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The dynamical matrix, dielectric response tensor, and dispersion relations for a strongly correlated unmag-
netized superlattice are formulated in the quasilocalized charge approximation. Analysis of the dispersion
relations at wavelengths long compared with the spadibgtween adjacent layers indicates that the random-
phase-approximatioiRPA) collective-mode structure is substantially modified by particle correlations. In
earlier works[see, e.g., G. Kalman, Y. Ren, and K. |. Golden, Phys. Re%0B2031(1994] the authors
reported the existence of a long-wavelength energy gap in the acoustic plasmon band generated by strong
interlayer correlations. The present analysis indicates the existence of a gapped shear mode band which is
wholly maintained by Coulombic interlayer interactions over and above the RPA. When interlayer interactions
are taken into account only through the average RPA field, the band collapses into a single shear mode which
exhibits the long-wavelength acoustic dispersion characteristic of the correlated two-dimensional electron
liquid. Other interesting effects includ@ an optical-phonon crystal-like dispersion exhibited by the in-phase
plasmon at long wavelengths fdrsufficiently small; andii) an acoustic-phonon dispersion exhibited by the
in-phase shear mode at long wavelengfi$0163-1827)08324-(

I. INTRODUCTION shear mode and a band of gapped shear modes. Again, this is
consistent with phonon spectrum calculations for the bilayer
Over the past few years there has been considerable intetrystal® all indicate an in-phase transverse acoustic mode
est in the collective-mode behavior of layered electron sysand a gapped dispersion for the out-of-phase transverse
tems in highly correlated states. The layered system to bmode.
addressed in this paper is the unmagnetized semiconductor In the present paper we demonstrate that when interlayer
superlattice consisting of a large number of identical two-interactions are taken into account only through the average
dimensional (2D) electron plasma monolayers, each in aRPA field, the superlattice shear band and in-phase mode
strongly correlated liquid phase. The spacithpetween ad- collapse into a single acoustic shear mode characteristic of
jacent lattice planes is taken to be comparable with or lesthe isolated 2D electron layer in a correlated liquid ptase.
than the inplane 2D Wigner-Seitz radias thus theinter-  Thus it is the interlayer Coulomb correlations over and above
layer Coulomb coupling is also strong. the RPA which maintain the in-phase acoustic shear mode
Recent theoretical studit$ of collective modes in lay- and gapped shear band as distinct entities.
ered electron systems indicate that particle correlations bring In order to analyze modes with polarizations other than
about substantial modifications in the RRfandom-phase longitudinal, one has to generalize the Ref. 6 microscopic
approximation (Ref. 7 plasmon dispersion. Our own derivation of the 2D dielectric response function for the cor-
studied™® indicate that for sufficiently high values of the related unmagnetized superlattice. This is the first goal of
intralayer coupling parameters=a/ag (ag is the effective this paper. The derivation is to be carried out in the quasilo-
Bohr radiug, interlayer correlations transform the superlat- calized charge approximatid@LCA),'® which is especially
tice band of acoustic plasmon modésto a band of gapped well suited to plasmas in the strongly correlated liquid state;
modes>~® that is, into modes having finite oscillation fre- the QLCA has already been used in the analysis of 2D, 3D,
quencies ak=0 (k is the in-plane wave numberThis is  and superlattice systeri€-** The method is based on a mi-
consistent with recent phonon spectrum calculations for theroscopic model in which the particles are quasilocalized on
bilayer crystal with fixed interlayer spaci#i$®® and for the a short-time scale in local potential fluctuations; while the
bilayer crystal with variable interlayer spacing in a wide theory is built on an essentially classical picture, it is ex-
quantum wefl® or in an ionic trapi® all of these calcula- pected to be a reliable approach for quasilocalized electrons
tions indicate a gapped dispersion for the out-of-phase lonin degenerate electron liquid systems as well.
gitudinal mode. In the QLCA derivation of Ref. 6, we considered only the
Our preliminary stud§f® reveals that the correlated elec- Coulomb interaction between the particles, and, correspond-
tronic superlattice, similarly to other strongly correlated plas-ingly, we calculated the linear response to an external scalar
mas, also supports transverse modes: an in-phase acougtiatential perturbation. The second goal of this paper is to
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extend the formalism beyond the usual quasistatic approxi€oulomb correlations affect the in-phase and the gapped
mation, and to incorporate the full retarded character of thdéand of shear modes, and how the in-phésegitudina)
electromagnetic interaction. We find it useful to pursue thisplasmon andtransversgshear modes in a superlattice com-
calculation here, partly to put the calculation of the trans-pare with their respective optical and acoustic phononlike
verse modes on a solid foundation, partly to pave the way fofounterpart modes in the strongly coupled 3D OEp!51

the analysis of the full electromagnetic spectrum of collec!n Sec. V we discuss the dielectric formalism for an anis-
tive modes that will be the subject of a forthcoming t.ropic medium and its equivalence in the Iong-quel_ength
pubncation:_l-z Thus (i) by taking account of the full electro- limit to the more general treatment pursued earlier in the

magnetic interaction andi) by calculating the linear re- Paper. Conclusions are drawn in Sec. VI.
sponse to combined external scalar and vector potential per-

turbations, the nonretarded scalar response formalism of Ref. Il. DYNAMICAL MATRIX AND DIELECTRIC
6 is generalized to a retarded 2D tensor response formalism TENSOR

in the present work.

