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Tunneling into a periodically modulated Luttinger liquid

A. Gramada* and M. E. Raikh
Department of Physics, University of Utah, Salt Lake City, Utah 84112

~Received 20 May 1996!

We study the tunneling into the edge of the Luttinger liquid with a periodically modulated concentration of
electrons. It is shown that the modulation, by causing a gap in the spectrum of plasmons, leads to an additional
anomaly in the density of states at a frequency corresponding to the center of the gap. The shape of the
anomaly depends strongly on thephaseof the modulation. The sensitivity to the phase is related to the plasmon
mode, localized at the edge, its frequency lying within the gap~analog of the Tamm state for an electron in a
periodic potential!. @S0163-1829~97!00304-4#
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I. INTRODUCTION

The explicit solution of the model of a one-dimension
interacting electron gas1 ~Luttinger liquid! allows one to de-
scribe analytically the gap in the tunnel density of states
the region of energies close to the Fermi level. The phys
origin of the gap is that, in order to add an electron to
interacting system, a shift, vacating an extra space, shoul
created. Then the gap reveals the smallness of the overla
many-electron wave functions with and without such a sh
The bosonization transformation1–3 permits one to presen
the formation of the shift as a creation of plasmon modes
the system. The fact that the dispersion law of plasmon
linear in one dimension,v5sk, results in a power-law be
havior of the density of statesn(v). For tunneling into the
edge of a single-channel liquid the density of states ha
form4,5

n~v!}v~s/vF!21, ~1!

wherevF is the Fermi velocity. Matveev an Glazman5 have
traced the evolution of the exponent in~1! with increasing
the number of channels.

The bosonization procedure can be generically exten
to the the case of longitudinally inhomogeneous Lutting
liquid. If the spacial scale of inhomogeniety is much larg
than the Fermi wavelength,kF

21 it can be considered as
‘‘scattering potential’’ for the plasmon modes, so that a pl
mon gets partially reflected after propagation through
region of inhomogeniety. If the boundaries of this region a
abrupt compared to the wavelength of a plasmon~but smooth
on the scale ofkF

21), the reflection coefficient, as a functio
of frequency, exhibits the interference oscillations. Such
cillations were first considered in Ref. 6. In Ref. 7 it w
demonstrated that the oscillations of the reflection coeffic
lead to the oscillating structure in the density of states,
perimposed on the power-law increase.

In the present paper we consider another realization
inhomogeniety. Namely, we assume that the density of
Luttinger liquid is periodically modulated with a perio
a@kF

21 We show that such a modulation results in ad
tional singularity in the tunnel density of states. The reas
for the singularity is a gap in the plasmon spectrum, wh
opens due to the periodic modulation. In complete anal
550163-1829/97/55~3!/1661~6!/$10.00
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with the motion of an electron in a periodic potential, th
position of the center of the gap,v0, is determined by the
condition k(v0)5p/a, so thatv05ps/a. We assume the
modulation to be weak. Then the width of the gap,D, is
much smaller thanv0, the ratioD/v0 being proportional to
the relative amplitude of the modulation. It is also propo
tional to the interaction strength, since it is obvious that wi
out interactions the gap is absent. In the vicinity ofv0 the
modulation-induced correction to the tunnel density of sta
dn, is a function of ṽ52(v2v0)/D. For uv2v0u@D,
dn(ṽ) behaves as a power law with the same exponent a
~1!. Since we study the tunneling into the edge, the act
shape ofdn(ṽ) appears to depend strongly on thephaseof
the modulation. This is because for plasmons with frequ
cies close tov0 the behavior of the field near the edge
determined by this phase. The other reason is that, with
riodic modulation, the presence of an edge leads to the
mation of a localized plasmon mode with the frequency lyi
within the gap. For an electron in a periodic potential th
fact was established more than 60 years ago.8 The frequency
of the localized mode sweeps through the gap as the pha
modulation changes. We show that the localized plasm
provides a contribution todn(ṽ) comparable to that from
the extended modes.

