scattering becomes very impor-
Scattering experiments are used in different domains ofant and causes a large variety of resonance features. In the
physics to investigate the physical properties of the systerf@nguage of optics or electronics these can be identified as
under consideration. Two different regimes have to be disFabry-Peot or as Fano resonances. In the language of me-
tinguished:inelastic and elastic scattering. Elastic scattering chanical vibrations at surfaces, which are considered as infi-
is the essential tool to investigate structural properties, limDité defects terminating semi-infinite crystals, these are

ited as it is by the instrumental wavelength. X rays, for ex_callledscontliruum resonank::ésa i and na ch
ample, which are widely used for structural analysis, have N S€c. Il we present the dynamic and propagating char-

their resolution limitations on the nanometric scale. Here vi-2Cteristics of a perfect waveguide, introducing the essential
eatures of the formalism we need later on. Section Il pre-

ratorl waies coul o an ieesig e slenis “ne alebra ol for Scterg i deles
X fh sec. IV we give some typical examples of disordered

electron-phonon and phonon-phonon scattering can be kel ichannel mesoscopic systems with either mass or spring

sufficiently small. defects.

In the present paper we investigate the scattering of vibra-

tional waves in perturbed crystalline quasi-one-dimensional Il. THE PEREECT WAVEGUIDE

waveguides in the harmonic approximation. While there has

been interest in electronic phenomena for many years, the

study of vibrational phenomena in multichannel systems has We consider the planar quasi-one-dimensiqgabsi-1D

not received the attention it deserves, even though scatteringaveguide represented in Fig. 1. It consistdNgfequidistant

A. Propagating modes
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el §

FIG. 1. Quasi-1D planar waveguide composed\gfintercon-
nected chainsN,=5).

parallel periodic chains of masses aligned along the axis of o
propagation X direction. For simplicity, the distances be-
tween adjacent masses are chosen to be the same in both the
x andy directions. Each mass is linked to its nearest and
next-nearest neighbors by harmonic springs with spring con-
stantsk; and k,. The dynamics is described by Newton’s
equations leading to the corresponding dynamical equations
that define the displacement amplitudgg, at site (,j) in

the a direction, wherea=x,y. For bulk sites, i.e., for
2<j<Ny—1, projection on the(y) axis yields

_mwzuijx: —Ka(Uijx = Uiy 1)) —Ka(Ujjx = Ui—1j %)
FIG. 2. Dispersion of propagating modes in planar waveguides

2 _ _ 2 _ of dlfferent widthsN, . The parameters afe,=1, k,=0.75, and
2 ( ijx |+1,J+1,x) 2 ( ijx i+1, 1,><) (a) N =2, (b) N =3, and(c) =6,

ka ka

E(uijx_ui—l,j+l,x)_ E(uijx_ui—l,j—l,x) whereq is the real wave vector; denotes the equilibrium

position of columni, and the vectol' describes the dis-
K placement amplitudes of each atom in this column

2 2
7 Uiy ~Uisgjray) + 5 (Uijy —Uivgj-1y)

Uj1x
2 Ky Uiy
+E(uijy_uifl,j+l,y)_5(uijy_uifl,jfl,y)y =
u'=
_ 2 =—k _ —k _ Uin, x
Mo “Ujjy = — K1 (Uijy = Ui j+1y) —Ka(Uijy = Ui j-1y) y
k, uiNyy

2
E(Uijy—uiu,ju,y)—E(Uijy_uiﬂ,j—l,y) o . .
For later purposes, it is convenient to relate the displace-

) K, ment vectors in adjacent columns by a phase fagtore.,
% (Uijy =Ui—1j+1y) = 5 (Uijy ~Ui-1j-1y) u'*1=ku'. This phase relation is an essential feature of the
matching method? initially employed for the study of sur-
Ky K, face localized phonons and resonances. For propagating
B E(uiix_ui+1vi+1yx)+ E(Uiix_“iﬂyi—lyx) waves as in Eq(2), we havex=e'9%%=¢'9 assuminga=1.

