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Nonlinear current response of a many-level tunneling system: Generation of higher harmonics
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Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel

~Received 13 May 1996; revised manuscript received 11 November 1996!

The fully nonlinear response of a many-level noninteracting tunneling system to a strong alternating field of
high frequencyv is studied in terms of the Schwinger-Keldysh nonequilibrium Green’s functions. The non-
linear time dependent tunneling currentI (t) is calculated exactly and its resonance structure is elucidated. In
particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier com-
ponentI n is sharply peaked atn5(DE/\v), whereDE is the spacing between two levels. This frequency
multiplication results from the highly nonlinear process ofn photon absorption~or emission! by the tunneling
system. It is also conjectured that this effect~which so far is studied mainly in the context of nonlinear optics!
might be experimentally feasible.@S0163-1829~97!04924-2#
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I. INTRODUCTION

The physics of resonant tunneling through a single qu
tum well has been at the center of theoretical and experim
tal activity for more than two decades. Electron~or hole!
confinement between penetrable barriers in a semicondu
enables the investigation of numerous important phenom
such as negative differential resistance, Coulomb blocka
single electron tunneling, single electron pump, and m
others. The pertinent physics is very attractive both beca
of its richness and its potential device oriented nature.

At the core of the phenomena of resonance tunneling
the relatively simple picture of a small cavity connected
tunneling barriers to two reservoirs of particles~also termed
as leads!. The dimensions of the cavity are small enough
that the energy levels inside it are well separated. These
els might be either single-particle levels whose spacing
determined solely by geometrical considerations or a
particle levels determined by interactions~as in the Coulomb
blockade systems!. If there is a difference between th
chemical potential of the left lead (mL) and that of the right
lead, (mR) a tunneling current occurs between the two lea
If an energy level of electrons in the cavity occurs betwe
mL andmR this current displays a resonance structure. E
dently, the pertinent physics is time independent, nam
one speaks here of a dc. Moreover, in many cases, reson
tunneling through a single level can be treated within
formalism of the linear response.

Recently, interest is directed toward nonlinear tim
dependent transport phenomena in double-barrier reson
tunneling systems. Experimentally, the investigation of
ac in mesoscopic devices proves to be feasible.1 ~Yet, theo-
retical analysis of the above experiment remains in the re
of linear response.2–4!

The relevant physics inevitably becomes richer and m
difficult to analyze. It touches upon qualitatively new ph
nomena which depend on how space- and time-depen
electronic states interfere. Among the effects which are
herently based on nonlinear response one might cons
electron pumps,5–7 lasers,8 photon-assisted tunneling,9–14and
others.

In the present work we concentrate on a relatively n
550163-1829/97/55~24!/16359~12!/$10.00
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effect, namely, frequency multiplication of the current r
sponse. As a theoretical model one may consider a dou
barrier resonance tunneling system containing at least
quantum levels whose spacingDE introduces a new energ
scale into the problem. The system is then subject to a str
monochromatic ac voltage of strengthW and frequencyv,
which results in a nonlinear current responseI (t), the main
object of our study. The combination of strong ac elect
field and level interaction with the reservoirs might lead
transitions between these levels which are assisted by m
photon emission~or absorption!, a highly nonlinear effect. It
can be analyzed in terms of the Fourier componentsI n of the
currentI (t). In linear response, one expectsI 0 and I 1 to be
the only nonzero components. Here, however, higher co
ponents may be significant. As we show below,I n as a func-
tion of n is peaked atn5DE/\v, namely, there is a reso
nance whenn photons are absorbed or emitted following t
transition between the two levels. The transition occurs d
to resonant tunneling from one of the levels to a lead a
then to the other level. Frequency multiplication is famili
in nonlinear optics but, to the best of our knowledge has
yet been investigated in microelectronics. We give bel
some realistic estimates of this effect.

As for the theoretical treatment of the above model,
start from the familiar tunneling Hamiltonian and employ t
Schwinger-Keldysh nonequilibrium Green’s function
through which the current is calculated in a straightforwa
way. In order to avoid complications while stressing the i
portant role of two-level quantum wells we restrict ourselv
in this work to noninteracting particles. As we explain in th
next section we believe it to be a good model for the cal
lation of ac in quantum wells. We also argue there that
current response of a Coulomb blockade system in which
interaction is reflected through the charging energy is lik
to posses footprints of one-particle motion. In particular,
think that the high freqency resonance leading to freque
multiplication which we describe in the present paper w
show also in quantum dots. Of course, quantative treatm
of the nonlinear ac response of a general interacting sys
in a resonance tunneling device goes beyond the scope o
present work.

In the following section the problem is formulated, an
16 359 © 1997 The American Physical Society
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16 360 55Y. GOLDIN AND Y. AVISHAI
the various parts of the pertinent Hamiltonians are defi
and justified. Then, in Sec. III the method of solution
terms of the Keldysh Green’s function is introduced. In p
ticular, the free particle Green’s functions are written do
and the Dyson equation for the ‘‘lesser’’ Green’s function
derived. Section IV is devoted to the discussion of the t
neling current. An exact expression for the current is deriv
in terms of Keldysh Green’s functions and the origin of res
nances in the nonlinear response is explicitly elucidat
Analysis of higher harmonic generation is carried out in S
V, where numerical results are presented and the condit
for obtaining peaks at higher harmonics are discussed.
paper is then concluded with a short summary. In Appen
A there is a proof that a pure time dependent potential ha
physically observable effect, while some technical point
lated to the derivation of Dyson equation in the Keldy
formalism is explained in Appendix B.

II. FORMULATION OF THE PROBLEM

We consider a structure where a charge carrier has
barriers on its way like the one drawn in Fig. 1. This stru
ture is analogous to the Fabry-Perot resonator — the mo
of a carrier is almost quantized in the central region bu
still can escape into the leads. Thus the energy levels of
central region provide resonances for the transmission of
charge carries from one lead to another. Hereafter we
speak about electrons. The same type of structure ca
made for holes but the degeneracy of the valence band
complicate the calculation. An arbitrary combination of
and ac potentials is applied to the above structure~the poten-
tial differences are still required to be small compared w
the Fermi energies!. Our main goal is to calculate the time
dependent currents in the system.

