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In the same way thatomiccalculations have been used previously to extbaee ionic pseudopotentials,
self-consistenbulk calculations can be used to constrgcteenedatomic pseudopotentials. We use such a
method to construct screened nonlocal atomic pseudopotentials for InP. A series of bulk, local-density-
approximation(LDA) calculations are performed on a few InP crystal structures, covering a range of unit-cell
volumes, to produce bulk potential¥, A (G)}. By solving a set of linear equations, we extract from these
crystalline potentials the corresponding screeatmnic “spherical LDA” (SLDA) potentialsv & pa(lql) for
sites a=In or P. In combination with the nonlocal part of the usual LDA pseudopotentials, these SLDA
potentials give band structures and wave functions that are virtually indistinguishable from the self-consistent
LDA results for bulk InP. In the next step, we apply linear changes to the local SLDA potdnttals keeping
the nonlocal potentials at their LDA valueso fit the band structures &xperimentinterestingly, this removal
of LDA eigenvalue errors requires only small and subtle changes in the potential—mostly an upshift in the
region near the cation core, wittearly no change at the bond cent&urthermore, the linear changes to the
SLDA potentials result mostly in an upshift of the conduction bands with little effect on the valence bands.
Because only small changes in the potential suffice to fit the bands to experimental results, the wave functions
remain virtually unchanged relative to those in the original LDA calculation. Hence, we obtain semiempirical
pseudopotentials which can produaeinitio LDA-quality wave functions with experimentally measured band
structures, effective masses, and deformation potentials. The potentials obtained here were deposited on an
FTP site and can be used by interested readers. Since the resulting pseudopotentials arenvitofithall
high-momentum componentghey can be applied within a plane-wave basis in combination with a Gaussian
correction to large systems for which LDA calculations are prohibitively expensive. As an illustration, we
apply our InP screened atomic pseudopotentials to calculate quantum size effects on the band gaps of InP dots
with sizes up to 700 atoms. Good agreement is found between the theoretical and the experimental band gaps.
Fitting the calculated band gaf, (in unit of eV) versus the effective dot size3 (in unit of A) gives
Ey=1.45+37.295D"'¢ This prediction differs significantly from the quadratic size dependéncé® ex-
pected from simple effective-mass thedr$0163-1827)05203-X]

[. INTRODUCTION approache$’ the method based on screened atomic pseudo-
potential allows us to treat explicitly the atomistic character
Significant interest has recently arisen in the optical andf the nanostructure as well as surface effects, while permit-
transport  properties  of  semiconductor  quantumting multiband and intervalley coupling. Unlike tight-binding
structure§ 4 —dots, wires, wells, and films—uwith typical lin- methods:>!® the current method usesplicit and variation-
ear dimensions of 20—100 A. A description of the electronically flexible basis functions, thus permitting direct compari-
properties of such 810" atom structures using first- son of wave functions with local density approximation
principles methods pertinent to bulk solids’ is currently  (LDA) studies when available. Note, however, that unlike
prohibitive. Furthermore, it has receritf’been shown that LDA approaches, the current method provides only elec-
the continuum-type effective-mass-based methbdray  tronic structure informatiorilevels, transition probabilities,
sometimes be insufficient to describe such “small” struc-wave functiong but no ground-state propertiés.g., equilib-
tures. An efficient, intermediate approach was recentlyium geometries which have to be assumed at the outset.
proposed-:*?one first extracts an approximately transferable The present method requires the knowledge of accurate
screened atomic pseudopotential from self-consistent firstand transferable screened atomic pseudopotentials. While the
principles electronic structure calculations on a series of bulkraditional “empirical pseudopotential method* (EPM)
solids®® and then uses it to define the potential of adoes provide atomic pseudopotentials that reproduce the
nanostructuré>!? The ensuing nanostructure Sclimger measured band structures of prototype bulk solids, the ensu-
equation is then solved using a fast direct diagonalizationing wave functions and deformation potentials are not con-
method in a plane-wave bagisThis approach is much faster strained by the fitting procedures, nor are these pseudopoten-
than traditional self-consistent first-principles methodsed  tials available at the short reciprocal lattice vectors
for bulk solid$* in that: (i) the Schrdinger equation is characterizing nanostructures whose linear dimensions are a
solved but once, angi) an efficient diagonalization method few bulk lattice constants. Wang and Zuntjdrave recently
providing energy levels in a fixed “energy window” is proposed a method to extract screened atomic pseudopoten-
available and appropriaté. Unlike effective-mass-based tials from first-principles LDA calculations obulk solids
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such that the wave functions are LDA-like while the bandzero wave vector can have significant influence on the po-
structures, effective masses, and deformation potentiatential profile of quantum nanostructures.

match experiments. Here we apply this “semiempirical The final semiempirical pseudopotentials are “soft,” so
pseudopotential method(SEPM to both the bulk structure they can be applied within plane-wave bases to large systems

and nanostructures of InP. for which LDA calculations are prohibitively expensive.
The present work differs from our previous Wb:ﬂn’] sev- Such soft pseudopotentials, which reproduce LDA-like wave
eral aspects: functions with experimentally consistent orbital energies, can

(i) We develop and apply pseudopotentials for a new mabe useful in a Ia_rge range of physicall proble_ms, including
terial system—bulk InP and InP quantum dots on which nuduantum dots, wires, and films. As an illustration, we apply

merous experiments have been recently perfortfieddbut our InP screened atomic pseudopotentials to the calculation

little theoretical work is available. InP dots have been re-Of the band gaps of cubic InP quantum dots with sizes up

cently synthesized either as strain-induced “seh‘-assembled”é)0 Zgo atotwietfgectlv:? S'IZ% 26 dA Good agr?ﬁment IS foun? I
particles in metalorganic vapor phase epitd$' or as par- me eern d \(/3 | eoriltc?h anmg?ri an . S rt]aé(perlmt\a/nra y
ticles in colloidal solution growt??23 The dot sizes range N¢asured vaiues. € same ume, our band gap versus

from 20 to 600 A. Some interesting phenomena were foundeffective size relation is significantly different from that ex-
e.g., the evolution of photoluminescen@d.) intensity with pected from s_|mple ef_fectwe-mass theory.
pressuré® the strong dependence of PL decay time on the The paper is organized as follows. In Sec. Il, the method-