The ultimate goal of this paper is to analyze the long- Consider the infinite, type-1 superlattice model consisting
wavelength kd<1) collective-mode dispersion in the non- of a large stack o, electron-plasma monolayers, each of
retarded ¢;— o) limit; ¢4 is the speed of light in the dielec- areaA and parallel to thexy plane; the monolayers are em-
tric substrate. The present collective mode analysis extendsedded in a dielectric substrate= N, d is the length of the
that of Ref. 6 in three waygi) We establish the crystal-like superlattice,d being the spacing between adjacent planes;
dispersion of the in-phasébulk) plasmon mode for suffi- a=1/\/7n, is the 2D Wigner-Seitz radiusi;=N,/A being
ciently strong interlayer-couplingii) A complete analysis of the average areal density of each monolayer. The intralayer
the shear mode dispersion is presented: we establish thgupling strength is characterized by the paramatgr
transverse acoustic phononlike dispersion of the in-phase ala} , which is the average spacing between electrons in
(bulk) shear mode, we formulate the mode frequencies fonits of the effective Bohr radius, or by its classical equiva-
the gapped shear band, and we show that the bulk mode afght" = ge?/(ae,), ¢ being the substrate dielectric constant
band are maintained as separate entities by non-RPA integnd 13 the electron temperature in energy units. The corre-
Iayer Corr6|ati0ns.(iii) In our preViOUS Studié§6 Only the Sponding inter|ayer Coup"ng parameters a'rga/d) or
intralayer (00) and nearest interlaydr=10) static structure I'(a/d).
functions appear in the expressions for the mode frequencies; e wish to calculate the linear response to small external

here we display theompletehierarchy of superlattice Iayer- scalar and vector potentiads andA beyond the RPA, taking
layer (m0) (m=0, £1, £2,...) static structure functions. ¢l account of electrodynamic retardation effects. Following
(iv) We establish th‘? C(_)nnectlon between the formal_lsm aPfhe general scheme of the QLCA, we derive the expression
propriate for the periodic superlattice and the formalism for,, ha dynamical matrixC that controls the dynamics of the

an anisotropic three-dimensional medium. average induced current response. We begin by constructing
_The collective-mode analysis of the present paper foCUSEe coupled linearized microscopic equations of motion de-
primarily on correlational effects. Insofa_r as t_he plgsmon andcrining the rapid oscillations of the charges about their
shear modes are concerned, one can justifiably ignore elegy,y “qrifting quasiequilibrium site positions. Le¢ (t)
trodynamic retardation effects on the grounds that displace-_, +& (t) be the momentary position of thth pa{rticle
f i,m i,m
ment currents are almost always dominated by the electrqr "2 | tice planex; , its quasiequilibrium site posi-

static effects of nearby layers. Analysis of thes_e modes at thﬁ’on, and¢, . (1) the perturbed amplitude of its small excur-
exceedingly small wavenumbersw/cg where displacement sion (indicési,j and m,n enumerate particles and layers,

currents would have to be Faken into account, and the Cof}'espectively The microscopic equation of maotion for par-
comitant analysis of the higher-frequency electromagnetltfiCIei in layerm can now be written as follows:
modes' calls for a separate treatment to be presented in a '

later work'? which implements the QLCA retarded 2D tensor
response formalism of the present paper.

?he organization of the gaper is Fzzlslofollows. In Sec. lwe — M wzgi,m(“’sz: zn: Kij,mn(®@) - [§j,n(@) = & m(®)]
calculate the dynamical matrix and the dielectric response
tensor in the QLCAL and we set up the dispersion relation.
All the intralayer and interlayer correlational effects appear +; ; Mij mn(@) - & n(@)
quite naturally as local-field corrections in the elements of
the dielectric tensor; the quasistatic limits{~«) of the
Coulomb correction has been identified as the correlational
contribution to the third-frequency-moment sum-rule
coefficient®'#1n Sec. Ill we recast the local-field corrections , _ - ,
in a form which explicitly features the hierarchy of intralayer Wherem* is the effective electron masEm(X;,m,®) is the
and interlayer correlational components and static structurittice-plane component of the external electric field acting
functions. We then evaluate the correlational components iat the field point % n,zm=md), and Eqy(k,)
the quasistatic limit and in the long-wavelength regime, thus= (iw/cs) An(K,») —ik®(k,w) is its in-plane Fourier
paving the way for the Sec. IV analysis of the long- transform,k being the wave vector parallel to tixg plane.
wavelength collective-mode dispersion. Reiterating our goalhe Kj; ,(w) term contains the effects of the longitudinal
here, we wish to understand how intralayer and interlaye€Coulomb interaction between the particles

