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Tunneling into a periodically modulated Luttinger liquid

A. Gramada and M. E. Raikh
Department of Physics, University of Utah, Salt Lake City, Utah 84112
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We study the tunneling into the edge of the Luttinger liquid with a periodically modulated concentration of
electrons. It is shown that the modulation, by causing a gap in the spectrum of plasmons, leads to an additional
anomaly in the density of states at a frequency corresponding to the center of the gap. The shape of the
anomaly depends strongly on thbaseof the modulation. The sensitivity to the phase is related to the plasmon
mode, localized at the edge, its frequency lying within the @agalog of the Tamm state for an electron in a
periodic potentigl [S0163-182607)00304-4

I. INTRODUCTION with the motion of an electron in a periodic potential, the
position of the center of the gaj,, is determined by the
The explicit solution of the model of a one-dimensional condition k(wg) = 7/a, so thatwy=ms/a. We assume the
interacting electron gagLuttinger liquid) allows one to de- modulation to be weak. Then the width of the gayp, is
scribe analytically the gap in the tunnel density of states formuch smaller thamg, the ratioA/w, being proportional to
the region of energies close to the Fermi level. The physicathe relative amplitude of the modulation. It is also propor-
origin of the gap is that, in order to add an electron to thetional to the interaction strength, since it is obvious that with-
interacting system, a shift, vacating an extra space, should bt interactions the gap is absent. In the vicinity«f the
created. Then the gap reveals the smallness of the overlap nfodulation-induced correction to the tunnel density of states,
many-electron wave functions with and without such a shift.sv, is a function of ®=2(w— wg)/A. For |o— wo|>A,
The bosonization transformatibri permits one to present §v(@) behaves as a power law with the same exponent as in
the formation of the shift as a creation of plasmon modes i1). Since we study the tunneling into the edge, the actual
the system. The fact that the dispersion law of plasmons ishape ofsv(@) appears to depend strongly on thieaseof
linear in one dimensionp = sk, results in a power-law be- the modulation. This is because for plasmons with frequen-
havior of the density of states(w). For tunneling into the cies close tow, the behavior of the field near the edge is
edge of a single-channel liquid the density of states has determined by this phase. The other reason is that, with pe-
form*® riodic modulation, the presence of an edge leads to the for-
mation of a localized plasmon mode with the frequency lying
v(w)xoSvF L (1)  within the gap. For an electron in a periodic potential this
fact was established more than 60 years S§be frequency
whereu is the Fermi velocity. Matveev an Glaznianave  of the localized mode sweeps through the gap as the phase of
traced the evolution of the exponent () with increasing  modulation changes. We show that the localized plasmon
the number of channels. provides a contribution t&v(@) comparable to that from
The bosonization procedure can be generically extendeghe extended modes.
to the the case of longitudinally inhomogeneous Luttinger The paper is organized as follows. In the next section the
liquid. If the spacial scale of inhomogeniety is much largerform of the Hamiltonian for an inhomogeneous Luttinger
than the Fermi wavelengtk; * it can be considered as a liquid is established. In Sec. Ill we derive a general formula
“scattering potential” for the plasmon modes, so that a plasfor inhomogeneity-induced correction to the tunnel density
mon gets partially reflected after propagation through thef states. In Sec. IV the plasmon modes for the case of a
region of inhomogeniety. If the boundaries of this region areweak sinusoidal modulation of the electron concentration are
abrupt compared to the wavelength of a plasrimrt smooth  found. The results fosv(@) are analyzed in Sec. V. Section
on the scale ok 1), the reflection coefficient, as a function VI concludes the paper.
of frequency, exhibits the interference oscillations. Such os-
cillations were first considered in Ref. 6. In Ref. 7 it was

demonstrated that the oscillations of the reflection coefficient II. HAMILTONIAN
lead to the oscillating structure in the density of states, su- ) ) ) . )
perimposed on the power-'aw increase. In thIS section we W|” eStabllsh the fOI‘m Of the Ha.m||'

In the present paper we consider another realization ofonian for the Luttinger liquid with spatially varying concen-
inhomogeniety. Namely, we assume that the density of th&ation of electronsiy(x). We start from the classical equa-
Luttinger liquid is periodically modulated with a period tion of motion
a>kz! We show that such a modulation results in addi-
tional singularity in the tunnel density of states. The reason )
for the singularity is a gap in the plasmon spectrum, which mnd u_ —enf— d_P 2
opens due to the periodic modulation. In complete analogy dt dx’
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wherem is the electron massj(x,t) is the displacement; If the concentration is constant, the last term in the integrand
n(x,t) is the electron densityn(x,t) =ng(x)+ny(x,t), with  takes the standard fofm imngZ(du/dx)?, where

n, describing the temporal fluctuationsf(x,t)=_Ey(X) ve=mnehi/m is the Fermi velocity.