9 : : ~ology is described. Section Ill gives the details of the con-
Foheoico:i?aﬁgﬁrg)}bct)f\:\/eer Iuej:::;t of ggendl:_);a%eakrévr:t:r;?;if:t?onstruction of SEPM potentials. In Sec. IV, the applications to

effects?®?! Quantitative analyses of such experiments re-"F duantum dots are presented.

quire a practical and reliable computational tool, which can

reproduce excitation energies, wave-function information II. METHODOLOGY

(e.g., transition probabilitigseffective masses, and deforma- _ o )

tion potentials. The present method is suitable for such pur- [N the first-principles LDA pseudopotential approach, the

poses. eIectrqnlc structure of a _sol|d is addressed by solving the
(i) We wish to understand the limitation of the SEPM. LDA single-particle equatiofi:

The SEPM approach relies on representing the screened

solid-state pseudopotential as linear combination of overlap- {=3V2+ VP ocal 1)+ Vioa(D} =€ . (1)

ping but spherical “site potentials,” and on system-to-

system transferability. If such potentials are transferableqere \vPS (1) is the (angular momentum dependgnbn-

from one structure to another, their Fourier transforms willigpcal part of the ionic pseudopotential, and

lie on a “universal” potential-versus-momentum curve. We v, o (r)=VPS,(r)+Vxc(r) contains the local ionic pseudo-

have seen previousiythat both the spherical approximation potentialVPS., as well as the screening potentiglyc made

and the transfel’abi”ty approximation WOI’k Very We” fOI’ S| up Of the intere|ectron Cou|orﬂb‘Hartree”)’ exchange and

and CdSe. But unlike Si and CdSe, the atomic size diﬁerenceorre|ation (XC) parts. Given an ionic pseudopotentiaj

between In and P is very large, so the directional Charg%PS(r)} [we use consistently lower caser) to denote

transfer in InP could be significant, raising questions on the:g;qgmic” potentials, while capitalV(r) denotes crystalline

suitability of the spherical approximation. Indeed, we find potentiald, Eq. (1) can be solved self-consistently for any

that there is a larger error for InP in th2Sn structure than crystal structure (denoted by o) using well-established

in the zinc-blende and rocksalt structures. We further findy,athogdgs4

that the asymmetric part of the InP “spherical LDA” oy approach for constructing screened site potentials
(SLDA) potentials deviates somewhat from a universal,sonsists of four steps:

potential-versus-momentum curve. This feature was not en- First we calculate self-consistently the crystalline poten-

lcour:jtereéj bféo'lé mdsr: or in CdSe. This problem is ana- g V{Ba(r) from Eq.(1) for a few bulk crystal structures

yzed and adaressed here. ~ (e.g., zinc blende, rocksalB-Sn and a few unit cell vol-
(iii) When moving from the SLDA to SEPM calculations mes()  for each structure. We then extract tapherical

for bulk InP, we find that only small changes to the atomiccomponent of the screened site-pseudopotent E)A by
potentials can remove the LDA band-structure errors: moséolving:

of the change occurs near the In atomic core with little

change required near the In-P bond center. This explains

why we can obtain experimentally consistent bands W|thV<LL6>A(r)EVps(o)(r)+V<H¢;(>C(r)gz E U(a,a')(|r_Ra’(r|).

LDA-like wave functions. local S g TSLDA

(iv) Application of the SEPM to large quantum dots re- ' 2
quires paying special attention to the small reciprocal-lattice-
vector components of the potentials, which are absent in pedere, o denotes the type of atom arld, , is the lattice
riodic bulk solids from which the potentials are drawn. Thevector to sitea in structures. In Eq. (2), we have assumed
sensitivity of the energy levels of dots to the small momen-hat the crystal potentiaI{‘QA(r) is a superposition adpheri-
tum components of the asymmetric pseudopotential is studzal screened site pseudopotentials. We use the term
ied. Through this investigation, we find a simple and general'SLDA” to denote spherically approximatedS) LDA. In
way to determine the low-momentum components of the popractice, we extrach '3, from a reciprocal space form of
tentials. We also find that the slope of the SEPM potential aEqg. (2), namely,
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VIBA(G)=2 S“(G)oisAIG)), ) 10 - ' ' ' '

where S(”‘"’)(G)zﬂglERa _e'®"Rau s the structure factor
andG is a reciprocal lattice vector. Note thafl%, is not a 10
free-atom potential, but rather a solid-embedded site poten-
tial. The SLDA site potentials can be written conveniently as
a symmetric partv§ha(G)) and an asymmetric part
v5iba(G):

v5oa(lGD=vEBA(IG) + v ba(IG]), (4)

v 0a(@ =0 5,(@) + 0P pa(G)

-40 |

501G =vEbA(IG]) —v LI G- (5)

Second, we fib §'9(G|) extracted by inverting Eq3) to
a set of Gaussian functions,

-50

20 T T T T T

2051 pa@) = v 0a(@) - vl pa@)

o o]
U(SL’D;Z‘(|G|):Ei cie” (GI-a)by, (6)

SLDA potentials (Hartree Bohr3)

wherea;, b;, andc; are fitting parameters. Using the SLDA
potential[right-hand side of Eq(2)] in place ofV pa(r) of

Eq. (1) yields energies and wave functions that are very close
to LDA values. While the LDA wave functions are very
useful and quite accurate, the LDA band gaps are usual, as
underestimateé’

Thus, in the third step of our procedure, we adjust the
parameters of Eq(6) to reproduce the experimentally ob- Momentum |Gl (a. u.)
served band structures. Insofar as the required changes in the
SI__DA pot_entials are small, the ensuing wave functions_will FIG. 1. Screenedocal) atomic pseudopotentialss pa(|G|) ex-
still be quite close to the LDA results. This will then give acteq via Eq(3) from self-consistent LDA calculations for a few
near LDA-quality wave functions with realistic band struc- pyjk Inp crystal structures and a few volumes each structare.
tures. symmetric part § ha(|G|); (b) asymmetric parb § ha(|G|). Sym-

In the fourth and final step, we treat the small momentumyols of diamond, cross and square correspond to the data for InP in
components of the pseudopotentials. These components af@c blende, rocksalt ang-Sn structures, respectively. Three vol-
nonzero for quantum dots, but are not specified by bandames are considered for each structure. The solid lines are analyti-
structure calculationér by the EPM for extended bulk sol- cally fitted curves using Eq6). In the analytically fitted curves,
ids with small unit cells. v5iba(IG)) at G=0 is —179.32 hartree bofirand v ha(|G|) at

