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Scattering of vibrational waves in perturbed quasi-one-dimensional multichannel waveguides
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We investigate the scattering properties of vibrational waves in perturbed quasi-one-dimensional multichan-
nel waveguides in the harmonic approximation. Local defects are introduced by changing the masses or the
spring constants of the perfect waveguide. For both types of defects we find resonances in the continuum.
These are due to the coherent coupling between local defect states and propagating states. Beyond the simi-
larity with the quantum-mechanical case of electron scattering and associated Fano resonances, the scattering
behavior of vibrational waves appears to be more complex. This complexity can be attributed to the vector
character of the vibrational amplitudes and to additional possibilities for mode-mode coupling by the defects.
To illustrate the method a detailed discussion of the transmission spectra is presented for the generic case of a
double chain containing defects, which shows already the essential characteristic features of a multichannel
system.@S0163-1829~97!05104-7#
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I. INTRODUCTION

Scattering and localization phenomena in disordered l
dimensional systems have been of interest for a long tim1

They are now of renewed interest owing to advances in te
nology that permit the construction of devices at the na
metric scale. Most of the recent research has been orie
towards the study of electronic scattering in quasi-o
dimensional systems, the basic motivation being to und
stand the limitations that structural disorder, or other kinds
disorder, may have on the physical properties of microe
tronics devices.

The basis of the understanding of dc electronic transp
in the mesoscopic regime and its generalization to multi
minal systems have been provided by Landauer,2 who related
the conductance of the system to its scattering matrix. M
recently, several authors3–5 have shown that multiple scatte
ing and quantum interference become very important to
scribe such transport phenomena.

Scattering experiments are used in different domains
physics to investigate the physical properties of the sys
under consideration. Two different regimes have to be d
tinguished:inelasticandelasticscattering. Elastic scatterin
is the essential tool to investigate structural properties, l
ited as it is by the instrumental wavelength. X rays, for e
ample, which are widely used for structural analysis, ha
their resolution limitations on the nanometric scale. Here
brational waves could provide an interesting alternative
least in cases where inelastic scattering probabilities du
electron-phonon and phonon-phonon scattering can be
sufficiently small.

In the present paper we investigate the scattering of vib
tional waves in perturbed crystalline quasi-one-dimensio
waveguides in the harmonic approximation. While there
been interest in electronic phenomena for many years,
study of vibrational phenomena in multichannel systems
not received the attention it deserves, even though scatte
550163-1829/97/55~3!/1707~11!/$10.00
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in one-dimensional disordered mesoscopic atomic cha
was studied.6

While strong similarities between electronic scatteri
and the scattering of vibrational waves may be expec
since, mathematically speaking, we just replace the Sc¨-
dinger equation by the dynamical equation, it should
noted, however, that the case of the vibrational waves
more complicated. Here one is confronted with the scatter
of vector fields described by the Cartesian amplitudes of
waves on the lattice sites, instead of scalar fields in the e
tronic case. Also, for the same bundle of atomic chains,
number of available channels in the vibrational case
greater than in the electronic case, which gives rise t
richer complexity.

In the following we shall demonstrate that the differe
nature of vibrational waves gives rise to some interest
scattering properties. As in the electron case, we find that
transmission spectra of vibrational waves can be regarde
identifying characteristics of the structural properties of t
considered system. Multiple scattering becomes very imp
tant and causes a large variety of resonance features. In
language of optics or electronics these can be identified
Fabry-Pe´rot or as Fano resonances. In the language of m
chanical vibrations at surfaces, which are considered as
nite defects terminating semi-infinite crystals, these
called continuum resonances.7

In Sec. II we present the dynamic and propagating ch
acteristics of a perfect waveguide, introducing the essen
features of the formalism we need later on. Section III p
sents the algebraic formalism for scattering at defe
In Sec. IV we give some typical examples of disorder
multichannel mesoscopic systems with either mass or sp
defects.

II. THE PERFECT WAVEGUIDE

A. Propagating modes

We consider the planar quasi-one-dimensional~quasi-1D!
waveguide represented in Fig. 1. It consists ofNy equidistant
1707 © 1997 The American Physical Society
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1708 55FELLAY, GAGEL, MASCHKE, VIRLOUVET, AND KHATER
parallel periodic chains of masses aligned along the axis
propagation (x direction!. For simplicity, the distances be-
tween adjacent masses are chosen to be the same in bot
x and y directions. Each mass is linked to its nearest a
next-nearest neighbors by harmonic springs with spring co
stantsk1 and k2. The dynamics is described by Newton’
equations leading to the corresponding dynamical equati
that define the displacement amplitudesui j a at site (i , j ) in
the a direction, wherea5x,y. For bulk sites, i.e., for
2< j<Ny21, projection on thex(y) axis yields

2mv2ui jx52k1~ui jx2ui11,j ,x!2k1~ui jx2ui21,j ,x!