+&,(x,t) is the actual electric field consisting of static and

fluctuating partsP = 7?42n3/3m is the hydrostatic pressure.  |jI. GENERAL FORM OF THE CORRECTION TO THE

The static electric field can be eliminated from Eg). using DENSITY OF STATES

the equilibrium condition i } _ i )
In this section we will derive a general expression for the

correction, caused by the variation of the electron concentra-
' 3 tion ny(x), to the tunnel density of states at the edge of the
Luttinger liquid. The Hamiltoniari7) can be diagonalized by
which gives&y(x) = — (7?%2ny/em)(dny/dx). Substituting  the transformation
this value into(2) and linearizing(2) with respect tau, &,

dpP

egon(): - a

n=ng(x)

andn,, we obtain ax)=2, ! ®,(x)Q
, - u YNg(X) g g
d’u P he ,dng dno 4 8
mnow_—enO R n0a+nonla .4

_ , _ PO =2 V() P, (X)P,,
Let V(x) be the potential of electron-electron interactions, ©

screened by the presence of a gate electrode. Thean be where® ,(x) are the eigenfunctions of the equation
presented as a field created by the density fluctuations

n (X,t), d V h 2 d
: | _\/_nO(X)E(( ﬁ*(%) No(X) &(\/no(x)‘pu)]
eé‘l:—&f dx'V(x=x")ny(x’,t). (5 ~020,, (9)

As usually we will assume that the screening radius is muc@nin are the eigenvalues. We assume thgtare normal-

smaller than the characteristic spatial scale of the fluctugpeq: Jodx® ,(x)® ,/(x)=5,,,, and turn to zero at the
tions. Then Eq.(S) reduces toef;=—Vo(dn(x,1)/dx),  edge,d,(0)=0. As a result of the transformatioi®) the

whereVo=JdxV(x). _ Hamiltonian (7) reduces to the system of harmonic oscilla-
As a next stem, is expressed through with the help of  {grs,

the continuity equatiom,;= —d(ngu)/dx. To derive the en-

ergy conservation law we multiply Eg4) by du/dt. Then, . pi in -
using (5), the first term in the right-hand side can be rewrit- H=2 smt 2 Quls (10
ten as #
) with frequencieq) , . Next, the transformatio(8) is applied
Vo d |d(nou) d){d(nou) d(nou) to the operator’ ' which creates an electron at the edge
2 dt| dx Oldx/| dx  dt x=0,
The two remaining terms can be combined into i (= P(X) i A
Pl=exp — 5| dx—==|=exp — P.l,
762 d [(d [ dnew?  [d(now)]? p( ﬁfo no(x)> F( ﬁ% “u “)
om dt |dx | dx Mol ~ax ' (11)

After bringing all these terms into the left-hand side andWhere the coefficients, are defined as
integrating overx from 0 to « [taking into account that

u(0,t)=0], Eq. (4) reduces tadE/dt=0, where the energy o = fwdx P ,(x) (12)
E is given by o do i ng(x)
= [mny(x) (du\? 1 2p2 One can also express, explicitly through @® ,/dx)|y—o.
E= fo dx 2 (m) 5| Votr—0 No(X) Dividing Eqg. (9) by Vno(x) and integrating, one gets
2
d(ngu)\? _ 1 [Vo (mh d
x( Ix ) : (6) a,= 55 m \m No(0) | Vne(0) dxq)“ .

