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Plasmon and shear modes in correlated superlattices
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The dynamical matrix, dielectric response tensor, and dispersion relations for a strongly correlated unmag-
netized superlattice are formulated in the quasilocalized charge approximation. Analysis of the dispersion
relations at wavelengths long compared with the spacingd between adjacent layers indicates that the random-
phase-approximation~RPA! collective-mode structure is substantially modified by particle correlations. In
earlier works@see, e.g., G. Kalman, Y. Ren, and K. I. Golden, Phys. Rev. B50, 2031 ~1994!# the authors
reported the existence of a long-wavelength energy gap in the acoustic plasmon band generated by strong
interlayer correlations. The present analysis indicates the existence of a gapped shear mode band which is
wholly maintained by Coulombic interlayer interactions over and above the RPA. When interlayer interactions
are taken into account only through the average RPA field, the band collapses into a single shear mode which
exhibits the long-wavelength acoustic dispersion characteristic of the correlated two-dimensional electron
liquid. Other interesting effects include~i! an optical-phonon crystal-like dispersion exhibited by the in-phase
plasmon at long wavelengths ford sufficiently small; and~ii ! an acoustic-phonon dispersion exhibited by the
in-phase shear mode at long wavelengths.@S0163-1829~97!08324-0#
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I. INTRODUCTION

Over the past few years there has been considerable i
est in the collective-mode behavior of layered electron s
tems in highly correlated states. The layered system to
addressed in this paper is the unmagnetized semicondu
superlattice consisting of a large number of identical tw
dimensional~2D! electron plasma monolayers, each in
strongly correlated liquid phase. The spacingd between ad-
jacent lattice planes is taken to be comparable with or
than the inplane 2D Wigner-Seitz radiusa; thus theinter-
layer Coulomb coupling is also strong.

Recent theoretical studies1–6 of collective modes in lay-
ered electron systems indicate that particle correlations b
about substantial modifications in the RPA~random-phase
approximation! ~Ref. 7! plasmon dispersion. Our ow
studies3–6 indicate that for sufficiently high values of th
intralayer coupling parameterr s5a/aB* ~aB* is the effective
Bohr radius!, interlayer correlations transform the superla
tice band of acoustic plasmon modes7 into a band of gapped
modes,3–6 that is, into modes having finite oscillation fre
quencies atk50 ~k is the in-plane wave number!. This is
consistent with recent phonon spectrum calculations for
bilayer crystal with fixed interlayer spacing8~a!,8~b! and for the
bilayer crystal with variable interlayer spacing in a wid
quantum well8~c! or in an ionic trap:8~b! all of these calcula-
tions indicate a gapped dispersion for the out-of-phase
gitudinal mode.

Our preliminary study4~e! reveals that the correlated ele
tronic superlattice, similarly to other strongly correlated pla
mas, also supports transverse modes: an in-phase aco
550163-1829/97/55~24!/16349~10!/$10.00
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shear mode and a band of gapped shear modes. Again, t
consistent with phonon spectrum calculations for the bila
crystal;8 all indicate an in-phase transverse acoustic mo
and a gapped dispersion for the out-of-phase transv
mode.

In the present paper we demonstrate that when interla
interactions are taken into account only through the aver
RPA field, the superlattice shear band and in-phase m
collapse into a single acoustic shear mode characteristi
the isolated 2D electron layer in a correlated liquid phas9

Thus it is the interlayer Coulomb correlations over and abo
the RPA which maintain the in-phase acoustic shear m
and gapped shear band as distinct entities.

In order to analyze modes with polarizations other th
longitudinal, one has to generalize the Ref. 6 microsco
derivation of the 2D dielectric response function for the c
related unmagnetized superlattice. This is the first goa
this paper. The derivation is to be carried out in the quas
calized charge approximation~QLCA!,10 which is especially
well suited to plasmas in the strongly correlated liquid sta
the QLCA has already been used in the analysis of 2D,
and superlattice systems.6,9–11The method is based on a m
croscopic model in which the particles are quasilocalized
a short-time scale in local potential fluctuations; while t
theory is built on an essentially classical picture, it is e
pected to be a reliable approach for quasilocalized electr
in degenerate electron liquid systems as well.

In the QLCA derivation of Ref. 6, we considered only th
Coulomb interaction between the particles, and, correspo
ingly, we calculated the linear response to an external sc
potential perturbation. The second goal of this paper is
16 349 © 1997 The American Physical Society
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16 350 55GOLDEN, KALMAN, MIAO, AND SNAPP
extend the formalism beyond the usual quasistatic appr
mation, and to incorporate the full retarded character of
electromagnetic interaction. We find it useful to pursue t
calculation here, partly to put the calculation of the tran
verse modes on a solid foundation, partly to pave the way
the analysis of the full electromagnetic spectrum of coll
tive modes that will be the subject of a forthcomin
publication.12 Thus ~i! by taking account of the full electro
magnetic interaction and~ii ! by calculating the linear re
sponse to combined external scalar and vector potential
turbations, the nonretarded scalar response formalism of
6 is generalized to a retarded 2D tensor response forma
in the present work.