Since the final pseudopotential is rather smooth, a rapidlys=0 is —14.2 hartree bofir

converged plane-wave expansion is possible. In fact, usin? o
the efficient diagonalization methHdand our final semi- o the small-core P atom, where the correction is small. The

empirical pseudopotentials, we can easily calculate the eb@xchange—corre!aﬂon potential used is that of Perdew and
tronic structure of a~1000-atom dot. Zunger:” Equation (1) was solved in a plane-wave basis
with a knietic energy cutoff of 25 Ry. In all the calculations
reported here, the nonlocal part of the ionic pseudopotential
VP ocall) Of EQ. (1) was obtained in a similar way to that of
Ref. 28 but in numerical form, and was kept unchanged as
A. SLDA potentials and their performance for bulk InP we move from LDA to SLDA and SEPM. We use the
“small box” implementatiort® to handle the nonlocal part of
pseudopotential. This approach takes advantage of the short-
ange nature of nonlocal part, and uses the plane waves with
arge momentum to expand it in Fourier space.

The symbols in Fig. 1 show the LDA-derived symmetric

Ill. CONSTRUCTION OF THE SEPM POTENTIALS:
DETAILS

A central question in the development of the SLDA po-
tential is whether the spherical approximation of E8). is
sufficiently accurate and transferable. If it is, the data point
of v{{9A(G|) versus wave-vector leng{ts| should fall on a

single-valued “universal” curve for different structures tentialy ¢ (G tor | 6 I
and cell volumed,. To test this, we have solved E(L) potentialv s pa(|G|) versus wave vector leng{s| as well as

self-consistently for InP in three crystal structuresnc ~the asymmetric pam(SLI)DA(|G|_) versus|G|. These quantities
blende, rocksalt, an@-Sr) and three cell volumes for each Were obtained from Eq(3) given VE[p(r). Note that one
structure, using first-principles pseudopotential metH8ds. cannot obtain the values af${),(IG)) and v§A(IG|) at
We use the scalar-relativistic atomic pseudopotentia%}{ G=0 from the inversion of bulk LDA calculation. This will
obtained from the procedure of Troullier and Martiig®  be discussed later. Thes ) A(|G|) versus|G| points of Fig.
employing the core correctidhfor In (having a large core 1(a fall on a nearly universal curve for all structures and
with significant core-valence wave-function ovejldqut not  volumes, buw§; )A(|G|) in Fig. 1(b) is somewhat multival-
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ued at the shortest bul& vectors. This deviation o6 ), 100
X(|GJ) from a universal curve did not occur in 8or which G
v 5 ba(|G))=0] or in CdSe(see Fig. 1 in Ref. 18 We also
observe that this nontransferability error is mainly reflected
in the asymmetric potentials ha(|G|), while the symmetric

potentialsv 5 hA(|G|) versus|G| fall on their respective uni- 0.0 7

5.0

versal curves fdf Si, InP, and® CdSe. Because of the de-
viation of the data in Fig. (b) from a universal curve, sev-
eral questions not met in previous wétlarise, such as what Zine blende InP
is the effect of such deviation on the electronic structures;
what is the reason for this deviation; and how can one deter- 00—~ | T |[— tDaA

mine the value ob § ha(lG)) atG=0. | T |l SLDA
We next investigate the effect of such sm@llfluctua- 5.0 —
tions inv § ba(|G|) [Fig. 1(b)] on thebulk band structure. To ot r X W K r

address this, we have performed bulk band-structure calcu-
lations[via Eg.(1)] on InP using the potentiais%*)DA(|G|) of
Fig. 1(a) and v § pa(|G))+ v (G|), where sv ’L)(|G|) is a 1001
controlled deviation. We find that near the shortest bulk zinc- 7/
blende reciprocal lattice vect§|G|=v3 2n/a, wherea is the — i
lattice constant the sensitivityde, /v~ of the band struc- - N
ture e, to the fluctuationsv ™ is less than 5810 (in T~ °or
units of 1/boht) for the lowest eight bands over the first W
Brillouin zone (BZ) for bulk InP in zinc-blende and rocksalt 5o
structures. Given that the largest scatteo §fh(|G|) in Fig. Rocksalt InP
1 is about 20 eV boli the maximum ensuing band structure -10.0
error is only about 0.1 eV for zinc-blende and rocksalt struc-
tures. For the3-Sn structure, this nontransferability error in-
creases to about 0.2 eV. Thus, the scatter §phA(|G|) has 15.0
only a small effect orbulk band-structure calculations.
Before we fit the SLDA data in Fig. 1 using the analytic
expression in Eq(6), we need the values af§h(G)) at
G=0. v ha(IG|) at G=0 is obtained by fitting to the InP
work function (see Appendix A While the value of
v5ba(/G|) nearG=0 has no effect on bulk band structures,
it could affect quantum dot levels. To investigate this effect
guantitatively, we have solved E{l) for an InP quantum
dot, using the SLDA potential of Fig. 1 with controlled
changes i § ha(|G)) at near-zerds values.[Details of the
method used to solve El) for dots are given belojv We

5.0

-15.0

<
=
=
-

allowed fluctuations of+10 hartree boHrin the value of -15.0

v 5ba(/G|) nearG=0. After passivating the surface dangling - H r X M r
bonds(see beloy, we find that such a potential fluctuation

shifts the conduction-band minimuf€CBM) and valence- FIG. 2. Band structures calculated from LDA potentiéslid

band maximun(VBM) eigenvalues of a 35-atom InP dot by lines) and from SLDA potential¢dotted line$ for InP in different
less than 0.05 eVso de; /50(—)|G:029_0>< 10°° in units of  crystal structures:(a) Zinc-blende structure(lattice constant
1/bohf]. We conclude that the smaB- fluctuations in a=11.01 a.u; (b) Rocksalt structurga=10.28 a.u; (c) B-Sn
v5iba(|G|) are rather inconsequential to the electronic strucStructure(a=13.91,c=7.93 a.u. The lattice parameters are opti-
tures of both solids and quantum dots. Since it is rather difMized by LDA calculations. Irta) and (b), the LDA and the SLDA

ficult to determine uniquely the precise Va'uelng_)DA(|G|) ban_d_ structures are nearly_indi_stinguishable, showing that a super-
nearG=0, our conclusion on the insensitivity of the energy position of spherical potentials is a good approximation to the LDA

levels to smallG components of gL}DA is significant. In fact, potential.

