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Effects of quantum size and potential shape on the spectra of an electron and a donor
in quantum dots
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Spectra of electron and donor states in quantum dots with different confinement potentials are calculated.
The potential-shape, quantum-size, and donor-position effects on the level ordering and binding are studied in
detail. It is found that a single donor can heavily change single-electron spectra in the quantum dots with
proper size and potential shape, which may be useful for understanding physical phenomena and designing
materials and devices in quantum-dot structuf6163-182@07)01704-9

I. INTRODUCTION initio molecular dynamics simulaticif. The second, as men-
tioned above, is how an atofimpurity) changes the single-
Stimulated by interest in physics and technological appli-€lectron spectrum in QOD structures. In this paper, it will be
cations of low-dimensional structures and materials, the dePresented and discussed based on calculated spectra of elec-
signs, manufacture, and studies have proliferated at an expl¢®on and donor states in semiconductor QD’s.
sive rate. Numerous studies have been devoted to various The semiconductor QD’s are quite idealistic QOD struc-
aspects of the electronic states associated with quasi-twddres to study, since the effective-mass theory can be used in
dimensional (Q2D) quantum wells, quasi-one-dimensional & PrOPer regime of quantum size. As is well known, studying
(Q1D) quantum-well wires, quasi-zero-dimension@0D) the impurity states in quantgm-we_zll structures with and W|th_-
quantum dots, and clusters. out strong magnetic fields is an important problem in semi-

Recently, advances in nanofabrication technology havgonductor physics. Quantum wells, in fact, with strong mag-

. . , netic fields can form some kind of QD’s. Therefore the
made it possible to manufacture quantum dQIB’s) and all . studies of donor states in Ga,Al ,As QD’s are of interest

) . . . . Sboth in their own right and to understand the role of an
confined in all three spatial dimensions. Because of the re g

: o ) impurity in QOD structures.
duced dimensionality, quantum confinement and novel tran purity in Q

: vsd ) S° For semiconductor QD'’s, two interesting idealistic mod-
port behaviors can be observed.In the meantime, a large g|g are gpherical quantum dots in three-dimensional space

number of theoreticgl investiga’lcions of elegtronic structuresyith a rectangular potential and circular quantum disks in
and related magnetic and optical properties in QD’s andyyo-dimensional space with a parabolic potential, which
cluster§~?*have been performed to explain the experimentahayve been used by a number of authors because of the high
observations. symmetry. However, a realistic quantum dot is usually devi-
In the QOD structures, the single-electron spectrum playgted from spherical and circular ones while its potential, i.e.,
an essential role and is gainable by studying the capacitaneie confinement potential, is usually deviated from square
spectroscop¥,’ far-infrared spectroscopy;?® conductancé,  and parabolic one¥:?® The high symmetry, in fact, can also
and other experimental resuftdzurthermore, an atorim-  be broken if the impurity is not located in the center of QD's.
purity) can change significantly the single-electron spectrumt should be interesting therefore to do a systematic investi-
under proper QOD structures. For example, the electronigation of the dependence of confined electron and donor
structures of the endohedral fullerenes such as Li@C states in the QOD structures with less symmetry on the po-
Na@GCso, La@Csg, and La@G, (Refs. 19-23 can be tential shape and quantum size.
quite different from those of the pure fullerenes. In general, The impurity states in Q2D quantum wells and Q1D
the impurity effects on single-electron spectra are stronghguantum-well wires have been studied by a number of au-
related to important aspects of many-electron effects in théhors. Presently, the electronic structures in QOD QD'’s, es-
QOD structures which have been studied by severapecially the donor and acceptor states, have received much
authors-*-17 attention®~**18To our knowledge, however, there has been
There are two interesting problems in the QOD structuresno such systematic investigation related to the potential-
The first is how to let an atorimpurity) enter into the QOD shape, quantum-size, and donor-position effects on the elec-
structures, for example, how to form the endohedrakronic structuresin QD’s and the role of a single donor in the
fullerenes which have attracted considerable interest. Vergpectra under different quantum confinement conditions. It
recently, the first theoretical work concerning the formationshould be worthwhile to study theoretically these interesting
process of the endohedralggChas been done by usirgp  subjects.
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In Sec. Il of this paper, the Hamiltonian of an electron and