The ultimate goal of this paper is to analyze the lon
wavelength (kd!1) collective-mode dispersion in the non
retarded (cs→`) limit; cs is the speed of light in the dielec
tric substrate. The present collective mode analysis exte
that of Ref. 6 in three ways.~i! We establish the crystal-like
dispersion of the in-phase~bulk! plasmon mode for suffi-
ciently strong interlayer-coupling.~ii ! A complete analysis of
the shear mode dispersion is presented: we establish
transverse acoustic phononlike dispersion of the in-ph
~bulk! shear mode, we formulate the mode frequencies
the gapped shear band, and we show that the bulk mode
band are maintained as separate entities by non-RPA in
layer correlations.~iii ! In our previous studies3–6 only the
intralayer ~00! and nearest interlayer~610! static structure
functions appear in the expressions for the mode frequen
here we display thecompletehierarchy of superlattice layer
layer (m0) ~m50, 61, 62, . . .! static structure functions
~iv! We establish the connection between the formalism
propriate for the periodic superlattice and the formalism
an anisotropic three-dimensional medium.

The collective-mode analysis of the present paper focu
primarily on correlational effects. Insofar as the plasmon a
shear modes are concerned, one can justifiably ignore e
trodynamic retardation effects on the grounds that displa
ment currents are almost always dominated by the elec
static effects of nearby layers. Analysis of these modes at
exceedingly small wavenumbers'v/cs where displacemen
currents would have to be taken into account, and the c
comitant analysis of the higher-frequency electromagn
modes,13 calls for a separate treatment to be presented
later work12 which implements the QLCA retarded 2D tens
response formalism of the present paper.

The organization of the paper is as follows. In Sec. II
calculate the dynamical matrix and the dielectric respo
tensor in the QLCA,10 and we set up the dispersion relatio
All the intralayer and interlayer correlational effects appe
quite naturally as local-field corrections in the elements
the dielectric tensor; the quasistatic limit (cs→`) of the
Coulomb correction has been identified as the correlatio
contribution to the third-frequency-moment sum-ru
coefficient.6,14 In Sec. III we recast the local-field correction
in a form which explicitly features the hierarchy of intralay
and interlayer correlational components and static struc
functions. We then evaluate the correlational component
the quasistatic limit and in the long-wavelength regime, th
paving the way for the Sec. IV analysis of the lon
wavelength collective-mode dispersion. Reiterating our g
here, we wish to understand how intralayer and interla
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Coulomb correlations affect the in-phase and the gap
band of shear modes, and how the in-phase~longitudinal!
plasmon and~transverse! shear modes in a superlattice com
pare with their respective optical and acoustic phononl
counterpart modes in the strongly coupled 3D OCP.11~b!,15,16

In Sec. V we discuss the dielectric formalism for an an
tropic medium and its equivalence in the long-wavelen
limit to the more general treatment pursued earlier in
paper. Conclusions are drawn in Sec. VI.

II. DYNAMICAL MATRIX AND DIELECTRIC
TENSOR

Consider the infinite, type-I superlattice model consisti
of a large stack ofNL electron-plasma monolayers, each
areaA and parallel to thexy plane; the monolayers are em
bedded in a dielectric substrate;L5NLd is the length of the
superlattice,d being the spacing between adjacent plan
a51/Apns is the 2D Wigner-Seitz radius,ns5Ne /A being
the average areal density of each monolayer. The intrala
coupling strength is characterized by the parameterr s
5a/aB* , which is the average spacing between electrons
units of the effective Bohr radius, or by its classical equiv
lentG5be2/(a«s), «s being the substrate dielectric consta
and 1/b the electron temperature in energy units. The cor
sponding interlayer coupling parameters arer s(a/d) or
G(a/d).

We wish to calculate the linear response to small exter
scalar and vector potentialsF̂ andÂ beyond the RPA, taking
full account of electrodynamic retardation effects. Followi
the general scheme of the QLCA, we derive the express
for the dynamical matrixC that controls the dynamics of th
average induced current response. We begin by construc
the coupled linearized microscopic equations of motion
scribing the rapid oscillations of the charges about th
slowly drifting quasiequilibrium site positions. Letxi ,m(t)
5xi ,m1j i ,m(t) be the momentary position of thei th particle
in themth lattice plane,xi ,m its quasiequilibrium site posi-
tion, andj i ,m(t) the perturbed amplitude of its small excu
sion ~indices i , j and m,n enumerate particles and layer
respectively!. The microscopic equation of motion for pa
ticle i in layerm can now be written as follows:

2m*v2j i ,m~v!1(
j

(
n

K i j ,mn~v!•@jj ,n~v!2ji ,m~v!#

1(
j

(
n

M i j ,mn~v!•jj ,n~v!

52eÊm~xi ,m ,v!52
e

A (
k
Êm~k,v!eik•xi ,m, ~1!

wherem* is the effective electron mass,Êm(xi ,m ,v) is the
lattice-plane component of the external electric field act
at the field point (xi ,m ,zm[md), and Êm(k,v)
5( iv/cs) Âm(k,v)2 ikF̂m(k,v) is its in-plane Fourier
transform,k being the wave vector parallel to thexy plane.
The K i j ,mn(v) term contains the effects of the longitudin
Coulomb interaction between the particles
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K i j ,mn~v!5
1

A (
k
L ~k!k2cmn~k,v!eik•~xi ,m2xj ,n!, ~2!

while theM i j ,mn(v) term originates from the transverse r
tarded electromagnetic interaction

M i j ,mn~v!5
1

A (
k
T~k!k2cmn~k,v!eik•~xi ,m2xj ,n!

