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Effects of quantum size and potential shape on the spectra of an electron and a donor
in quantum dots
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Spectra of electron and donor states in quantum dots with different confinement potentials are calculated.
The potential-shape, quantum-size, and donor-position effects on the level ordering and binding are studied in
detail. It is found that a single donor can heavily change single-electron spectra in the quantum dots with
proper size and potential shape, which may be useful for understanding physical phenomena and designing
materials and devices in quantum-dot structures.@S0163-1829~97!01704-9#
pl
d
p
io
tw
al

av

i
r
n

re
n
ta

ay
n

um
n

ra
g
th
r

e

ra
e
on

-
-
be
elec-

c-
d in
ing
th-
mi-
g-
e

an

d-
ace
in
ch
high
vi-
.e.,
are
o
’s.
sti-
nor
po-

D
au-
es-
uch
en
ial-
lec-
he
. It
ing
I. INTRODUCTION

Stimulated by interest in physics and technological ap
cations of low-dimensional structures and materials, the
signs, manufacture, and studies have proliferated at an ex
sive rate. Numerous studies have been devoted to var
aspects of the electronic states associated with quasi-
dimensional~Q2D! quantum wells, quasi-one-dimension
~Q1D! quantum-well wires, quasi-zero-dimensional~Q0D!
quantum dots, and clusters.

Recently, advances in nanofabrication technology h
made it possible to manufacture quantum dots~QD’s! and all
kinds of element clusters in which the motion of electrons
confined in all three spatial dimensions. Because of the
duced dimensionality, quantum confinement and novel tra
port behaviors can be observed.1–7 In the meantime, a large
number of theoretical investigations of electronic structu
and related magnetic and optical properties in QD’s a
clusters8–23have been performed to explain the experimen
observations.

In the Q0D structures, the single-electron spectrum pl
an essential role and is gainable by studying the capacita
spectroscopy,6,7 far-infrared spectroscopy,1–3 conductance,4

and other experimental results.5 Furthermore, an atom~im-
purity! can change significantly the single-electron spectr
under proper Q0D structures. For example, the electro
structures of the endohedral fullerenes such as Li@C60,
Na@C60, La@C60, and La@C82 ~Refs. 19–23! can be
quite different from those of the pure fullerenes. In gene
the impurity effects on single-electron spectra are stron
related to important aspects of many-electron effects in
Q0D structures which have been studied by seve
authors.14–17

There are two interesting problems in the Q0D structur
The first is how to let an atom~impurity! enter into the Q0D
structures, for example, how to form the endohed
fullerenes which have attracted considerable interest. V
recently, the first theoretical work concerning the formati
process of the endohedral C60 has been done by usingab
550163-1829/97/55~3!/1673~7!/$10.00
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initio molecular dynamics simulation.24 The second, as men
tioned above, is how an atom~impurity! changes the single
electron spectrum in Q0D structures. In this paper, it will
presented and discussed based on calculated spectra of
tron and donor states in semiconductor QD’s.

The semiconductor QD’s are quite idealistic Q0D stru
tures to study, since the effective-mass theory can be use
a proper regime of quantum size. As is well known, study
the impurity states in quantum-well structures with and wi
out strong magnetic fields is an important problem in se
conductor physics. Quantum wells, in fact, with strong ma
netic fields can form some kind of QD’s. Therefore th
studies of donor states in Ga12xAl xAs QD’s are of interest
both in their own right and to understand the role of
impurity in Q0D structures.

For semiconductor QD’s, two interesting idealistic mo
els are spherical quantum dots in three-dimensional sp
with a rectangular potential and circular quantum disks
two-dimensional space with a parabolic potential, whi
have been used by a number of authors because of the
symmetry. However, a realistic quantum dot is usually de
ated from spherical and circular ones while its potential, i
the confinement potential, is usually deviated from squ
and parabolic ones.25,26The high symmetry, in fact, can als
be broken if the impurity is not located in the center of QD
It should be interesting therefore to do a systematic inve
gation of the dependence of confined electron and do
states in the Q0D structures with less symmetry on the
tential shape and quantum size.