The expressiori6) for the energy allows one to write down (13
the corresponding Hamiltonian. Treating the displacemenwith the Hamiltonian andl' ™ having the form(10) and(11),
u(x) as an operaton(x) and introducing the conjugate mo- the calculation of the density of state¢w) reduces to the
mentum operatop(x), [((X),p(x')]=i%5(x—x"), one gets  standard procedutend results in
A (= p2(x 1 w?h? d(nol) 2
H:jdxp” ( )(u)).
0

2mngy(X) * 2

1 (= 1 (e
v(w)=—Re| dte*{¥(t1)¥T(0))=—Re| dte“le” WV,
v 0 T 0
@) (14)

Vot T o) [ gy
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where the functiolW(t) is the sum over eigenmodes

2
ma: () .
W(t)=2> — " (1-e "),
y22

(19

At this point we will make use of the assumption that the

relative variation of the concentratiomy(x) is small:

ng(X)=n+én(x); sn<n. For the average concentration,
n, the eigenfunctions of Eq9), which satisfy the boundary Let
condition, are«sinkx, the corresponding eigenvalues being:

s?k?, where

\/1+ Voh 16
s: R

UF mv,Z: (16)
is the plasmon velocity. Then the functiol(t) takes the
standard form

s (=dk . s [ro+ist
Wo(t):—f —(1—e 'Sk Tok=—|n| ——
velo K UF

7

where, as usual, the cutoff parameger o is introduced to
ensure the convergence of the integral kat>oo. With
Wy(t) given by (17), Eqg. (14) reproduces the resultl).
Treating the differenc&V(t) —Wy(t) as a perturbation and
expanding the exponent {4) to the first order, one gets the
following correction to the density of states:

o

slvg
[WI(t) —Wo(t)].

(18)

This expression can be simplified if one uses the identity

1 e )
Sv=— —Ref dte'et
7T Jo

rotist

1

i —Slvp —
(rotist) °vF T(slvp)

fwdzislv,:)flefz(roﬂst).
0
(19

Substituting(19) into (18) and performing the integration
first overt and then over, one gets

1 ro)¥f « MaQ,
= — _ (slvp)—1
o F(s/v,:)(s) [2#: T
s (e/sdk
o)y ?(w—sk)(s’”F)‘l}. (20

The divergence of the integral at smhklis canceled by the
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d?®, (1 dng/dx 2
dx@ | 4\ ng(x) +Vem/ 7242
No(X) Q,m \?
 [no(x) +Vom/ w242] | | rhing(x)
d2ny/dx? = ”
EETEORINE 22
us specify the modulation profile: én(x)

— Ny CosEXx+¢), whereep is the phase and=27/a. For
such a modulation and,~n the plasmon spectrum was
studied numerically in Ref. 10. H,,<n the analytical solu-
tion can be obtained. After expanding the “potential en-
ergy” in (22) to the first order imy, /n, the equation reduces
to the conventional Mathieu equatidn

d2(5“+ i R L7 i ®,=0, (23
a2 T| 7 codox+e)+|—| |2,=0, (23
where the dimensionless parameteis defined as
2ny | [ Q, 2 v,2: v,2:
- E) ) 49

Since 6 is proportional to the relative modulation, we have
0<1, so that the gap in the spectrum of eigenfrequencies
Q, is narrow. The center of the gap is determined by the
condition(} ,/s= o/2. This allows us to simplify the expres-

sion for 6 by the substitutiof) ,= os/2. Then(24) takes the

form

n&( vﬁ) (n@ Vom/ w2h?

an\ V) T I e vomi ez
We emphasize again thatis proportional to the interaction
strengthV,; this supports the obvious observation that there
is no gap for noninteracting electrons. Note also that, in prin-
ciple, there are higher-order gaps in the spectrum of &£3).
They are centered af),=pso/2 (p=2,3...) with the
widths proportional to i, /n)P. However, they do not de-
scribe the higher-order gaps in the spectrum of &),
since(23) was derived from(22) using the first-order expan-
sion. As it was mentioned in the Introduction, the eigen-
modes of Eq.(23), satisfying the conditiorb,(0)=0, can
be of two types: localized and extended.

0= (25

A. Localized mode
Substituting into(23)

similar divergence in the first term. Further calculations re-

quire the knowledge of the eigenfrequendiks. For a weak
periodic modulation they are found in the next section.
IV. PLASMON SPECTRUM

To find the eigenvalues of EQ9) it is convenient to in-
troduce a function

@, = ,\no(X)[No(X) + Vom/72A7]. (21)

Then the equation foﬁ)M takes the form

~ _s ox
d=2n U—\He‘ sin—-,
F

5 (26)

where the prefactor ensures the normalization, and neglect-
ing the “nonresonant” terms:sin(3ox/2) + ¢], we get the
following expressions for the frequency and the decay con-
stant of a localized mode:

So So
O= 7\/1*’ f#cosp~ 7

14 (% _ gl
50|, y=——sine.