a donor in a quantum dot with different potential shapes is 10k
presented. In Sec. lll, the exact and variational solutions are
briefly shown for a donor located on the QD center and out 0s |
of the center, respectively. Main results are given and dis- )
cussed in Sec. IV, followed by a summary in Sec. V.
06 |
z £
Il. HAMILTONIAN >
0.4 |
Within the framework of an effective-mass approxima- | k
tion, the Hamiltonian of an electron or a hydrogenic donor 0z | kzco
located in the center of a GaAs-GaAl ,As spherical quan- ’
tum dot can be written as [ 4
0.0 ' .
oW 0.0 0.5 1.0
HO=—V2—T+V(r), D) @ r/R,

wherew is equal to 0 and 1 for the electron and the donor,
respectively. The potentiaV(r) is taken to be spherically
symmetric in the present work and has the form

Vo ifr=Ry

V(r)= .
(") ark ifr<Ry,

2

whereV, is the barrier height and can be obtained from a

fixed ratio Q of the band-gap discontinuithE, between

GaAs and Ga,Al,As, i.e., Vo=QAE,.” a is equal to

VO/RS. The shape o¥(r) is determined by as shown in

Fig. 1(a). (b)
However, the donor can be located anywhere. Let a donor

be situated ab from the center of the quantum dot as shown

in Fig. 4(b). In general, we can put the impurity on tiZe

axis, and write the Hamiltonian in the form

FIG. 1. (a) Profile of the potential shape of QD’s of E@) for
k=1, 2, 4, and», respectively(b) Geometry for the problem of the
donor located from the center of the dot by a distabcdheZ axis
is defined by the center of the dot and the position of the donor ion.

2w
H=-V%- TW(”' 3 WY nim=Rni(N)Yim( 6, ¢), (6)
r_
| | where Y |,(6,¢) is the spherical harmonic function. For
Then the Hamiltonian can be rewritten as V(r) of Eq. (2), the radial equation is found as
H=Ho+H’, (4) LA2Ri(r) _ dR(r)
with dr dr
+[(E;—ar®r2=1(1+1)+2wr]R(r)=0
H 2w 2w 5
rr-p| for r<Ry
7
In this paper, the effective atomic units are used so that all d2R(r) dR(r)
energies are measured in units of effective Rydtd®fgand r2 '2
all distances are measured in units of effective Bohr radius dr dr
H 4 2.2
a*.zTheI§* anda* can be determined _bm*e [2h <€ and . +HI(E = Vo)r2=1(1+ 1)+ 2wr]R,(r)=0
eh“Im*e*, wherem* ande are, respectively, the electronic
effective mass and the dielectric constant of GaAs materials. for r=R,.

Here, we assume that the effective mass of Gal ,As is o _
the same as that of GaAs. The polarization and image charge We are prevented from obtaining analytically exact solu-
effects have been ignored because of the smaller differendé@ns of the eigenvalue problem with both Coulomb and con-

of the dielectric constant between the two materiéls. finement potentials. However, using the method of series
expansiorf, we can obtain exact series forms in different
IIl. EXACT AND VARIATIONAL SOLUTIONS regions of Eq(7). In principle, the detailed formulas, which

are different from previous onés;an be produced straight-

The eigenstates dfl, can be labeled by the principal, forwardly without any difficulty, so they are not shown here.
orbital, and magnetic quantum numbears!|, and m. The Using the matching conditions for different series forms
wave functions are written in the form in different regions, we can obtain the equation for eigenen-
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TABLE |. Confined-electron spectr®,, normalized byE;(w=0) for QD’s of V,=80R* and

Roz 3a* .
Qni=En(w=0)/Egy(w=0)