The impurity states in Q2D quantum wells and Q1
quantum-well wires have been studied by a number of
thors. Presently, the electronic structures in Q0D QD’s,
pecially the donor and acceptor states, have received m
attention.8–13,18To our knowledge, however, there has be
no such systematic investigation related to the potent
shape, quantum-size, and donor-position effects on the e
tronic structures in QD’s and the role of a single donor in t
spectra under different quantum confinement conditions
should be worthwhile to study theoretically these interest
subjects.
1673 © 1997 The American Physical Society
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In Sec. II of this paper, the Hamiltonian of an electron a
a donor in a quantum dot with different potential shapes
presented. In Sec. III, the exact and variational solutions
briefly shown for a donor located on the QD center and
of the center, respectively. Main results are given and
cussed in Sec. IV, followed by a summary in Sec. V.

II. HAMILTONIAN

Within the framework of an effective-mass approxim
tion, the Hamiltonian of an electron or a hydrogenic don
located in the center of a GaAs-Ga12xAl xAs spherical quan-
tum dot can be written as

H052¹22
2w

r
1V~r !, ~1!

wherew is equal to 0 and 1 for the electron and the don
respectively. The potentialV(r ) is taken to be spherically
symmetric in the present work and has the form

V~r !5H V0 if r>R0

ar k if r,R0 ,
~2!

whereV0 is the barrier height and can be obtained from
fixed ratio Q of the band-gap discontinuityDEg between
GaAs and Ga12xAl xAs, i.e., V05QDEg .

27 a is equal to
V0 /R0

k . The shape ofV(r ) is determined byk as shown in
Fig. 1~a!.

However, the donor can be located anywhere. Let a do
be situated atDW from the center of the quantum dot as show
in Fig. 1~b!. In general, we can put the impurity on theZ
axis, and write the Hamiltonian in the form

H52¹22
2w

urW2DW u
1V~r !. ~3!

Then the Hamiltonian can be rewritten as

H5H01H8, ~4!

with

H85
2w

r
2

2w

urW2DW u
. ~5!

In this paper, the effective atomic units are used so tha
energies are measured in units of effective RydbergR* and
all distances are measured in units of effective Bohr rad
a* . TheR* anda* can be determined bym* e4/2\2e2 and
e\2/m* e2, wherem* ande are, respectively, the electron
effective mass and the dielectric constant of GaAs mater
Here, we assume that the effective mass of Ga12xAl xAs is
the same as that of GaAs. The polarization and image ch
effects have been ignored because of the smaller differe
of the dielectric constant between the two materials.18

III. EXACT AND VARIATIONAL SOLUTIONS

The eigenstates ofH0 can be labeled by the principa
orbital, and magnetic quantum numbersn, l , andm. The
wave functions are written in the form
s
re
t
-

r

,

or

ll

s

ls.

ge
ce

Cnlm5Rnl~r !Ylm~u,w!, ~6!

where Ylm(u,w) is the spherical harmonic function. Fo
V(r ) of Eq. ~2!, the radial equation is found as

r 2
d2Rl~r !

dr2
12r

dRl~r !

dr

1@~El2ar k!r 22 l ~ l11!12wr#Rl~r !50

for r,R0

~7!

r 2
d2Rl~r !

dr2
12r

dRl~r !

dr

1@~El2V0!r
22 l ~ l11!12wr#Rl~r !50

for r>R0 .

We are prevented from obtaining analytically exact so
tions of the eigenvalue problem with both Coulomb and co
finement potentials. However, using the method of se
expansion,8 we can obtain exact series forms in differe
regions of Eq.~7!. In principle, the detailed formulas, whic
are different from previous ones,8 can be produced straight
forwardly without any difficulty, so they are not shown her

Using the matching conditions for different series form
in different regions, we can obtain the equation for eigen

FIG. 1. ~a! Profile of the potential shape of QD’s of Eq.~2! for
k51, 2, 4, and̀ , respectively.~b! Geometry for the problem of the
donor located from the center of the dot by a distanceD. TheZ axis
is defined by the center of the dot and the position of the donor
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TABLE I. Confined-electron spectraQnl normalized byE30(w50) for QD’s of V0580R* and
R053a* .