given this relative insensitivity, we can fix tli&=0 compo-

nents ofv 5 ha(IG|) andv §;ha(|G|) using simple procedures, nient analytic expression—a sum of Gaussians as described

the details of which are described in Appendi¥®Having in Eq. (6). The fitted curves are shown as solid lines in Fig.

fixed theG=0 components of the screened pseudopotentialsl.

we now have an absolute energy scale in the problem. Thus, As a final test of the spherically approximated LDA po-

we will be able to discuss, for example, absolute energy potential, we solve Eq(1) using the original LDA value for

sitions of the VBM and CBM separately as a function of dotVh,.c4(T), and the curve-fitted SLDA potentifiEg. (6)] in

size. place ofV| pa(r). The resulting band structures are compared
We now curve fit the obtained discrete{(|G|) data in Fig. 2 with the original(nonspherical LDA band struc-

points in Fig. 1 including theiG=0 limits using a conve- tures. Excellent agreement is found: the maximum BZz-
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FIG. 3. Contour plots of wave-function squares on (b&0 plane for thel';s,, I'1c, X5,, and X, states in zinc-blende InRattice
constanta=11.01 a.u. as calculated by using LDA, SLDA, and SEPM potentials. The LDA and SLDA results are obtained using kinetic
cutoff energyE. =25 Ry, and the SEPM results are obtained uding=6.8 Ry and the Gaussian correctighppendix B.

averaged errors between the LDA and the SLDA results are We find that the LDA wave functions are also accurately
0.07 and 0.02 eV for the lowest eight bands in zinc-blendeeproduced by our fitted SLDA potentials. As an example,
and rocksalt InP, respectively. In the metajieSn form, the  Fig. 3 compares the contour plots of the wave-function
error is larger: 0.35 eV for the first and fifth bands and 0.1squares for thd';5,, I';., Xs5,, andX,. states of zinc-blende
eV for other bands. In order to find the reason for this reladnP as calculated from the LDA and from the fitted SLDA
tively large error, we intentionally let the fitted curve in Fig. potentials. The agreement is excellent: the LDA versus
1(b) pass through thg-Sn data points. Application of this SLDA wave-function overlap is larger than 99.9%.

potential to study the band structure will result in error re- The first three columns in Table°r*' compare zinc-
flecting only the spherical approximation. We find that in theblende InP band energies, effective masses, and deformation
B-Sn structure the spherical approximation error is aboupotentials obtained from LDA and SLDA calculations,
0.15 eV and the nontransferability error is 0.20 eV for theshowing good agreement.

first and fifth bands. We attribute the relatively larger error The good agreement between LDA and SLDA calcula-
for B-Sn structure to the large difference in the sizes of the Irtions persists after we reduce the kinetic cutoff energy from
and P atoms, and to the low symmetry of &Sn structure. 25 to 6.8 Ry, while compensating for the reduced basis by
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TABLE |. Energy levels at high-symmetry points, effective 10.0

masses for electronsm), heavy holes(myy) and light holes
(my), deformation potentiala(k) defined as— dEy4(k)/d In(} and
work function of zinc-blende InP as calculated by LDA, SLDA, and
SEPM potentials. Our assessment of the best value of the related
experimental data is also listed for comparison. The energy levels,
deformation potential, and work function are all in eV. The zero of
the energy is at the valence-band maxim{rys,).
Properties LDA SLDA SEPM Expt. —
'y, —11.54 —-1150 -—11.46 —11.0¢ E
| 0.76 0.86 1.45 1.43 < -100
Tis 4.11 4.24 4.90 4.78 -
Xs, -235 —229 —223 —2.¢° o
X1e 1.64 1.77 230 2.40 g 8o
L3, -097 -096 -0.92 ~1.00° =
Lyc 1.49 1.60 1.97 2.04 s
Me 0057  0.060  0.095 0.079.08¥ =
Myy4(00D) 0.43 0.40 0.47  0.520.61 m 50
Myn(112) 0.97 0.90 1.03  0.950.63'
my 4(001) 0.057 0.057 0.097 0.104.118
a[l) 6.04 6.75 8.19  7.986.40
a(X)—a(l) -753 —-6.04 -581 -6.82
a(L)—a(l) -3.18 -276 —3.08 -3.12
Work function 5.91 5.88
h -10.0 B I . .
NSO e e
. : : : N SLDA, E_=6.8Ry +GC
Reference 32. JReference 39. -15.0 T T
YReference 33. KReference 40. L r X WK r
“Reference 34. 'Reference 41.
‘Reference 35. MReference 29.

FIG. 4. (@) Band structures of InP in zinc-blende structiee
=11.01 a.u. as calculated using LDA potentials with kinetic cutoff
energyE. =25 Ry (solid lineg, and as calculated by SLDA poten-

using the “Gaussian correction’(GC) method® as de- tials with E.,=6.8 Ry and without Gaussian correctigdotted
scribed in Appendix B and in Fig. 4. The reduction of the lines. Note the large difference between two results. Same as

kinetic energy cut-off can reduce significantly the computa-(a) except that dotted lines are obtained with Gaussian correction.
tional effort for quantum nanostructures Note the close agreement with LDA when the Gaussian correction

compensates the reduced energy cutafipendix B.

9Reference 36

B. SEPM potentials and their performance for bulk InP SEPM band structures follow those of the SLDA. The wave-

. function squares of SEPM calculations for some bulk states
In the next step, we apply linear changes to the curve-

fitted potentialsy §hA(|G|) [i.e., we only change the coeffi- ar(-i-jguLSérAated |r;tF|g. 3, showing good agreement with LDA
cients{c;} in Eq.(6)] so as to fit their bulk eigenvalues to the an resuts.
experimentally observed excitations. The obtained potential
is called the SEPM potential. The required changes in the
potentials are found to be small, and therefore the changes in The G-space SEPM potential and the shift
the wave functions relative to the LDA calculation are alsoAv =v &ey—v $pa, Needed to remove the LDA error in the
small. band structures, are shown in Fig. 6, while Fig. 7 shows
Table | compares the band energies, effective masses, andZp\ and Av in real space. There are two interesting as-
deformation potentials obtained by using the SLDA potentialpects involving the effect of the removal of the LDA error:
and the empirically corrected potent®EPM). In this table, (i) Spatial location of the LDA potential errotWe see
the pertinent experimental results are included for comparifrom Fig. 7 that correcting the LDA band-structure error en-
son. We see that the SEPM achieves good accord with theils an increase in the LDA potential in the core region for
pertinent experimental quantities, including the band structhe In atom, and only slight changes for the P atom, while
tures atl’, X, andL points, the effective masses and defor-the potential at the In-P bond center does not change much.
mation potentials. The SEPM band structures of InP in zincThe effect of the potential increase in the core region on
blende structures are compared in Fig. 5 with the SLDAband structures can be readily understood: Since the atomic
band structures. We see that, except for the upshifts of thim s orbital energy is higher than that of thesPorbital, the
conduction bands, the main features and trends of the wholecation of the lowest conduction bafithe antibonding state