>| o
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planes, while imaginar, values correspond to a propagat-
Kij,mn(@)= E L(K)K? (K, @)€ Xim™4n) - (2)  jng pehavior in the interlayer regions. Even though the nota-
tion of Eq. (4) is appropriate for the nonpropagating (
while the M;; n(w) term originates from the transverse re- > w/c,) sector of thew-k plane, there is no difficulty in

tarded electromagnetic interaction analytically continuing (with Bs—ix=i[(w/cs)?—k?]*?)
1 . into the propagating< w/c,) sector. In the quasistatic limit
Mij mn( @)= A 2 T(K) K2 (K, )™ im=%jn) (cs—=>), we observe thatBs=k, Mjjn(w)=0, and
K Ymn(K, @) = pap(K)exp(-km—nld),  where  ¢,p(k)
1-5.6, =2me?/(ek) is the Fourier transform of the 2D Coulomb
(m) (3) potential ¢,p(r)=e?/(e4r), r being the in-plane separation
s distance. Returning to the more general case where electro-
2.2 magnetic interaction and displacement current effects are
¢mn(k,w)=7—Bs(k,w)e‘ﬁs<k’w)|m‘“‘d (4)  fully retained, we note that, in thé—c limit, only the
Es m=n contribution to Eq(1) survives, and that one recovers
is the layerm-layer n effective potential (k) =k-k/k? and  the QLC microscopic equation for the isolated 2D electron
T(k)=1—k-k/k? are notationally convenient longitudinal plasma monolayet1©
(L) and transverseT() projection tensors in they plane, The calculation of the average particle current-density re-

andl is the unit tensor in they plane. Note the appearance sponsg and dynamical matrixC from Egs.(1)—(3) is carried

of Bs=[k?— w?/c2]?in Eq. (4): this is thez component of  out by implementing the general QLC formalism of Ref. 10.
the propagation vector; real values 8f describe exponen- We obtain the equations of motion for the collective coordi-
tially decaying, i.e., nonpropagating behavior of the latticenate§,:

(0?1~ C(k,6,0) ] &)= = E(k.,0) ®
2 Bs( ©) o’ .
Clk,8,0) = wF(K){ LK) F (B 0).0) = T(K) (s F(Blk,0).0)+ Dk, ,0) + QUK. Go) i (6

wop(K) =[ 2Nkl (e m*)]¥2 is the 2D plasma frequency, With g defined only in the first Brillouin zonfg|</d due
andm* the effective masgj is a wave number perpendicu- to the invariance of the superlattice with respect to transla-
lar to the lattice planegbut not the third component of the tion along thez axis by any lattice number @2/d) X integer.
wave vectork), and The first two right-hand-side terms of E() represent the
effects of the RPA on the dynamics. The third right-hand-

- A . side term
E(k,q,0)=_>, Em(k,w)e~amd
m

is the layer-space Fourier transform of the external electric ~ D(K,q,®) = kNN Y X LK)B(K o)
field Eq(Kk, »). The well-known superlattice form factor LK la’|<md
_ XF(Bs(k",0),q")[S(|k—k'[,q—q")
sini B(k,w)d]

F(,Bs(kaw)aQ): COSI‘[,Bs(k,a))d]—Cosqd (8) _S(k/!q,)] (11)

is the layer-space Fourier transform of the potential modifierepresents the important correlation-induced Coulomb part
exf — Bs(k,w)|m—nld], viz. of the dynamical matrixS(k,q) is the layer-space Fourier
transform of S,,(k), the layerm-layer n static structure
function; the two are related by

F(B(k ),q)= >, ex — Bk, )|m—n|d])efam-nd

© Sk 0) =S Smo(ke ™, (12

exfl — Bs(k,w)|m—n|d]

1 )
=— D F(Bskw),q)edmmd (10) Simjo(k) = > S(k,q)emd, (13

NL |g<7/d \ [<7/d
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where the zero subscript refers to an arbitrarily chosen refables one to formulate the dispersion relation directly from
erence layer. The fourth right-hand-side term of Hj, Egs.(5) and(6). One readily obtains

Det{ ?l—C(k,q,w}

@ 2
Q(k,q,m:—(—) N NLE 2 TK) g

Cs k' |o'|<m/d Bs(k, o)

XF(Bs(k",w),a")[S(k=k'[,a=q")—1], 14

w2 sz(k)

2 win(K)F(Bs(k,),q)

FQkaw) KBa(k.)

B ( o)
—— F(Bs(k,0),q) + D (k,0)
2 (“’

L . . +| =
represents the correlation-induced electromagnetic contribu- Cs
tion. The expressions for the longitudindl)(and transverse
(T) elements oD andQ are then calculate.d. from Eqg€ll) _wgD(k)[DT(k,w)+QT(k,q’w)]] =0. (18)
and (14) and the tensor decomposition®(k,q,w)

=L(k)D"(k,q,0)+T(k)D'(k,q,0) ~and  Q(k.9.®)  The two (longitudinal and transversadispersion relations
=L(K)Q"(k,q,w) +T(K)Q'(k,q,w). (16) and (17), in conjunction with Eq(15), are identical to
The superlattice electrodynamics has been formulated enhe dispersion relatiofi8).

tirely in terms of lattice plane field quantities in Ref. 17.