2
k2
2

~ui jx2ui11,j11,x!2
k2
2

~ui jx2ui11,j21,x!

2
k2
2

~ui jx2ui21,j11,x!2
k2
2

~ui jx2ui21,j21,x!

2
k2
2

~ui jy2ui11,j11,y!1
k2
2

~ui jy2ui11,j21,y!

1
k2
2

~ui jy2ui21,j11,y!2
k2
2

~ui jy2ui21,j21,y!,

2mv2ui jy52k1~ui jy2ui , j11,y!2k1~ui jy2ui , j21,y!

2
k2
2

~ui jy2ui11,j11,y!2
k2
2

~ui jy2ui11,j21,y!

2
k2
2

~ui jy2ui21,j11,y!2
k2
2

~ui jy2ui21,j21,y!

2
k2
2

~ui jx2ui11,j11,x!1
k2
2

~ui jx2ui11,j21,x!

1
k2
2

~ui jx2ui21,j11,x!2
k2
2

~ui jx2ui21,j21,x!,

~1!

wherev is the vibration frequency. The corresponding d
namical equations for boundary sites (j51 or j5Ny) are
obtained by setting terms corresponding to absent spring
zero. Note that the diagonal springs that couple the displa
ments parallel and perpendicular to thex axis are necessary
to stabilize the system with respect to shear.

Equations~1! must be solved for all the considered atom
with appropriate boundary conditions. In the present wo
we use scattering boundary conditions for which we obta
the plane-waves solutions

uW i5uW 0eiqxi, ~2!

FIG. 1. Quasi-1D planar waveguide composed ofNy intercon-
nected chains (Ny55).
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whereq is the real wave vector,xi denotes the equilibrium
position of columni , and the vectoruW i describes the dis-
placement amplitudes of each atom in this column

uW i5S ui1x

ui1y

A

uiNyx

uiNyy

D .

For later purposes, it is convenient to relate the displa
ment vectors in adjacent columns by a phase factork, i.e.,
uW i115kuW i . This phase relation is an essential feature of
matching method,8,9 initially employed for the study of sur-
face localized phonons and resonances. For propaga
waves as in Eq.~2!, we havek5eiqa5eiq, assuminga51.
The eigenvalue problem Eq.~1! can then be written as

C~k!•uW i52v2uW i . ~3!

The dynamical matrixC is a 2Ny32Ny matrix. It contains
terms withk and 1/k. Solving Eq.~3! for fixed k5eiq, one
obtains 2Ny eigenvaluesvn together with the correspondin
eigenvectorsuW n . The propagating vibration modes of th
chain correspond to solutions withuku51. They are usually
given in terms ofq, with q running over the first Brillouin
zone @2p,p#. In the considered 2D case we have tw
acoustical modes withv→0 for q→0, the remaining modes
being optical withv different from zero for allq. Figure 2
shows the dispersion curves for different numbers of cha
using the parametersk151, k250.75, andm51. These pa-
rameters will be systematically used in all our following n
merical calculations. It is seen that the dispersion becom

FIG. 2. Dispersion of propagating modes in planar wavegui
of different widthsNy . The parameters arek151, k250.75, and
m51. ~a! Ny52, ~b! Ny53, and~c! Ny56.
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55 1709SCATTERING OF VIBRATIONAL WAVES IN . . .
already complicated even for these simple cases. This w
naturally be even more so for increasingNy , since the num-
ber of modes grows simultaneously. The eigenmodes of
waveguide are either symmetric or antisymmetric with
spect to the central axis in thex direction. Symmetric modes
correspond to atomic displacements that satisfy the co
tions

ui jx5ui ,Ny112 j ,x ,

ui jy52ui ,Ny112 j ,y ,

whereas for the antisymmetric modes the displacements
isfy

ui jx52ui ,Ny112 j ,x ,

ui jy5ui ,Ny112 j ,y .

In the case of the double chain we have one acoustical
one optical mode for each symmetry. The anticrossing
havior between the symmetric acoustical and optical mo
observed in Fig. 2 is due to the fact that dispersion cur
belonging to the same symmetry interact and therefore
not cross. Note further that the antisymmetric transve
acoustic mode has aq2 dispersion forq→0. This behavior is
a consequence of the finite extension of the waveguide in
y direction ~see, e.g., Ref. 10 for the continuum case!.

B. Evanescent modes

In order to describe the scattering in presence of defe
we not only have to know the propagating modes descri
above, but also to consider the evanescent solutions for
multichannel system. In other words, for a givenv, we need
all the solutionsk, including those withuknuÞ1. These so-
lutions can be obtained using different procedures.9,11,12An
elegant and well suited way is given~see Ref. 13 for the
similar electronic problem! by introducing new unknowns
v i j a defined by

v i j a52
1

k
ui j a . ~4!