Before doing this let us mention possible experimen
realizations. Practically a two-barrier structure can be fa
cated in several ways, e.g.,~1! by putting several layers o
different semiconductors having matching lattices and diff
ent gap widths one on top of the other.15–27 The electrons
then move in the direction perpendicular to the layers. As
example, the profile of the conduction band for a particu
case of a GaAs-AlxGa12xAs structure is shown in Fig. 1.~2!

FIG. 1. Schematic energy diagram of the conduction band fo
Al xGa12xAs quantum well in the absence of an ac field.x is the
axis perpendicular to the layers,mL andmR are the left and the righ
chemical potentials correspondently,VL andVR are the energies o
the conduction band bottoms of the leads,e1 ande2 are the energies
of the levels in the central region.
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By application of an external gate potential.10,11,28–37,40The
electrons then move along the layers but their movemen
restricted by the external repulsive potential. The gate
shaped such that the electrons move in one direction and
barriers are formed in their way.~3! By placing an impurity
in a tunnel barrier.38,39,41

In order to describe the dynamics of the system we
the tunneling Hamiltonian formalism suggested a long ti
ago.42,43 The total Hamiltonian is

H~ t !5Hf1Hac~ t !1HT , ~1!

where

Hf5(
k

ekak
†ak1(

n
encn

†cn1(
p

epbp
†bp ~2!

is the Hamiltonian of free particles with neither ac field n
coupling between the leads and the central region. H
ek , en , andep are free-particle energies in the left lead, t
central region, and the right lead, respectively. The energ
taken with respect to the bottom of the conduction band
the central region. The operatorsak

† , ak , bp
† , bp , cn

† , cn are
creation and annihilation operators in the leads and in
central region. Furthermore,k (p) are momenta in the direc
tion perpendicular to the layers, andn counts the levels in
the central region@hereafterk (p) refer to the left~right!
lead,n, m, n8, m8 — to the central region#. The summation
over n in Eq. ~2! expresses the presence of more than o
energy level. The third term,

HT5(
k,n

~Tnk
L cn

†ak1Tnk
L* ak

†cn!1(
p,n

~Tpn
R bp

†cn1Tpn
R* cn

†bp!

~3!

is the part responsible for the tunneling through the barrie
Tnk(p)
L(R) are transfer matrix elements between the leads and

central region. Finally, the time dependent part is

Hac~ t !5WLsin~vt !(
k
ak
†ak1WRsin~vt !(

p
bp
†bp , ~4!

whereWL(R)sin(vt) are potential shifts of the leads with re
spect to the central region caused by an external ac poten
dc-potential shifts are included into the energiesek(n,p) . The
arrangement in whichWL andWR have opposite signs cor
responds to an application of an ac bias as it was done
few experiments.16,22,34 The choiceWL5WR describes an
application of an ac voltage to the gate electrode super
posed on the central region~see Refs. 10 and 11!. We notice
here that shifting both leads together~having the potential of
the central region fixed! is equivalent to shifting the centra
region ~having the potentials of the leads fixed! since an
application of a uniform~time-dependent! potential is not
observable even if it is arbitrary strong and arbitrary fast~see
Appendix A!. The situationWL50, WRÞ0 corresponds to
an application of an ac voltage only to one barrier as it w
done in the experiment reported in Ref. 10.

Our choice ofHac is based on the following assumption
~1! The electrons in the leads respond to an applied fi

very fast since we deal with the frequencies much less t
the plasma frequency. It means that any change of the ex
nal potential causes an immediate rearrangement of the e

n
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55 16 361NONLINEAR CURRENT RESPONSE OF A MANY-LEVEL . . .
trons. In other words, the internal potential responds v
quickly to an external field.2,44

~2! The concentration of the electrons in the leads is h
enough to screen an external field.45–47Therefore the poten
tial is uniform in the leads and drops in th
barriers.9,44,45,47–55

~3! We used a widespread assumption44,49,54,56 that the
probability of direct transitions between the energy levels
the central region due to the ac field is small and can
neglected.

We do not restrict our consideration to the case of sm
WL , WR ~linear response!. They can be arbitrary large. A
strong ac field (WL@v or WR@v) leads to a nonlinearity
One of its signatures is the generation of current harmo
with frequencies much larger thanv.

The Hamiltonian~1! does not include Coulomb interac
tion. We think it is a good approximation for quantum wel
Noninteracting model has been widely used for their tre
ment~Refs. 44, 45, 47, 49–51, 57–64 and others!. The Cou-
lomb interaction can be included in the framework of t
mean-field approximation16,65–67because the number of ele
trons in quantum wells is very large. Then its influence
expressed in concentration-dependent corrections to the
particle energiesen . It can lead to some changes in the d
pendence of the current on the dc bias~such as the appear
ance of a hysteresis16,65–67! or, may be, on the magnitude o
the frequency of the ac field. Nevertheless, if the populat
of the energy levels does not change drastically during
period of the ac field the physics of the electron-photon
teraction remains essentially within the independent-part
model.

In quantum dots competition of Coulomb interaction w
positive gate potential restricts the number of possible cha
states. If the gate voltage is less than the Coulomb interac
energy this number is two, namely, one of them hasN elec-
trons and the other one hasN11 electrons68 ~typically N is
about 10–100!. Tunneling of an electron then blocks the tu
neling of any other one. In the framework of the classi
Coulomb blockade model, where the charging energy d
not depend on the population of different energy levels
only on the total amount of electrons in the dot, this is t
main effect of the Coulomb interaction~at least at tempera
tures higher than the Kondo temperature!. Therefore, if the
number of electrons in the dot is fixed, the motion of eve
electron is largely determined by geometrical considerati
as in the noninteracting model. The Coulomb interaction
an electron with the other ones just provides it with the p
tential energy to overcome the gate potential. This statem
is clearly seen from inspection of the Coulomb blocka
Hamiltonian (Hd): Hd5( i(e i2eV)ni1

1
2( iÞ jUninj

5( i(e i2eV1UN)ni , whereV is the gate potential,U is
the Coulomb energy,i , j are the numbers of energy levels
the dot, andni are their occupations. In the systems we spe
about here tunneling through the barriers is small. Althou
it provides all the current the electrons are kept in the cen
region ~or in the leads! most of the time. Within the maste
equation approach we would say that the probability of o
of the electrons to tunnel from the dot to a lead during
timeDt is P5(12e2GDt)e2NGDt'GDt. In the lowest order
approximation we can consider the motion of every elect
in the ac field neglecting the possibility that one of the oth
y
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electrons will escape into the leads. Then it is roughly d
scribed by the noniteracting model. Of course, the full qu
tative treatment of a quantum dot in an external ac field
beyond the capabilities of this model. But we think that t
features of the one-particle motion found in the pres
work, in particular the high freqency resonance leading
frequency multiplication, will show in the interacting syste
too.