The eigenvalue problem E@l) can then be written as
2 2
+?(uijx_ui—l,j+1,x)_E(uijx_ui—l,j—l,x)v Clx) U= — w2, 3)

D The dynamical matrixC is a 2N, X 2N, matrix. It contains

wherew is the vibration frequency. The corresponding dy-t€rms with« and 1k. Solving Eq () for fixed x =€, one
namical equations for boundary siteg<(1 or j=N,) are obtains N, e|genvalue30 together with the corresponding
obtained by setting terms corresponding to absent springs tﬂgenvectorsu The propagating vibration modes of the
zero. Note that the diagonal springs that couple the displaceshain correspond to solutions witk|=1. They are usually
ments parallel and perpendicular to thexis are necessary given in terms ofg, with g running over the first Brillouin
to stabilize the system with respect to shear. zone [ —,7]. In the considered 2D case we have two
Equations1) must be solved for all the considered atomsacoustical modes with—0 for g— 0, the remaining modes
with appropriate boundary conditions. In the present workbeing optical withw different from zero for allg. Figure 2
we use scattering boundary conditions for which we obtairshows the dispersion curves for different numbers of chains
the plane-waves solutions using the parameteks =1, k,=0.75, andm=1. These pa-
rameters will be systematically used in all our following nu-
u' =009, (20  merical calculations. It is seen that the dispersion becomes



55 SCATTERING OF VIBRATIONAL WAVES IN . .. 1709

already complicated even for these simple cases. This would
naturally be even more so for increasiNg, since the num-
ber of modes grows simultaneously. The eigenmodes of the
waveguide are either symmetric or antisymmetric with re-
spect to the central axis in thedirection. Symmetric modes
correspond to atomic displacements that satisfy the condi-
tions

Uijx = Ui Ny +1-jx

Uijy = ~UiNng+1-jy

whereas for the antisymmetric modes the displacements sat-

isfy

o~ MNWH

Ujjx = _ui,Ny+1—j,x )

Uijy =UiNg+1-jy -

In the case of the double chain we have one acoustical and . . , .

one optical mode for each symmetry. The anticrossing be- F'C: 3. Functional behavion () of the antisymmetric modes
havior between the symmetric acoustical and optical mode 2 double Ch;'n' For companson,dthe d'Spﬁrs'on cutey) for
observed in Fig. 2 is due to the fact that dispersion curves € corresponding propagating modes are shown on top.
belonging to the same symmetry interact and therefore d
not cross. Note further that the antisymmetric transvers
acoustic mode hasaf dispersion folg— 0. This behavior is

a consequence of the finite extension of the waveguide in th
y direction(see, e.g., Ref. 10 for the continuum case

eally relevant evanescent modes are retained. Both
%ropagating and evanescent solutions are needed to describe
the scattering solutions in the presence of defects.
€ The functional behaviors of the symmetric and antisym-
metric eigenmodes in the plane are given in Figs. 3 and 4
for the case of the double chain. As mentioned above, the
B. Evanescent modes propagating modes of Fig. 2 are represented by the curves
In order to describe the scattering in presence of defectdollowing the unit circle in thex plane. In order to show the
we not only have to know the propagating modes describegorrespondence between Fig. 2 and Figs. 3 and 4, we have
above, but also to consider the evanescent solutions for th&so reproduced the dispersion curved) for the respec-
multichannel system. In other words, for a g|v@nwe need tive Symmetries considered in FIgS 3 and 4. To facilitate the
all the solutionsx, including those with «,|# 1. These so- comparison, we have marked common special points in both
lutions can be obtained using different proceddrfs?An  the w(«) and thew(q) representations.
elegant and well suited way is giveisee Ref. 13 for the The functional behavior of the modes, corresponding to
similar electronic pr0b|emby introducing new unknowns the solutions on and inside the unit circle in FIgS 3 and 4,
vij, defined by

1 2+ o : . a
Vija= = Uija- 4 ’

We then can rewrite Eq.3) in the form of an eigenvalue
problem for,

. N L (u
A(w)-W=xkB-W with W=(+). (5)
1%

Note that the dimension of this generalized eigenvalue prob-
lem is twice as large as the original problem.

The solution of Eq.(5) yields N, pairs of eigenvalues
k, and lk,. As discussed above, eigenvalues with
|x,|=1 correspond to propagating waves, which are de-
scribed by real wave vectorg. These solutions may be
grouped into pairs corresponding to the two directions of
propagation. Both solutions are linked by time-reversal sym-
metry. Since each of the two solutions contains the same
information, we consider in the following only waves propa-  FIG. 4. Functional behavian(x) of the symmetric modes in a
gating from the left to the right. Solutions witfx,|# 1 cor-  double chain. For comparison, the dispersion cumés) for the
respond to evanescent or divergent waves. Only the physeorresponding propagating modes are shown on top.
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turns out to be rather intricate. Consider first the two anti- Ill. SCATTERING AT DEFECTS