We then can rewrite Eq.~3! in the form of an eigenvalue
problem fork,

A~v!•WW 5kB•WW with WW 5S uW i
vW i
D . ~5!

Note that the dimension of this generalized eigenvalue pr
lem is twice as large as the original problem.

The solution of Eq.~5! yields Ny pairs of eigenvalues
kn and 1/kn . As discussed above, eigenvalues w
uknu51 correspond to propagating waves, which are
scribed by real wave vectorsq. These solutions may b
grouped into pairs corresponding to the two directions
propagation. Both solutions are linked by time-reversal sy
metry. Since each of the two solutions contains the sa
information, we consider in the following only waves prop
gating from the left to the right. Solutions withuknuÞ1 cor-
respond to evanescent or divergent waves. Only the ph
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cally relevant evanescent modes are retained. B
propagating and evanescent solutions are needed to des
the scattering solutions in the presence of defects.

The functional behaviors of the symmetric and antisy
metric eigenmodes in thek plane are given in Figs. 3 and
for the case of the double chain. As mentioned above,
propagating modes of Fig. 2 are represented by the cu
following the unit circle in thek plane. In order to show the
correspondence between Fig. 2 and Figs. 3 and 4, we h
also reproduced the dispersion curvesv(q) for the respec-
tive symmetries considered in Figs. 3 and 4. To facilitate
comparison, we have marked common special points in b
thev(k) and thev(q) representations.

The functional behavior of the modes, corresponding
the solutions on and inside the unit circle in Figs. 3 and

FIG. 3. Functional behaviorv(k) of the antisymmetric modes
in a double chain. For comparison, the dispersion curvesv(q) for
the corresponding propagating modes are shown on top.

FIG. 4. Functional behaviorv(k) of the symmetric modes in a
double chain. For comparison, the dispersion curvesv(q) for the
corresponding propagating modes are shown on top.
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turns out to be rather intricate. Consider first the two an
symmetric modes in the three-dimensional view of Fig.
Both are degenerate at pointa (k51,v50). For increasing
v, one solution is the acoustical dispersion branch up
point f at v5v f and k521; it becomes evanescent fo
larger v. The other solution is associated with the optic
mode. Starting froma, it is immediately evanescent at sma
frequencies, passes through a minimum ofk (kmin50.45) at
b (v50.64), joins again the unit circle atc (k51), and
becomes the propagating optical dispersion branch upd
(k521), before becoming evanescent again. For s
higher frequencies (v.vd), both solutions follow first the
negative realk axis up toe, where they become degenera
and then they split up again, remaining evanescent but w
complexk and uku→0 for v→`. We will see later that the
rather complicated functional behavior of the evanescent
lution in the range of acoustical modes 0,v,1.25 ~path
a→b→c), including the degeneracy with the other soluti
at point a, is at the origin of some interesting scatterin
properties in this frequency range.

For the symmetric modes, the functional behavior in
complexk plane is shown in Fig. 4. It is even somewh
more complicated than that for the antisymmetric mod
This is essentially due to the anticrossing behavior of
propagating modes, which was already mentioned ab
The solution starting at pointa follows the propagating
acoustical mode up to pointb, which corresponds to the
maximum frequency in this branch. It then joins the min
mum of the optical branch at pointc through an evanescen
path with ukuÞ1. Fromc to d it continues on the propaga
ing optical branch, before becoming again evanescent w
real negativek. The second solution is evanescent f
v50, starting with a real negative value ofk. For increasing
v it follows the negativek axis, to reach pointe8 in the
propagating optical branch, continues on this propaga
branch up to its maximum frequency at pointb8, and then
joins the pointc8 on the propagating optical branch via a
evanescent path. It coincides with the propagating opt
branch between pointsc8 and f and then becomes evane
cent with real positivek. For higher frequencies both solu
tions remain evanescent withuku→0 for v→`.
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III. SCATTERING AT DEFECTS

We now consider a waveguide perturbed by defects. T
situation is depicted in Fig. 5. The perturbed regionM ex-
tends over columns 0 toN. To its left (L) and right (R) it is
attached to two unperturbed semi-infinite waveguides. Si
the perfect waveguides do not couple between differ
eigenmodes, we can treat the scattering problem for e
eigenmode separately. For an incoming wave in eigenm
n̄,

uW in
i 5~k n̄ ! iuW n̄ , i<21, ~6!

the resulting scattered waves are composed of a reflected
a transmitted part, which can be expressed as a superpos
of the eigenmodes of the perfect waveguide at the same
quency, i.e.,

uW r
i 5(

n
jn n̄ ~kn

21! iuW n~kn
21!, i<21 ~7!

uW t
i5(

n
hn n̄ ~kn! iuW n~kn!, i>N11. ~8!