Strictly speaking, the Hamiltonian~1! is one dimensional.
In realistic quantum wells there are, of course lateral degr
of freedom provided by the motion along the layers. But
every particular value of the lateral momentum the probl
is one dimensional. Even if the dependence of electron
ergy on the lateral momentum is important the total curr
can be found by the simple integration over it. The late
degrees of freedom can be removed by a magnetic field
pendicular to the layers.

III. SOLUTION IN TERMS OF KELDYSH GREEN’S
FUNCTIONS

In order to work out the current we first have to analy
the electron propagation. To this end we employ the n
equilibrium Green’s function technique suggested
Schwinger,69 Kadanoff and Baym,70 and Keldysh71 ~for a
review see Refs. 52,72–76!. Since no equilibrium is required
one can rigorously consider large perturbations and high
quencies drawing the system far from its steady state.
method uses a time variable defined on two sides of the
axis. It is equivalent to the introduction of twoindependent
Green’s functions, one of which characterizes the dynam
properties of the particles the other one describes t
distribution.71

It is convenient to use the following two Green’s fun
tions ~the others can be expressed through them!:

Gi , j
r ~ t1 ,t !52 iu~ t12t !^w i~ t1!w j

†~ t !1w j
†~ t !w i~ t1!&,

~5!

Gi , j
, ~ t1 ,t !5 i ^w j

†~ t !w i~ t1!&,

wherew i(t1)„w j
†(t)… are operators in the Heisenberg pictu

representingak(t1), cn(t1), bp(t1) „ak
†(t), cn

†(t), bp
†(t)… in

correspondence with what values the indexesi and j take
(k, n, or p). The first Green’s function is the usual retard
Green’s function. The advanced Green’s function (Gi j

a ) is its
Hermitian conjugate that isGi , j

a (t1 ,t)5@Gji
r (t,t1)#* . The

other one contains information about the distribution of el
trons and their correlations. Att15t it gives the one-particle
density matrix (r):72 Gi j

,(t,t)5 iNr i j (t), where N is the
number of particles in the system. The advantage of
method is that it treatsGr andG, in a unified manner. Both
of them can be found through the Dyson’s equation:74

Gr5gr@11S rGr #, ~6!

G,5@11GrS r #g,@11SaGa#1GrS,Ga. ~7!

Here multiplication implies the summation~or integration!
over space variables and integration over time,gr andg, are
Green’s functions defined as Eq.~5! but for an unperturbed
Hamiltonian,S r , Sa, and S, are proper irreducible self
energies.
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16 362 55Y. GOLDIN AND Y. AVISHAI
An application of the formalism to tunneling systems
especially powerful if one choosesHT as a perturbation.77

Then the self-energies assume a very simple form:

Skk8
r ~a!

5Spp8
r ~a!

5Skp
r ~a!5Spk

r ~a!50,

Snk
r 5Snk

a 5Tnk
L ,

Skn
r 5Skn

a 5Tkn
L 5Tnk

L* ,
~8!

Snp
r 5Snp

a 5Tnp
R ,

Spn
r 5Spn

a 5Tpn
R 5Tnp

R* ,

S,[0.

This is due to the fact that any vertex caused byHT has only
two entries. The only diagram contributing to an irreducib
self-energy is the simplest one drawn in Fig. 2~a!. The next
one drawn in Fig. 2~b! is already reducible.

In the next section we will show that tunneling curren
can be expressed solely in terms of the Green’s function
the central region. To find these functions we iterate Eq.~6!
and get

Gnm
r ~ t1 ,t !5gnm

r ~ t1 ,t !1(
n8

E
2`

1`E
2`

1`

dt2dt3gnn
r ~ t1 ,t2!

3Xnn8~ t2 ,t3!Gn8m
r

~ t3 ,t !, ~9!

Xnn8~ t2 ,t3![Xnn8
L

~ t2 ,t3!1Xnn8
R

~ t2 ,t3!, ~10!

Xnn8
L

~ t2 ,t3![(
k
Tnk
L gkk

r ~ t2 ,t3!Tkn8
L ,

Xnn8
R

~ t2 ,t3![(
p
Tnp
R gpp

r ~ t2 ,t3!Tpn8
R .

Equations~7! and ~8! establish an algorithm for calcula
ing Gnm

, without an iteration but nevertheless it contai
eleven terms on the right hand side. We showed~see Appen-

FIG. 2. Tunneling diagrams. A cross denotes a tunneling ev
a thin line denotes a free propagator, and a thick line denotes a
propagator.~a! Dyson’s equation. Only a single tunneling eve
contributes to the self-energy.~b! Any other diagram is reducible.
in

dix B! that only two of them remain after a long enoug
period of time has passed from the moment the tunne
was switched on

Gnm
, ~ t1 ,t !5 (

n8m8
E

2`

1`E
2`

1`

dt2dt3Gnn8
r

~ t1 ,t2!

3Yn8m8~ t2 ,t3!Gm8m
a

~ t3 ,t !, ~11!

where

Yn8m8~ t2 ,t3![Yn8m8
L

~ t2 ,t3!1Yn8m8
R

~ t2 ,t3!, ~12!

Yn8m8
L

~ t2 ,t3![(
k
Tn8k
L gkk

, ~ t2 ,t3!Tkm8
L ,

Yn8m8
R

~ t2 ,t3![(
p
Tn8p
R gpp

, ~ t2 ,t3!Tpm8
R .