3S 12d i jdmn

12~kcs /v!2D , ~3!

cmn~k,v!5
2pe2

«sk
2 bs~k,v!e2bs~k,v!um2nud ~4!

is the layerm-layer n effective potentialL (k)5k•k/k2 and
T(k)5I2k•k/k2 are notationally convenient longitudina
(L) and transverse (T) projection tensors in thexy plane,
and I is the unit tensor in thexy plane. Note the appearanc
of bs5@k22v2/cs

2#1/2 in Eq. ~4!: this is thez component of
the propagation vector; real values ofbs describe exponen
tially decaying, i.e., nonpropagating behavior of the latt
,
-

tr

fie
planes, while imaginarybs values correspond to a propaga
ing behavior in the interlayer regions. Even though the no
tion of Eq. ~4! is appropriate for the nonpropagating (k
.v/cs) sector of thev-k plane, there is no difficulty in
analytically continuing ~with bs→ ik5 i @(v/cs)

22k2#1/2!
into the propagating (k,v/cs) sector. In the quasistatic limi
(cs→`), we observe thatbs5k, M i j ,mn(v)50, and
cmn(k,v)5f2D(k)exp(2kum2nud), where f2D(k)
52pe2/(«sk) is the Fourier transform of the 2D Coulom
potentialf2D(r )5e2/(«sr ), r being the in-plane separatio
distance. Returning to the more general case where ele
magnetic interaction and displacement current effects
fully retained, we note that, in thed→` limit, only the
m5n contribution to Eq.~1! survives, and that one recove
the QLC microscopic equation for the isolated 2D electr
plasma monolayer.9,11~c!

The calculation of the average particle current-density
sponsej and dynamical matrixC from Eqs.~1!–~3! is carried
out by implementing the general QLC formalism of Ref. 1
We obtain the equations of motion for the collective coor
natejk :
@v2I2C~k,q,v!#•jk~v!5
e

m
Ê~k,q,v!, ~5!

C~k,q,v!5v2D
2 ~k!H L ~k!

bs~k,v!

k
F~bs~k,v!,q!2T~k!

v2

kbs~k,v!cs
2 F~bs~k,v!,q!1D~k,q,v!1Q~k,q,v!J ; ~6!
la-

d-

art
r

v2D(k)5@2pnse
2k/(«sm* )#

1/2 is the 2D plasma frequency
andm* the effective mass;q is a wave number perpendicu
lar to the lattice planes~but not the third component of the
wave vectork!, and

Ê~k,q,v!5(
m

Êm~k,v!e2 iqmd ~7!

is the layer-space Fourier transform of the external elec
field Êm(k,v). The well-known superlattice form factor

F~bs~k,v!,q!5
sinh@bs~k,v!d#

cosh@bs~k,v!d#2cosqd
~8!

is the layer-space Fourier transform of the potential modi
exp@2bs(k,v)um2nud#, viz.

F~bs~k,v!,q!5(
m
exp@2bs~k,v!um2nud#)e2 iq~m2n!d,

~9!

exp@2bs~k,v!um2nud#

5
1

NL
(

uqu<p/d
F~bs~k,v!,q!eiq~m2n!d, ~10!
ic

r

with q defined only in the first Brillouin zoneuqu<p/d due
to the invariance of the superlattice with respect to trans
tion along thez axis by any lattice number (2p/d)3 integer.
The first two right-hand-side terms of Eq.~6! represent the
effects of the RPA on the dynamics. The third right-han
side term

D~k,q,v!5
1

kNeNL
(
k8

(
uq8u<p/d

L ~k8!bs~k8,v!

3F~bs~k8,v!,q8!@S~ uk2k8u,q2q8!

2S~k8,q8!# ~11!

represents the important correlation-induced Coulomb p
of the dynamical matrix;S(k,q) is the layer-space Fourie
transform ofSmn(k), the layerm-layer n static structure
function; the two are related by

S~k,q!5(
m

Sumu0~k!e2 iqmd, ~12!

Sumu0~k!5
1

NL
(

uqu<p/d
S~k,q!eiqmd, ~13!
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where the zero subscript refers to an arbitrarily chosen
erence layer. The fourth right-hand-side term of Eq.~6!,

Q~k,q,v!52S v

cs
D 2 1

kNeNL
(
k8

(
uq8u<p/d

T~k8!
1

bs~k8,v!

3F~bs~k8,v!,q8!@S~ uk2k8u,q2q8!21#, ~14!

represents the correlation-induced electromagnetic contr
tion. The expressions for the longitudinal (L) and transverse
(T) elements ofD andQ are then calculated from Eqs.~11!
and ~14! and the tensor decompositionsD(k,q,v)
5L (k)DL(k,q,v)1T(k)DT(k,q,v) and Q(k,q,v)
5L „k…QL(k,q,v)1T„k…QT(k,q,v).

The superlattice electrodynamics has been formulated
tirely in terms of lattice plane field quantities in Ref. 1
Within this strictly layer-space framework, a dielectric r
sponse tensor «mn(k,v) and its Fourier transform
«(k,q,v) can be introduced in relation to lattice plane fie
quantities only and in terms of an ‘‘external’’ conductivit
tensorŝm(k,q,v) defined by the constitutive relation~16! of
Ref. 17. With this constitutive relation, the QLCA extern
conductivity can be readily extracted from Eq.~5!. The lon-
gitudinal and transverse elements of«(k,q,v) are then cal-
culated to be

«a~k,q,v!

5«sH 12

v2D
2 ~k!

bs~k,v!

k
F~bs~k,v!,q!

v22v2D
2 ~k!@Da~k,q,v!1Qa~k,q,v!#

J
~a5L,T!. ~15!

The eigenfrequenciesv(k,q) for the collective modes then
follow from Eq. ~15! and the dispersion formulas17

«L~k,q,v!50, ~16!

«T~k,q,v!5~kc/v!2. ~17!