Qnl5Enl(w50)/E30(w50)
1s 2p 3d 2s 4 f 3p 5g 4d 6h 3s

k5` 0.111 0.228 0.374 0.445 0.550 0.672 0.754 0.931 0.986 1.0
k54 0.179 0.335 0.511 0.548 0.703 0.755 0.909 0.972 1.069 1.0

1s 2p 2s 3d 3p 4 f 3s 4d 5g 4p
k52 0.273 0.455 0.636 0.636 0.818 0.818 1.000 1.000 1.000 1.1
k51 0.424 0.609 0.740 0.770 0.885 0.915 1.000 1.020 1.050 1.1
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ergies easily and, then, the eigenenergiesEnl and wave func-
tions. Compared with the cases in one, two, and three dim
sions, the binding energiesEB(n,l ) of the donor states in the
QD’s are given by

EB~n,l !5Enl~w50!2Enl~w51!, ~8!

whereEnl(w50) andEnl(w51) are, respectively, the cor
responding eigenenergies of an electron and a donor in
QD’s.

For the symmetry as shown in Fig. 1~b!, the eigenstates o
H can be labeled by magnetic (m) quantum numbers. Be
cause the radius and angle variables do not separate, app
mation methods should be used to obtain the eigenvalue

Let us consider a linear variational function of the form

Cm5(
i51

f

cic i , ~9!

wherec i is the i th exact normorthogonal eigenstate ofH0
with eigenenergyEni l i

(w51) which is degenerate with re
-

n-

he

xi-
.

spect to the magnetic quantum numbers. The principal,
bital, and magnetic quantum numbers ofc i areni , l i , and
mi , respectively. In the problem considered, the summat
in Eq. ~9! includes only the terms with a fixed magnet
quantum number m, i.e.,m15m25•••5mf5m. In addi-
tion, it is interesting to point out thatc i and¹c i /m* ~Ref.
8! and, then,Cm and¹Cm /m* are, respectively, continuou
at r5R0.

According to the variational principle, it is straightfor
ward to obtain the equation

(
j51

f

@Hi j8 2~E2Ej !d i j #cj50, i51,2, . . . ,f ~10!

with

Hi j8 5^c i uH8uc j&. ~11!

Substituting Eq.~6! into Eq. ~11!, we can findHi j8 in the
form
Hi j8 52wE
0

`

Rni l i
~r !Rnj l j

~r !r drd l i l j22 (
l5u l i2 l j u

l i1 l j

~21!m@~2l i11!~2l j11!#1/2F l i l j l

0 0 0GF l i l j l

2m m lG
3S 1

Dl11E
0

D

Rni l i
~r !Rnj l j

~r !r l12dr1DlE
0

D

Rni l i
~r !Rnj l j

~r !
1

r l21dr D , ~12!
e

-
f a
rgy
where

F l i l j l

2m m lG
is the Wigner 3-j symbol.

The condition that this set of Eqs.~10! has nonzero solu
tion leads to the secular equation of finite degreef ,

uuH82Buu50, ~13!

where matrix elements ofH8 areHi j8 of Eq. ~12! andB is a
diagonal matrix, i.e.,

Bi j5~E2Ej !d i j , i , j51,2, . . . ,f . ~14!
Then, the energy levels are obtained by solving Eq.~13!
numerically. ForDW Þ0W , they can be denoted byEnlm even
thoughl is not a good quantum number.Enlm is degenerate
with respect tom and2m, andEnl0 is nondegenerate. Th
binding energyEB(n,l ,m) can be defined by

EB~n,l ,m!5Enl~w50!2Enlm . ~15!