We notice thatGnm
, does not depend on the initial distribu

tion of electrons in the central region@the reason is tha
gnm

, does not appear in formula~11!#. It depends only on
their distributions in the leads throughgkk

, andgpp
, .

It is easy to show~see Appendix A! that even under a
time-dependent potential of an arbitrary large amplitude a
an arbitrary high frequency the Green’s functions for ele
trons in isolated leads are given by ‘‘adiabaticlike’’ expre
sions:

gkk8
r

~ t2 ,t3!52 idkk8u~ t22t3!e2 i E
t3

t2
@Hf1Hac~ t !#kkdt

52 idkk8u~ t22t3!

3e2 i ek~ t22t3!1 i ~WL /v![cos~vt2!2cos~vt3!] , ~13!

gkk8
,

~ t2 ,t3!5 idkk8 f L~ek!e2 i E
t3

t2
@Hf1Hac~ t !#kkdt

5 idkk8 f L~ek!e
2 i ek~ t22t3!1 i ~WL /v![cos~vt2!2cos~vt3!] ,

provided that the time-dependent perturbing potential (Hac)
is uniform in every lead. Here@ #kk denotes matrix element
f L(ek)51/{exp@(ek2m)/kQ#11} is the Fermi function for
the left lead,mL is its chemical potential, andQ is the tem-
perature. Formulas forgpp8

r , gpp8
, can be obtained from Eq

~13! by replacementsk,k8→p,p8, WL→WR , mL→mR .
Now we substitute Eq.~13! into Eqs.~10! and ~12! and

replace the sum overk, p by an integral over energy. Fur
ther, we assume wide energy bands in the leads and app
mate the elastic couplings to the leads„Gnn8

L(R)(ek(p))… by
Lorentzian functions:78

Gnn8
L

~ek![2pr~ek!Tnk
L Tkn8

L [Gnn8
L D2

ek
21D2 , ~14!

Gnn8
R

~ep![2pr~ep!Tnp
R Tpn8

R [Gnn8
R D2

ep
21D2 .

Since in the real experimental systems the bandwidths
usually much larger than other relevant energy scalesW,

t,
ull
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v, dc - bias,Q, G, etc.!, we take the limitD→` where it is
possible. Substituting~13! and ~14! into ~10! we obtain

Xnn8
L

~ t2 ,t3!

52 iGnn8
L u~ t22t3!e

i ~WL /v![cos~vt2!2cos~vt3!]

3E dek
2p

D2

ek
21D2e

2 i ek~ t22t3!

52 iGnn8
L u~ t22t3!e

i ~WL /v![cos~vt2!2cos~vt3!]

3
D

2
e2Dut22t3u.

At this stage let us recall thatXnn8
L (t2 ,t3) can be considered

as a generalized function@it appears only under integratio
with another function in Eq.~10!#. It is easy to see that in th
limit D→` ,

Xnn8~ t2 ,t3!52
i

2
Gnn8d~ t22t3!. ~15!

The factor12 appears due to the presence of the step func
u(t22t3). Substituting Eqs.~13! and~14! into ~12! we obtain

Yn8m8~ t2 ,t3!5 iGn8m8
L ei ~WL /v![cos~vt2!2cos~vt3!]

3E dek
2p

D2

ek
21D2 f L~ek!e

2 i ek~ t22t3!

1 iGn8m8
R ei ~WR /v![cos~vt2!2cos~vt3!]

3E dep
2p

D2

ep
21D2 f R~ep!e

2 i ep~ t22t3!, ~16!

where Gnn8[Gnn8
L

1Gnn8
R . We cannot put hereD→` be-

cause it would lead to a logarithmic divergence in the ac
We want to emphasize that substituting Eq.~15! into ~9!

yields a time-independent equation. The problem then
duces to the task of finding the usual retarded Green’s fu
tion for a time-independent potential well with finite barrier
This is because in the limitD→` the bands are uniform in
energy. The ac field then emerges solely within a time-
pendent shift of the chemical potentials. The functionGnm

r

~unlikeGnm
, ) is not sensitive to it~see discussion at the en

of the section!. The Fourier transform of the resulting equ
tion is

Gnm
r ~e!1

i

2
gnn
r ~e!(

n8
Gnn8Gn8m

r
~e!5gnm

r ~e!. ~17!

A rigorous solution for a two-level system shows that t
mixing termsGnm

r , nÞm give a contribution to the curren
of the order ofG/uen2emu. We assumeG!uen2emu and
drop them out hereafter. With the same accuracyGnn

r are
given by

Gnn
r ~e!5

1

e2en1 i
Gn

2

~18!
n

e-
c-
.

-

whereGn[Gnn1Gn
in , Gn

in are intrinsic level widths due to
inelastic interactions, leakage of electrons into lateral dir
tions, etc. This is equivalent to the widely used assumpt
that the quasilevels of a potential well with finite barrie
have complex energiesen2 i (Gn/2). We see that the main
contribution of tunneling to thedynamicalproperties is con-
tained in level broadening.

Substituting~16! into ~11! gives an exact expression fo
G, in terms ofGr :

Gnm
, ~ t1 ,t !5E dek

2p

D2f L~ek!

ek
21D2 e2 i ek~ t12t !

3 (
s,q52`

`

i s2q11JsSWL

v D JqSWL

v De2 isvt11 iqvt

3 (
n8m8

Gn8m8
L Gnn8

r
~ek1sv!Gmm8

r* ~ek1qv!

1E dep
2p

D2f R~ep!

ep
21D2 e2 i ep~ t12t !

3 (
s,q52`

`

i s2q11JsSWR

v D JqSWR

v De2 isvt11 iqvt

3 (
n8m8

Gn8m8
R Gnn8

r
~ep1sv!Gmm8

r* ~ep1qv!.

~19!

We notice that the transition amplitudesGnm
, ,nÞm are im-

portant as we show in the next section.
This difference betweenGnm

r andGnm
, , nÞm arises from

the difference betweenX andY in the formulas~15!, ~16!.
The quantityX has such a simple form becausef (ek(p)) does
not appear ingkk

r , gpp
r so that the summation overk(p)

@equivalent to integration overek(ep)# in formula ~10! gives
1
2d(t22t3) in the limit D→`. The occurrence off (ek(p)) in
gkk

, (gpp
, ) leads to an upper limit of integration in Eq.~16!

aroundmL(R) . If mL(R) is large enough12d(t22t3) is recov-
ered. Then the whole solution becomes invariant under t
translation and the transition amplitudesGnm

, , nÞm are
small, of the order ofG/uen2emu.