Within this strictly layer-space framework, a dielectric re- lll. QUASISTATIC APPROXIMATION

sponse tensor ey (k,w) and its Fourier transform AND LAYER-SPACE AND REPRESENTATION

£(k,q,w) can be introduced in relation to lattice plane field

quantities only and in terms of an “external” conductivity  The genuine collective modes of the superlattice are well

tensoroy,(k,q, ) defined by the constitutive relatidti6) of  described by ignoring retardation effects: this is the quasi-

Ref. 17. With this constitutive relation, the QLCA external static approximation, whose philosophy and limitations were

conductivity can be readily extracted from H§). The lon-  alluded to in Sec. | and in the text below E@7). This

gitudinal and transverse elementsefk,q,w) are then cal- approximation amounts t¢a) simplifying the correlational

culated to be D(k,q,w) andQ(k,q,w) contributions, andb) omitting the
electromagnetid contribution entirely. The main purpose
of this paper is to analyze the collective modes of the super-

e“(k,q,w) lattice system in a quasistatic approximation. While the full
electromagnetic treatment provides a complete description of
w25(K) Bs( ) F(By(k,®),q) all the modes in the system, including those which are
2D merely electromagnetic waves modified by the presence of
“Es| T, _wzo(k)[D (K,g,0)+Q%K,q,)] the superlattice, the physical significance of the quasistatic

approximation is that it allows to survive only those modes
which are genuinely collective, in the sense that they are
maintained by particle-particle interaction.

To implement the quasi-static approximation we observe
that for frequenciesv<<c,/d, the correlation-induced Cou-

The eigenfrequencies(k,q) for the collective modes then 0mMb and electromagnetic contributioris1) /ar.ld (14) are
follow from Eq. (15) and the dispersion formul¥s well approximated by replacing(k’, ) by k', i.e. by

(a=L,T). (15)

D(k,q)= > > L(k)OK'F(k',q)
e" (K, 0y ) =0, (16) "N eNL W7 jq/f=

xX[S(lk=k'[,a=a")=S(k’,a")], (19

e7(k,q,0) = (kc/w)?. (17)
Q(k’q’w):_(c_s) KNeNL % la’ g’n/d Tk e k/
The observation that in-plane electric-field excitations asso- XF(K',q)[S(k—k'[,qg—q')—1]. (20)

ciated with dispersion relatiofl6) are polarized alondk

requires thaB,=0 in order to satisfy Maxwell's equations. This can be seen by dividing thé sum in Eqs(11) and(14)
On the other hand, the in-plane electric-field excitations asinto two sums, the first going frork’ =0 to k' = w/cg, and
sociated with Eq(17) are polarized perpendicular tg so  the second fromk'=w/cs to k'=%. We note that
that Maxwell's equations requir&,=0 (for g2 different  Bs(k’,w)~k’ over most of the far wider subinterval
from zerg. It is therefore appropriate to refer to Eq46) [w/Cs,°). This same approximation holds as well fo'd

and (17) as the “TM” (transverse magnejicand “TE” e[0,w/c], because the interval is exceedingly narrow and
(transverse electricdispersion relations, respectively. This therefore contributes negligibly toD(k,q,0) and
we do in the sequel. Q(k,q,w): back-of-the-envelope estimates indicate that con-

Alternatively, the knowledge of the dynamical matrix en- tributions toD(k,q,») and Q(k,q,w) coming from thek’
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sum over[0,w/cg] are 0@3d®/c3) and O@d/cy) smaller  correlational contributioné25) and(26) with the understand-
than their respective “quasistatic” counterpart9) and ing thatkd lies in the interval fp,d/cs)?<k?d?<1 (we note
(20). These negligibly small estimates, moreover, remain théhat for semiconductor superlattices, the excluded interval
same whengy(k’,w) is replaced byk’ for k' e[0,w/cs].  [0.wpd/c] is exceedingly narroy This is the underlying
The approximate expressiori$9) and (20) are especially rationale for the so-called quasistatic approximation which
well suited to those collective modes whose srkatiscilla-  formally amounts to settings equal to infinity, so that
tion frequencies are at most of the order of the bulk plasm#s(k,w)=k, Q"(k,q,0)=0, and Q'(k,q,w)=0, and the
frequencyw, = (4mne?/m* e d)2<c/d (e.g., for a corre-  dispersion analysis is thereby extended all the way down to
lated GaAs superlattice with carrier density;=1.3  k=0.
X10°cm™2 and d=a=495 A, w,=0.001&,/d). Long- In the smallkd regime, the quasistatic expressions for the
wavelength kd<1) plasmon and shear modes certainly fall longitudinal and transverse elements of E(3) and (24)
in this category. become

Further insight into the structure dd and Q can be N N
gained by reformulating them in a way which explicitly fea- Dook—0)=(kd/2)Jg, (a=L,T), (28)
tures the intralaye(00) and interlayef+10, =20, . . .) cor-
relational contributions. This is accomplished by substitutingy «
Eqg. (12) into Egs.(19) and (20) and using Eq.(10). One m
readily obtains