The observation that in-plane electric-field excitations as
ciated with dispersion relation~16! are polarized alongk
requires thatBz50 in order to satisfy Maxwell’s equations
On the other hand, the in-plane electric-field excitations
sociated with Eq.~17! are polarized perpendicular tok, so
that Maxwell’s equations requireEz50 ~for bs

2 different
from zero!. It is therefore appropriate to refer to Eqs.~16!
and ~17! as the ‘‘TM’’ ~transverse magnetic! and ‘‘TE’’
~transverse electric! dispersion relations, respectively. Th
we do in the sequel.

Alternatively, the knowledge of the dynamical matrix e
f-

u-

n-

-

s-

ables one to formulate the dispersion relation directly fro
Eqs.~5! and ~6!. One readily obtains

DetH v2I2C~k,q,v%

5H v22v2D
2 ~k!Fbs~k,v!

k
F~bs~k,v!,q!1DL~k,v!

1QL~k,q,v!G J H v21S v

cs
D 2 v2D

2 ~k!F~bs~k,v!,q!

kbs~k,v!

2v2D
2 ~k!@DT~k,v!1QT~k,q,v!#J 50. ~18!

The two ~longitudinal and transverse! dispersion relations
~16! and ~17!, in conjunction with Eq.~15!, are identical to
the dispersion relation~18!.

III. QUASISTATIC APPROXIMATION
AND LAYER-SPACE AND REPRESENTATION

The genuine collective modes of the superlattice are w
described by ignoring retardation effects: this is the qua
static approximation, whose philosophy and limitations we
alluded to in Sec. I and in the text below Eq.~27!. This
approximation amounts to~a! simplifying the correlational
D(k,q,v) andQ(k,q,v) contributions, and~b! omitting the
electromagneticQ contribution entirely. The main purpos
of this paper is to analyze the collective modes of the sup
lattice system in a quasistatic approximation. While the f
electromagnetic treatment provides a complete descriptio
all the modes in the system, including those which a
merely electromagnetic waves modified by the presence
the superlattice, the physical significance of the quasist
approximation is that it allows to survive only those mod
which are genuinely collective, in the sense that they
maintained by particle-particle interaction.

To implement the quasi-static approximation we obse
that for frequenciesv!cs /d, the correlation-induced Cou
lomb and electromagnetic contributions~11! and ~14! are
well approximated by replacingb(k8,v) by k8, i.e. by

D~k,q!5
1

kNeNL
(
k8

(
uq8u<p/d

L ~k8!k8F~k8,q8!

3@S~ uk2k8u,q2q8!2S~k8,q8!#, ~19!

Q~k,q,v!52S v

cs
D 2 1

kNeNL
(
k8

(
uq8u<p/d

T~k8!
1

k8

3F~k8,q8!@S~ uk2k8u,q2q8!21#. ~20!

This can be seen by dividing thek8 sum in Eqs.~11! and~14!
into two sums, the first going fromk850 to k85v/cs , and
the second fromk85v/cs to k85`. We note that
bs(k8,v)'k8 over most of the far wider subinterva
@v/cs ,`). This same approximation holds as well fork8d
P@0,v/cs#, because the interval is exceedingly narrow a
therefore contributes negligibly to D(k,q,v) and
Q(k,q,v): back-of-the-envelope estimates indicate that c
tributions toD(k,q,v) andQ(k,q,v) coming from thek8
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sum over@0,v/cs# are 0(v3d3/cs
3) and 0(vd/cs) smaller

than their respective ‘‘quasistatic’’ counterparts~19! and
~20!. These negligibly small estimates, moreover, remain
same whenbs(k8,v) is replaced byk8 for k8P@0,v/cs#.
The approximate expressions~19! and ~20! are especially
well suited to those collective modes whose small-k oscilla-
tion frequencies are at most of the order of the bulk plas
frequencyvp5(4pnse

2/m* «sd)
1/2!cs /d ~e.g., for a corre-

lated GaAs superlattice with carrier densityns51.3
31010 cm22 and d5a5495 Å, vp50.0018cs /d!. Long-
wavelength (kd!1) plasmon and shear modes certainly f
in this category.

Further insight into the structure ofD and Q can be
gained by reformulating them in a way which explicitly fe
tures the intralayer~00! and interlayer~610,620, . . .! cor-
relational contributions. This is accomplished by substitut
Eq. ~12! into Eqs. ~19! and ~20! and using Eq.~10!. One
readily obtains

D~k,q!5D00~k!1 (
mÞ0

Dm0~k,q!, ~21!

Q~k,q,v!5Q00~k,v!1 (
mÞ0

Qm0~k,q,v!, ~22!

D00~k!5
1

kNe
(
k8

L ~k8!k8@S00~ uk2k8u!2S00~k8!#,

~23!

Dm0~k,q!5
1

kNe
(
k8

L ~k8!k8e2k8umud

3@Sumu0~ uk2k8u!cos~qmd!2Sumu0~k8!#,

~24!

Q00~k,v!52S v

cs
D 2 1

kNe
(
k8

T~k8!
1

k8
@S00~ uk2k8u!21#,

~25!

Qm0~k,q,v!52S v

cs
D 2 1

kNe
(
k8

T~k8!
1

k8
e2k8umud

3@Sumu0~ uk2k8u!cos~qmd!#. ~26!

The index notationDmn(k,q) was introduced to empha
size that aDmn term originates from the correspondingSmn
structure function. It does not imply thatDmn is them,n
element of theD matrix, if Eq. ~5! is written down in layer-
space representation@cf. Ref. 4~c!#

For the long-wavelength (kd!1) plasmon and shea
modes, it can also be shown that

uQm0
a ~kd!1,q,v!u5O~v2/k2cs

2!uDm0
a ~kd!1,q!u

,~vp
2/k2cs

2!uDm0
a ~kd!1,q!u,

~27!

a5L,T; m50,61,62, ... .