IV. CALCULATION OF THE CURRENT

A double-barrier structure is integrated within a circu
The measured current is determined by its influence on
circuit. If the barriers are modeled as capacitive-resist
elements81 the currents in the leads are given by12

I L~ t !5
CR1Cg

C
CLvWLcos~vt !2

CL

C
CRvWRcos~vt !

1
CR1Cg

C
I L
T~ t !2

CL

C
IR
T~ t !, ~20!

whereI L is the total current in the left leadI L
T(t) and I R

T(t)
are tunneling currents through the left and right barriers,
spectively,CL(R) andCg are capacitances of the central r
gion relative to the left~right! lead and a gate electrode~or
another background!, C[CL1CR1Cg . The current in the
right lead is obtained by replacingL by R. The first two
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16 364 55Y. GOLDIN AND Y. AVISHAI
terms describe the contribution of capacitive currents~due to
the presence of accumulation and depletion layers!. They
have the frequency of the input ac voltage. But the tunne
currents contain also higher harmonics as we show belo

The tunneling current from the left lead into the cent
region is defined by the change in the number of electron
that lead:

I L
T~ t !5eK dN̂L

dt L 52
ie

\ (
km

~Tmk
L ^cm

† ak&2Tmk
L* ^ak

†cm&!

52
2e

\
ReF(

km
Tmk
L Gkm

, ~ t,t !G , ~21!

where N̂L[(kak
†ak . The tunneling current from the righ

lead into the central region (I R
T) is obtained from the above

expression by a changeL→R, k→p, ak→bp .
Using Dyson’s equation forGkn

, allows one to express th
tunneling currents through Green’s functions in the cen
region ~which we found in the previous section!:

I L~R!
T ~ t !52

2e

\
ReH(

nm
E

2`

1`

dt1@Xmn
L~R!~ t,t1!Gnm

, ~ t1 ,t !

1Ymn
L~R!~ t,t1!Gnm

a ~ t1 ,t !#J . ~22!

Assuming wide bands as we did in the previous section
can use the formulas~15!, ~16!, ~18!, and~19!. Dropping out
the terms that are always small of the order ofG/ue j2e j 8u in
comparison with the others we obtain after some algebra

I L
T~ t !5

1

2
I L
01 (

n51

1`

uI L
nucos~nvt1fL

n!, wherefL
n5argI L

n ,

~23!

I L
n5

2e

\ (
j

@Aj~n!1Aj* ~2n!1Bj~n!1Bj* ~2n!#,

Aj~n!5 i2nF iG j j
L 1(

j 8

uG j j 8
L u2

e j 82e j2nv1 i
G j1G j 8

2
G

3 (
s52`

1`

JsSWL

v D Js1nSWL

v D
3FS e j2mL

v
2s,

G j

v
,
kQ

v
,D D ,

Bj~n!5 i2n(
j 8

G j j 8
L G j 8 j

R

e j 82e j2nv1 i
G j1G j 8

2

3 (
s52`

1`

JsSWR

v D Js1nSWR

v D
3FS e j2mR

v
2s,

G j

v
,
kQ

v
,D D ,
g
.
l
in

l

e

FS e j2m

v
2s,

G j

v
,
kQ

v
,D D

5
1

2pE D2f ~e!

e21D2

de

e1sv2e j1 i
G j

2

,

f ~e!5
1

@e@~e2m!/kQ#11
.

Analogous expressions hold forI R
T(t) as well. For the rest of

our discussion we choose to studyI L
T . We point out that the

current consists of many harmonics with frequenciesnv.
The sums overj , j 8 express the summation over all ener
levels in the central region. We notice that the termsAj (n)
and Bj (n) are quite similar in structure. The first one in
cludes the currents due to direct photon-assisted transit
between the left lead and the central region and due to
effect of the left lead on the population of the central regio
The second one describes the current through the left ba
due to the influence of the right lead on the electrons in
central region. The main difference between them~beside a
few replacements ofL into R) is that the first term in the
brackets inA ~i.e., iG j j

L ) is absent inBj (n). At zero tempera-
ture the integral in the expression forF can be easily com-
puted. ForD@W,umu,ue j u,Gu the result is very simple:

FS e j2m

v
2s,

G j

v
,0,D D5

1

2p
ln

e j2m2sv2 i
G j

2

D
.

The rest of our calculation is done at zero temperature.
The term inA containingG j j gives an additive contribu-

tion of different energy levels to the current. The same is t
for the terms of the sums overj 8 @in Aj (n) andBj (n)# with
j 85 j . The other terms in these sums are caused by the p
ence of different energy levels~the presence of at least tw
different levels is necessary!. Each contribution is caused b
a certainpair of energy levels. It is obvious that they have
resonance nature. Thej 8th term can be large when
ue j 82e j2nvu,(G j 81G j )/2. Thus it can give a large ac a
nres'ue j 82e j u/v ~under condition W.ue j 82e j u). If
v!ue j 82e j u one hasnres@1, i.e., the frequency in the outpu
is much larger than in the input. We notice that this te
generates thenresth harmonic exclusively. The others ar
small, of the order of@(G j1G j 8)/2v(n2nres)# ~we suppose
high frequencyG/v!1).