C. Effects of removing the LDA error
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-20.0
L r X W K r

FIG. 5. The zinc-blende InP band structure calculated from

SEPM (dotted line$ and from SLDA potentialgsolid lineg. The
lattice constant is=11.01 a.u. Both the SEPM and the SLDA band

energies are given in absolute values. Since the VBM positions are

very close to each other for LDA and SLDA bands, this figure
shows that most of the LDA error is in the conduction bands.

formed from thes orbitals of the two atomsis mainly de-
termined by the atomic energy level of thedrorbital. The

increase of the SEPM potential relative to the SLDA poten-

tial in the In core region will push up the atomic energy level

20 : . ; . 1
/Al) (In) (a)
o [o=e-
20 k- i
o~
) In
S T an) |
n
m y Y sEpM
© -60f .
(0]
} -
g -80
I
v
@ 100 . o
-2 20 . ; . . .
< (b)
2
o) 0
o
.9 _20 -
£
O P
< 40 .
SEPM
60 4
-80 4
-100 L 1 ' L 1
0 1 2 3 4 5 6

Momentum IGl (a.u.)

FIG. 6. The semiempirical atomic potential§sy, (solid line9
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of the In's orbital, consequently raising the lowest conduc-
tion band. Due to the orthogonalization constraint, the higher
conduction bands will also be pushed up as shown in Fig. 5.
The valence bands bear only little change sinceptiebital
energy is not affected by shifting the In potential near the
origin. Furthermore, since the potentials near the In-P bond
center do not change significantly, the In-P interaction will
not change much. This suggests that the wave function will
not change too much either. This is borne out by the simi-
larity of SEPM and LDA wave functions shown in Fig. 3.
The fact that the error in SLDA potential is mostly in the
atomic core region and is different ferandp valence elec-
trons suggests that one could improve the SEPM fit by treat-
ing the nonlocal part of the pseudopotential also as a param-
etrized function. At this stage, however, we prefer not to
introduce additional fitting functions.

(i) Energy location of the LDA errorFigure 5 gives the
SEPM and SLDA bands of zinc-blende I an absolute
scale(i.e., the VBM's are not aligned The comparison of
SEPM band structures relative to SLDA results shows that
the main effect of the removal of LDA error is to move the
conduction bands up while the valence bands do not change
much. This situation is similar to what was found in more
elaborateds W calculations*?

D. Effect of the potential slope at G=0 on nanostructures

So far, our discussion has centered on bulk materials. Ap-
plication of SEPM potentials to quantum nanostructures



55 LOCAL-DENSITY-DERIVED SEMIEMPIRICAL . .. 1649

o
-t

(a) For potentials with non-zero slope For potentials with zero slope

T L - R N ]

o

b
@

Film VBM (V)
o oM )
>

-6.5F

2 4 6 B 10 12 14 16
Thickness (ML)

i3579 15 25ML
Vacuum | InP film Vacuum | InP film

J

0 50 100 150 0 50 100 150
Vertical position z (a.u.)

Planar-averaged potentials (Hartree)

FIG. 8. Planar-averaged potentiazlg(z) [Eq. (7)] for InP(110 films with different thickness, as calculated usiii@: SEPM potentials
with nonzero slopetb) SEPM potentials with zero slope @t=0. The labeled numbers for each curve are the film thick(iesaonolayers
The arrow in(b) indicates the theoretically fitted work function. The film VBM energies for different thicknesses are shown in the inset in
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(which contain reciprocal lattice vectors that are absent in théinement effect in nanostructures such as in dots. The slopes
bulk) requires that the potentials should be flat n6ar0  of the SEPM potentials generated previot$lfor Si and

i.e., the potential slope @&@=0 is zero. As an illustration of CdSe are very close to zero too.

this point, we calculated the planar-averaged potetjér) The final InP SEPM as well as the Si and CdSe potentials
for (110-oriented InP films with different thicknesses, using can be found on an FTP site for the interested reatfers.
the SEPM potential§) with nonzero slope angi) with zero  They can be used in numerous applications requiring large-
slope atG=0. Here, scale calculations.