The coefficientsjn n̄ and hn n̄ determine the reflection an
transmission coefficients~see below!. With the definitions
Eqs.~7! and~8!, we can rewrite the dynamical equations f
the perturbed chain. Since there are perfect waveguide
regionsL and R, we only need to solve Eqs.~1! for the
masses inside the perturbed zoneM and in the boundary
columns21 andN11, which are matched to the rest of th
perfect waveguide by Eqs.~7! and ~8!. This yields a linear
system of equations with 2Ny(N13) unknowns, namely, the
2(N11)Ny displacement amplitudesui j a of the perturbed
regionM and the 4Ny coefficientsjn n̄ andhn n̄ . Isolating
the inhomogeneous terms describing the incoming wave,
obtain an inhomogeneous system of linear equations

D̃~v!•xW52yW ~v! ~9!

or, expanding the expressions,
1
DLL DLM 0 ••• ••• ••• ••• 0

DML DM00
DM01 0 A

0 DM10
DM11

DM12 0 A

A � � � � � A

A � � � � � A

A 0 DMN21,N22
DMN21,N21

DMN21,N 0

A 0 DMN,N21
DMNN

DMR

0 ••• ••• ••• ••• 0 DRM DRR

2 1
jW n̄

uW 0

uW 1

A

A

uWN21

uWN

hW n̄

2 521
FW

GW

0

A

A

A

0

0

2 . ~10!



ee
l

lo

t
ts

n
at

th
n

e
u
ion
ar
ts
in

s
ic
ve
rt.
so
n

s
u-
,
s

ths

he
b-
-
al
de-
f
tric
be-
nti-
s to
ex-
us-

hat

ec-
it-
uted
fre-

an be

eas
s
the
the
ddi-
Fig.
The
es
de-

be

es

55 1711SCATTERING OF VIBRATIONAL WAVES IN . . .
In our model, the system contains only interactions betw
adjacent columns. The matrixD̃ is consequently tridiagona
by blocks. Each of the off-diagonal 2Ny32Ny blocks de-
scribes the coupling between adjacent columns. The b
matrices as well as the vectorsFW andGW are given in the
Appendix. It is easy to see that mass defects change only
diagonal blocksDMii

, while defects in the spring constan

may enter anywhere in theDMi j
( j5 i ,i61).

The solutions of Eq.~10! yield the displacementsui j a of
the atoms in the perturbed region as well as the coefficie
jn n̄ andhn n̄ , which determine the displacements of the
oms in the unperturbed regionsL andR of the waveguide.
The scattering behavior is usually described in terms of
scattering matrix. Its elements are given by the relative tra
mission or reflection amplitudestn n̄ andrn n̄ of the scattered
waves in moden for an incoming wave in moden̄. In order
to obtain unitarity of the scattering matrix, the scatter
waves have to be normalized with respect to their gro
velocity. In the following, we concentrate on the discuss
of the transmission and reflection probabilities. They
given by the absolute squares of the respective elemen
the scattering matrix. Explicitly, for waves incoming
moden̄, the reflection probabilities are

r n n̄ 5urn n̄ u25
vn

v n̄

ujn n̄ u2 ~11!

and the transmission probabilities

tn n̄ 5utn n̄ u25
vn

v n̄

uhn n̄ u2. ~12!

Herevn is the group velocity in channeln, which is set equal
to zero for evanescent modes. The evanescent mode
necessary for a complete description of the overall dynam
and of the scattering amplitudes of the multichannel wa
guide, although they do not contribute to energy transpo

In order to characterize the overall transmission of me
scopic disordered multichannel systems at a given freque
v, it is useful to define a total transmissionL by summing
over all input and output channels

L~v!5(
n, n̄

tn n̄ , ~13!

where the sum is carried out over all propagating mode
frequencyv. The total transmission is important for calc
lating experimentally measurable quantities. For example
full analogy with the Landauer description of electron tran

FIG. 5. Perturbed planar quasi-1D waveguide. The pertur
region ~shaded! contains defect masses~full dots! and defect
springs~thick lines!.
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port, we obtain for the energy current between two heat ba
held at slightly different temperaturesT1 andT2

I E5
kB
2T

h E
0

`

dx x2LS kBTx\ D ex

~ex21!2
~T12T2!, ~14!

with T1<T<T2. Division by (T12T2) yields the heat con-
ductance.