The resonance is caused by many-photon absorption
to the strength (W@v) of the ac field. The formula~21!
expresses the current at the moment of timet through the
probability to create an electron in the statem annihilating it
in the statek as it is drawn in Fig. 3~a!. To do that it is
necessary to have an electron in the statek and a hole in the
statem. The formula~22! shows that it is provided by the
creation of an electron in the statek and a hole in the state
n at an earlier moment of timet1 ,t1<t @see Fig. 3~b!#. In the
presence of a strong ac field the process in whichnÞm
should be considered. The hole then has to propagate f
n to m. The formula~11! expresses the transition fromn to
m through the kind of process drawn in Fig. 3~c! for
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55 16 365NONLINEAR CURRENT RESPONSE OF A MANY-LEVEL . . .
t3,t2. An electron is transferred at the momentt3, t3<t
from the statem to the statep in a lead leaving a hole in the
statem. At the momentt2 , t2<t1 the electron tunnels to th
staten. Eventually an electron is found in the staten at t1
and a hole is found in the statem at t. In the absence of a
time-dependent potential this process is impossible bec
the transitions fromm to p and fromp to n have to conserve
energy~after integration overt2, t3). Thusm has to be equa
to n. The presence of time-dependent partHac(t) in the
Hamiltonian results in a multiplication of the wave functio
of the statep by the phase factorei (WR /v)cos(vt) @see Appen-
dix A and formula ~13! in the main text#. In the energy
representation the wave function becomes dispersed ove
energiesep6sv ~where s is an integer!, with weights
Js(WR /v). In other words the spectral function of the sta
p has extra peaks with energiesep6sv. Their magnitudes
are proportional toJs

2(WR /v) ~see Ref. 9!. Thus it is pos-
sible to have transitions fromm to p and fromp to n when

em2ep5qv, en2ep5sv. ~24!

This is the origin ofJs and Jq in the formulas~19!, ~23!.
These transitions are accompanied by the emission~absorp-
tion! of q (s) photons. The total number of absorbed photo

FIG. 3. Tunneling processes leading to the high harmonic re
nance. A thick black line denotes a full electron propagator; a th
dashed line denotes a full hole propagator; a thin black line den
free electron propagator; a thin dash-dotted line denotes tunne
event. ~a! The tunneling current is produced by electrons go
from the lead to a level in the central region and back.~b! This
process can be assisted by other levels if the ac field is strong~c!
Resonance transfer of an electron from the levelm to the leveln
possible in a strong ac field.
se

all

s

is s2q5n. When the ac field is strong (WR@v)
Js(WR /v) and Jq(WR /v) can be large fors,q@1. This
leads to a possibility of many - photon absorption~emission!.
The resonance conditions ~24! give nres5s2q
5@(em2en)/v#. It is easy to show that, in fact,WR.nresv
is required to obtain a largenresth harmonic. The physica
content of Fig. 3~c! expresses the contribution o
Ynm
R (t2 ,t3) into Eq. ~11!. The same process but through th

left lead expresses the contribution ofYnm
L (t2 ,t3). At t2,t3

the picture is very similar. The process just starts from
transfer of an electron fromp to n at t2. Then the hole
tunnels fromp to m at t3.

If the lead energy bands are not wide then the m
change is thatGnm

r (a) , nÞm is not negligible. These nondi
agonal elements of the retarded Green’s functions co
make a positive or negative contribution to the proce
drawn in Fig. 3~c!. Yet, we argue that the resonance wou
persist also in that case.

Every pair of energy levels in the central region gives
independent contribution to the current~23!. In the next sec-
tion we consider one pair of energy levels and explore
dependence of the current it produces on the paramete
the system.

V. HIGH HARMONICS GENERATION

In this section we consider a strong ac field (WL@v or
WR@v) and show the dependence of the current on the
rameters of the system. Since every pair of energy lev
gives a separate contribution to the current it is enough
consider only one pair.

Generally a strong ac field leads to the generation of h
harmonics. In Fig. 4 we plot the amplitude of the harmon
(uI L

nu) versus their numbern for ~as an example!
WL5WR530, e1511.5, e2530.5,mR520, mL55, D570,
G11
L(R)5G22

L(R)5G12
L 52G12

R 50.05, v51. We do not show
the dc component~because its magnitude is much large!,
nor the first harmonic~whose amplitude is also a few time
larger than that of the others! since, anyhow, it is only a par

o-
k
es
ng

FIG. 4. Spectrum of the tunneling current~amplitude of the
harmonics via their number!. General situation.WL5WR530,
e1511.5, e2530.5, mR520, mL55, D570, G[G11

L(R)5G22
L(R)

5G12
L 52G12

R 50.05,v51. The dc and the first harmonic are n
shown.
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16 366 55Y. GOLDIN AND Y. AVISHAI
of the current response with the frequencyv. The other part
is given by the capacitive currents@first terms in the formula
~20!#. The main contribution to the broadened spectrum p
ted in Fig. 4 is due to the direct photon-assisted transiti
from the left lead to the central region and back described
the first term within the brackets inAj (n) @see formula~23!#.
The terms withjÞ j 8 arising from the presence of two o
more levels together can lead to the generation of one s
tary ~and high! harmonic ~see Fig. 5!. In the rest of this
section we describe the conditions required to observe
high harmonic alone and show its dependence on the pa
eters of the system.

Since the first term inAj (n) generates many harmonics
must be eliminated. The easiest way to do it is to apply
ac voltage only to the right barrier:WL50 ~in fact it is
enough to haveWL!ue22e1u). Then Aj (n)50, nÞ0 be-

FIG. 5. Spectrum of the tunneling current~amplitude of the
harmonics via their number! when the alternating field is applied o
the right barrier:WL50, WR530, e1511.5, e2530.5, mR520,
mL55, D570, G[G11

L(R)5G22
L(R)5G12

L 52G12
R 50.05, v51. The

dc and the first harmonic are not shown.
t-
s
y

li-

ne
m-

e

causeJs(WL /v)5Js(0)50, sÞ0.
In Fig. 5 we plot the amplitude of the harmonics (uI L

nu)
versus their numbern for WL50, WR530, e1511.5,
e2530.5, mR520, mL55, D570, G11

L(R)5G22
L(R)

5G12
L 52G12

R 50.05,v51. As before we do not plot here
the dc current and the first harmonic. They are, of cour
large compared with higher harmonics. We predict howe
that ifWR is made larger than the bandwidth in the right le
D they are reduced, and the amplitude of the resonant
monic might be comparable to the magnitude of the dc c
rent. It is clearly seen in this figure that among the hi
harmonics only the 19th one$nres5@(e22e1)/v#519% is
generated.

At WL50 andG1'G2 a simpler expression is easily ob
tained for the resonant harmonic:

I L
nres' i2nres

2e

\

2G12
L G21

R

G11G2
(

s5[ ~e12mR!/v]

`

JsSWR

v D Js1nresSWR

v D .
~25!