1
o(k—=0a)= 7, 5 [cogamd) — 1]ljmo

kd
+—=J2, , m=+1+2 ...
D(k.) =D k) + 3, Drg(k.0) (2) 2 Jmocosama, m
m#
(a=L,T), (29
Q(k,g,0)=Qpo(k,w)+ > Quo(k,q,w), (22 5 1
e Y=g 2 g [Sodk)=1]==5J5, (30
e k'
1
Doo(k) = - 2 L (K"K [Sool[k—k']) = Sodlk")], 1 ,
e K 23 |‘m,O:N—e§ (K'd)Symo(kNe ¥ Imd, m=x1+2, ..
L (31)
Dmo(K,0) = = 2 L(k")k’e™¥Imld 1 1
KNe J|Lm|°:8_l\|e2, g Stmo(k")
X[Smo(|k—k’)cogamd) — Symo(k")1, “
(24) x e K'Imd 511k’ |m|d)+3(k’|m|d)?],

w\? 1 1 m==+1+2,..., (32
Qoo(k,w):_(c_) k_Ne% T(k") F[Soo(|k_k/|)_1],

S

1 1

T _ ’
0| 1 ' 1 —k'|m|d —k'|m|d ' ' 2
Qo) =~ kNeg T(k') (e Xe [1+(K'|m|d)—(k'|m|d)?],
X[Spmo([k—k')cogamd]. (26 m==1=2...@33
The index notatiorD,,,(k,q) was introduced to empha- IV. COLLECTIVE MODES
size that aD,,, term originates from the correspondifg,, ) o o .
structure function. It does not imply th&,,, is the m,n Invoking the quasistatic approximation discussed above,
element of theD matrix, if Eq. (5) is written down in layer- Eds.(15—(17) or (18) provide the longitudinall() TM plas-
space representatigof. Ref. 4¢)] mon and the transvers&) TE shear mode eigenfrequencies
For the long-wavelength kd<1) plasmon and shear
modes, it can also be shown that w?(k,q)=wip(K[F(kg)+D (k)] (L), (34
|Q(kd<1,q,0)|=O(w¥k2c?)| D2 (kd<1,)] w’(k,0)=w3p(k)DT(k,q)  (T), (35)
<(w?/K2c)| Doy (kd<1q)] whereD"(k,q) andD"(k,q) are the longitudinal and trans-
P s "7 (27 verse elements of Eq19). The longitudinal mode can be
a=LT m=0+1+2 ... . identified as the well-known plasmon mode. The transverse

excitation is ashear modevhich is discussed here in detail
Consequently, |Qfo(kd<1,0,w)|<|Dfo(kd<1,0)|, pro-  for the first time, to our knowledge. Similar shear modes in
vided that k2>w§/c§. In the collective-mode analysis of the strongly coupled 3D OCPRef. 11b)] and 2D electron
Sec. IV, we therefore discard the electromagnetic-inducediquid® have been, however, identified earlier.
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In the RPA limit,D"- andD" are equal to zero, and only along the superlattice axis with wave numigefof the order
the plasmon modes survive. The RPA plasmon structureg/d). Since for smallj, the shear mode dispersionasous-
which was extensively analyzed by Fetfecpnsists of an tic in g, viz.
isolated bulk mode d=0) and a band of acoustic modes o
with each mode labeled by(@onzerg q value. Strong cor- ©(0g—0)=1w qd 2 m?[1 | (39)
relations, manifested bp“ and D" being nonzero, modify 4 20pd0| < mot ]
the spectrum in two important ways. The first is the appear- L . L
ance of the shear mode, the second is the development ofédq is different from zero, the oscillation frequency is dif-
finite frequencyenergy gapat k=0. We now proceed to [€rént from zero too. Hence the energy gap.

discuss the plasmon and shear modes in the strongly corre- W& now proceed to analyze the behavior for finite but
lated regime. smallk (0<kd<1) values. Consider first the in-phasgd(

We will consider in detail the behavior of the mode dis- =0) behavior: theq=0 situation represents a singular be-
persions in the long-wavelengttkg<1) limit, which is of havior for the_ plasmon mode. The mode is now a bulk plas-
principal physical interest. In this domain, E484) and(35) ~ Mmon mode with frequency

become to OK?d?), 1

D JLmoH, (L)
(40)

Equation (40) exhibits a positive RPA frequency shift
(kd)zwp/24 arising from the form factoF (k,0) in thekd
102 2 L <1 limit. [Note the structural likeness to the
*aopkd) % Jimpocosamd (kd)?w,(ag*/4d) shift arising from the pressure gradient
term in a hydrodynamic modebf the zero temperature lay-
+ %w; E [1—cos{qmd)]|l‘m‘0| (L), (36) ered 2D electron ga]sThe_ positive for_m factqr dispersion_ i§
m#0 offset by the net negative correlational dispersion arising
from the Ji, coefficients. NuLmericaI calculatiorisee Eabu-
lations below indicate thatlg, is negative and thaly, is
wz(k—>0,q)=%w§(kd)2§ Jjmjocosamd) positive or negative and much smaller. Ao 10 andd/a
=2, the dispersion coefficient a= (55— %|EmJ|Lm|o|)
~0.0023: forl'=20 andd/a= 2, the positive dispersion de-
+41w,232 [1—cogamd)]|ljmo| (T), creases slightly tax~0.0018. The most significant effect
m#0 occurs, however, when the interlayer coupling is increased
(37 (by decreasingl) to the point where it is comparable with

with the k- and g-independent coefficientsng, J5, Joo. thS intralayer Fodl{p"UQZ afh=10 and(fj/a= 1, we CaIICIL'jILate
Jto, andJ] ), given by Eqs(30—(33). Due to the isotropy S‘.N_O'.OSll’ .,'[n |gat'||ng;[ ethor;seft t?1 netgatl(xfrysta- II 2 3D
of the liquid phase in thexy plane, atk=0 andq#0 the O'éﬁfffé?n quite simiiar fo that of the strongly couple

“longitudinal” plasmon and “transverse” shear modes are -
degenerate: both of them develop the same energy gap. Forq# O. both _the- plasmon and the shear modes exhibit
guadratic dispersion:

®?(k—0,00=w? 1+k?d?