symmetric modes in the three-dimensional view of Fig. 3. We now consider a waveguide perturbed by defects. The

situation is depicted in Fig. 5. The perturbed reghdnex-
Yends over columns 0 1. To its left (L) and right R) it is
attached to two unperturbed semi-infinite waveguides. Since
the perfect waveguides do not couple between different
eigenmodes, we can treat the scattering problem for each
eigenmode separately. For an incoming wave in eigenmode

point f at w=w; and k= —1; it becomes evanescent for
larger . The other solution is associated with the optical
mode. Starting frona, it is immediately evanescent at small
frequencies, passes through a minimumedfx ;= 0.45) at

b (w=0.64), joins again the unit circle at (x=1), and
becomes the propagating optical dispersion branch up to
(k=—1), before becoming evanescent again. For still
higher frequenciesd> wy), both solutions follow first the
negative reak axis up toe, where they become degenerate,
and then they split up again, remaining evanescent but wit
complexx and|«|—0 for w—. We will see later that the

A

up=(k)'uy, is=—1, (6)

he resulting scattered waves are composed of a reflected and
transmitted part, which can be expressed as a superposition

X ' . of the eigenmodes of the perfect waveguide at the same fre-
rather complicated functional behavior of the evanescent s g P g

lution in the range of acoustical modes<@ < 1.25 (path Tuency, ie.,
a—b—c), including the degeneracy with the other solution _
at point a, is at the origin of some interesting scattering W= &tk ), (kY i=-1 7
properties in this frequency range. v
For the symmetric modes, the functional behavior in the
complex k plane is shown in Fig. 4. It is even somewhat
more complicated than that for the antisymmetric modes.
This is essentially due to the anticrossing behavior of the
propagating modes, which was already mentioned abov&he coefficients¢,;-and 7, determine the reflection and
The solution starting at poina follows the propagating transmission coefficientssee below. With the definitions
acoustical mode up to poirti, which corresponds to the Egs.(7) and(8), we can rewrite the dynamical equations for
maximum frequency in this branch. It then joins the mini-the perturbed chain. Since there are perfect waveguides in
mum of the optical branch at poietthrough an evanescent regionsL and R, we only need to solve Eqgl) for the
path with|«|# 1. Fromc to d it continues on the propagat- masses inside the perturbed zoke and in the boundary
ing optical branch, before becoming again evanescent witkolumns—1 andN+ 1, which are matched to the rest of the
real negativex. The second solution is evanescent forperfect waveguide by Eq$7) and (8). This yields a linear
=0, starting with a real negative value of For increasing  system of equations withfX (N -+ 3) unknowns, namely, the
o it follows the negativex axis, to reach poing’ in the  2(N+1)N, displacement amplitudes;;, of the perturbed
propagating optical branch, continues on this propagatingegion M and the N, coefficients§,;-and »,;~ Isolating
branch up to its maximum frequency at polmt, and then the inhomogeneous terms describing the incoming wave, we
joins the pointc’ on the propagating optical branch via an obtain an inhomogeneous system of linear equations
evanescent path. It coincides with the propagating optical

U= 7,,(,)U,(k,), 1=N+1. ®

branch between points’ and f and then becomes evanes- D(w)-x= —V(w) 9)
cent with real positivec. For higher frequencies both solu-
tions remain evanescent witk|—0 for w— . or, expanding the expressions,
D,. Dim 0 0 *7 &
Duc Dmg, Dmg, 0 H u® é
0 DMlO DM11 DMlZ 0 : ul 0
=1 | (10)
0 DMN—l,N—z DMN—l,N—l DMN—l,N 0 The
0 DMN,N—l Dvyy  Dwr a 0

0 0 Dgrum Dgrr ;77 0
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X

FIG. 5. Perturbed planar quasi-1D waveguide. The perturbed
region (shaded contains defect massedull dots) and defect
springs(thick lines.

In our model, the system contains only interactions between
adjacent columns. The matrD is consequently tridiagonal o)
by blocks. Each of the off-diagonalNg, X 2N, blocks de- FIG. 6. Transmission probabilities for the antisymmetric modes
scribes the coupling between adjacent columns. The bloci @ double chain containing two mass defestg=m,=M. (a)

matrices as well as the vectofs and G are given in the =3 and®M=03.