IV. RESULTS AND DISCUSSION

A. Mass defects in a double chain

The simplest multichannel configuration to study is t
double chain with mass defects. In what follows, the su
scripts ontnn8 refer to Fig. 2~a!, where the modes are num
bered 1–4 from bottom to top. We first consider a loc
symmetric mass defect on one column, described by the
fect massesm15m25M on the two column sites. Modes o
different symmetry are not coupled. Since both symme
and antisymmetric modes show qualitatively the same
havior, we show only the transmission spectrum of the a
symmetric modes in Fig. 6. The presence of defects lead
a general decrease of the transmission probability. As
pected, the influence of the defects is smallest in the aco
tical regime. Forv→0 we gett11→1, independent of the
perturbation. A general behavior is observed, namely, t
backscattering becomes most important forq vectors near
the zone boundaries~vertical broken line!, where we get
t11,t33→0, independent of the strength of the defect. A s
ond observed feature, which is defect specific, manifests
self in strong asymmetric resonances. These can be attrib
to the presence of defect-induced resonant states, whose
quency depends on the defect mass. This dependence c
easily understood in a simple picture. Defects withM.m
give rise to bound states below the optical modes, wher
defects withM,m lead to local modes with frequencie
larger than the maximum frequencies of the acoustical or
optical modes. The presence of these bound states in
frequency range of the propagating states leads to the a
tional resonances in the transmission spectra observed in
6, which thus can be identified as Fano-like resonances.
situation is quite similar to the case of electron waveguid
discussed in Ref. 5. In the latter case it was possible to

d

FIG. 6. Transmission probabilities for the antisymmetric mod
in a double chain containing two mass defectsm15m25M . ~a!
M53 and~b! M50.3.
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scribe the position of the transmission zeros analytically
the present situation of vibrational waves, however, each
possesses already two degrees of freedom and the dime
of the system of linear equations@see Eq.~10!# becomes
twice as large. In the simplest possible case of a symme
local mass defect in a double chain the dimension of
system is equal to 6 and it is already impossible to obt
compact analytical expressions for the scattering coefficie
or the positions of the transmission zeros.

As may be expected from the above arguments, the r
nances shift to higher~lower! frequencies for smaller~larger!
defect masses. We note that forM,m the transmission
probability of the optical mode near the resonance does
reach unity, as is usually the case. This fact can be attrib
to the interaction between the optical and the acoust
modes, which has no analog in the electronic waveguide
cussed in Ref. 5.

Defects composed of two different masses in one colu
of the waveguide break the axial symmetry along the wa
guide. This leads to additional coupling between symme
and antisymmetric modes. It is convenient to describe s
defects by the total defect massM tot5m11m2 and the asym-
metry parametera5m12m2. In Fig. 7 we show our numeri
cal results for the total transmissionL5(n, n̄ tn n̄ ,
n,n̄51,2, with M tot522 and two differenta values. For
comparison we also give the transmission behavior of mo

FIG. 7. Influence of the asymmetry of a nonsymmetric lo
defect on the total transmissionL in a double chain. The total mas
of the defect isM tot5m11m2522; the asymmetry parametera is
given bya5m12m2. ~a! Transmission probabilitiest11 ~antisym-
metric acoustic mode! and t22 ~symmetric acoustic mode! for
a50, ~b! total transmissionL for a56, and~c! total transmission
L for a516.
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1 ~antisymmetric! and 2 ~symmetric! whenm15m2, show-
ing the expected resonances. It is seen that for an interm
ate value of the asymmetry parameter (a56) the single
sharp resonance oft22 that exists fora50 can still be re-
solved in theL spectrum; a further increase ofa (a516)
leads to a strong enhancement of thet11 resonance in the
spectrum, but suppresses thet22 resonance. It is interesting t
note that in the frequency region 0.6,v,1.2 this
a-induced coupling leads to a rather strong increase of
total transmissionL, far beyond its value oft111t22 at
a50.

Up to now we have considered defects that are locali
on one column. For a distribution of such defects we exp
additional Fabry-Pe´rot oscillations due to the interference b
tween multiply scattered waves. In Fig. 8 we show the tra
mission probabilities for the system of two separated sy
metric defects and for the acoustic symmetric a
antisymmetric modes. In both cases we find Fabry-Pe´rot os-
cillations depending on the distance between the defects.
presented transmission spectrum for the symmetric aco
cal mode~bottom of Fig. 8! shows also the supplementa
Fano-like resonances caused by the single defects. Non
these are present in the presented transmission spectrum
the antisymmetric acoustical mode~top of Fig. 8!, since in
the chosen example the respective eigenfrequencies o
local defects are positioned above the acoustical mode.

Figure 9 shows the transmission spectrum of the antis
metric acoustical mode for a sequence of five equally spa
columns of defects, with massesm15m252. Here the
Fabry-Pe´rot oscillations lead to a splitting into separa
bands of high transmission probability, which are correla
with the distanced between adjacent defects (d53 in this
case!, whereas the small oscillations within these windo

l

FIG. 8. Transmission probabilities for two columns of symm
ric mass defects at distanceN between each other. The dashed lin
show the transmission probabilities for the single defects.~a! t11
~acoustical antisymmetric mode! for M50.5 andN58 and~b! t22
~acoustical symmetric mode! for two different symmetric defects a
distanceN58. The defect masses areM152 andM255, respec-
tively.
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55 1713SCATTERING OF VIBRATIONAL WAVES IN . . .
depend directly on the full width of the defect regio
(N512). The rapid oscillations in the frequency ran
1,v,1.2 are due to the resonances caused by the de
induced resonant states attached to the symmetric op
mode.