, (ka)2[1+ 4 (kd)?]
P 2(1—-cosqd)+ (kd) 1+ & (kd)?]

wz(kHO,q) =w

*(0a)=}30; 2, [1-codamd]|im| (L,T). (38) 0} (k—04#0)=0(0a)+V{ K%, (LT) (4]
" where the dispersion coefficients are given by

This mode propagates in tlzedirection with its electric vec- 1
tor polarized in the lattice plane. Evidently interlayer corre- \,2_ 22 1 L
lations bring about a dramatic change in the behavior of the Vi=opd 2(1-coxd) " 4% J|m|0cos(qmd)] (L.
acoustic excitation spectrum: the smillplasmon modes, (42
which are acoustic ¢>k) in the absence of interlayer
correlationé develop a finite energy gap kt=0,>%®>% and
lose their acoustic character. Physically, the mode can be
portrayed as the shearlike oscillations of the adjacent layers
with respect to each other. As has been discussed in greater The calculations of the energy gap freque8§) and the
detail in earlier publicationd>®the physical explanation of long-wavelength oscillation frequenci€86) and (37) re-
the finite frequency of these oscillatiofthe energy gapcan  quire a knowledge of the intralayer and interlayer static
be found by realizing that as long as the interlayer spacingtructure function$Syo(k) and S, o(k). To recount what has
d is not very much greater than the 2D Wigner-Seitz radiuseen accomplished thus far in the way of numerical calcula-
a, the state of the strongly correlated superlattice is hardlyions, the plasmon and shear mode dispersion curves of Refs.
distinguishable from a slab in @omewhat anisotropidD  4(e) and 6 were generated on the assumption that the first
Wigner crystal. In turn, the particle motion corresponding toDyy andD;q terms in Eq(21) are the dominant contributions
the “acoustic” mode is not substantially different from that to D(k—0,g), so that onlySyy(k) and S;o(k) are required.
of a normal shear mode in a Wigner crystal propagatingrhese latter were calculated using the iterative weater-

V%=w§d2%§ Jmocogama) () (43)
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layen correlations—strongintralayej coupling (WCSQ 05 =
approximation scheme, originally suggested by Kalman, -0 4., -
Ren, and GoldeR The WCSC calculation requires the static R e e
structure function for the isolated 2D layer as an input which 2173
is available both for the zero-temperature electron litflid

and for the classical electron liqutd-?! The iterative pro- 0s
gram can be carried out in a straightforward fashion for the
superlattice modeled as a classical system, but would require ®» /3
drastic additional approximations involving thtdynamical 0.2 4
structure function for the fully degenerate electron liquid.
Therefore, in order to portray best the influences of both — /6
interlayer and intralayer correlations, the gapped plasmon o -
and shear mode WCSC calculations of Ref®),45, and 6 -
and this paper are based on the classical superlattice model 0 i
characterized by the coupling paramdfeiThek=0 energy
gap for the out-of-phaseq@l=* ) plasma mode is dis-
played graphically in Ref. 5 as a function dfa for values 0.5
of I" up to 22. The band of “gapped” plasmon dispersion =10 q_,
curves calculated from Eq36) for m=0 and =1 are dis-

played in Ref. 4e) for =10 andd/a=1 and in Ref. 10 for 04
(I',d/a) values of(1,1) and(10,2. The companion band of

gapped shear mode dispersion curves calculated from Eg. 03
(37) are displayed in the present work in Figalt-1(c) for w -
(I',d/a) values of(10,1), (10,2, and (20,2. These disper- @p -7
sion curves are generated from the E@)—(33) | andJ 0.2 Phe
coefficients, which in the WCSC approximation, are calcu- S
lated in Table I. Thd’=10 value corresponds tq=>5, and -

0.1 - qd=m

is therefore applicable to a GaAs superlattisabstrate di- %

electric constant =13.1, effective masm* =0.07m,, ef- ad=0
fective Bohr radiusag =99 A) with carrier densityng=1.3 0
x 10'% cm™2. There is a substantial reduction in the magni-
tude of the energy gap a¥/a increases from 1 to 2 for
I'=10: w(k=0,0=*7/d)=0.4230, for d/a=1 and w(k 0.3
=00=+/d)=0.067w, for d/a=2. Interestingly enough, r20 4o
we also report a small decrease in the gap ascreases
from 10 to 20 for fixed d/a=2: w(k=0,g==*/d)
=0.067%, for '=10 and w(k=0,0==/d)=0.0588
for I'=20. This too is consistent with the calculations of Ref. 0.3
5. As in the case of the plasmon béhihterlayer correla- © -
tions bring about dramatic modifications in the shear mode ¢ -
dispersion. In fact the effect on the shear band is even more ' P
dramatic. Comparison of Figs(d) and Xb) shows how the -
decrease in interlayer coupling with increastig (for fixed 01 - .