IV. RESULTS AND DISCUSSION

In order to show the potential-shape (k), quantum-size
(R0), and donor-position (D) effects on single-electron spec
tra in QD’s and to better understand the important role o
single impurity in the spectra, we have calculated ene
levels of electron and donor states in QD’s ofV0580R* as
a function ofk, R0, andD, respectively.
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TABLE II. Confined-donor spectraWnl normalized by E30(w50) for QD’s of V0580R* and
R053a* .

Wnl5Enl(w51)/E30(w50)
1s 2p 2s 3d 4 f 3p 5g 3s 4d 6h

k5` 20.095 0.093 0.217 0.258 0.443 0.504 0.653 0.748 0.787 0.8
k54 0.031 0.237 0.408 0.429 0.631 0.655 0.843 0.866 0.889 1.0

1s 2p 2s 3d 3p 4 f 3s 4d 5g 4p
k52 0.143 0.373 0.534 0.572 0.746 0.763 0.910 0.941 0.951 1.1
k51 0.314 0.545 0.667 0.722 0.834 0.876 0.941 0.976 1.016 1.0
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A. k, R0, and D effects on spectra

In Tables I and II, we have shown the spectra of QD
with R053a* andV0580R* . Thek is equal to 1, 2, 4, and
`, respectively. HereQnl andWnl stand for the energy level
of electron and donor states with the well-defined quant
numbern and l , normalized with the corresponding value
3s electron levelE30(w50) in the QD’s. The value of
E30(w50) is equal to 49.2753, 32.7957, 21.1506, a
9.1599R* for k51, 2, 4, and̀ , respectively. It is clearly
seen that the energy-level structure is dramatically chan
as thek changes from 1 tò . An important aspect of the
potential-shape effects is the changes of the level order
which would have an influence on the magic number of
peratoms. As illustrated in Table I, the ordering of electr
states in the QD ofk5`, i.e., a square well, is 1s, 2p, 3d,
2s, 4f , 3p, 5g, 4d, 6h, 3s, and so on, while that ofk51 is
1s, 2p, 2s, 3d, 3p, 4f , 3s, and so on. It shows that th
lower levels of the superatoms are dominated by no-rad
node states of 1s, 2p, 3d, and so on, and that there are mu
more no-radial-node states in the lower levels for the Q
with largerk than for those with smallerk. Such a potential-
shape effect can be useful in electronic device applicatio

For an isolated donor, i.e., without the confinement pot
tial, the ordering of the energy levels is 1s, 2s (2p), 3s
(3p, 3d), 4s (4p, 4d, 4f ), . . . . As the confinement poten
tial exists, the levels with the same principal numbern split.
The stronger the confinement potential is, the larger the le
splitting is. It could be expected that the ordering of don
levels in QD’s will be quite different from that of isolate
donor levels for a strong confinement and all the same as
of the corresponding electron levels for a very strong c
finement. It is more complex for an intermediate confin
ment. As shown in Tables I and II, the ordering of electr
levelsQnl and donor levelsWnl can be quite different from
that of isolated donor levels. The orderings ofWnl of k54
and` are not the same as that of the correspondingQnl and
the difference between theWnl andQnl is larger fork5`
than fork54. However, the orderings ofWnl andQnl are the
same fork51 and 2, respectively.

As shown in Table I, the orderings ofQnl are the same for
k51 and 2 and are about the same fork54 and`. Only the
difference between them exists in 6h and 3s levels. In Table
II, the orderings ofWnl are the same fork54 and`, so are
those fork51 and 2, and there are some changes in
ordering as thek changes from 2 to 4. It is obvious that th
4 f level is higher and lower than the 3p level for k52 and
4, respectively. The same phenomenon occurs in the g
of 3s, 4d, and 5g levels. Besides the level sequence, t
ed
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transition energy between two levels is different for differe
k. It means that the potential shapes have a great influenc
the electronic structure of QD’s.

Comparing Table II with Table I, it is easy to find th
existence of a donor in QD’s can change the energy lev
effectively. For example, two segments of the sequence
3d, 2s and 4d, 3s for k5` in Table I, and 2s, 3d and
3s, 4d for k5` in Table II. In these cases, the introductio
of a single donor changes the ordering ofs andd states. In
addition, the effectiveness of the impurity to change the
quence is different for differentk. For instance, the alteratio
for k51 and 2 is smaller than that fork54 and`.