B. Spring defects in a double chain

Defects can also be introduced by changing some spr
in the waveguide. Unlike mass defects, the spring defects
simultaneously on two sites. One can therefore expect s
new features in the transmission spectra. In the following
concentrate on some examples of simple spring defects in
double chain that reveal already their somewhat partic
nature.

The simplest defect is obtained by replacing one of
vertical spring constantk1 by g. We find that the transmis
sion of the antisymmetric mode is not affected by the defe
In fact, for this symmetry, both atoms in a column move
the same distance in they direction, whereas they move i
the opposite direction along thex axis. Therefore, the verti
cal springs are not used for either they motion, which does
not change the distance between the two masses, or tx
motion, since there is noharmoniccontribution to the restor-
ing force. The transmission spectrum for the symme
acoustical mode, in contrast, is shown in Fig. 10. Here, b
atoms move in the opposite direction along they axis and
thus the replaced vertical spring contributes. Forg,k1 this
leads to the resonance behavior in the acoustic regime
in Fig. 10.

FIG. 9. Transmission probability for the acoustical antisymm
ric mode for a sequence of five equidistant symmetric local m
defects. The defect structure is shown on top. The masses at th
points arem15m252. The dashed line gives the transmissi
probability for two defects with the same spacing.

FIG. 10. Transmission probability for the acoustical symme
mode for changed vertical spring. The spring constant of the n
spring isg50.2k1.
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The influence of the horizontal springs on the transmi
sion behavior of the antisymmetric modes is shown in Fig
11~a! and 11~b!. Here we have replaced both horizonta
springs between two adjacent columns by springs with t
constantg, thus preserving the axial symmetry of the wave
guide. For largeg @see Fig. 11~a!# the transmission in the
acoustical regime remains nearly unaltered, whereas
transmission in the optical band decays monotonically a
vanishes at the maximum frequency of the optical branc
Even forg,k1 @see Fig. 11~a!#, the transmission probability
in the acoustical branch does not change very much and
mains close to unity. However, in the optical-frequency re
gime we obtain a resonance. This is different for the sym
metric modes, where no resonances can be observed in
transmission spectra, regardless of the strength of the
placed spring; i.e., apparently these defects are always
weak to give rise to resonant states in the frequency doma
of the symmetric propagating modes. A typical transmissio
spectrum for the symmetric modes in this case is shown
Fig. 12. Apart from rather sharp minima near the band edg
at the top of the acoustic branch and the bottom of the optic
band, the transmission probability decreases monotonica
with increasing frequency.

The effect of changing both oblique springs at one pos
tion is shown in Fig. 13 for the antisymmetric modes and fo

-
s
full

w

FIG. 11. Transmission probability for the antisymmetric mod
for a local symmetric change of the horizontal springs. The vertic
lines indicate the border of the bands. The spring constant of t
new springs isg. ~a! g510k1 and ~b! g50.2k1.

FIG. 12. Transmission probability for the symmetric modes fo
a local symmetric change of the horizontal springs. The spring co
stant of the new springs isg50.5k1. The vertical lines indicate the
border of the bands.
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a series of spring constants. As may be expected, spring co
stantsg,k2 lead to a Fano-like resonance in the acoustica
regime and the resonance frequency increases withg. Simi-
larly, for g slightly larger thank2 ~see caseg51.3k2 in Fig.
13!, this resonance is found at the bottom of the optica
mode. Quite surprisingly, increasingg even more, we obtain
a second resonance structure in the upper frequency range
the optical mode~see caseg52.2k2 in Fig. 13!, which is
apparently due to the appearance of a second resonant s
in this region. Both resonances approach each other wi
increasingg and become degenerate atg52.5k2. Beyond

FIG. 13. Transmission probability for the antisymmetric modes
for symmetric local changes of both oblique spring constants. Th
spring constant of the new springs isg. The vertical line indicates
the border of the bands.

FIG. 14. Transmission probability for the antisymmetric acous
tical mode for different local symmetric oblique-spring defects for
g→0.
n-
l

l

of

tate
th

this value no transmission zero is found~see, e.g., case
g52.2k2 in Fig. 13!, but the transmission remains strongly
suppressed in the center of the optical regime.