= 1 z+l—

V,(z)= 5 J V(z')dZ', (7) IV. APPLICATIONS TO QUANTUM DOTS
~ . . . . -

As an illustration of the utility of our semiempirical

where pseudopotential, we use it to calculate the band gaps of
surface-passivated InP quantum dots with different sizes.
V(z)= 1 j V(r)dx dy, ®) Here we discuss only the salient features of the results. A
S ' detailed description of InP quantum dot will be deferred to a
future paper.
We consider InP dots containing 17, 29, 107, 259, and
V(n=2 ; vSERM T~ R)). (9 712 atoms(not including the passivating atomsThe dots
“ take cubic shape with faces oriented along (8861 and
In the above equationg,is the distance from one side of the (110 planes of zinc-blende structure. Using the same density
supercell along the direction vertical to the film, a88ds the as in the bulk, the effective dot sizes are calculated by
area of cross section parallel to the film plahés the thick- D= (a/2)(N)® wherea is the lattice constant aridl is the
ness of a single monolayer in the IARO) film. The planar- number of atoms in the dots. This gives effective sizes
averaged potential,(z) for films with different thicknesses D =7.49, 8.95, 13.83, 18.57, and 26.01 A for the dots with
are shown in Fig. &) for the SEPM potentials with nonzero 17, 29, 107, 259, and 712 atoms, respectively.
slope, and in Fig. &) for the SEPM potentials with zero We next discuss the surfaces of the dots. Previous calcu-
slope atG=0. It can be seen that in Fig(8 the potential at lations on other-material dots using tkep theory?* tight-
the slab center has not approached the bulk value even faiinding method® or truncated crystal meth8% have ig-
15-ML-thick films while the potential in Fig. @ has nored the existence of surfaces either by assuming infinite
achieved the bulk value at the film center even for rather thirpotential barrier or by removing the dangling bonds in the
films. ThisG=0 treatment has no effect on the properties ofHamiltonian matrix. Since one of our future objectives is to
bulk InP, but is crucial for the investigation of quantum con- study surface effects on the electronic structures of dots, we
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8 . . . . | . u,=u’ exp(—|r—R|%r?), (10)
(a) whereR is the spatial position of the passivating atom. The
7k e  Calculated 1  parameterqu?,r,} are selected so as to fit the calculated
[ Fitted surface density of states of planar InP surfaces to LDA re-
ey —— 0 Experimental 1 sults or to photoemission data for surfaééZhis procedure
% ‘e was described in Ref. 11 for Si. Here we illustrate the elec-
=257 1 tronic structure of InP quantum dots using the typical values:
> . For the InR110) surfaceu®=—3.5 hartrees and,=0.9 a.u.
2 4r 1  for surface In, andu’=—-2.0 hartrees and,=1.0 a.u. for
o e surface P. For the INR00) surface,u®=—1.5 hartrees and
3t Te 1  r,=1.4 au. for surface In, andi®=—0.5 hartrees and
Tt r,=1.5 a.u. for surface P. These values produce a band gap
2r R free of surface states for all the IR0 and InR001)
films.*” We point out that, after removing the surface states
1 * ‘ : ' : ’ out of the gap, the band-edge energy levels of dots are not
2 . sensitive to the passivating potentials. We will return to this
‘ ' ' ' ‘ point later.
(b) In order to solve the Schdinger equation with many at-
3T Dots” CBM 7 oms, we use the folded spectrum and conjugate gradient
methods'! allowing us to find the energy levels and wave
4l _ functions of the CBM and VBM states of dots. The calcu-

____________ BukCBM | Jated band gaps for these dots are illustrated in Fig) 9
while the VBM and CBM energy levels of dots are shown in
Fig. 9b). For comparison, the available experimental data
from absorption spectruthand PL measuremeRtsare also
S T T T T T T T T T T T Bakvem shown in Fig. 9a). The experimental values are converted to

' one-electron band gaps by subtracting the electron-hole Cou-

Energy levels (eV)
&

7L \Dots, VEM ] lomb energy calculated fronE,=—3.572kD (Ref. 48.
Here,E. and the sizéd are both given in atomic units, and
& , . . . , . the static dielectric constat of InP is'® 12.4. Figure @)
5 10 15 20 o5 30 35 40 Shows that the theoretical one-electron gaps are in good
Effective size (R) agreement with the experimental measurements. The quan-

tum size effects on both the CBM and the VBM of dots are

FIG. 9. (a) One-electron band gap for InP quantum dots with ©PVious in Fig. @b). Note that the energy levels in Fig(t9

different sizes. Solid dots: calculated results using SEPM potential@'® absolute values since our SEPM potentials are obtained
dash line: analytic fit of the calculated results from Etj); tri- DY fitting the work function. Therefore, we can discuss the

angle and square symbols denote, respectively, the experimentdize effect separately for the VBM and the CBM of dots. We
data from absorption and photoluminescence measurertRefs. leted our calculateq band gafBy in units of eV) versus the
22 and 23. For the experimental data shown here, the electron-holéize of InP dotgD in units of A) as

Coulomb energy has been subtractéo). Calculated VBM and N
CBM levels of InP quantum dots. Ey=1.45+37.295D", n=1.16. (12)

include here exp“cit surface effects. For bampassivatexj This analytic equation is described by the dashed line in Flg
dots, the atoms at the surface will most likely reconstruct9(@. Not surprisingly, the valua=1.16 from our atomistic
Here we model, instead, dots grown by self-assemble@alculation is very different from that found in classic
method®?! or by colloidal solutior?>?® In both cases, the effective-mass theory af=2.0.

atoms at the surface are passivated chemically either by an- In order to investigate the natures of the VBM and CBM
other Semiconduct6 v21or by Organic molecule ,’2350 the of dOtS, we have calculated the planar'averaQEd wave-
surface is, most likely, unreconstructed. Generally, the surfunction squard i,,|* along certain directions, wherm is
face conditions of dots are different for differently preparedthe energy-level index. The planar-averaged wave-function
samples. However, based on the measurements of PL lifssquarg ,|%(x) along thex direction and ¢,|%(z) along the
time and PL efficiency, it is found that the emission origi- z direction are defined as

nates mostly from dot-interiaf‘bulklike” ) states, not from

surface states. In recent experiments for InP dots, organic —

compounds and HF solution are used to passivate and etch | gml %00 = §Z f |m(r)]*dy dz (12

the surfacé??® In these experiments, the passivation effect

of organic compounds and HF at the InP dot surface is quite - 1

similar to attaching an electrostatic potential to the surface [l *(2) = S, f |m(r)[?dx dy, (13
dangling bond. We thus simulate the actual passivation in y

dots by attaching the following fictitious pseudopotential towhere S, and S, are the cross-section areas of the plane
In-like and P-like dangling bonds: perpendicular to th& axis and that of the plane perpendicu-
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wave bases. This is illustrated here for the band gaps of InP
quantum dots with different sizes, showing a good agreement
with the experimental results.
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position x (a.u.) APPENDIX A: DETERMINATION OF ov$),(IG])

AND v ha(IG]) AT G=0

(b) When one calculates the electronic structures of quantum
dots using plane-wave bases and supercells, the knowledge
of v 51 ha(IG|) andv § ha(|G|) at smallG is necessary. In this

105 | . Appendix, the procedures to determingshA(G|) and
v5.ha(/G|) at G=0 are described.

B v5iba(|G|) at G=0 is determined by noting that changes
Eo in this quantity shift rigidly the whole bulk band structure.