Consequently, uQm0
a (kd!1,q,v)u!uDm0

a (kd!1,q)u, pro-
vided that k2@vp

2/cs
2. In the collective-mode analysis o

Sec. IV, we therefore discard the electromagnetic-indu
e

a

l

g

d

correlational contributions~25! and~26! with the understand-
ing thatkd lies in the interval (vpd/cs)

2!k2d2!1 ~we note
that for semiconductor superlattices, the excluded inter
@0,vpd/cs# is exceedingly narrow!. This is the underlying
rationale for the so-called quasistatic approximation wh
formally amounts to settingcs equal to infinity, so that
bs(k,v)5k, QL(k,q,v)50, andQT(k,q,v)50, and the
dispersion analysis is thereby extended all the way down
k50.

In the small-kd regime, the quasistatic expressions for t
longitudinal and transverse elements of Eqs.~23! and ~24!
become

D00
a ~k→0!5~kd/2!J00

a , ~a5L,T!, ~28!

Dm0
a ~k→0,q!5

1

2kd
@cos~qmd!21#I umu0

1
kd

2
Jumu0

a cos~qmd!, m561,62, . . .

~a5L,T!, ~29!

J00
L 5

5

8Ne
(
k8

1

k8d
@S00~k8!21#525J00

T , ~30!

I umu05
1

Ne
(
k8

~k8d!Sumu0~k8!e2k8umud, m561,62,...

~31!

Jumu0
L 5

1

8Ne
(
k8

1

k8d
Sumu0~k8!

3e2k8umud@5211~k8umud!13~k8umud!2#,

m561,62,... , ~32!

Jumu0
T 52

1

8Ne
(
k8

1

k8d
Sumu0~k8!

3e2k8umud@11~k8umud!2~k8umud!2#,

m561,62,... . ~33!

IV. COLLECTIVE MODES

Invoking the quasistatic approximation discussed abo
Eqs.~15!–~17! or ~18! provide the longitudinal (L) TM plas-
mon and the transverse (T) TE shear mode eigenfrequencie

v2~k,q!5v2D
2 ~k!@F~k,q!1DL~k,q!# ~L !, ~34!

v2~k,q!5v2D
2 ~k!DT~k,q! ~T!, ~35!

whereDL(k,q) andDT(k,q) are the longitudinal and trans
verse elements of Eq.~19!. The longitudinal mode can be
identified as the well-known plasmon mode. The transve
excitation is ashear modewhich is discussed here in deta
for the first time, to our knowledge. Similar shear modes
the strongly coupled 3D OCP@Ref. 11~b!# and 2D electron
liquid9 have been, however, identified earlier.
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In the RPA limit,DL andDT are equal to zero, and onl
the plasmon modes survive. The RPA plasmon struct
which was extensively analyzed by Fetter,7 consists of an
isolated bulk mode (q50) and a band of acoustic mode
with each mode labeled by a~nonzero! q value. Strong cor-
relations, manifested byDL andDT being nonzero, modify
the spectrum in two important ways. The first is the appe
ance of the shear mode, the second is the development
finite frequencyenergy gapat k50. We now proceed to
discuss the plasmon and shear modes in the strongly c
lated regime.

We will consider in detail the behavior of the mode d
persions in the long-wavelength (kd,1) limit, which is of
principal physical interest. In this domain, Eqs.~34! and~35!
become to O(k2d2),

v2~k→0,q!5vp
2

~kd!2@11 1
6 ~kd!2#

2~12cosqd!1~kd!2@11 1
12 ~kd!2#

1 1
4vp

2~kd!2(
m

Jumu0
L cos~qmd!

1 1
4vp

2 (
mÞ0

@12cos~qmd!#uI umu0u ~L !, ~36!

v2~k→0,q!5 1
4vp

2~kd!2(
m

Jumu0
T cos~qmd!

1 1
4vp

2 (
mÞ0

@12cos~qmd!#uI umu0u ~T!,

~37!

with the k- and q-independent coefficientsI m0 , J00
L , J00

T ,
Jm0
L , andJm0

T , given by Eqs.~30!–~33!. Due to the isotropy
of the liquid phase in thexy plane, atk50 andqÞ0 the
‘‘longitudinal’’ plasmon and ‘‘transverse’’ shear modes a
degenerate: both of them develop the same energy gap.

v2~0,q!5 1
2vp

2 (
m>1

@12cos~qmd!#uI m0u ~L,T!. ~38!

This mode propagates in thez direction with its electric vec-
tor polarized in the lattice plane. Evidently interlayer corr
lations bring about a dramatic change in the behavior of
acoustic excitation spectrum: the small-k plasmon modes
which are acoustic (v}k) in the absence of interlaye
correlations7 develop a finite energy gap atk50,3,4~e!,5,6 and
lose their acoustic character. Physically, the mode can
portrayed as the shearlike oscillations of the adjacent la
with respect to each other. As has been discussed in gre
detail in earlier publications,3,5,6 the physical explanation o
the finite frequency of these oscillations~the energy gap! can
be found by realizing that as long as the interlayer spac
d is not very much greater than the 2D Wigner-Seitz rad
a, the state of the strongly correlated superlattice is har
distinguishable from a slab in a~somewhat anisotropic! 3D
Wigner crystal. In turn, the particle motion corresponding
the ‘‘acoustic’’ mode is not substantially different from th
of a normal shear mode in a Wigner crystal propagat
e,

r-
f a

re-

-
e

e
rs
ter

g
s
ly

g

along the superlattice axis with wave numberq ~of the order
p/d!. Since for smallq, the shear mode dispersion isacous-
tic in q, viz.

v~0,q→0!5 1
2vpqdS (

m>1
m2uI m0u D 1/2, ~39!

andq is different from zero, the oscillation frequency is di
ferent from zero too. Hence the energy gap.