Appendix. It is easy to see that mass defects change only the .
diggonal bIocksDMy while defects in the spring cgnstanﬁs port, we obtain for the energy current between two heat baths

held at slightly different temperaturdg andT,

0
0 02 04 06 08 1 12 14 16 18 2

may enter anywhere in tHBMij (j=i,ix1).
The solutions of Eq(10) yield the displacements;; , of kéT o kgTx e*
the atoms in the perturbed region as well as the coefficients IEZTJO X XA o W(Tl_Tz)y (14

¢,5-and 5,5, which determine the displacements of the at-

oms in the unperturbed regiomsandR of the waveguide. with T;<T<T,. Division by (T;—T,) yields the heat con-
The scattering behavior is usually described in terms of thejuctance.

scattering matrix. Its elements are given by the relative trans-

mission or reflection amphtudgs,v—andplw—of the scattered IV. RESULTS AND DISCUSSION
waves in moder for an incoming wave in mode. In order
to obtain unitarity of the scattering matrix, the scattered A. Mass defects in a double chain

waves have to be normalized with respect to their group The simplest multichannel configuration to study is the
velocity. In the following, we concentrate on the discussionggple chain with mass defects. In what follows. the sub-

of the transmission and reflection probabilities. They arecripts ont,,. refer to Fig. 2a), where the modes are num-
given by the absolute squares of the respective elements gt aq 1-4 from bottom to top. We first consider a local

the scattering matrix. Explicitly, for waves incoming in symmetric mass defect on one column, described by the de-

modev, the reflection probabilities are fect massesn; =m,=M on the two column sites. Modes of
different symmetry are not coupled. Since both symmetric
ro=| Pﬁf2=&|§ﬁf2 (11) and_ antisymmetric modes show_ ql_JaIitativer the same bg-
vy havior, we show only the transmission spectrum of the anti-

symmetric modes in Fig. 6. The presence of defects leads to
a general decrease of the transmission probability. As ex-
pected, the influence of the defects is smallest in the acous-
th—|TVﬁ2:&|77w 2 (12)  tical regime. Foro—0 we gett;;—1, independent of the
v, perturbation. A general behavior is observed, namely, that

Hereo  is the aroun velocity in channel. which is set equal backscattering becomes most important prvectors near
v group y ’ 9 the zone boundarieévertical broken ling where we get

to zero for evanescent modes. The evanescent modes gre .
- . 111,t33—0, independent of the strength of the defect. A sec-
necessary for a complete description of the overall dynamics

and of the scattering amplitudes of the multichannel wave-ond observed feature, which is defect specific, manifests it-

. , self in strong asymmetric resonances. These can be attributed
guide, although they do not contribute to energy transport. to the presence of defect-induced resonant states, whose fre-

In order to characterize the overall transmission of meso- ;
o . : uency depends on the defect mass. This dependence can be
scopic disordered multichannel systems at a given frequency_ . . . . .
w, it is useful to define a total transmissian by summing gsny' understood in a simple picture. Defects wid>m
over all input and output channels give rise t_o bound states below the optlcal_ modes, Wht_areas
defects withM<m lead to local modes with frequencies
larger than the maximum frequencies of the acoustical or the
AMo)=2 t,7, (13)  optical modes. The presence of these bound states in the
vy frequency range of the propagating states leads to the addi-
where the sum is carried out over all propagating modes dtonal resonances in the transmission spectra observed in Fig.
frequencyw. The total transmission is important for calcu- 6, which thus can be identified as Fano-like resonances. The
lating experimentally measurable guantities. For example, isituation is quite similar to the case of electron waveguides
full analogy with the Landauer description of electron trans-discussed in Ref. 5. In the latter case it was possible to de-

and the transmission probabilities
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02 b M=2 e _
0 i | l : .
0 02 04 06 08 1 12 14 16
®
A FIG. 8. Transmission probabilities for two columns of symmet-

ric mass defects at distanbebetween each other. The dashed lines
show the transmission probabilities for the single defe@st;;
(acoustical antisymmetric mogér M=0.5 andN=8 and(b) t,,
(acoustical symmetric mogléor two different symmetric defects at
distanceN=8. The defect masses ak;=2 andM,=5, respec-
tively.