I') substantially lowers the energy gap value and compresses _:__’/’/:////////
the shear mode band. This compression becomes more and =0

more pronounced with increasimga until the band eventu- 0y o1 02 03 o4

ally collapses into a single 2D acoustic shear mode in the © wd

zero interlayer coupling limit, i.e., &y(k) =0. In this limit

Eq. (37) simplifies to w2=1/2w,2)(kd)2J30. The energy gap FIG. 1. (8—(c) Shear mode dispersion curves calculated from
also collapses agd approaches zero. In contrast to the plas-Eg. (37) for (I',d/a)=(10,1), (10,2, and (20,2. The modes are
mon mode, which, as discussed above, develops in this catbeled by qd values; w3=4mne?/(dm*eg). The Sy(k) and

a singular behavior, the shear mode goes over smoothly int8io(k) structure functions in Eq$30)—(33) were calculated in the
bulk shear behavior, where all the layers execute an in-phadgef.- 5 WCSC approximation using as input the hypernetted chain

transverse oscillation. This behavior is now strictly acousticdata of Ref. 21. The longitudinal plasmon modes are also sfiasn
with the frequency dashed lingsfor comparison atjd= 7. The shaded region ia) is

the pair continuum.

w2

(a) kd

0.4

w*(k—0,0= %wg(kd)2% ‘]\TmIO (T). (44) J], acts to slightly offset the intralayer correlational coeffi-
cient. Additionally, our calculations indicate that fy<<18

For coefficientg30) and(33), Table | shows:]g0 to be posi-  (corresponding td'<36), the in-phase gapless mode will
tive and dominant; fod/a=1, the much smaller negative always lie inside the pair continuufeee, e.g., Fig.(®], and



16 356 GOLDEN, KALMAN, MIAO, AND SNAPP 55

TABLE |. Calculatedl g, Jog, andJy, values based on the WCSC approximati@ef. 5, using the
HNC data of Ref. 21

r d/a l10 ‘J|60 Jlio Jgo JIO

10 1 -0.179 —0.557 9.86¢10°3 0.111 -151x10°8
10 2 —4.59x10°8 -0.324 6.1%10°° 0.0648 5.5x 10" ®
20 2 —3.46x10°8 -0.326 —-3.79x10°° 0.0652 —5.04x10°5

is therefore heavily Landau damped. Most of the gappedfor a recent review, see Ref. R3Nhat can, however, be
shear modes, however, are risee below expected with confidence is that the physical migration-

A word of caution concerning thgd— 0 limit is in order:  diffusion time even in high-mobility samples would be suf-
when this limit is reached by lettind— 0, the above limiting ficiently longer than the one determined from the classical
process implies that the phase differenagd) between self-diffusion coefficient. Since this latter estimate has al-
neighboring layers also goes to zero as the distance betweegady led to a borderline situation, one could assume that the
them is diminished. Another possible limit can, however,QLCA can reasonably be used down to the characteristic gap
arise by keeping the phasgl=const asd—0. This corre- frequencies.

sponds to a different physical situati¢of interest, primarily The second aspect that one has to consider in order to
for a finite number of layejs and is not discussed here any assess the observability of the mode structure predicted is the
further. actual damping of these modes. The two primary mecha-

The problem of observability both of the shear mode anchisms for damping are decay by pair excitatiothsndau
of the plasmon gap leads to two closely related, neverthelesgamping and impurity scattering. It is well known that even
distinct, questions: first, how reliable are the predictions ofwithin the RPA descriptiofiwhere thek=0 gap is absept
the QLC approximation, and, second, what is the damping othe acoustic plasmon, because of its high phase velocity
these modes? As to the first, one should recall that the printv,n>vg), lies outside the pair continuum and is not af-
cipal assumption upon which the QLCA is built is that the fected by Landau damping. The existence of the gap renders
migration-diffusion time of the particles away from their in- this scenario even more pronounced. The shear mode, on the
stantaneous position is long enough to justify the descriptiomther hand, can have a low phase velogity,<vg for rg
of the system in terms of its static configuration. An upper<18) and would be heavily Landau damped, were it not for
limit on this migration-diffusion timerp can be set by using the energy gap. Figure(d shows that a gapped shear mode
the result of Hansen, Levesque, and W@igho obtained a penetrates the pair continuum only for-k, , wherek, d,
value for the self-diffusion coefficient of a 2D classical elec-while depending both o and d/a, ranges from 0.35 to
tron gas through molecular-dynamics simulation. gt  0.49 for w/6<qd< w/4; modes withqd values in the inter-
=\?/D be the diffusion time witlD the self-diffusion coef- val (7/4,7] lie above the pair continuum fded<0.5. Thus
ficient, and\ the migration distance of a particle from its one can conclude that Landau damping should not seriously
guasisite position sufficient to destroy local order. The beaffect the long wavelength mode propagation.
havior of D can be inferred from the data of Ref. 22: we  Turning now to impurity scattering, we note that modern
calculate D~5awy/T*® and wm,=75"=(2.5M'*%  nanotechnology has made extremely high-mobility samples
x(d/a)lf'é‘(a/)\)zwp, where w§=e2/(ma3).wmin is clearly available, where the effect of impurity scatterifigcluding
the frequency below which the QLC treatment is not justi-€lectron-phonon scatteringras been dramatically reduced,
fied. ForI'=10 andd/a= 1, this order-of-magnitude estimate €ven at low carrier densities. Using recent data from mea-
provides oy ~[a%/(8\2)]wy; it can be compared with the Surements by Pfeiffert al,?* where u~1.5x10° cn?/V
correspondingw(k=0,g=m/d)=0.42w, energy gap, indi- Was reported ah,=2x10' cm 2, one can calculate an ef-
cating a borderline situation. Fdt=10 and 20 wherd/a  fective collision frequencyr~1.7x10'"s™. This can be
=2 the situation worsens because of the much smaller erfompared with a typical out-of-phase gap frequency
ergy gaps. On the other hand, fdfa=1 and atl’ values 042, quoted above, witho,=3.7xX10'*s™%. Thus impu-
=40, wherew,,;, is much smaller, and where the out-of- rity scattering also does not seem to cause a major modifi-
phasek=0 gap frequency is expected to be at least as larg€ation of the mode structure.
as thel'=10 gap value of 0.42, ,> most of the gapped shear