Only the terms withs so that the energye12sv is inside the
Fermi sea in the right band,e12sv,mR , contribute to the
sum. We notice thatJs(WR /v) tends to zero whenusu be-
comes larger thanWR /v if (WR /v)@1.

In Fig. 6 we draw the dependence of the resonant h
monic (uI L

nresu) on both (WR /v) ~i.e., ac voltage! and
@(e12mR)/v# ~determined by the dc bias! for nres
5@(e22e1)/v#58, G11

L(R)/v5G22
L(R)/v5G12

L /v52G21
R /v

50.05, mR /v520. There is no generation (I L
nres50) if

WR,nresv/25(e22e1)/2 because the condition
usu,(WR /v) and us1nresu,(WR /v) cannot be satisfied to
gether so one ofJs(WR /v), Js1nres

(WR /v) is small. The

generation becomes significant forWR.e22e1. It is espe-
cially important if there are more than two energy leve
distant pairs of levels do not generate harmonics.
nic
FIG. 6. Dependence of the resonant harmo
(uI L

nresu) on the dc bias~i.e., e12mR) and the am-
plitude of the ac voltageWR . nres58, WL50,
e25e118, mR520, G11

L(R)5G22
L(R)5G12

L 52G12
R

50.05,v51.
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55 16 367NONLINEAR CURRENT RESPONSE OF A MANY-LEVEL . . .
The dependence on the bias~i.e., @(e12mR)/v#) is oscil-
lating. The reason is the interference of different compone
of the wave function~remember that in a strong ac field it
spread over a set of energiesep6sv with different s). It
shows in the formulas as oscillating behavior ofJs(WR /v)
via s. Let us consider the sum in Eq.~25! at
ue12mRu!WR . It is useful to divide it into two parts:

(
s5s1

`

JsSWR

v D Js1nresSWR

v D5 (
s5s1

s*

JsSWR

v D Js1nresSWR

v D
1 (

s5s
*

11

`

JsSWR

v D Js1nresSWR

v D ,
where s1[@(e12mR)/v# and us* u!WR . The second par
does not depend one12mR . The Bessel’s functions in the
first part can be approximated by a trigonometric functio

JsSWR

v D5A 2

pn
cosS n2sarcsin

n

WR /v
2

p

4 D ,
n[ASWR

v D 22s2,

sinceusu!WR /v. Then

I L
nres' i2nres

2e

\

2G12
L G21

R

G11G2

1

pWR /v
(
s5s1

s5s* FcosS a2
nresv

WR
sD

1cos~b2ps!G1 const

' i2nres
2e

\

2G12
L G21

R

G11G2

1

pnres
sinS a2nres

e12mR

WR
D

~1 const!, ~26!

where a'vnres
2 /2WR1pnres/2 and b'2WR /v2@p(nres

11)/2#. Whene12mR changes from2WR toWR the value
I L
nres oscillates aboutnres/p times. The amplitude of the cur

rent uI L
nresu has about 2nres/p maxima~in Fig. 6 the number

of maxima is even larger because the frequency of osc
tions is larger ate12mR'6WR). Notice that the current is
not generated ifue12mRu.WR . It is significant for systems
with many energy levels: only those pairs of levels that are
the energy range frommR2WR to mR1WR generate har-
monics.

The dependence of the current on the transparency o
barriers is clear from formulas~23!, ~25!. In Fig. 5 we dis-
play the spectrum of the tunneling current atG/v51/20. If
G increases two sets of harmonics grow in the vicinity of t
0th and thenresth harmonics. The ratio of the amplitudes
the side harmonics to the amplitude of the leading~0th or
nresth! one is aboutG/nv and G/(n2nres)v, respectively.
On the other hand, the magnitude of the resonant harmon
proportional to 2G12

L G21
R /G11G2.

The dependence of the current on frequency is oscillat
If a rectifying device like a diode is placed in the output t
harmonics contribute to the dc. In Fig. 7 we draw the va
^I &[ 1

2 uI L
0u1(2/p)(n51

1` uI L
nu coming from the time averaging
ts

a-

n

he

is

y.

e

of I L
T(t) as a function of the input frequencyv at WL50,

WR530, e1511.5, e2531.5, mR520, mL55, D5210,
G11
L(R)5G22

L(R)5G12
L 52G12

R 50.05. The peaks correspond to
different harmonics (n522,21,20,19,18) satisfying the reso
nant conditionn5@(e22e1)/v#.

We have discussed the high harmonic resonance in
tunneling current through the left barrier. To observe it th
measuring device must be made sensitive to the tunnel
current only through this barrier. Otherwise other harmoni
will mask the resonance~like in Fig. 4!. If the device mea-
sures the current in the leads we propose two ways to obt
it based on the formula~20!.

~1! Making the gate capacitance small:Cg!CL , CR. The
capacitance of the right barrier should be much larger th
the capacitance of the left one:CL!CR . It can be achieved
by making the left barrier thicker than the right one. Notic
that the right barrier must be made slightly higher so th
GL andGR are of the same order~then I L

T and I R
T are of the

same order!. Thus the high harmonic currents in the leads a
approximately given by

I L~ t !'I L
T~ t !2

CL

CR
IR
T~ t !'I L

T~ t !,

I R~ t !'2I L
T~ t !1

CL

CR
IR
T~ t !'2I L

T~ t !.

We omitted here the contribution of the capacitive curren
having frequencyv. The high harmonic currents in both
leads are determined byI L

T .
~2! Making the gate capacitance large.Cg@CL ~the ratio

of barrier capacitancesCL andCR is arbitrary, there is no
need to make one of the barriers higher than the other on!.
Then ~dropping out the capacitive currents! we obtain from
Eq. ~20!,

FIG. 7. The output current rectified by a diode versus the fr
quency v of the input ac voltage.WL50, WR530, e1511.5,
e2531.5, mR520, mL55, D5210, G[G11

L(R)5G22
L(R)5G12

L

52G12
R 50.05. The peaks correspond to different harmoni

(n522,21,20,19,18) satisfying the resonant conditio
n5@(e22e1)/v#.
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16 368 55Y. GOLDIN AND Y. AVISHAI
I L~ t !'I L
T~ t !2

CL

CR1Cg
IR
T~ t !,

I R~ t !'2
CR

CR1Cg
I L
T~ t !1

Cg

CR1Cg
IR
T~ t !.