0 0.2 0.4 0.6 0.8 1 1.2
0}

FIG. 7. Influence of the asymmetry of a nonsymmetric Iocal1 (antisymmetri¢ and 2 (symmetri¢ whenm,=m,, show-

defect on the total transmissignin a double chain. The total mass
of the defect iSM ;= my+m,=22; the asymmetry parameteris
given by a=m;—m,. (a) Transmission probabilities;; (antisym-

ing the expected resonances. It is seen that for an intermedi-
ate value of the asymmetry parameter=6) the single

metric acoustic modeand t,, (Symmetric acoustic moglefor sharp resonance ab, that exists fora=0 can still be re-

a=0, (b) total transmissiom\ for =6, and(c) total transmission solved in theA spectrum; a further increase of (a:_ 16)
A for a=16. leads to a strong enhancement of the resonance in the

spectrum, but suppresses thgresonance. It is interesting to

scribe the position of the transmission zeros analytically. Imote that in the frequency region &@®<1.2 this
the present situation of vibrational waves, however, each site-induced coupling leads to a rather strong increase of the
possesses already two degrees of freedom and the dimensittal transmissionA, far beyond its value oft;;+t,, at
of the system of linear equatiorjsee Eq.(10)] becomes «=0.
twice as large. In the simplest possible case of a symmetric Up to now we have considered defects that are localized
local mass defect in a double chain the dimension of the&n one column. For a distribution of such defects we expect
system is equal to 6 and it is already impossible to obtairadditional Fabry-P®t oscillations due to the interference be-
compact analytical expressions for the scattering coefficientsveen multiply scattered waves. In Fig. 8 we show the trans-
or the positions of the transmission zeros. mission probabilities for the system of two separated sym-

As may be expected from the above arguments, the resgnetric defects and for the acoustic symmetric and
nances shift to highegtower) frequencies for smallgfarger antisymmetric modes. In both cases we find FabmoPes-
defect masses. We note that fot<<m the transmission cillations depending on the distance between the defects. The
probability of the optical mode near the resonance does ngiresented transmission spectrum for the symmetric acousti-
reach unity, as is usually the case. This fact can be attributeghl mode(bottom of Fig. 8 shows also the supplementary
to the interaction between the optical and the acousticaFano-like resonances caused by the single defects. None of
modes, which has no analog in the electronic waveguide dighese are present in the presented transmission spectrum for
cussed in Ref. 5. the antisymmetric acoustical mod®p of Fig. 8, since in

Defects composed of two different masses in one columithe chosen example the respective eigenfrequencies of the
of the waveguide break the axial symmetry along the wavelocal defects are positioned above the acoustical mode.
guide. This leads to additional coupling between symmetric Figure 9 shows the transmission spectrum of the antisym-
and antisymmetric modes. It is convenient to describe suchetric acoustical mode for a sequence of five equally spaced
defects by the total defect mal¥k,=m; + m, and the asym- columns of defects, with masses,=m,=2. Here the
metry parametesz=m;—m,. In Fig. 7 we show our numeri- Fabry-Peot oscillations lead to a splitting into separate
cal results for the total transmissioM=X, -t bands of high transmission probability, which are correlated
v,v=1,2, with M;=22 and two differenta values. For with the distanced between adjacent defectd=3 in this
comparison we also give the transmission behavior of modesase, whereas the small oscillations within these windows
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FIG. 9. Transmission probability for the acoustical antisymmet-
ric mode for a sequence of five equidistant symmetric local mass ¢ |- (b) -
defects. The defect structure is shown on top. The masses at the full | | A A i d\ 7
points arem;=m,=2. The dashed line gives the transmission 00 02 04 06 08 1 12 14 16 18 2
probability for two defects with the same spacing. ®

FIG. 11. Transmission probability for the antisymmetric mode
depend directly on the full width of the defect region for a local symmetric change of the horizontal springs. The vertical
(N=12). The rapid oscillations in the frequency rangelines indicate the border of the bands. The spring constant of the
1<w<1.2 are due to the resonances caused by the defeatew springs ig. (a) g=10k; and(b) g=0.%;.
induced resonant states attached to the symmetric optical
mode. The influence of the horizontal springs on the transmis-
sion behavior of the antisymmetric modes is shown in Figs.
11(a) and 11b). Here we have replaced both horizontal
springs between two adjacent columns by springs with the

Defects can also be introduced by changing some springsonstanty, thus preserving the axial symmetry of the wave-
in the waveguide. Unlike mass defects, the spring defects agjuide. For largeg [see Fig. 14a)] the transmission in the
simultaneously on two sites. One can therefore expect somgcoustical regime remains nearly unaltered, whereas the
new features in the transmission spectra. In the following waransmission in the optical band decays monotonically and
concentrate on some examples of simple spring defects in thganishes at the maximum frequency of the optical branch.
double chain that reveal already their somewhat particulagven forg<k, [see Fig. 118)], the transmission probability
nature. in the acoustical branch does not change very much and re-