1s 2p 3d 2s 4f 3p 59 4d 6h 3s
k=00 0.111 0.228 0.374 0445 0550 0672 0.754 0931 0.986 1.000
k=4 0.179 0335 0511 0548 0.703 0.755 0.909 0.972 1.069 1.000

1s 2p 2s 3d 3p Af 3s 4d 5¢g 4p
k=2 0.273 0455 0.636 0.636 0.818 0.818 1.000 1.000 1.000 1.182
k=1 0.424 0.609 0.740 0.770 0.885 0.915 1.000 1.020 1.050 1.124

ergies easily and, then, the eigenenerfigsand wave func- spect to the magnetic quantum numbers. The principal, or-

tions. Compared with the cases in one, two, and three dimerbital, and magnetic quantum numbersfaren;, I;, and
sions, the binding energiés;(n,l) of the donor states in the m;, respectively. In the problem considered, the summation
QD'’s are given by in Eq. (9) includes only the terms with a fixed magnetic
quantum number m, i.em;=m,=-.-=m;=m. In addi-
Eg(n,)=En(w=0)—Ep(w=1), (8 tion, it is interesting to point out that; and V¢ /m* (Ref.
8) and, then¥,, andV¥',,/m* are, respectively, continuous

whereE,,(w=0) andE, (w=1) are, respectively, the cor-

responding eigenenergies of an electron and a donor in t . _ - o .

QD's According to the variational principle, it is straightfor-
For the symmetry as shown in Figltl, the eigenstates of Ward to obtain the equation

H can be labeled by magnetien] quantum numbers. Be-

cause the radius and angle variables do not separate, approxi-

mation methods should be used to obtain the eigenvalues.
Let us consider a linear variational function of the form

f
le [Hij—(E-Ej)d;lc;=0, i=12,....,f (10

with
f
V=2, Cih, ) H = (i H 0. (11)
where ; is theith exact normorthogonal eigenstate H§ Substituting Eq(6) into Eq. (11), we can findHj; in the

with eigenenerg)Eni,i(w= 1) which is degenerate with re- form

- i P PO R P
I — 2l " I J
H”-—wa0 Rni|i(r)an,j(r)r dr&,i|j—2|=%;|j‘ (=DM (2li+1)(21;+1)] [O 0 OH—m m J
1 (b D 1
X 5”—1[0 Rnili<r)an|j<r>r'+2dr+D'fo Roy,(NRy (Nor=xdr |, (12
|
where Then, the energy levels are obtained by solving @8)
numerically. ForD #0, they can be denoted b, even
i1 thoughl is not a good quantum numbe,,,, is degenerate
“m om | with respect tom and —m, andE, is hondegenerate. The

binding energyEg(n,l,m) can be defined by

is the Wigner 3} symbol.
The condition that this set of Eq6L0) has nonzero solu-
tion leads to the secular equation of finite degfee

Eg(n,l,m=E,(W=0)—E;m. (15

IV. RESULTS AND DISCUSSION

|IH"~BJ[=0, (13 In order to show the potential-shapk)( quantum-size

_ , ) (Rp), and donor-positiond) effects on single-electron spec-
where matrix elements df* areHj; of Eq.(12) andBisa {3 in QD's and to better understand the important role of a
diagonal matrix, i.e., single impurity in the spectra, we have calculated energy
levels of electron and donor states in QD’s\Gf=80R* as
Bij=(E—-Ej)dg;, i,j=12,....f. (14)  afunction ofk, Ry, andD, respectively.
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TABLE Il. Confined-donor spectraV,, normalized by E;(w=0) for QD's of V,=80R* and

Roz 3a* .
W= Ep(W=1)/Ez(w=0)

1s 2p 2s 3d 4f 3p 59 3s 4d 6h
k=0 —0.095 0.093 0.217 0.258 0.443 0.504  0.653 0.748 0.787 0.888
k=4 0.031 0.237 0408 0429 0631 0655 0843 0.866 0.889 1.012