The paper is organized as follows. In the next section
form of the Hamiltonian for an inhomogeneous Lutting
liquid is established. In Sec. III we derive a general formu
for inhomogeneity-induced correction to the tunnel dens
of states. In Sec. IV the plasmon modes for the case o
weak sinusoidal modulation of the electron concentration
found. The results fordn(ṽ) are analyzed in Sec. V. Sectio
VI concludes the paper.

II. HAMILTONIAN

In this section we will establish the form of the Hami
tonian for the Luttinger liquid with spatially varying concen
tration of electronsn0(x). We start from the classical equa
tion of motion

mn
d2u

dt2
52enE2

dP

dx
, ~2!
1661 © 1997 The American Physical Society
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1662 55A. GRAMADA AND M. E. RAIKH
wherem is the electron mass;u(x,t) is the displacement
n(x,t) is the electron density:n(x,t)5n0(x)1n1(x,t), with
n1 describing the temporal fluctuations;E(x,t)5E0(x)
1E1(x,t) is the actual electric field consisting of static a
fluctuating parts;P5p2\2n3/3m is the hydrostatic pressure
The static electric field can be eliminated from Eq.~1! using
the equilibrium condition

eE0n052
dP

dx U
n5n0~x!

, ~3!

which givesE0(x)52(p2\2n0 /em)(dn0 /dx). Substituting
this value into~2! and linearizing~2! with respect tou, E1,
andn1, we obtain

mn0
d2u

dt2
52en0E12

p2\2

m S n02dn1dx
1n0n1

dn0
dx D . ~4!

Let V(x) be the potential of electron-electron interaction
screened by the presence of a gate electrode. ThenE1 can be
presented as a field created by the density fluctuat
n1(x,t),

eE152
d

dxE dx8V~x2x8!n1~x8,t !. ~5!

As usually we will assume that the screening radius is m
smaller than the characteristic spatial scale of the fluc
tions. Then Eq.~5! reduces toeE152V0„dn1(x,t)/dx…,
whereV05*dxV(x).

As a next stepn1 is expressed throughu with the help of
the continuity equation:n152d(n0u)/dx. To derive the en-
ergy conservation law we multiply Eq.~4! by du/dt. Then,
using ~5!, the first term in the right-hand side can be rewr
ten as

2
V0

2

d

dt Fd~n0u!

dx G21V0S ddxD Fd~n0u!

dx

d~n0u!

dt G .
The two remaining terms can be combined into

p2\2

2m

d

dt H ddx Fn0 d~n0u!2

dx G2n0Fd~n0u!

dx G2J .
After bringing all these terms into the left-hand side a
integrating overx from 0 to ` @taking into account tha
u(0,t)50#, Eq. ~4! reduces todE/dt50, where the energy
E is given by

E5E
0

`

dxFmn0~x!

2 S dudt D
2

1
1

2 SV01
p2\2

m
n0~x! D

3S d~n0u!

dx D 2G . ~6!

The expression~6! for the energy allows one to write dow
the corresponding Hamiltonian. Treating the displacem
u(x) as an operatorû(x) and introducing the conjugate mo
mentum operatorp̂(x), @ û(x),p̂(x8)#5 i\d(x2x8), one gets

Ĥ5E
0

`

dxF p̂2~x!

2mn0~x!
1
1

2 SV01
p2\2

m
n0~x! D S d~n0û!

dx D 2G .
~7!
,

s

h
a-

nt

If the concentration is constant, the last term in the integra
takes the standard form5 1

2mn0vF
2(du/dx)2, where

vF5pn0\/m is the Fermi velocity.