A rather curious behavior is also found for the transmis
sion spectrum of the antisymmetric acoustical modes. F
symmetric oblique-spring defects withg→0, which corre-
spond to a local instability against shear motion, the tran
mission probability remains strongly affected even in th
limit of extremely low frequencies and approaches 1/2 rathe
than unity whenv→0 ~see Fig. 14!. This behavior seems
rather strange since, in general, the transmission of sound
the low-frequency regime is expected not to be hindered b
local defects. It can, however, be explained if we rememb
the specialk(v) functional behavior of the antisymmetric
modes in the low-frequency range. In the limitv→0, there
are two modes, one propagating and the other evanesce
but with k→1. In other words, the evanescent mode be
comes more and more extended and atv50 it is degenerate
with the acoustical propagating mode. Since, strictly spea
ing, transmission is only possible through propagating state
the transmission probability remains approximately equal t
1/2 at small but finite frequencies. Experimentally one woul
need, however, an infinite waveguide to measure this kind
effect.

The effect of symmetric oblique-spring defects on the
symmetric modes is shown in Fig. 15. The transmission re

e

-

FIG. 15. Transmission probability for the symmetric modes fo
a symmetric oblique-spring defect withg51.3k2. The vertical lines
indicate the border of the bands.

FIG. 16. Total transmission through the constriction with the
geometry shown on top. The dashed~dotted! lines show the trans-
mission probabilities of the perfect waveguides consisting of tw
~four! chains.
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mains nearly perfect in the acoustical branch. Forg.k2 we
observe a resonance in the optical band, which shifts
higher frequency with increasingg.

C. Transmission through a constriction

In the previous sections we have discussed the effec
perturbations on the transmission of vibrational waves i
double chain. The numerical calculations can easily be
tended to a wider class of systems including a larger num
of coupled chains. In this case, it is convenient to discuss
total transmission rather than the transmission probabili
for single specific modes. The results are qualitatively
same as for the double chain. In particular, the transmis
spectra can be understood in terms of Fabry-Pe´rot and Fano-
like resonances. There is, of course, a great variety of def
that cannot be discussed in detail in this paper. In Fig. 16
show theL spectrum for the most simple case of a constr
tion in a waveguide consisting of four chains. For compa
son, we also show the total transmission spectra for the
ideal waveguides consisting of four or two chains, resp
tively. The oscillations in the low-frequency regim
(v,1) can be related to Fabry-Pe´rot oscillations due to in-
terference between multiply reflected waves at the junctio
the sharp structures observed at higher frequencies are e
tially caused by resonances involving local states near
band edges.

V. CONCLUSION

In the present paper we have developed an approach
allows us to treat the scattering of vibrational waves in m
tichannel quasi-one-dimensional disordered mesoscopic
tems in an efficient manner by solving the dynamical eq
tions directly for scattering boundary conditions. Ev
though the presented method is inspired by previous work
electron waveguides, it should be emphasized that the
of vibrational waves, which has not yet been treated in
literature, is more complicated than the electron case,
essential difference being that the wave functions in
Schrödinger equation are complexscalars, whereas the vi-
brational amplitudes are complexvectors. In this sense, our
present work provides a basis for the study of interfere
phenomena involving other polarizable vector waves, e
electromagnetic waves. In fact, defect-induced mode c
pling between propagating modes plays an important rol
the theory of electromagnetic waveguides and has been
object of many investigations. In particular, in the micr
wave regime, Fano-type interference resonances are c
monly used to build filters.14 At optical frequencies, how-
ever, interference effects are washed out due to the st
coupling between the guided electromagnetic waves and
radiation modes outside the waveguide.15

While we have restricted our present discussion to
case of planar waveguides, our approach can be extend
a straightforward manner to describe quasi-1D wavegu
of finite size in they andz directions. This would be usefu
for calculation of the transmission spectra of realistic s
tems, although we do not expect marked differences with
planar case. This algebraic approach can also be genera
in principle to the scattering of vibrational waves in tw
dimensional infinite structures having a certain crystall
to
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thickness, following Ref. 12, which generalizes the match
procedure to such systems.

Our numerical results for the case of a double chain sh
that in spite of their different character, the scattering
vibrational waves has some features in common with
scattering of electron waves and can be described in term
basically the same interference phenomena, namely, Fa
Pérot oscillations and Fano-like resonances. It should
noted that both phenomena are based on the same
mechanism, namely, the interferences between multiply
flected waves in the perturbed region, the essential differe
being that Fabry-Pe´rot oscillations involve multiple scatter
ing of propagating states, whereas Fano resonances are
ally evoked to describe the interference between a propa
ing transmitted mode and a local defect mode, which its
matches the evanescent states of the waveguide. It is h
evident that the evanescent modes are necessary for a
plete description of the overall dynamics and of the scat
ing amplitudes in a multichannel system, although they
not contribute to energy transport. The transmission spe
can thus be regarded as identifying features of the spe
defect structures and may therefore be used for their cha
terization.