(27)
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We see that the localized mode exists only ifgitD, when
v is positive. As¢ changes within the intervahr,27], the w

frequencyQ) moves from the lower to the upper boundary of
the gap. The decay constant of the localized mode turns to

zero as its frequency merges with the continuum. To calcu- sa 2
late the contribution of the localized mode &, we need 2 J

the constantr. Substituting(27) into (13), we obtain

4\/;
a=— — .
g n

B. Extended modes

(28)

Let L be the normalization length. We search for the so-

lution of (23) in the form

Ef) e 2
v VLB 82

o
5 Tk,

2 X+ i

ﬁlcos{

g
+Bzcos{<§—xﬂ X+ s (29
The boundary condition requires that
B1C0Ssy + BC0s),=0. (30

Substituting(29) into (23), we establish the following rela-
tion between the phases and ¢,:

Uit o=o. (31

The system of coupled equations for coefficieftg B»
takes the form

Q, 2 o 2 a’0

< | “\2tKu] [Pt B2=0,

Q, 2 o 2 %0

< | “|\3 K| |Bat 7 B1=0. (32

The solution of the system yields the plasmon spectrum

AZ
QM:(L)0+)\ \/ KiSZ‘FZ,

wherewy=sc/2, and the width of the ga@, is given by

(33

so 6
== 00)0,

> (34

so that the smallness @f guarantees thak/wqo<<1. Param-
eter\ takes the values 1 depending on the sign &f,,

A=sign(x,). (35

The plasmon spectruii®3) is shown in Fig. 1. The phase of
modulation ¢ does not affect the spectrum, but it reveals

itself in the parameter
takes the form

which for @, given by (29),

Mmoo

o
2

FIG. 1. Plasmon spectrum of a periodically modulated Luttinger
liquid.

N _2 |2 Bicos)y + B,c08),
“ o NLn o (Bi+B)™

The last factor in36) can be expressed throughusing the
relations(30) and (31)

(36)

B1COS)1 + BoCOS), - B3
(B2+BHY2 (BI+B3)YVA B2+ B3+ 2B, Boc0sp) 2
37

Expressing the ratig, /8, with the use of Eqs(32), (33),
we finally obtain

B1cosp, + 5,090,
(Bi+ B3
Sk, A/2 12
=— > 1+ cosp————| .
2 2 A% 2.2 A
S K'U'+ TSIHZ(,D S KM+T
(38

The discreteness ot,, is related to the final normalization
length. The summation over reduces to the integration
with the help of the relatiodx , = m/L.

V. ASYMPTOTES AND NUMERICAL RESULTS

The resulting expression fafv emerges after the substi-
tution of (27), (28), (33), and(36) into Eq. (20). It is conve-
nient to present this expression by introducing the relative
deviation of the frequency from the center of the gap

2(w— wq)

A (39

w=

Then we obtain

-1 rof\ % s (slop)—1p  ~
5V(w)—F(S/UF)<?) (;)wo F(w), (40

where the dimensionless functié(w) has the form
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1
F(@)=| — msing(@ — cosp) <P "1~ >1,(@) 257
ov

2

cosp ~ U(GJO)GS/ ¥ |
+—f(@)], (41) i s
and the functiong, andf, are defined as 1
. v2 0.5

~ ~_ Nshp-1___Y o~ »
fi(w) f_mdv (w—v)'vF vz-l-sinzgo(w o

-0.5)
_)\v\/vz—-l—l)(slvp)—l}, (42) =10 -5 0 5 10
@
(a)

(%) j“ q )\Uvz @ 8

2(w)= v w »

—=  (v2+sirte) JoZ+1 U(wél)/es - 6F

A2 )R (43) A

Similar to (35), in (42, (43) \,=sign(@); the form
(...)®r~1is defined only when the argument is positive
and it is zero otherwise.