III. GENERAL FORM OF THE CORRECTION TO THE
DENSITY OF STATES

In this section we will derive a general expression for t
correction, caused by the variation of the electron concen
tion n0(x), to the tunnel density of states at the edge of
Luttinger liquid. The Hamiltonian~7! can be diagonalized by
the transformation

û~x!5(
m

1

An0~x!
Fm~x!Q̂m ,

~8!

p̂~x!5(
m

An0~x!Fm~x!P̂m ,

whereFm(x) are the eigenfunctions of the equation

2An0~x!
d

dx H FV0

m
1S p\

m D 2n0~x!G ddx „An0~x!Fm…J
5Vm

2Fm , ~9!

andVm
2 are the eigenvalues. We assume thatFm are normal-

ized: *0
`dxFm(x)Fm8(x)5dm,m8, and turn to zero at the

edge,Fm(0)50. As a result of the transformation~8! the
Hamiltonian ~7! reduces to the system of harmonic oscill
tors,

Ĥ5(
m

F P̂m
2

2m
1
mVm

2

2
Q̂m
2 G , ~10!

with frequenciesVm . Next, the transformation~8! is applied
to the operatorC† which creates an electron at the ed
x50,

C†5expS 2
i

\E0
`

dx
p̂~x!

n0~x! D 5expS 2
i

\(
m

amP̂mD ,
~11!

where the coefficientsam are defined as

am5E
0

`

dx
Fm~x!

An0~x!
. ~12!

One can also expressam explicitly through (dFm /dx)ux50.
Dividing Eq. ~9! by An0(x) and integrating, one gets

am52
1

Vm
2 FV0

m
1S p\

m D 2n0~0!GAn0~0!S ddxFmD U
x50

.

~13!

With the Hamiltonian andC† having the form~10! and~11!,
the calculation of the density of statesn(v) reduces to the
standard procedure9 and results in

n~v!5
1

p
ReE

0

`

dteivt^C~ t !C†~0!&5
1

p
ReE

0

`

dteivte2W~ t !,

~14!
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55 1663TUNNELING INTO A PERIODICALLY MODULATED . . .
where the functionW(t) is the sum over eigenmodes

W~ t !5(
m

mam
2Vm

2\
~12e2 iVmt!. ~15!

At this point we will make use of the assumption that t
relative variation of the concentrationn0(x) is small:
n0(x)5n̄1dn(x); dn!n̄. For the average concentratio
n̄, the eigenfunctions of Eq.~9!, which satisfy the boundary
condition, are}sinkx, the corresponding eigenvalues bei
s2k2, where

s5vFA11
V0n̄

mvF
2 ~16!

is the plasmon velocity. Then the functionW(t) takes the
standard form

W0~ t !5
s

vF
E
0

`dk

k
~12e2 iskt!e2r0k5

s

vF
lnS r 01 ist

r 0
D ,

~17!

where, as usual, the cutoff parametere2r0k is introduced to
ensure the convergence of the integral atk→`. With
W0(t) given by ~17!, Eq. ~14! reproduces the result~1!.
Treating the differenceW(t)2W0(t) as a perturbation and
expanding the exponent in~14! to the first order, one gets th
following correction to the density of states:

dn52
1

p
ReE

0

`

dteivtS r 0
r 01 istD

s/vF

@W~ t !2W0~ t !#.

~18!

This expression can be simplified if one uses the identity

~r 01 ist!2s/vF5
1

G~s/vF!
E
0

`

dzz~s/vF!21e2z~r01 ist!.

~19!

Substituting~19! into ~18! and performing the integration
first over t and then overz, one gets

dn5
1

G~s/vF! S r 0s D s/vFF(
m

mam
2Vm

2\
~v2Vm!~s/vF!21

2
s

vF
E
0

v/sdk

k
~v2sk!~s/vF! 21G . ~20!

The divergence of the integral at smallk is canceled by the
similar divergence in the first term. Further calculations
quire the knowledge of the eigenfrequenciesVm . For a weak
periodic modulation they are found in the next section.