Using R051a* instead ofR053a* in the calculations
above, we have obtained the ordering ofWnl which is all the
same to that of the correspondingQnl . It means that the
quantum size has obvious effects on the ordering, and
the role of a single impurity is dependent on theR0 andk in
determining the energy levels.

In Figs. 2~a! and 2~b!, we have plotted the spectrum of
donor in QD’s ofV0580R* with k5` and the levels of
2s and 3d states of a donor in QD’s ofV0580R* with
k51,2,4,̀ as a function ofR0, respectively. Here, for the
sake of clearness, the spectrum and the levels are also
malized with the corresponding value of 3s electron level
E30(w50) in the QD’s with theR0. In Fig. 2~a!, it is readily
seen that the crossover of 2s, 3d, and 3s with 4d states
occurs asR0 changes from 0.5a* to 3.5a* . An intersection
of 2s and 3d states occurs fork54 and the level separatio
at R051 and 3a* is smaller for k54 than for k5` as
shown in Fig. 2~b!. It is also shown that there is no interse
tion of 2s and 3d states fork51 and 2. However, there is a
intersection of 3s and 4f states for all ofk51, 2, 4, and̀ at
some points not shown here. What has been mentio
above shows the strongR0 and k coupling effects on the
donor spectra. The reason can be understood if the cha
teristics of electron levels and wave functions and, th
binding energies determined by different confinement pot
tials of QD’s are noted. It will be discussed in the next p
of this section.

In order to understand the role of a single impurity
single-electron spectra of QD’s much better, in Fig. 3,
have plotted the ground and excited energy levels of a do
as a function ofD for QD’s ofR053a* andV0580R* with
k5`, and only the states withm50,61,62 are shown. The
splitting of energy levels can be easily seen from the fig
as the impurity ion is removed from the center. For examp
p states are split into two levels withm50 and61 andd
states into three levels withm50, 61, and62. It is inter-
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esting to note thatEnl0 is the lowest level amongEnlm .
However, there is no splitting fors states. All of the energy
levels approach the exact onesEnl(w51) asD approaches
zero. On the other hand, thel11 splitting levels come nea
and approachEnl(w50) as D approaches infinity. The
above picture is the same for the case of QD’s withk52.

An obvious feature of Fig. 3 is the intersection of 2s state
with 3d state and those of 3s state with 4d and 6h states,
which alter the sequence. The crossover of 2s and 3d occurs
at about 0.7a* , and those of 3s, 4d and 3s, 6h are at about
0.4a* and 1.2a* , respectively. It is a result of the couplin
and competition of Coulomb potential with the confineme
one. Moreover, the effect of two potentials on energy lev
is related to the corresponding wave functions. Onlys state
wave functions have nonzero values at the origin, so
Coulomb potential around the center has greater influenc
s states than others. This is the reason the energies ofs states
change more remarkably along with changingD than the

FIG. 2. ~a! Energy levelsEnl(w51) of center donor in QD’s of
V0580R* with k5` as a function ofR0. ~b! 2s and 3d levels in
QD’s of V0580R* with k51, 2, 4, and` as a function ofR0,
respectively.
t
ls

e
on

others. In the same region ofR0, however, there are no suc
intersections for QD’s withk52. It can be easily understoo
if we note that there is no difference of the level orderi
betweenQnl andWnl of QD’s with k52 in Tables I and II.

Using R051a* instead ofR053a* in the calculations
above, we have found that there is the splitting of ene
levels too as the impurity ion is removed from the cent
However, there is no intersection for 2s, 3d states and 3s,
4d states. From 1s up to 3s and 6h, only one intersection
exists. The crossover of 3s and 6h occurs at about 0.6a* .
Again, it means that the quantum size has obvious effects
the energy-level ordering and that the role of a single im
rity is dependent on theR0 andD in determining the order-
ing in QD’s.