modes should exist: e.gwmin~10"*(a/\)?w, at T'=50 V. ANISOTROPIC MEDIUM DESCRIPTION
(corresponding to= 25 for type-lI multilayer hole structures
with carrier densities 1.3x 10'° cm™?) andd/a=1. In the combineckd— 0 andqd— 0 limit the infinite su-

The above estimation of the inverse migration-diffusionperlattice is equivalent to a homogeneous anisotropic me-
time as limited only by the classical electron-electron corre-dium; the isotropy is broken along tlzedirection, due to the
lations is clearly an overestimate. In a realistic situation,jnhibited particle motion along this direction. A medium
other effects are expected to slow down the process considvith this kind of anisotropy and with & vector along the
erably. In fact, the electron liquid exists in the presence of direction can be described in terms of a 3D dielectric ten-
(static and dynamjcrandom fields, and the diffusion process sor € with nonvanishing elements,,=¢, , eyy=e7, and
is dominated by this disorder. The details of the localizatione,,=1 (the barred notation is used to distinguish the 8D
and delocalizatiotti.e., migration under the combined influ- from the previously used superlattieg. In turn, e, ande
ence of disorder and strong coupling are not well understoothay be obtained from the appropriate 3D expressions of Ref.
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11(b), with the understanding thamf,DL and wf,DT therein  in the quasilocalized charge approximation, and analyzed
are to be replaced by3,(k)D'(k,q) and w,p(k)D'(k,q) them in the long-wavelengthk(l<1) regime to determine
from Eq. (15), respectively: how Coulomb correlations modify the RPA collective mode
structure. The principal results of this work are represented
—1 wg by Egs.(15) and(18) for the QLC dielectric tensor elements
£ (k,q,0)=gq 1— w?— w2 (KDY (kq) | 49  and dispersion relation, respectively, and by E@&$), (37),
2D ’ and (40)—(43), and Figs. 1a)-1(c) for the shear mode dis-
The collective modes are now determined through the 3Dhersion.

dispersion relation wittk and g considered as the compo-  Our analysis of the TM and TE dispersion relations in the

nents of a 3D propagation vectsr=k+&,q: quasistatic limit shows that the QLCA collective-mode struc-
2, 22 ture consists ofi) an in-phase = 0) longitudinal plasmon
2(k,q w)_( +07)Cs T(K)|=0 (46) which exhibits crystal-like dispersion at long wavelengths
B w® ' for sufficiently strong interlayer couplindeg. (40)]; (ii) the

band of gapped plasmon modé&x. (36)] reported in Ref. 6;

Equation(46) leads to the longitudinal and transverse rela-(iii) an in-phase transverse shear mode which exhibits

tions . . ) .
acoustic-phonon-like dispersion at long wavelengfks.
o q20§ (44)], and(iv) a band of gapped shear modé&s). (37), Figs.
el(k,qw)=—>5> (L), (47) 1(a)—1(c)]. Thek=0 gap frequency38) and the shear mode
wp—KCq band(37) share one common feature: both are wholly main-
(K2+q?)c2 tained by non-RPA interlayer correlations. When interlayer
S

(48) correlations are suppressed, i.e., when the mutual Coulomb
interaction of the layers is taken into account through the

erage RPA field only, the in-phase mdde and the band
) merge into a single 2D isolated layer shear nfoskich
Is wholly maintained by intralayer correlations.

Since there are no other sourcesSf(k) data available

k2 at the present time save the WCSC iterative scRemtéch
w?(k,q)= o} Wer%D(k)DL(k,q) (L) (49  breaks down fod>22, the lack ofS;((k) data at highelF
a values precludes the possibility of generating dispersion

;(kiq!w):T (T)

Each of these equations describes, thus, a high-frequenc
and a low-frequency mode. It is the latter that are of interes
to us. In the quasistatic approximation these latter become

and curves with high gap values. Nevertheless, klkeO energy
) ) T gap frequency of 0.42, calculated from the WCSC data for
(k,q)=w3p(k)D'(k,q) (T). (500 T'=10, d/la=1 can be considered to be a reliable lower-

These are identical to the smélland smallg expansions of ~Pound estimate for the out-of-phase plasmon and shear mode

Egs. (36) and (37). oscillation frequencies in the coupling regimes where these
and most of the loweg gapped shear modes are expected to

VI. CONCLUSIONS be undamped.
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