We remind you that the first term l(®) is present only
if sing<<0. This term desribes a power-law anomaly in the
density of states originating from the localized plasmon. The
second and the third terms represent the contribution from
the continuous plasmon spectrum outside the gap.

In the integralf ; two terms of the integrand almost cancel
each other at large negative, indicating that the
modulation-induced correction to the spectrum is important
only in the region of the gap. One can see that the integral
f, divergies az — —«, since for large negative the inte-
grand behaves as (—v)®*P~2, The origin of the diver-
gency is that iN42), (43) we have used the expansion of the
spectrum in the vicinity of the gagk— (¢/2)|<a, so the
integration should be cut at~ —1/6. Note however, that the
divergent part is frequency independent and causes only a
small correction to the background density of stat€s).

To study the frequency dependence, one should subtract
this divergent part by considering the difference
f,="f,(w)—f,(0), which converges.

For large positivew (outside the gapall three contribu-
tions toF (@) behave a&('"F~1 with prefactors depending
on the phase of modulation. For integralsf,; and f, the
following asymptotic behavor in the lim&>1 can be de-
rived:

10
(c) )

FIG. 2. The normalized correction to the density of states,

fi~ 1T|Sincp|E')(SIUF)71,

To=12()—2(0)~ BEPTL (44

tan —
UF

In the opposite limit <0, |®|>1 the contribution from the
localized plasmon is absent and the intedraffalls off as
|@|(5"F)=2. The only contribution toF (@) in this limit
comes fromf, which has the following asymptotics:

Svlv(wg) 89VF, is plotted as a function of the dimensionless fre-
quency @ for (s/vg)=1.2 and different values of the phase of
modulatione. (a) ¢=0 (solid curve, ¢=7/4 (long-dashed curye
¢=m/2 (dash-dotted curve (b) ¢=3w/4 (solid curve, o=
(long-dashed curye ¢ =117/8 (dash-dotted curye (c) ¢=3/2
(solid curve, ¢=7m/4 (long-dashed curye ¢=15#/8 (dash-
dotted curve

(45

The frequency dependence of the correctibr{w), cal-
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culated numerically from Eq41) for various values of the 12-16. The most suitable technique for the fabrication of
phasegp, is shown in Fig. 2. It can be seen that some of thethe modulated quantum wire seems to be the one employed
curves have cusps at frequencies, corresponding to the Ref. 16. Actually, periodic modulation was achieved in
boundaries of the gafw==1. The cusps in the curves Ref. 16 by confining electrons under the splitted gate with
¢=117/8 and ¢=3m/2 have their origin in the localized one of the two sides being periodically corrugated. Changing
plasmon. the bias applied to one of the sidédectrodesallowed the
authors to vary the amplitude of modulation of the elctron
VI. CONCLUSION density, but the phase of modulation remained fixed in their
] o ) measurements. However the phase could be easily made tun-
The singularity in the tunnel density of states, caused by if hoth sides of the splitted gate were corrugated with a
the perlpd|c modulation of the glectron c.:oncent.ratlon,.shoulqnutua| phase shift ofr. Then the actual phase of the modu-
reveal itself as an anomaly in the differential resistancqation would be determined by the relation between the volt-
di/dV at voltageeV=1.wo=nfis/a, which depends on the 4465 applied to the two electrodes, and, thus, can be effec-

period of modulation and thg plas_mon velocity_. We CO'f‘Sid'tiver tuned (without changing the amplitudleby adjusting
ered the case of a weak sinusoidal modulation. If highet,ese voltages.

harmonics with perioda/p are present imo(x), the gaps in As a final remark, we considered a single-channel Lut-
the plasmon spectrum at=pw, (and correspoding anoma- tinger liquid. Increasing the number of channels would result
lies indI/dV ateV=mpfis/a) should emerge. in additional anomalies in the tunnel density of states, caused

The strength of the anomaly is governed by the dimenyy resonances within each channel. Besides, modulation

sionless paramete (24), which we assumed to be small. To would couple the plasmons from different channels, thus
sense the magnitude of the anomaly it is convenient to relatgaysing additional anomalies.

Sv to the density of states at= wq in the absence of modu-
lation: &v/v(wo)=6¥"FF(@). In our calculations we as-

sum_ed the _interacyions to be short range. This implies that ACKNOWLEDGMENTS
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