IV. PLASMON SPECTRUM

To find the eigenvalues of Eq.~9! it is convenient to in-
troduce a function

F̃m5FmAn0~x!@n0~x!1V0m/p
2\2#. ~21!

Then the equation forF̃m takes the form
-

d2F̃m

dx2
5H 14 S dn0 /dx

n0~x!1V0m/p
2\2D 2

2
n0~x!

@n0~x!1V0m/p
2\2# F S Vmm

p\n0~x! D
2

2
d2n0 /dx

2

2n0~x! G J F̃m . ~22!

Let us specify the modulation profile: dn(x)
52nMcos(sx1w), wherew is the phase ands52p/a. For
such a modulation andnM;n̄ the plasmon spectrum wa
studied numerically in Ref. 10. IfnM!n̄ the analytical solu-
tion can be obtained. After expanding the ‘‘potential e
ergy’’ in ~22! to the first order innM /n̄, the equation reduce
to the conventional Mathieu equation11

d2F̃m

dx2
1Fs2u

2
cos~sx1w!1S Vm

s D 2GF̃m50, ~23!

where the dimensionless parameteru is defined as

u5
2nM

n̄
F S Vm

ss D
2S vF2s2 11D 2

vF
2

2s2G . ~24!

Sinceu is proportional to the relative modulation, we hav
u!1, so that the gap in the spectrum of eigenfrequenc
Vm is narrow. The center of the gap is determined by
conditionVm /s5s/2. This allows us to simplify the expres
sion foru by the substitutionVm5ss/2. Then~24! takes the
form

u5
nM
2n̄ S 12

vF
2

s2 D 5S nM2n̄ D V0m/p
2\2

n̄1V0m/p
2\2

. ~25!

We emphasize again thatu is proportional to the interaction
strengthV0; this supports the obvious observation that the
is no gap for noninteracting electrons. Note also that, in p
ciple, there are higher-order gaps in the spectrum of Eq.~23!.
They are centered atVm5pss/2 (p52,3 . . . ) with the
widths proportional to (nM /n̄)

p. However, they do not de
scribe the higher-order gaps in the spectrum of Eq.~22!,
since~23! was derived from~22! using the first-order expan
sion. As it was mentioned in the Introduction, the eige
modes of Eq.~23!, satisfying the conditionF̃m(0)50, can
be of two types: localized and extended.

A. Localized mode

Substituting into~23!

F̃52n̄
s

vF
Age2gxsin

sx

2
, ~26!

where the prefactor ensures the normalization, and neg
ing the ‘‘nonresonant’’ terms}sin@(3sx/2)1w#, we get the
following expressions for the frequency and the decay c
stant of a localized mode:

V5
ss

2
A11ucosw'

ss

2 S 11
u

2
cosw D , g52

su

4
sinw.

~27!
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1664 55A. GRAMADA AND M. E. RAIKH
We see that the localized mode exists only if sinw,0, when
g is positive. Asw changes within the interval@p,2p#, the
frequencyV moves from the lower to the upper boundary
the gap. The decay constant of the localized mode turn
zero as its frequency merges with the continuum. To ca
late the contribution of the localized mode todn, we need
the constanta. Substituting~27! into ~13!, we obtain

a52
4

s
Ag

n̄
. ~28!

B. Extended modes

Let L be the normalization length. We search for the s
lution of ~23! in the form

F̃m5n̄
s

vF
A 2

L~b1
21b2

2!
H b1cosF S s

2
1kmD x1c1G

1b2cosF S s

2
2kmD x1c2G J . ~29!

The boundary condition requires that

b1cosc11b2cosc250. ~30!

Substituting~29! into ~23!, we establish the following rela
tion between the phasesc1 andc2:

c11c25w. ~31!

The system of coupled equations for coefficientsb1, b2
takes the form

F S Vm

s D 22S s

2
1kmD 2Gb11

s2u

4
b250,

F S Vm

s D 22S s

2
2kmD 2Gb21

s2u

4
b150. ~32!