1s 2p 2s 3d 3p Af 3s 4d 59 4p
k=2 0.143 0.373 0.534 0.572 0.746 0.763 0.910 0.941 0.951 1.115
k=1 0.314 0.545 0.667 0.722 0.834 0.876 0.941 0.976 1.016 1.081
A. k, Ry, and D effects on spectra transition energy between two levels is different for different

In Tables | and Il, we have shown the spectra of QD’sk- It means t.hat the potential shapes have a great influence on
with Ry=3a* andV,=80R*. Thek is equal to 1, 2, 4, and the electronic structure of QD's. o _

», respectively. Her®,, andW,, stand for the energy levels ~ Comparing Table Il with Table |, it is easy to find the
of electron and donor states with the well-defined quantungéXistence of a donor in QD’s can change the energy levels
numbern andl, normalized with the corresponding value of effectively. For example, two segments of the sequence are
3s electron levelEz(w=0) in the QD’s. The value of 3d, 2s and 4d, 3s for k=< in Table I, and 2, 3d and
E;(w=0) is equal to 49.2753, 32.7957, 21.1506, and3s, 4d for k=< in Table Il. In these cases, the introduction
9.1599R* for k=1, 2, 4, andx, respectively. It is clearly of a single donor changes the orderingsodndd states. In
seen that the energy-level structure is dramatically changeaddition, the effectiveness of the impurity to change the se-
as thek changes from 1 tee. An important aspect of the quence is different for differerk. For instance, the alteration
potential-shape effects is the changes of the level orderindgor k=1 and 2 is smaller than that fér=4 andoo.

which would have an influence on the magic number of su- Using Ry=1a* instead ofR,=3a* in the calculations
peratoms. As illustrated in Table I, the ordering of electronabove, we have obtained the orderingvgf, which is all the
states in the QD ok=, i.e., a square well, issl, 2p, 3d,  same to that of the correspondii@, . It means that the

2s, 4f, 3p, 5g, 4d, 6h, 3s, and so on, while that =1 is  quantum size has obvious effects on the ordering, and that
1s, 2p, 2s, 3d, 3p, 4f, 3s, and so on. It shows that the the role of a single impurity is dependent on Rgandk in
lower levels of the superatoms are dominated by no-radialdetermining the energy levels.

node states of4, 2p, 3d, and so on, and that there are much  In Figs. 2a) and 2b), we have plotted the spectrum of a
more no-radial-node states in the lower levels for the QD’'sdonor in QD’s of V,=80R* with k=~ and the levels of
with largerk than for those with smalldt. Such a potential- 2s and 3 states of a donor in QD’s o¥/;=80R* with
shape effect can be useful in electronic device applicationsk=1,2,45 as a function ofR,, respectively. Here, for the

For an isolated donor, i.e., without the confinement potensake of clearness, the spectrum and the levels are also nor-
tial, the ordering of the energy levels is,12s (2p), 3s  malized with the corresponding value of &lectron level
(3p, 3d), 4s (4p, 4d, 4f), ... . As the confinement poten- Ez,(w=0) in the QD’s with theR,. In Fig. Za), it is readily
tial exists, the levels with the same principal numbesplit. seen that the crossover 06,23d, and 3 with 4d states
The stronger the confinement potential is, the larger the levadccurs asR, changes from 0&* to 3.5a*. An intersection
splitting is. It could be expected that the ordering of donorof 2s and 3 states occurs fok=4 and the level separation
levels in QD’s will be quite different from that of isolated at Ry,=1 and 3* is smaller fork=4 than fork=« as
donor levels for a strong confinement and all the same as thahown in Fig. 2b). It is also shown that there is no intersec-
of the corresponding electron levels for a very strong contion of 2s and 3 states fok=1 and 2. However, there is an
finement. It is more complex for an intermediate confine-intersection of 3 and 4f states for all ok=1, 2, 4, ande at
ment. As shown in Tables | and Il, the ordering of electronsome points not shown here. What has been mentioned
levelsQy,, and donor level$V,, can be quite different from above shows the stronB, and k coupling effects on the
that of isolated donor levels. The orderingsWf, of k=4  donor spectra. The reason can be understood if the charac-
andee are not the same as that of the correspondpgand  teristics of electron levels and wave functions and, then,
the difference between th&/,, and Q,, is larger fork=o binding energies determined by different confinement poten-
than fork=4. However, the orderings &V, andQ,, are the tials of QD’s are noted. It will be discussed in the next part
same fork=1 and 2, respectively. of this section.