4 We thus require that the work function of thick InP filitihe
negative of the eigenvalue of film's VBMequals its ob-
served, orientationally averaged valu€’®05.85 eV. This

CBM givesv § ha(G=0)=—179.32 hartree bohirfor InP with lat-
5 ' , , . . ) tice constana=11.01 a.u. Using this value, the theoretical
-10 0 10 20 30 40 50 60 70 work function of thick InP film is 5.91 eV. Due to the quan-
position z (a.u.) tum confinement effect, the VBM energy level of the film

changes with the film thickness. The calculated VBM for a

FIG. 10. (@) Planar-averaged wave-function squW(x) series 0f(110 InP slabs embedded in vacuum is shown in
along thex direction. For clarity,|#,2(x) for VBM is plotted  the inset of Fig. &). For the thickest slab shown in the
along positive vertical axis whilgy,|2(z) for CBM is plotted along ~ figure, we can see a work function close to the measured
negative vertical axis. The symbols along the horizontal axis indivalue.
cate the atomic-layer positiong) Planar-averaged wave-function ~ The determination 06 §(/G|) at G=0 is more compli-
squaredy|%(2) along thez direction. cated. One may consider obtaining h(|G|) at smallG by
computingV, pa(G) in Eg. (1) for long period superlattices
. . . of pure InP with different levels of strain, e.g.,
lar to thez axis, respectively. For the InP_dots Cons'dered(lnP)n/(strained InB, . Since the potential of long period su-
here, thex, y, andz axes are along110), (110), and(00D)  ojattices contains smaB components, one could extrapo-
d|rect|o_ns qf InP zmc-bl_ende structure, respectlyely. *he |aie the superlattic, p»(G) to G=0. However, we found
apdy directions are eqU|va!ent for the d_ots considered herggat the superlattice structure fact®&3) in Eq. (3) for the
Figures 10a) and 1@b) give, respectively, the planar- smallG vectors are very small due to the structural similarity
averaged wave-function squarp,|*(x) and|,|°(2) for  of the superlattice to the bulk. The sm8liG) values lead to
the dot with 712 atoms. In this figure, symbols along thea significant scatter and noise in the calculat&gha(|G|) at
horizontal axis indicate atomic-layer positions in the dot.small G.
From Fig. 10, we can see that the wave functions of both the Based on the factdescribed in Sec. lJlthat both the
CBM and VBM are mostly distributed in the interior of dot, VBM and CBM levels of quantum dots are rather insensitive
with but little amplitude at the dot surface. For such “dot- t0 v 5 ba(/G|) at smallG, we use a simple approach to esti-
interior” states, changes in the passivation potentéay., Mate this value. Having fi)ﬂed(st)DA(|G|) at G=0 by fitting
different saturation specigsannot shift these energy levels the work function and having fitted analyticallys ba(G|)
significantly. A similar situation is found in experimedte?>  using Eq.(6), we now have this function in the wholé

In summary, we derive the semiempirical pseudopotenspace. We can thus Fourier transformipa(|G)) to
tials for InP fromab initio LDA pseudopotential calcula- v Stba(r). We next need to separatef§] pa(r) the compo-
tions. The obtained SEPM potentials reproduce accuratelgents due to In and due to P so that tHgha(r) could be
the LDA wave functions and the experimentally observedcalculated. To do this, we assume that the In and P solid-
band structures, effective mass, and deformation potentiaktate potentials 0 oa(r) andv g pa(r) can be written as a
Since it is soft, the SEPM potential can be used efficiently inproduct of screened free-atom potentidl=v 4+ v yxc and
large-scale quantum nanostructure calculations using plane-screening factow;e "%, i.e.,
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v =[are” Ao "(r) + [ ase”""A210 P(r).
(A1)

We now fit the right-hand side of E¢A1) to the left-hand

side usingay, B, ay, and B, as fitting parameters. After
determininge;, B, a,, and B, from Eq. (Al), we obtain

v5ba(r) in real space from

vSiba(r) =[aze™ "PTT(r) [z P20 P(r).
(A2)
Fourier transforming this §;ha(r) givesv 5 ha(G=0). For

zinc-blende InP at lattice constant=11.01 a.u., we find
v 5 ba(G=0)=—14.2 hartree boht.

APPENDIX B: GAUSSIAN CORRECTION TO SMALL
BASIS SET CUTOFF

HUAXIANG FU AND ALEX ZUNGER
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4(a), showing the band structures of bulk InP in the zinc-
blende structureswith lattice constant being 11.01 a.was
calculated with a converged basis of 25-Ry cutoff and a
small basis of 6.8-Ry cutoff. It can be seen that while phe
bands(e.g., the top three valence bahdse described quite
well, the s bands(e.qg., the lowest conduction band and the
lowest valence bandare affected strongly by the reduction
in basis set size. In order to correct this kind of difference, an
additional Gaussian-type potentige " ~R«/dl* is placed at
each atomic sit® , for both In and P atoms. Herg; andd;

are determined by minimizing the difference between two
kinds of band structure@.e., converged LDA and Gaussian
corrected SLDA with a small bagiswe findq=—4.27 har-
trees andd=0.7 bohr for In, andg=-2.53 hartrees and
d=0.7 bohr for P. Figure @) shows the band structures for
zinc-blende InP corresponding to 6.8-Ry cutoff energy with
the Gaussian correction in comparison with those corre-

A known shortcoming of a plane-wave basis set bandsponding to 25-Ry cutoff energy. It can be seen that, using
structure calculation is that the number of basis functions ishe Gaussian-type correction potential leads to the band
usually quite large, especially when we deal with large sysstructures that are very similar to the pure plane-wave con-
tems such as quantum dots or long period superlattices. Hereerged results. Using the same Gaussian parameters, for

we adopt a method to reduce the cutoff energy.

other crystal structures—rocksalt agdSn—we find errors

Generally, when small cutoff energy is used, the bandf <0.2 eV. We use the same Gaussian corrections in all of
structures are poorly converged. This is illustrated in Fig.our calculations for InP quantum dots.

1See, for exampleylicrocrystalline and Nanocrystalline Semicon-
ductors edited by R. W. Collins, C. C. Tsai, M. Hiros, F. Koch,

and L. E. Brus, MRS Symposium Proceedings No. 88ate-
rials Research Society, Boston, 1994

2Light Emission from Novel Silicon Materialedited by Y. Kane-
mitsu, M. Kondo, and K. Takedé@lrhe Physical Society of Ja-
pan, Tokyo, 1994

13L. W. Wang and A. Zunger, Phys. Rev.®, 17 398(1995.
143, 1hm, A. Zunger, and M. L. Cohen, J. Phys1@, 4409(1979.
I5N. A. Hill and K. B. Whaley, Phys. Rev. Let%5, 1130(1995.
18G. D. Sanders and Y. C. Chang, Phys. Revi33 9202 (1992.
7M. L. Cohen and T. K. Bergstresser, Phys. R&41, 789 (1966);
J. R. Chelikowsky and M. L. Cohen, Phys. Rev.1d, 556
(1976; M. L. Cohen and J. R. Chelikowsk¥lectronic Struc-

3Optical Phenomena in Semiconductor Structures of Reduced Di- ture and Optical Properties of SemiconductofSpringer-

mensionality Vol. 248 of NATO Advanced Study Institute Series

Verlag, Berlin, 1989

E: Applied Sciencesdited by D. J. Lockwood and A. Pinczuk *8C. Ulrich, S. Ves, A. R. Goni, A. Kurtenbach, S. Syassen, and K.