The solution of the system yields the plasmon spectrum

Vm5v01lAkm
2s21

D2

4
, ~33!

wherev05ss/2, and the width of the gap,D, is given by

D5
ssu

2
5uv0 , ~34!

so that the smallness ofu guarantees thatD/v0!1. Param-
eterl takes the values61 depending on the sign ofkm ,

l5sign~km!. ~35!

The plasmon spectrum~33! is shown in Fig. 1. The phase o
modulationw does not affect the spectrum, but it revea
itself in the parameteram , which for F̃m , given by ~29!,
takes the form
to
-

-

am5
2

s
A 2

Ln̄

b1cosc11b2cosc2

~b1
21b2

2!1/2
. ~36!

The last factor in~36! can be expressed throughw using the
relations~30! and ~31!

b1cosc11b2cosc2

~b1
21b2

2!1/2
5

b1
22b2

2

~b1
21b2

2!1/2~b1
21b2

212b1b2cosw!1/2
.

~37!

Expressing the ratiob2 /b1 with the use of Eqs.~32!, ~33!,
we finally obtain

b1cosc11b2cosc2

~b1
21b2

2!1/2

52
skm

As2km
21

D2

4
sin2w F 11lcosw

D/2

As2km
21

D2

4
G 1/2.

~38!

The discreteness ofkm is related to the final normalization
length. The summation overm reduces to the integration
with the help of the relationdkm5p/L.

V. ASYMPTOTES AND NUMERICAL RESULTS

The resulting expression fordn emerges after the subst
tution of ~27!, ~28!, ~33!, and~36! into Eq. ~20!. It is conve-
nient to present this expression by introducing the relat
deviation of the frequencyv from the center of the gap

ṽ5
2~v2v0!

D
. ~39!

Then we obtain

dn~ṽ!5
1

G~s/vF! S r 0us D s/vFS s

vF
Dv0

~s/vF!21F~ṽ !, ~40!

where the dimensionless functionF(ṽ) has the form

FIG. 1. Plasmon spectrum of a periodically modulated Lutting
liquid.
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55 1665TUNNELING INTO A PERIODICALLY MODULATED . . .
F~ṽ !5F2psinw~ṽ2cosw!~s/vF!212
1

2
f 1~ṽ !

1
cosw

2
f 2~ṽ !G , ~41!

and the functionsf 1 and f 2 are defined as

f 1~ṽ !5E
2`

`

dvF ~ṽ2v !~s/vF!212
v2

v21sin2w
~ṽ

2lvAv211!~s/vF!21G , ~42!

f 2~ṽ !5E
2`

`

dv
lvv

2

~v21sin2w!Av211
~ṽ

2lvAv211!~s/vF!21. ~43!

Similar to ~35!, in ~42!, ~43! lv5sign(v); the form
( . . . )(s/vF)21 is defined only when the argument is positi
and it is zero otherwise.

We remind you that the first term inF(ṽ) is present only
if sinw,0. This term desribes a power-law anomaly in t
density of states originating from the localized plasmon. T
second and the third terms represent the contribution f
the continuous plasmon spectrum outside the gap.

In the integralf 1 two terms of the integrand almost canc
each other at large negativev, indicating that the
modulation-induced correction to the spectrum is import
only in the region of the gap. One can see that the inte
f 2 divergies asv→2`, since for large negativev the inte-
grand behaves as2(2v)(s/vF)22. The origin of the diver-
gency is that in~42!, ~43! we have used the expansion of th
spectrum in the vicinity of the gap:uk2(s/2)u!s, so the
integration should be cut atv;21/u. Note however, that the
divergent part is frequency independent and causes on
small correction to the background density of statesn(v0).
To study the frequency dependence, one should sub
this divergent part by considering the differen
f̃ 25 f 2(ṽ)2 f 2(0), which converges.
For large positiveṽ ~outside the gap! all three contribu-

tions toF(ṽ) behave asṽ (s/vF)21 with prefactors depending
on the phase of modulationw. For integralsf 1 and f 2 the
following asymptotic behavor in the limitṽ@1 can be de-
rived:

f 1'pusinwuṽ~s/vF!21,

f̃ 25 f 2~ṽ !2 f 2~0!'
p

tanS ps

vF
D ṽ~s/vF!21. ~44!