As shown in Table I, the orderings &, are the same for In order to understand the role of a single impurity in
k=1 and 2 and are about the sameHker4 and=. Only the  single-electron spectra of QD’s much better, in Fig. 3, we
difference between them exists ith@&nd 3 levels. In Table have plotted the ground and excited energy levels of a donor
I, the orderings oW, are the same fok=4 andw, so are  as a function oD for QD’s of Ry=3a* andV,=80R* with
those fork=1 and 2, and there are some changes in thd&=«, and only the states withh=0,=1,+2 are shown. The
ordering as thé& changes from 2 to 4. It is obvious that the splitting of energy levels can be easily seen from the figure
4f level is higher and lower than thep3evel fork=2 and as the impurity ion is removed from the center. For example,
4, respectively. The same phenomenon occurs in the group states are split into two levels wittn=0 and+1 andd
of 3s, 4d, and 5 levels. Besides the level sequence, thestates into three levels witin=0, =1, and*+2. It is inter-
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FIG. 3. Energy level&,,, of an off-center donor in a quantum

[ —————8d | dot of Vy=80R* andR,=3a* with k= as a function oD. Here

07 \ |m| is taken to be equal to 0, 1, and 2 only.
k=1

2s
others. In the same region Bf, however, there are no such
06 ———— 3 | intersections for QD’s wittk=2. It can be easily understood

0 k=2 53 if we note that there is no difference of the level ordering
05 betweenQ,, andW,, of QD’s with k=2 in Tables | and II.

Using Ry=1a* instead ofRy=3a* in the calculations
above, we have found that there is the splitting of energy
levels too as the impurity ion is removed from the center.
However, there is no intersection fos23d states and §
4d states. From 4 up to 3s and &, only one intersection
exists. The crossover ofs3and € occurs at about 0.
Again, it means that the quantum size has obvious effects on

‘ the energy-level ordering and that the role of a single impu-
5 30 rity is dependent on thR, andD in determining the order-
ing in QD’s.

FIG. 2. (a) Energy levelE,, (w=1) of center donor in QD’s of th To close this ?a:DOL ghe §Ect|ohn, I |i|helpful to C?mﬂare
Vo=80R* with k== as a function oR,. (b) 2s and & levels in 1€ Present resuit with others. However, only the
QD's of V,=80R* with k=1, 2, 4, and» as a function ofR,, other re.suljt2 can be found for the grou_nd state D=0 in
QD’s with Vo=, The ground energies fob=0.5 and
la* in a QD of Ry=3a* with V;=80R* obtained in the
present work are, respectively, equal t00.811R* and

esting to note thak,o is the lowest level amon@nm-  _ 0 74R*. The present result is agreeable with those
However, there is no splitting fa states. All of the energy (—0.8278R* and—0.7568(R*) in Ref. 12 since the finite-

levels approach the exact onBg(w=1) asD approaches parrier effect is small for the ground states in this case.
zero. On the other hand, the-1 splitting levels come near