The simplest defect is obtained by replacing one of thenains close to unity. However, in the optical-frequency re-
vertical spring constark; by g. We find that the transmis- gime we obtain a resonance. This is different for the sym-
sion of the antisymmetric mode is not affected by the defectmetric modes, where no resonances can be observed in the
In fact, for this symmetry, both atoms in a column move bytransmission spectra, regardless of the strength of the re-
the same distance in thedirection, whereas they move in placed spring; i.e., apparently these defects are always too
the opposite direction along theaxis. Therefore, the verti- weak to give rise to resonant states in the frequency domains
cal springs are not used for either thanotion, which does of the symmetric propagating modes. A typical transmission
not change the distance between the two masses, ox thespectrum for the symmetric modes in this case is shown in
motion, since there is nlsarmoniccontribution to the restor-  Fig. 12. Apart from rather sharp minima near the band edges
ing force. The transmission spectrum for the symmetricat the top of the acoustic branch and the bottom of the optical
acoustical mode, in contrast, is shown in Fig. 10. Here, botlband, the transmission probability decreases monotonically
atoms move in the opposite direction along thexis and  with increasing frequency.
thus the replaced vertical spring contributes. Gerk; this The effect of changing both oblique springs at one posi-
leads to the resonance behavior in the acoustic regime se¢pn is shown in Fig. 13 for the antisymmetric modes and for
in Fig. 10.

B. Spring defects in a double chain

1 T T T
! 1 0.8 |- .
08 . B _
= o, tag
too B .
i 02 -
02 | - 1 1 I 1
0 ] ] ] ] 1 ] ] 0 0.5 1 1.5 2 2.5
0 02 04 06 08 1 1.2 14 ®

@ FIG. 12. Transmission probability for the symmetric modes for

FIG. 10. Transmission probability for the acoustical symmetrica local symmetric change of the horizontal springs. The spring con-
mode for changed vertical spring. The spring constant of the nevstant of the new springs = 0.5<;. The vertical lines indicate the
spring isg=0.2k;,. border of the bands.
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1 | B B | E N B 1 ] ' l I =
0.8 - - 0.8 -
11, tag 1 tata
0.2 - 02 ]
0 | | | I | | 0 1 | | I
T T T T T T T 0 0.5 1 1.5 2 2.5
08 - @
| FIG. 15. Transmission probability for the symmetric modes for
ti1, tas 7 a symmetric oblique-spring defect wigh=1.3k,. The vertical lines
B - indicate the border of the bands.
02 |- -
g=,1'3 k|2 | | | | | | | this value no transmission zero is fouridee, e.g., case
0 I T . : : | | g=2.%, in Fig. 13, but the transmission remains strongly
0s L i suppressed in the center of the optical regime.

A rather curious behavior is also found for the transmis-
to tl sion spectrum of the antisymmetric acoustical modes. For
112 3] symmetric oblique-spring defects with— 0, which corre-

spond to a local instability against shear motion, the trans-
02 g=22 ko ] mission probability remains strongly affected even in the
0 e ——— S | EAN W S limit of extremely low frequencies and approaches 1/2 rather
o o T U than unity whenw—0 (see Fig. 1% This behavior seems
0.8 |- rather strange since, in general, the transmission of sound in
n the low-frequency regime is expected not to be hindered by
t11, 33 local defects. It can, however, be explained if we remember
B 7 the specialk(w) functional behavior of the antisymmetric
02 4g-3 Ky = modes in the low-frequency range. In the limit-0, there
I ] 1 1 ! I f are two modes, one propagating and the other evanescent,

02 04 06 08 1 12 14 16 18 2 but with k—1. In other words, the evanescent mode be-
o comes more and more extended and &tO0 it is degenerate
FIG. 13. Transmission probability for the antisymmetric modeswith the acoustical propagating mode. Since, strictly speak-
for symmetric local changes of both oblique spring constants. Théng, transmission is only possible through propagating states,
spring constant of the new springsds The vertical line indicates the transmission probability remains approximately equal to
the border of the bands. 1/2 at small but finite frequencies. Experimentally one would
need, however, an infinite waveguide to measure this kind of
a series of spring constants. As may be expected, spring coaffect.
stantsg<k; lead to a Fano-like resonance in the acoustical The effect of symmetric oblique-spring defects on the
regime and the resonance frequency increasesgviBimi-  symmetric modes is shown in Fig. 15. The transmission re-
larly, for g slightly larger thark, (see casg=1.3, in Fig.
13), this resonance is found at the bottom of the optical
mode. Quite surprisingly, increasimgeven more, we obtain
a second resonance structure in the upper frequency range of
the optical mode(see casey=2.2, in Fig. 13, which is
apparently due to the appearance of a second resonant state
in this region. Both resonances approach each other With5 B
increasingg and become degenerate gt 2.5,. Beyond