In the opposite limitṽ,0, uṽu@1 the contribution from the
localized plasmon is absent and the integralf 1 falls off as
uṽu(s/vF)22. The only contribution toF(ṽ) in this limit
comes fromf̃ 2 which has the following asymptotics:
e
m

t
al

a

ct

f̃ 2'2
p

sinS ps

vF
D uṽu~s/vF!21. ~45!

The frequency dependence of the correctiondn(ṽ), cal-

FIG. 2. The normalized correction to the density of stat
dn/n(v0)u

s/vF, is plotted as a function of the dimensionless fr
quency ṽ for (s/vF)51.2 and different values of the phase
modulationw. ~a! w50 ~solid curve!, w5p/4 ~long-dashed curve!,
w5p/2 ~dash-dotted curve!. ~b! w53p/4 ~solid curve!, w5p
~long-dashed curve!, w511p/8 ~dash-dotted curve!. ~c! w53p/2
~solid curve!, w57p/4 ~long-dashed curve!, w515p/8 ~dash-
dotted curve!.
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1666 55A. GRAMADA AND M. E. RAIKH
culated numerically from Eq.~41! for various values of the
phasew, is shown in Fig. 2. It can be seen that some of t
curves have cusps at frequencies, corresponding to
boundaries of the gapṽ561. The cusps in the curve
w511p/8 andw53p/2 have their origin in the localized
plasmon.

VI. CONCLUSION

The singularity in the tunnel density of states, caused
the periodic modulation of the electron concentration, sho
reveal itself as an anomaly in the differential resistan
dI/dV at voltageeV5\v05p\s/a, which depends on the
period of modulation and the plasmon velocity. We cons
ered the case of a weak sinusoidal modulation. If hig
harmonics with periodsa/p are present inn0(x), the gaps in
the plasmon spectrum atv5pv0 ~and correspoding anoma
lies in dI/dV at eV5pp\s/a) should emerge.

The strength of the anomaly is governed by the dime
sionless parameteru ~24!, which we assumed to be small. T
sense the magnitude of the anomaly it is convenient to re
dn to the density of states atv5v0 in the absence of modu
lation: dn/n(v0)5us/vFF(ṽ). In our calculations we as-
sumed the interactions to be short range. This implies
the interaction radius;r 0 should be much smaller than th
period of modulationa.

By now, for the experimental realization of quantu
wires, several different techniques were used~see, e.g., Refs.
e
the

y
ld
e

-
er

n-

te

at

12–16!. The most suitable technique for the fabrication
the modulated quantum wire seems to be the one emplo
in Ref. 16. Actually, periodic modulation was achieved
Ref. 16 by confining electrons under the splitted gate w
one of the two sides being periodically corrugated. Chang
the bias applied to one of the sides~electrodes! allowed the
authors to vary the amplitude of modulation of the elctr
density, but the phase of modulation remained fixed in th
measurements. However the phase could be easily made
able if bothsides of the splitted gate were corrugated with
mutual phase shift ofp. Then the actual phase of the mod
lation would be determined by the relation between the v
ages applied to the two electrodes, and, thus, can be e
tively tuned ~without changing the amplitude! by adjusting
these voltages.

As a final remark, we considered a single-channel L
tinger liquid. Increasing the number of channels would res
in additional anomalies in the tunnel density of states, cau
by resonances within each channel. Besides, modula
would couple the plasmons from different channels, th
causing additional anomalies.
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