and approachk,(w=0) as D approaches infinity. The
above picture is the same for the case of QD’s with2.
An obvious feature of Fig. 3 is the intersection «f &ate For a better understanding of tRg, k, andD effects, it is
with 3d state and those ofs3state with 4l and éh states, interesting to study the binding energies defined by Egjs.
which alter the sequence. The crossover ®B2d 3 occurs  and(15). In Table Ill, the binding energies have been shown
at about 0.@*, and those of 8, 4d and 3, 6h are at about for center D=0) donor states in QD’s o¥/,=80R* and
0.4a* and 1.2*, respectively. It is a result of the coupling Ry=3a* with k=1, 2, 4, andw, respectively. We should
and competition of Coulomb potential with the confinementnote that the sequence of binding energies is different among
one. Moreover, the effect of two potentials on energy leveldifferent k. For example, Eg(1,0)>Eg(2,0)>Eg(3,0),
is related to the corresponding wave functions. Osistate  Eg(2,1)>Eg(3,1), andEg(3,2)>Eg(4,2) for k=1 and 2,
wave functions have nonzero values at the origin, so thevhile Eg(3,0)>Eg(2,0)>Eg(1,0), Eg(3,1)>Eg(2,1), and
Coulomb potential around the center has greater influence dig(4,2)>Eg(3,2) for k=«. The characteristics of binding
s states than others. This is the reason the energiestates energies can be explained by studying the wave functions of
change more remarkably along with changibgthan the confined electron states determined By of Eq. (1) with

: 5 20 2
(b) Ro(a’)

respectively.

B. Binding energies
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TABLE lll. Binding energiesEg(n,l) measured in units dR* for QD’s of Vy=80R* andR,=3a*.

k=2 n,l| 3s 2s 1s 3p 4d 2p 3d 4f 5g
Eg(n,l) 2311 2085 1.891 1541 1.322 1237 1.066 0.982 0.930
k=4 n,l| 1s 2s 3s 3p 2p 4d 3d 4f 59
Eg(n,l) 3.134 2965 2836 2111 2.073 1760 1.715 1518 1.388
k=2 n,l 1s 2s 3s 2p 3p 3d 4d 4f 59
Eg(n,l) 4248 3369 2956 2.673 2380 2110 1951 1.798 1.594
k=1 n,l 1s 2s 2p 3s 3p 3d 4d 4f 5¢g

Eg(n,l) 5393 3602 3.153 2.885 2502 2356 2.000 1.926 1.651

w=0. If a wave function shows that the electron distribution For the strong confinement, the electron levels and the
is mainly near to the center of the dot, the binding energy idinding energies are almost in proportion thé_/and 1R,
large. This point of view can be formulated as follows. It is respectively. Therefore, changiiRy from a smaller value to
accurate enough to calculate the binding energies with the larger one, we can have an intersection for two levels if one
use of the first-order perturbation as the confinement poterof them with a larger binding energy is higher than the other
tial is strong enough compared with the Coulomb potentialwith a smaller binding energy in the strong confinement con-

Then, the binding energig(n,l) is given by dition. Otherwise, there is no intersection for the two levels.
) ) According to Tables I, II, and lll, we can now understand
_ < _ < what has been mentioned fos,23d states[Fig. 2(b)] and
Ea(n.l) <q,”' r q,“'> <R“' r ‘R”'>' (18 3¢ and 4 states in Sec. IV A much better.

For D#0 case, it is found that the binding energy

whereWV ,, andR,, are, respectively, the total and radial nor- ; . o )
! n! b 4 Eg(n,l,m) defined in Eq.(15) reduces with increasinggn|

malized wave functions dfl; with w=0. Therefore the spa- ! . , ; ;
tial distribution of an electron on this state determines thd©" fixedn andl and it is consistent with the ordering shown
magnitude ofEg(n,1). The characteristics of binding ener- !N Fig- 3. Furthermore, the binding energies wiith| =1 re-
gies mentioned above are unchanged as the confinementdgce monotonously with increasify, while the others have

strong and, then, the first-order perturbation is valid. maximum binding energies at sorBenot equal to zero. The

As a specific example, we study the case Kere. The = maximum value is larger for smallém|. The above charac-
radial wave functiorR,, of k=o with Vy—x is teristic feature can be explained as follows. According to the
angular distribution of wave functions, the states with