Electron scattering is of fundamental importance for t
understanding of dc-transport properties. Experimental
vestigations of the scattering properties of electrons at
Fermi energy are rather easy, provided the contact prob
has been solved. The energy dependence of the transmi
spectra is, however, difficult to measure, since the Fe
energy of the sample can only be varied in a very limit
range.

In analogy, vibrational waves are responsible for the h
transport in insulators. In this case, it is straightforward
express the heat conductance in terms of the transmis
probabilities of the vibrational waves@see Eq.~14!#. The
essential difference with electrons is that phonons obey
Bose-Einstein statistics and therefore the conductanc
given by a weighted average of the transmission probabili
over the full frequency range rather than by the transmiss
probability at a single frequency. For this reason, he
conductance measurements are not well suited to study
transmission spectrum for vibrational waves. While measu
ments of mode-specific transmission probabilities will
rather difficult, direct measurements of the total transmiss
spectrumL(v) should be feasible. The experimental cha
lenge would be to couple a receiver and an emitter w
known frequency characteristics to the ends of a wavegu
avoiding backreflections at the junctions.

It should be noted that the interference phenomena
cussed in this paper are derived from the dynamical eq
tions, which can be applied to any length scale provided t
phase coherence is not destroyed by dissipative effects.
pending on the system and on the frequency range, the p
coherence of vibrational waves can often be kept rat
large. In other words, our results for the transmission spe
of vibrational waves are not limited to the nanometer sca
as is the case for coherent electron scattering, but may
describe defect-induced interference effects in macrosc
systems.
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APPENDIX: EXPLICIT FORM OF THE SCATTERING
EQUATIONS EQ. „10…

The matrix D̃ in Eq. ~10! is block tridiagonal. It is
composed of the 2Ny32Ny matrices DMii

, DMii61

( i50, . . . ,N), DLL , DLM , DML , DMR , DRM , and DRR,
which are all tridiagonal themselves. In the following w
consider only mass defects, i.e., all springs are suppose
be the same as in the perfect wave guide. The blo
DMi ,i11

andDMi11,i
, which describe the interaction betwee

adjacent columns, are then given by

DMi ,i11
5Vup5S K1 K21 0 ••• ••• 0

K22 K1 K21 0 A

0 K22 K1 K21 � A

A � � � � 0

A 0 K22 K1 K21

0 ••• ••• 0 K22 K1

D
~A1!

and

DMi11,i
5Vdown

5S K1 K22 0 ••• ••• 0

K21 K1 K22 0 A

0 K21 K1 K22 � A

A � � � � 0

A 0 K21 K1 K22

0 ••• ••• 0 K21 K1

D ,

~A2!

with

K15S k1 0

0 0D ,

K215S k2
2

k2
2

k2
2

k2
2

D ,

and
l

to
s

K225S k2
2

2
k2
2

2
k2
2

k2
2

D .

For the diagonal blocks containing the masses we ob
similarly

DMi ,i
5Vauto1v2m i•1

5S P T 0 ••• ••• 0

T S T 0 A

0 0 A

A 0 0

A 0 T S T

0 ••• ••• 0 T P

D
1v2S Mi1 0 ••• ••• ••• 0

0 Mi1 0 ••• ••• 0

0 0 Mi2 0 ••• 0

A � A

0 ••• ••• 0 MiNy
0

0 ••• ••• 0 0 MiNy

D ,

~A3!

with

P5S 22k12k2 0

0 2k12k2
D ,

S5S 22k12k2 0

0 22k12k2
D ,

and

T5S 0 0

0 k1
D .

The blocks ofD̃, which connect the sample region to th
waveguides, are not modified by defects. They are given

DLM5Vup, DRM5Vdown, ~A4!

DML5~DW ML
~1! , . . . ,DW ML

~2Ny!
! where DW ML

~n! 5knVdown•uW n8 ,
~A5!

DMR5~DW MR
~1! , . . . ,DW MR

~2Ny!
! where DW MR

~n! 5knVup•uW n ,
~A6!
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DLL5~DW LL
~1! , . . . ,DW LL

~2Ny!
!

where DW LL
~n!5kn~Vauto1knVdown1v21!•uW n8 ,

~A7!

DRR5~DW RR
~1! , . . . ,DW RR

~2Ny!
!

where DW RR
~n!5kn~Vauto1knVup1v21!•uW n .

~A8!

Here we have used the notationuW n5uW (kn) and
uW n85uW (1/kn).
r

tte
Finally, the inhomogeneous terms of Eq.~10! read

FW 5
1

k n̄
S Vauto1

1

k n̄

Vdown1v21D •uW n̄ , ~A9!

GW 5
1

k n̄

Vdown•uW n̄ . ~A10!

The corresponding equations for spring defects are obta
in a similar manner. However, in this case, all block matric
containing the new spring constants have to be changed,
the resulting equations cannot be written in a general co
pact form.
-
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