(Kluwer Academic, Dordrecht, 1993

4L. W. Wang and A. Zunger, ifNanocrystalline Semiconductor

Materials edited by P. V. Kamat and D. MeiséElsevier Sci-
ence, Amsterdam, 1996A. D. Yoffe, Adv. Phys.42, 173
(1993.

5F. Buda, J. Kohanoff, and M. Parrinello, Phys. Rev. Lé8,
1272(1992.

SW. Kohn and L. J. Sham, Phys. ReM0, A1133(1965; J. Per-
dew and A. Zunger, Phys. Rev. 3, 5048(1981).

’R. M. Dreizler and E. K. U. Grossensity Functional Theory
(Springer-Verlag, Berlin, 1990

8D. M. Wood and A. Zunger, Phys. Rev. 58, 7949(1996.

%S, B. Zhang, C. Y. Yeh, and A. Zunger, Phys. Rev4® 11 204
(1993.

100, Kane, J. Phys. Chem. Solid#, 83(1956; G. Bastard\Wave
Mechanics Applied to Semiconductor Heterostructtes Edi-
tion de Physique, Les Ulis, 1988

1L, w. Wang and A. Zunger, J. Chem. Phy€i0, 2394(1994; J.
Phys. Chem94, 2158(1994); Phys. Rev. B63, 9579(1996.

12K, A. Mader, L. W. Wang, and A. Zunger, Phys. Rev. Létd,
2555 (1999; K. A. Mader, and A. Zunger, Phys. Rev. &),

Eberl, Phys. Rev. 552, 12 212(1995.

19A. A. Yamaguchi, J. Ahopelto, K. Nishi, A. Usui, H. Akiyama,
and H. SakakiGallium Arsenide and Related Compoundd-
ited by T. Ikegami, F. Hasegawai, and Y. Takd#aP, Bristol,
UK, 1992, p. 341.

20p_ castrillo, D. Hessman, M. E. Pistol, S. Anand, N. Carlsson, W.
Seifert, and L. Samuelson, Appl. Phys. L&¥, 1905(1995.

215, Anand, N. Carlsson, M. E. Pistol, L. E. Samuelson, and W.
Serfert, Appl. Phys. Lett67, 3016(1995.

220, 1. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J.
Nozik, J. Phys. Chend8, 4966(1994.

230. I. Micic, J. R. Sprague, Z. H. Lu, and A. J. Nozik, Appl. Phys.
Lett. 68, 3152(1996; O. I. Micic (private communication

243, Perdew and A. Zunger, Phys. Rev2B, 5048(1981).

25N, Troullier and J. L. Martins, Phys. Rev. &3, 8861 (1997).

%|n generating atomic pseudopotentials, we use the atomic con-
figurations In:%?5p®%6d®! and P:3?3p2°3d®! while the
matching-point radii are 1.98, 2.30, and 3.80 a.usfqu, andd,
respectively in In, and 1.45, 1.60, and 3.80 a.u.dop, andd,
respectively in P. Tests on different configurations and radii
show only slight changegvithin 1072 eV) in the total energy.

17 393(1994; A. Franceschetti and A. Zunger, Phys. Rev. B 2’3, G. Louie, S. Froyen, and M. L. Cohen, Phys. Re2@1738

52, 14 664(1995.

(1982.



55 LOCAL-DENSITY-DERIVED SEMIEMPIRICAL . .. 1653

28D, R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. 14&t.  *®D. Bimberg, K. Hess, N. O. Lipari, J. U. Fischbach, and M.

1494 (1979. Altarelli, Physia B & C 89, 139(1977).
293, van Laar, A. Huijser, and T. L. van Rooy, J. Vac. Sci. Technol.3%p. Lawaetz, Phys. Rev. B, 3460(1971.
14, 894 (1977). 40G. D. Pitt, Solid, State Commu, 1119(1980.
L. Ley and R. A. Pollak, Phys. Rev. 8 600(1974. 4R, Zallen and W. Paul, Phys. Rel55, 703 (1967).
31Z. Hang, H. Shen, and F. H. Pollak, Solid State Comn815 42y S. Hybertsen and S. G. Louie, Phys. Rev. L&k, 1418
“ (1990. _ (1985.
P. Lautenschlager, M. Garriga, and M. Cardona, Phys. R&6,B 43¢, (g fip.nrel.gov as “anonymous,” change directory to pub/sst-
4813(1987. out/InP.SEPM, and download all the files.

*S. W. Tozer, D. J. Wolford, J. A. Bradley, D. Bour, and G. B. 44p| | Efros and A. V. Rodina, Phys. Rev. &7, 10 005(1993.
Stringfellow, Proceedings of the 19th ICPS, Warsaw, Poland 45p_ E. Lippens and M. Lannoo, Phys. Rev38, 10 935(1989.
edited by W. Zawadskilnstitute of Physics, Polish Academy of 46\ . Rama Krishna and R A' Friesner, Phys. Rev. L6T, 629
Sciences, 1988 p. 881. ('195]) T ' ' ) ’

34L. W. James, J. P. Van Dyke, F. Herman, and D. M. Chang, Phys47_|_ Cha;sse G. Neuhold. and K. Horn, Surf, S281-333 511

Rev. B1, 3988(1970. . o _
35p. Rochon and E. Fortin, Phys. Rev.1B, 5803(1975. (1993; A. Tulke and H. Luth,ibid. 211/212 1001 (1989; A.
Huijser, J. v. Laar, and T. L. v. Rooyhid. 62, 472 (1977.

363. M. Chamberlain, J. Phys. & L38 (1971). 48
373, Leotin, R. Barbaste, S. Askenazy, M. S. Skolnick, R. A. Stra- L+ E- Brus, J. Phys. Chen80, 2555(1986.

dling, and J. Tuchendler, Solid State Comm(if, 693 (1974. K. Seeger, Appl. Phys. Letf4, 1268(1989.