To close this part of the section, it is helpful to compa
the present result ofDÞ0 with others. However, only the
other result12 can be found for the ground state ofDÞ0 in
QD’s with V05`. The ground energies forD50.5 and
1a* in a QD of R053a* with V0580R* obtained in the
present work are, respectively, equal to20.811R* and
20.748R* . The present result is agreeable with tho
(20.82784R* and20.75680R* ) in Ref. 12 since the finite-
barrier effect is small for the ground states in this case.

B. Binding energies

For a better understanding of theR0, k, andD effects, it is
interesting to study the binding energies defined by Eqs.~8!
and~15!. In Table III, the binding energies have been sho
for center (D50) donor states in QD’s ofV0580R* and
R053a* with k51, 2, 4, and`, respectively. We should
note that the sequence of binding energies is different am
different k. For example, EB(1,0).EB(2,0).EB(3,0),
EB(2,1).EB(3,1), andEB(3,2).EB(4,2) for k51 and 2,
while EB(3,0).EB(2,0).EB(1,0), EB(3,1).EB(2,1), and
EB(4,2).EB(3,2) for k5`. The characteristics of binding
energies can be explained by studying the wave function
confined electron states determined byH0 of Eq. ~1! with

FIG. 3. Energy levelsEnlm of an off-center donor in a quantum
dot ofV0580R* andR053a* with k5` as a function ofD. Here
umu is taken to be equal to 0, 1, and 2 only.
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TABLE III. Binding energiesEB(n,l ) measured in units ofR* for QD’s of V0580R* andR053a* .

k5` n,l 3s 2s 1s 3p 4d 2p 3d 4 f 5g
EB(n,l ) 2.311 2.085 1.891 1.541 1.322 1.237 1.066 0.982 0.9

k54 n,l 1s 2s 3s 3p 2p 4d 3d 4 f 5g
EB(n,l ) 3.134 2.965 2.836 2.111 2.073 1.760 1.715 1.518 1.3

k52 n,l 1s 2s 3s 2p 3p 3d 4d 4 f 5g
EB(n,l ) 4.248 3.369 2.956 2.673 2.380 2.110 1.951 1.798 1.5

k51 n,l 1s 2s 2p 3s 3p 3d 4d 4 f 5g
EB(n,l ) 5.393 3.602 3.153 2.885 2.502 2.356 2.000 1.926 1.6
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w50. If a wave function shows that the electron distributi
is mainly near to the center of the dot, the binding energ
large. This point of view can be formulated as follows. It
accurate enough to calculate the binding energies with
use of the first-order perturbation as the confinement po
tial is strong enough compared with the Coulomb potent
Then, the binding energyEB(n,l ) is given by

EB~n,l !5 K CnlU 2r UCnlL 5 KRnlU 2r URnlL , ~16!

whereCnl andRnl are, respectively, the total and radial no
malized wave functions ofH0 with w50. Therefore the spa
tial distribution of an electron on this state determines
magnitude ofEB(n,l ). The characteristics of binding ene
gies mentioned above are unchanged as the confineme
strong and, then, the first-order perturbation is valid.

As a specific example, we study the case fork5`. The
radial wave functionRnl of k5` with V0→` is

Rnl~r !→Anl j l@AEnl~w50!r #, ~17!

with

Enl~w50!5~Xnl /R0!
2, ~18!

whereAnl is a normalization constant, andj l(x) andXnl are
the l th-order spherical Bessel function and its (n2 l )th root,
respectively. It can be seen from the graph ofRnl(r ) with a
fixed l that the electron is nearer to the center of the dot
largern ~the node number isnr5n2 l21) than for smaller
ones, that is to say, the electron is attracted by the donor
more strongly for large n and, then,
EB(n12,l ).EB(n11,l ).EB(n,l ) and so on.

Another example is fork52 with V0→`. The radial
wave function is

Rnl~r !→Bnlr
le2Aar2F„2n~n2 l21!,l13/2,2Aar 2…,

~19!

where F(a,b,z) is the confluent hypergeometric functio
andBnl is a normalization constant. The graph ofRnl with a
fixed l shows that the electron is nearer to the center of
dot for smallern than for larger ones. So the binding ene
gies increase with decreasingn for the same l , i.e.,
EB(n,l ).EB(n11,l ).EB(n12,l ) and so on.