We now proceed to analyze the behavior for finite b
small k (0,kd!1) values. Consider first the in-phase (qd
50) behavior: theq50 situation represents a singular b
havior for the plasmon mode. The mode is now a bulk pl
mon mode with frequency

v2~k→0,0!5vp
2F11k2d2S 1121 1

4(
m

Jumu0
L D G , ~L !

~40!

Equation ~40! exhibits a positive RPA frequency shi
(kd)2vp/24 arising from the form factorF(k,0) in thekd
!1 limit. @Note the structural likeness to th
(kd)2vp(aB* /4d) shift arising from the pressure gradie
term in a hydrodynamic model7 of the zero temperature lay
ered 2D electron gas.# The positive form factor dispersion i
offset by the net negative correlational dispersion aris
from theJm0

L coefficients. Numerical calculations~see tabu-
lations below! indicate thatJ00

L is negative and thatJ10
L is

positive or negative and much smaller. ForG510 andd/a
52, the dispersion coefficient a5( 1

122
1
4u(mJumu0

L u)
'0.0023: forG520 andd/a52, the positive dispersion de
creases slightly toa'0.0018. The most significant effec
occurs, however, when the interlayer coupling is increa
~by decreasingd! to the point where it is comparable wit
the intralayer coupling: atG510 andd/a51, we calculate
a'20.0511, indicating the onset of negative~crystal-like!
dispersion quite similar to that of the strongly coupled 3
OCP.11~b!

For qÞ0 both the plasmon and the shear modes exh
quadratic dispersion:

v2~k→0,qÞ0!5v2~0,q!1VL,T
2 k2, ~L,T! ~41!

where the dispersion coefficients are given by

VL
25vp

2d2H 1

2~12cosqd!
1 1

4(
m

Jumu0
L cos~qmd!J ~L !,

~42!

VT
25vp

2d2 14(
m

Jumu0
T cos~qmd! ~T! ~43!

The calculations of the energy gap frequency~38! and the
long-wavelength oscillation frequencies~36! and ~37! re-
quire a knowledge of the intralayer and interlayer sta
structure functionsS00(k) andSm0(k). To recount what has
been accomplished thus far in the way of numerical calcu
tions, the plasmon and shear mode dispersion curves of R
4~e! and 6 were generated on the assumption that the
D00 andD10 terms in Eq.~21! are the dominant contribution
to D(k→0,q), so that onlyS00(k) andS10(k) are required.
These latter were calculated using the iterative weak~inter-
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layer! correlations—strong-~intralayer! coupling ~WCSC!
approximation scheme, originally suggested by Kalm
Ren, and Golden.5 The WCSC calculation requires the sta
structure function for the isolated 2D layer as an input wh
is available both for the zero-temperature electron liqui18

and for the classical electron liquid.19–21 The iterative pro-
gram can be carried out in a straightforward fashion for
superlattice modeled as a classical system, but would req
drastic additional approximations involving thedynamical
structure function for the fully degenerate electron liqu
Therefore, in order to portray best the influences of b
interlayer and intralayer correlations, the gapped plasm
and shear mode WCSC calculations of Refs. 4~e!, 5, and 6
and this paper are based on the classical superlattice m
characterized by the coupling parameterG. Thek50 energy
gap for the out-of-phase (qd56p) plasma mode is dis
played graphically in Ref. 5 as a function ofd/a for values
of G up to 22. The band of ‘‘gapped’’ plasmon dispersio
curves calculated from Eq.~36! for m50 and61 are dis-
played in Ref. 4~e! for G510 andd/a51 and in Ref. 10 for
(G,d/a) values of~1,1! and ~10,2!. The companion band o
gapped shear mode dispersion curves calculated from
~37! are displayed in the present work in Fig. 1~a!–1~c! for
(G,d/a) values of~10,1!, ~10,2!, and ~20,2!. These disper-
sion curves are generated from the Eqs.~30!–~33! I and J
coefficients, which in the WCSC approximation, are calc
lated in Table I. TheG510 value corresponds tor s55, and
is therefore applicable to a GaAs superlattice~substrate di-
electric constant«s513.1, effective massm*50.07me , ef-
fective Bohr radiusaB*599 Å! with carrier densityns51.3
31010 cm22. There is a substantial reduction in the mag
tude of the energy gap asd/a increases from 1 to 2 fo
G510: v(k50,q56p/d)50.423vp for d/a51 andv(k
50,q56p/d)50.067vp for d/a52. Interestingly enough
we also report a small decrease in the gap asG increases
from 10 to 20 for fixed d/a52: v(k50,q56p/d)
50.0677vp for G510 andv(k50,q56p/d)50.0588vp
for G520. This too is consistent with the calculations of R
5. As in the case of the plasmon band,6 interlayer correla-
tions bring about dramatic modifications in the shear mo
dispersion. In fact the effect on the shear band is even m
dramatic. Comparison of Figs. 1~a! and 1~b! shows how the
decrease in interlayer coupling with increasingd/a ~for fixed
G! substantially lowers the energy gap value and compre
the shear mode band. This compression becomes more
more pronounced with increasingd/a until the band eventu-
ally collapses into a single 2D acoustic shear mode in
zero interlayer coupling limit, i.e., atS10(k)50. In this limit
Eq. ~37! simplifies tov251/2vp

2(kd)2J00
T . The energy gap

also collapses asqd approaches zero. In contrast to the pla
mon mode, which, as discussed above, develops in this
a singular behavior, the shear mode goes over smoothly
bulk shear behavior, where all the layers execute an in-ph
transverse oscillation. This behavior is now strictly acous
with the frequency

v2~k→0,0!5 1
4vp

2~kd!2(
m

Jumu0
T ~T!. ~44!