Rni(r)—Anjil VEn(W=0)r], (17 m=0 mainly distribute along the axis and the other states

are more and more distant from tkeaxis with increasing
|m|. So, the donor ion influences the state with smdkhefr
more effectively and, then, a larger binding energy is gained.
This is the reason we have the picture of the spectrum as
whereA,, is a normalization constant, afg{x) andX,,, are  shown in Fig. 3.
the Ith-order spherical Bessel function and its<(1)th root,
respectively. It can be seen from the graphRaf(r) with a
fixed | that the electron is nearer to the center of the dot for V. SUMMARY
largern (the node number is,=n—1-—1) than for smaller
ones, that is to say, the electron is attracted by the donor iO{i10
more strongly for large n and, then,
Eg(n+2)l)>Eg(n+1])>Eg(n,l) and so on.

Another example is fok=2 with Vy—. The radial
wave function is

with

Eni(w=0)=(Xp/Rp)?, (18

Using the methods of series expansion and linear varia-
nal calculations, we have reported the calculated results
of spectra of electron and donor confined by
GaAs-Ga _,Al,As QD’s. The results have clearly demon-
strated thek, Ry, andD effects. These effects can be under-
stood better on the basis of analyzing the characteristics of
Ry (r)—Byr'e” "E’ZF(—n(n—I— 1).] +3/2,2\/Zr2), wave functions_and, then, binqling energies in dif_ferent QD’s.
(19) _ Thc_e competl_ng and .couplmg betyveen confinement and
impurity potential are different for differen®,. When the
where F(a,b,z) is the confluent hypergeometric function R, of a QD is large, the donor spectra are similar to those of
andB,, is a normalization constant. The graphR)j with a  an isolated donor. When tH, becomes much smaller, the
fixed | shows that the electron is nearer to the center of theapectra are similar to those of an electron in the QD. For the
dot for smallern than for larger ones. So the binding ener-intermediary radius, the impurity and confinement potential
gies increase with decreasing for the samel, i.e., are coupled strongly. In this region the crossover for some
Eg(n,)>Eg(n+1,)>Eg(n+2]) and so on. levels happens. When thHg, is changed from a large to a
Based on what has been mentioned above, we can bettemall value, some of the lower energy levels can intersect
understand the dependence of the sequence of the bindimgth higher ones and it changes the level ordering. This re-
energies onk shown in Table Il and, then, the ordering flects thatR, is an important factor to determine the elec-
difference betweerQ,, and W,,, of k=« and 2 shown in tronic structures.
Tables | and II. The effects of a single impurity on the level ordering and
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binding energies are strongly dependent not only onRfe negative donor center in asymmetric quantum wells with
but also on the. Thek is also an important factor in inves- strong magnetic field8 are quite different from that of a
tigating the properties of QD’s, such as magic number, magnegative donor center in symmetric quantum wells with the
netism, and optical transitions, which may be clarified. same fields. Therefore, in order to understand the physical

For an off-center donor§ # 0), the splitting and ordering phenomena in QOD structures better and to use the quantum-
of quantum levels are dependentlonR,, andD. The most  size, potential-shape, and impurity effects in designing ma-
interesting and inspiring feature d dependence of the terials and devices of QD’s, it should be worthwhile to study
energy-level structure is the intersection of some levels. Ithese effects on two- and many-electron spectra of QD’s.
means that a single impurity can largely change the singleWork on the effects on two-electron spectra is in progress.
electron spectrum of a QD and, then, the property.

To close this paper, it is interesting to point out that the
k, Ry, and D effects are not only important for single-
electron spectra but also for two- and many-electron spectra The authors would like to thank the Information Science
in QD’s since the two- and many-electron spectra areGroup of the Institute for Materials Research, Tohoku Uni-
strongly related to the single-electron spectra. For example, wersity for their continuous support of the supercomputing
proper design of the potential shape and the radius of a QBystem. One of the authofd.L.Z) would like to thank the
may enhance the electron spin polarization very effectivelyMaterials Design Virtual LaboratoryiBM Hitachi) for fi-
utilizing the spin-orbit interactio”® The ground states of a nancial support.
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