4 -
1 B T T T T T T A L i
08 [ — g0 -
¥ —-= g=0.002k, 2 i
N 9=001k,

NI

v 0 0.5 1 15
®

5

® FIG. 16. Total transmission through the constriction with the
FIG. 14. Transmission probability for the antisymmetric acous-geometry shown on top. The dashelbtted lines show the trans-
tical mode for different local symmetric oblique-spring defects for mission probabilities of the perfect waveguides consisting of two
g—0. (four) chains.
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mains nearly perfect in the acoustical branch. &§ork, we  thickness, following Ref. 12, which generalizes the matching
observe a resonance in the optical band, which shifts tprocedure to such systems.

higher frequency with increasing Our numerical results for the case of a double chain show
that in spite of their different character, the scattering of
C. Transmission through a constriction vibrational waves has some features in common with the

In the previous sections we have discussed the effect o?cattering of electron waves and can be described in terms of

perturbations on the transmission of vibrational waves in gasically the same interference phenomena, namely, Fabry-
double chain. The numerical calculations can easily be exP€0t oscillations and Fano-like resonances. It should be
tended to a wider class of systems including a larger numbetoted that both phenomena are based on the same basic
of coupled chains. In this case, it is convenient to discuss thB1echanism, namely, the interferences between multiply re-
total transmission rather than the transmission probabilitie§ected waves in the perturbed region, the essential difference
for single specific modes. The results are qualitatively thebeing that Fabry-Ret oscillations involve multiple scatter-
same as for the double chain. In particular, the transmissioing of propagating states, whereas Fano resonances are usu-
spectra can be understood in terms of FabmePand Fano- ally evoked to describe the interference between a propagat-
like resonances. There is, of course, a great variety of defectag transmitted mode and a local defect mode, which itself
that cannot be discussed in detail in this paper. In Fig. 16 wenatches the evanescent states of the waveguide. It is hence
show theA spectrum for the most simple case of a constric-evident that the evanescent modes are necessary for a com-
tion in a waveguide consisting of four chains. For compari-plete description of the overall dynamics and of the scatter-
son, we also show the total transmission spectra for the twihg amplitudes in a multichannel system, although they do
ideal waveguides consisting of four or two chains, respecnot contribute to energy transport. The transmission spectra
tively. The oscillations in the low-frequency regime can thus be regarded as identifying features of the specific

(0<1) can be related to Fabry-Re oscillations due to in-  gefect structures and may therefore be used for their charac-
terference between multiply reflected waves at the junctionsgization.

the sharp structures observed at higher frequencies are esseNgactron scattering is of fundamental importance for the

tially caused by resonances involving local states near thﬁnderstanding of dc-transport properties. Experimental in-

band edges. vestigations of the scattering properties of electrons at the
Fermi energy are rather easy, provided the contact problem
has been solved. The energy dependence of the transmission

In the present paper we have developed an approach thépectra is, however, difficult to measure, since the Fermi
allows us to treat the scattering of vibrational waves in mul-energy of the sample can only be varied in a very limited
tichannel quasi-one-dimensional disordered mesoscopic sygange.
tems in an efficient manner by solving the dynamical equa- In analogy, vibrational waves are responsible for the heat
tions directly for scattering boundary conditions. Eventransport in insulators. In this case, it is straightforward to
though the presented method is inspired by previous work oxpress the heat conductance in terms of the transmission
electron waveguides, it should be emphasized that the caggobabilities of the vibrational wavelsee Eq.(14)]. The
of vibrational waves, which has not yet been treated in theessential difference with electrons is that phonons obey the
literature, is more complicated than the electron case, thgose-Einstein statistics and therefore the conductance is
essential difference being that the wave functions in thejiven by a weighted average of the transmission probabilities
Schralinger equation are complescalars whereas the vi-  gyer the full frequency range rather than by the transmission
brational amplltudgs are com_plenectors In this Sense, our nrohability at a single frequency. For this reason, heat-
present work provides a basis for the study of interference,nqyctance measurements are not well suited to study the
phenomena involving other polarizable vector waves, €.9yangmission spectrum for vibrational waves. While measure-