For coefficients~30! and~33!, Table I showsJ00
T to be posi-

tive and dominant; ford/a51, the much smaller negativ
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J10
T acts to slightly offset the intralayer correlational coef
cient. Additionally, our calculations indicate that forr s,18
~corresponding toG,36!, the in-phase gapless mode w
always lie inside the pair continuum@see, e.g., Fig. 1~a!#, and

FIG. 1. ~a!–~c! Shear mode dispersion curves calculated fro
Eq. ~37! for (G,d/a)5(10,1), ~10,2!, and ~20,2!. The modes are
labeled by qd values; vp

254pnse
2/(dm* «s). The S00(k) and

S10(k) structure functions in Eqs.~30!–~33! were calculated in the
Ref. 5 WCSC approximation using as input the hypernetted ch
data of Ref. 21. The longitudinal plasmon modes are also shown~as
dashed lines! for comparison atqd5p. The shaded region in~a! is
the pair continuum.
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TABLE I. CalculatedI 10, J00, andJ10 values based on the WCSC approximation~Ref. 5!, using the
HNC data of Ref. 21

G d/a I10 J00
L J10

L J00
T J10

T

10 1 20.179 20.557 9.8631023 0.111 21.5131023

10 2 24.5931023 20.324 6.1331025 0.0648 5.5031025

20 2 23.4631023 20.326 23.7931025 0.0652 25.0431025
e

e
er

y

n
le
o
g
ri
he
-
tio
e

c

ts
be
e

ti
e

e

f-
rg
r

s

on
re
on
s
o
ss
io
-
oo

n-
f-
cal
al-
the
gap

r to
the
ha-

n

city
f-
ders
n the

for
de

usly

rn
les

d,
ea-

-

cy

difi-

me-

n-

ef.
is therefore heavily Landau damped. Most of the gapp
shear modes, however, are not~see below!.

A word of caution concerning theqd→0 limit is in order:
when this limit is reached by lettingd→0, the above limiting
process implies that the phase difference (qd) between
neighboring layers also goes to zero as the distance betw
them is diminished. Another possible limit can, howev
arise by keeping the phaseqd5const asd→0. This corre-
sponds to a different physical situation~of interest, primarily
for a finite number of layers!, and is not discussed here an
further.

The problem of observability both of the shear mode a
of the plasmon gap leads to two closely related, neverthe
distinct, questions: first, how reliable are the predictions
the QLC approximation, and, second, what is the dampin
these modes? As to the first, one should recall that the p
cipal assumption upon which the QLCA is built is that t
migration-diffusion time of the particles away from their in
stantaneous position is long enough to justify the descrip
of the system in terms of its static configuration. An upp
limit on this migration-diffusion timetD can be set by using
the result of Hansen, Levesque, and Weis,22 who obtained a
value for the self-diffusion coefficient of a 2D classical ele
tron gas through molecular-dynamics simulation. LettD
5l2/D be the diffusion time withD the self-diffusion coef-
ficient, andl the migration distance of a particle from i
quasisite position sufficient to destroy local order. The
havior of D can be inferred from the data of Ref. 22: w
calculate D'5a2v0 /G

1.3 and vmin5tD
215(2.5/G1.3)

3(d/a)1/2(a/l)2vp , where v0
25e2/(ma3).vmin is clearly

the frequency below which the QLC treatment is not jus
fied. ForG510 andd/a51, this order-of-magnitude estimat
providesvmin'@a2/(8l2)#vp ; it can be compared with the
correspondingv(k50,q5p/d)50.42vp energy gap, indi-
cating a borderline situation. ForG510 and 20 whend/a
52 the situation worsens because of the much smaller
ergy gaps. On the other hand, ford/a51 and atG values
G>40, wherevmin is much smaller, and where the out-o
phasek50 gap frequency is expected to be at least as la
as theG510 gap value of 0.42vp ,

5 most of the gapped shea
modes should exist: e.g.,vmin'1022(a/l)2vp at G550
~corresponding tor s525 for type-I multilayer hole structure
with carrier densities51.331010 cm22! andd/a51.

The above estimation of the inverse migration-diffusi
time as limited only by the classical electron-electron cor
lations is clearly an overestimate. In a realistic situati
other effects are expected to slow down the process con
erably. In fact, the electron liquid exists in the presence
~static and dynamic! random fields, and the diffusion proce
is dominated by this disorder. The details of the localizat
and delocalization~i.e., migration! under the combined influ
ence of disorder and strong coupling are not well underst
d

en
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ss
f
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n-

e
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~for a recent review, see Ref. 23!. What can, however, be
expected with confidence is that the physical migratio
diffusion time even in high-mobility samples would be su
ficiently longer than the one determined from the classi
self-diffusion coefficient. Since this latter estimate has
ready led to a borderline situation, one could assume that
QLCA can reasonably be used down to the characteristic
frequencies.