Based on what has been mentioned above, we can b
understand the dependence of the sequence of the bin
energies onk shown in Table III and, then, the orderin
difference betweenQnl andWnl of k5` and 2 shown in
Tables I and II.
is

e
n-
l.

e

t is

r

n

e

ter
ing

For the strong confinement, the electron levels and
binding energies are almost in proportion to 1/R0

2 and 1/R0,
respectively. Therefore, changingR0 from a smaller value to
a larger one, we can have an intersection for two levels if o
of them with a larger binding energy is higher than the oth
with a smaller binding energy in the strong confinement c
dition. Otherwise, there is no intersection for the two leve
According to Tables I, II, and III, we can now understan
what has been mentioned for 2s, 3d states@Fig. 2~b!# and
3s and 4f states in Sec. IV A much better.

For DW Þ0W case, it is found that the binding energ
EB(n,l ,m) defined in Eq.~15! reduces with increasingumu
for fixed n andl and it is consistent with the ordering show
in Fig. 3. Furthermore, the binding energies withumu5 l re-
duce monotonously with increasingDW , while the others have
maximum binding energies at someD not equal to zero. The
maximum value is larger for smallerumu. The above charac
teristic feature can be explained as follows. According to
angular distribution of wave functions, the states w
m50 mainly distribute along thez axis and the other state
are more and more distant from thez axis with increasing
umu. So, the donor ion influences the state with smallerumu
more effectively and, then, a larger binding energy is gain
This is the reason we have the picture of the spectrum
shown in Fig. 3.

V. SUMMARY

Using the methods of series expansion and linear va
tional calculations, we have reported the calculated res
of spectra of electron and donor confined
GaAs-Ga12xAl xAs QD’s. The results have clearly demon
strated thek, R0, andD effects. These effects can be unde
stood better on the basis of analyzing the characteristic
wave functions and, then, binding energies in different QD

The competing and coupling between confinement a
impurity potential are different for differentR0. When the
R0 of a QD is large, the donor spectra are similar to those
an isolated donor. When theR0 becomes much smaller, th
spectra are similar to those of an electron in the QD. For
intermediary radius, the impurity and confinement poten
are coupled strongly. In this region the crossover for so
levels happens. When theR0 is changed from a large to
small value, some of the lower energy levels can inters
with higher ones and it changes the level ordering. This
flects thatR0 is an important factor to determine the ele
tronic structures.

The effects of a single impurity on the level ordering a
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binding energies are strongly dependent not only on theR0
but also on thek. Thek is also an important factor in inves
tigating the properties of QD’s, such as magic number, m
netism, and optical transitions, which may be clarified.

For an off-center donor (DÞ0), the splitting and ordering
of quantum levels are dependent onk, R0, andD. The most
interesting and inspiring feature ofD dependence of the
energy-level structure is the intersection of some levels
means that a single impurity can largely change the sing
electron spectrum of a QD and, then, the property.

To close this paper, it is interesting to point out that t
k, R0, and D effects are not only important for single
electron spectra but also for two- and many-electron spe
in QD’s since the two- and many-electron spectra a
strongly related to the single-electron spectra. For exampl
proper design of the potential shape and the radius of a
may enhance the electron spin polarization very effectiv
utilizing the spin-orbit interaction.28 The ground states of a
,

.

-

It
e-

ra
e
, a
D
y

negative donor center in asymmetric quantum wells w
strong magnetic fields29 are quite different from that of a
negative donor center in symmetric quantum wells with t
same fields. Therefore, in order to understand the phys
phenomena in Q0D structures better and to use the quan
size, potential-shape, and impurity effects in designing m
terials and devices of QD’s, it should be worthwhile to stu
these effects on two- and many-electron spectra of QD
Work on the effects on two-electron spectra is in progres
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