We notice that in this case high harmonics in the left lead
produced byI L

T but in the right lead by bothI L
T andI R

T ~unless
CR@Cg). If WL50, WRÞ0 the termA generating a wide
spectrum of harmonics vanishes inI L

T(t) but it is not zero in
the expression forI R

T(t). Then the current in the right lea
I R(t) consists of many harmonics. To detect a single h
monic the current in the left lead should be measured.

VI. SUMMARY

The basic physical problem addressed in this work is c
cerned with a nonlinear response of a two-~or more! level
system to a high frequency external field. This makes
formalism developed above particularly attractive since tw
level systems are an important model for many realis
physical situations. The most familiar one is evidently a tw
level atomic system, whose response to a laser field is on
the hallmarks of nonlinear quantum optics, one of who
signatures is a higher frequency generation. Here we h
focused on an electronic analog, where the response
tunneling current instead of an emitted light. Generation
higher harmonics in this system occurs solely due to tun
ing from the central region to the leads and back with
direct transitions between the levels. Note that, unlike
optical analog, the theoretical formulation requires a com
tation of nonequilibrium~Schwinger-Keldysh! Green’s func-
tions. As far as the experimental situation is concerned,
see no real obstacle in the road for the actual observatio
this effect.

We think that the next step should be a consideration
many-body physics in a strong time-dependent field. Wh
the size of the dot is small enough it can be considered a
Anderson impurity. At voltages and frequencies less than
Coulomb interaction energyU ~which is frequently the case!
it can be described by the infinite-U Anderson model which
is enough to exibite a Kondo type effect when the resona
level is deep below the Fermi level and the temperatur
low enough. Hence, the first problem which comes into m
in this context is a nonlinear response of a magnetic impu
to a time-dependent field. The Kondo effect out of equil
rium has been studied recently by several authors, but th
done primarily in the noncrossing approximation, which
valid much above the Kondo temperature. At temperatu
closer to the Kondo one, crossed diagrams should also
included~the first one appears when a sixth order term in
tunneling matrix elements is computed!. Another interesting
problem would be the study of interfierence between a str
external ac field and the Coulomb blockade effects. If
external voltages or frequencies are comparable with
Coulomb interaction energy mutual time-dependent reson
tunneling of electrons might show new physics. We supp
that this problem can be handled using the finite-U Anderson
model.
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APPENDIX A

In this appendix we show that an arbitrary strong tim
dependent potential has no effect if it is uniform in spa
We also calculate here Green’s functions for an isolated le

If the alternating potential„Hac(t)… is uniform the Hamil-
tonian can be written in the following form:

H~ t !5Hf1Hac~ t !, ~A1!

whereHf is time independent,Hac(t) is space independen
The solutions of the Schro¨dinger’s equation are

Ck~ t !5wk~ t !e
2~ i /\!* tHac~ t1!dt1, ~A2!

wherewk(t) are eigenstates ofHf . The time-dependent par
Hac(t) influences only the phases giving all the solutionsthe

samephase factore2( i /\)* tHac(t1)dt1. The phase difference
are determined byHf only. ThusHac(t) has no physical
effect. This simple result is the time-dependent analog of
fact that the~time-independent! reference point of energy ca
be arbitrarily chosen.

We used this result to write the ac part of the Hamiltoni
of a double-barrier structure in the form~4!. The ac shift of
the central region is ignored.

In an isolated lead the ac potential is uniform@see Eq.
~4!#. Then the evolution operator„U(t,t8)… is obtained from
the equationi\(]/]t)U(t,t8)5H(t)U(t,t8) with H(t) given
by Eq. ~A1!. Its matrix elements are

Ukk8~ t,t8!5dkk8e
2~ i /\!*

t8
t
Hkk~ t1!dt1. ~A3!

dkk8 appears becauseHkk850, kÞk8 ~i.e., a uniform poten-
tial does not cause transitions!. Using the definition of
Green’s functions in the Schro¨dinger representation with th
evolution operator~A3! it is easy to obtain the formulas~13!.

APPENDIX B

In this appendix we analyze the Dyson’s equation
Gnm

, and obtain the formula~11!. The Dyson’s equation~7!
holds forGnm

, :

Gnm
, 5Fnm

1 ~gj j
,!1Fnm

2 ~gkk
, ,gpp

, !, ~B1!

Fnm
1 ~gj j

,![gnm
, 1Gnk

r Tkmgmm
, 1Gnp

r Tpmgmm
, 1gnn

, TnkGkm
a

1gnn
, TnpGpm

a 1Gnk
r Tkigii

,Tik8Gk8m
a

1Gnp
r Tpigii

,Tip8Gp8m
a

1Gnk
r Tkigii

,TipGpm
a

1Gnp
r Tpigii

,TikGkm
a ,
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Fnm
2 ~gkk

, ,gpp
, ![Gnn8

r Tn8kgkk
,Tkm8Gm8m

a

1Gnn8
r Tn8pgpp

, Tpm8Gm8m
a .

Here multiplication implies integration over time and th
summation over repeated indexes;j5m,n,i belong to the
central region,k,k8 belong to the left lead,p,p8 belong to
the right lead.

Fnm
1 (gj j

,) depends on the initial state of the central regio
It does not depend ongkk

, ,gpp
, @Gr ,Ga are determined by Eq

~6! which does not depend ongkk
, ,gpp

, #. It describes the be
s.

.M

L.
n

N

d

e

D

.

e

e,

.

.C
n-
.

havior of the system with empty leads. Indeed,
gkk

, 50, gpp
, 50 we haveFnm

2 50. ThenGnm
, 5Fnm

1 . When
the leads are empty the central region empties with tim
Fnm
1 tends to zero. After a long enough period of time h

passed from the moment the tunneling was switched o
can be neglected. ThenGnm

, 5Fnm
2 . This is the formula~11!.

We can say thatFnm
1 describes the transient processes wh

Fnm
2 gives some kind of a quasistationary~but fully time-

dependent! solution.
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