electromagnetic waves. In fact, defect-induced mode COUnents of mode-specific transmission probabilities will be

pling between propagating mOdeS plays an important role Nather difficult, direct measurements of the total transmission
the theory of electromagnetic waveguides and has been the

object of many investigations. In particular, in the micro- spectrumA (w) should be feasible. The experimental chal-

wave regime, Fano-type interference resonances are corlf—nge would be to couple.a_recewer and an emitter W'.th
monly used to build filters? At optical frequencies, how- <noWn frequency characteristics to the ends of a waveguide
ever, interference effects are washed out due to the strorfy/©iding backreflections at the junctions. .
coupling between the guided electromagnetic waves and the !t should be noted that the interference phenomena dis-
radiation modes outside the waveguide. cussed in this paper are derived from the dynamical equa-

While we have restricted our present discussion to thdions, which can be applied to any length scale provided that
case of planar waveguides, our approach can be extended Mase coherence is not destroyed by dissipative effects. De-
a straightforward manner to describe quasi-1D waveguidepending on the system and on the frequency range, the phase
of finite size in they andz directions. This would be useful coherence of vibrational waves can often be kept rather
for calculation of the transmission spectra of realistic sysdarge. In other words, our results for the transmission spectra
tems, although we do not expect marked differences with thef vibrational waves are not limited to the nanometer scale,
planar case. This algebraic approach can also be generalized is the case for coherent electron scattering, but may also
in principle to the scattering of vibrational waves in two- describe defect-induced interference effects in macroscopic
dimensional infinite structures having a certain crystallinesystems.

V. CONCLUSION
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APPENDIX: EXPLICIT FORM OF THE SCATTERING

EQUATIONS EQ. (10 . . .
Q Q For the diagonal blocks containing the masses we obtain

The matrix D in Eqg. (10) is block tridiagonal. It is similarly

composed of the & ,X2N, matrices DM“, DM“t1

(i=0,...N), D_., Dim, DuL, Dur, Dry, and Drg, D, =Vauot ©’ui-1
which are all tridiagonal themselves. In the following we

consider only mass defects, i.e., all springs are supposed to
be the same as in the perfect wave guide. The blocks

v
—
o
o

Dwm, .\, and Dwm,,,, which describe the interaction between T S T 0
adjacent columns, are then given by 10 0
: 0 0
Ky Kz O T 0 : 0 T S T
Ko Ky Kz 0O : O .-« ... 0 T P
0 Ky K; Ky, :
DMi,i+1_VUp_ : . - " 0 Mj; O 0
H 0 Kz_ Kl K2+ 0 Mil O 0
0 0 Koo K; 0 0 M, O 0
(A1) o2 : |
0 0 MiNy 0
and
0 0o o0 M
DMHLi:Vdown (A3)
with
K, K, O cee 0
Ko, K; Ky 0 :
. . —2k;—k 0
B 0 Ky K; Ky . : P:( 1o )
- . . . . 0 ’ 0 _kl_kZ
: 0 Ky Ki Ky
0 0 K2+ Kl S_(_Zkl_k2 0 )
(A2) 0 —2k;—ky/’
with and
T 0 O
K, k; O | “lo k)
0 O _
The blocks ofD, which connect the sample region to the
waveguides, are not modified by defects. They are given by
% & DLM:Vup’ Drm= Vaown: (A4)
K = ' = = S (v >
25 Kk ks Dy =(Dl, ... DY) where D) =x,Vaowr Ul
2 2 (A5)

3Ny \where 5M)R=K,,Vup~ﬁp.

and (A6)



_ 31 2 (2Ny)
D =(D{Y, ... DY)
DI(_VL): K(Vaute? €,V downt w21) : U,,,a

(A7)

where
= 2 (2N
Drr= (D, - - - ,D;Ry))
where 5|(RVF)e= K (Vauto K,Vypt wzl) : Gv .
(A8)

Here we have used the notationi,=u(x,) and

u'=u(l/k,).
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Finally, the inhomogeneous terms of Ed0) read
- 1 -
F=—1| Vaucr —Vdown™ 1] uz, (A9)
. 1 -
G=—Vgown Uy (A10)

The corresponding equations for spring defects are obtained
in a similar manner. However, in this case, all block matrices
containing the new spring constants have to be changed, and
the resulting equations cannot be written in a general com-
pact form.
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