The second aspect that one has to consider in orde
assess the observability of the mode structure predicted is
actual damping of these modes. The two primary mec
nisms for damping are decay by pair excitations~Landau
damping! and impurity scattering. It is well known that eve
within the RPA description~where thek50 gap is absent!
the acoustic plasmon, because of its high phase velo
(vph.vF), lies outside the pair continuum and is not a
fected by Landau damping. The existence of the gap ren
this scenario even more pronounced. The shear mode, o
other hand, can have a low phase velocity~vph,vF for r s
,18! and would be heavily Landau damped, were it not
the energy gap. Figure 1~a! shows that a gapped shear mo
penetrates the pair continuum only fork.k* , wherek* d,
while depending both onq and d/a, ranges from 0.35 to
0.49 forp/6<qd<p/4; modes withqd values in the inter-
val ~p/4,p# lie above the pair continuum forkd,0.5. Thus
one can conclude that Landau damping should not serio
affect the long wavelength mode propagation.

Turning now to impurity scattering, we note that mode
nanotechnology has made extremely high-mobility samp
available, where the effect of impurity scattering~including
electron-phonon scattering! has been dramatically reduce
even at low carrier densities. Using recent data from m
surements by Pfeifferet al.,24 where m'1.53106 cm2/V
was reported atns5231010 cm22, one can calculate an ef
fective collision frequencyn'1.731010 s21. This can be
compared with a typical out-of-phase gap frequen
0.42vp quoted above, withvp53.731012 s21. Thus impu-
rity scattering also does not seem to cause a major mo
cation of the mode structure.

V. ANISOTROPIC MEDIUM DESCRIPTION

In the combinedkd→0 andqd→0 limit the infinite su-
perlattice is equivalent to a homogeneous anisotropic
dium; the isotropy is broken along thez direction, due to the
inhibited particle motion along this direction. A medium
with this kind of anisotropy and with ak vector along the
x direction can be described in terms of a 3D dielectric te
sor « with nonvanishing elements«̄xx5 «̄L , «̄yy5 «̄T , and
«̄zz51 ~the barred notation is used to distinguish the 3D«̄
from the previously used superlattice«!. In turn, «̄L and «̄T
may be obtained from the appropriate 3D expressions of R
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11~b!, with the understanding thatvp
2DL andvp

2DT therein
are to be replaced byv2D

2 (k)DL(k,q) andv2D(k)D
T(k,q)

from Eq. ~15!, respectively:

«̄L,T~k,q,v!5«sH 12
vp
2

v22v2D
2 ~k!DL,T~k,q!J , ~45!

The collective modes are now determined through the
dispersion relation withk and q considered as the compo
nents of a 3D propagation vectorK5k1êzq:

U «̄~k,q,v!2
~k21q2!cs

2

v2 T~K !U50. ~46!

Equation~46! leads to the longitudinal and transverse re
tions

«̄L~k,q,v!5
q2cs

2

v22k2cs
2 ~L !, ~47!

«̄T~k,q,v!5
~k21q2!cs

2

v2 ~T!. ~48!

Each of these equations describes, thus, a high-frequ
and a low-frequency mode. It is the latter that are of inter
to us. In the quasistatic approximation these latter becom

v2~k,q!5vp
2 k2

k21q2
1v2D

2 ~k!DL~k,q! ~L ! ~49!

and

v2~k,q!5v2D
2 ~k!DT~k,q! ~T!. ~50!

These are identical to the small-k and small-q expansions of
Eqs.~36! and ~37!.

VI. CONCLUSIONS

In this paper we calculated the dynamical matrix and
electric response tensor for the correlated superlattice in
quasilocalized charge approximation. The intralayer and
terlayer correlational effects are embodied in expressi
~11! and ~14! for D(k,q,v) andQ(k,q,v), whose longitu-
dinal and transverse elements appear as static local-field
rections in the QLC dielectric tensor elements@portrayed by
Eq. ~15!#. We formulated the TM and TE dispersion relatio
.

ea
D

-

cy
st

-
he
-
s

or-

in the quasilocalized charge approximation, and analy
them in the long-wavelength (kd!1) regime to determine
how Coulomb correlations modify the RPA collective mo
structure. The principal results of this work are represen
by Eqs.~15! and~18! for the QLC dielectric tensor element
and dispersion relation, respectively, and by Eqs.~36!, ~37!,
and ~40!–~43!, and Figs. 1~a!–1~c! for the shear mode dis
persion.

Our analysis of the TM and TE dispersion relations in t
quasistatic limit shows that the QLCA collective-mode stru
ture consists of~i! an in-phase (q50) longitudinal plasmon
which exhibits crystal-like dispersion at long wavelengt
for sufficiently strong interlayer coupling@Eq. ~40!#; ~ii ! the
band of gapped plasmon modes@Eq. ~36!# reported in Ref. 6;
~iii ! an in-phase transverse shear mode which exhi
acoustic-phonon-like dispersion at long wavelengths@Eq.
~44!#, and~iv! a band of gapped shear modes@Eq. ~37!, Figs.
1~a!–1~c!#. Thek50 gap frequency~38! and the shear mode
band~37! share one common feature: both are wholly ma
tained by non-RPA interlayer correlations. When interlay
correlations are suppressed, i.e., when the mutual Coul
interaction of the layers is taken into account through
average RPA field only, the in-phase mode~iii ! and the band
~iv! merge into a single 2D isolated layer shear mode9 which
is wholly maintained by intralayer correlations.

Since there are no other sources ofS10(k) data available
at the present time save the WCSC iterative scheme5 which
breaks down forG.22, the lack ofS10(k) data at higher-G
values precludes the possibility of generating dispers
curves with high gap values. Nevertheless, thek50 energy
gap frequency of 0.42vp calculated from the WCSC data fo
G510, d/a51 can be considered to be a reliable lowe
bound estimate for the out-of-phase plasmon and shear m
oscillation frequencies in the coupling regimes where th
and most of the lower-q gapped shear modes are expected
be undamped.
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