
Africa

Africa

PHYSICAL REVIEW B 15 JUNE 1997-IIVOLUME 55, NUMBER 24
Simple shell model for quantum dots in a tilted magnetic field

W. D. Heiss
Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050, Johannesburg, South

R. G. Nazmitdinov
Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050, Johannesburg, South

and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
~Received 10 June 1996; revised manuscript received 11 November 1996!

A model for quantum dots is proposed, in which the motion of a few electrons in a three-dimensional
harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is
studied. The spectrum and the wave functions are obtained by solving the classical problem. The ground state
of the Fermi system is obtained by minimizing the total energy with regard to the confining frequencies. From
this a dependence of the equilibrium shape of the quantum dot on the electron number, the magnetic field
parameters, and the slab thickness is found.
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I. INTRODUCTION

Recent progress in semiconductor technology now allo
the fabrication of artificially structured atoms in semicondu
tors called quantum dots, in which electrons are trapped
small localized region of space of a few hundred angstro
In these nanostructures the electron wavelength is of
same length scale as the confinement so that quantum ef
are important, which results in the quantization of sing
electron energy levels with excitation energy of several m
~see, for review, Refs. 1–3!. A prominent feature of a Ferm
system which is confined to a finite region of space is
emergence of shell effects in the single-particle spectrum
is well known in nuclear physics4 and more recently for large
metallic clusters~Refs. 5–8 and references therein!. In the
present work we address this problem to mesoscopic sys
like quantum dots which contain a small number of ele
trons.

The electron states of few-electron quantum dots s
jected to a strong magnetic field have been studied ex
sively in Refs. 9–14. The electrodynamic response of
interacting electron system in the presence of a confin
potential is expected to be dominated by the many-body
fects of the electrons. Sikorski and Merkt9 found experimen-
tally the surprising result that the resonance frequencie
the magneto-optical spectrum are independent of the num
of electrons in the quantum dot. The systems which are
perimentally realized extent much less in the thez direction
than in thex-y plane. This has led to a simple description
the far-infrared resonance~FIR! frequencies15–17 as the en-
ergy levels of a two-dimensional harmonic oscillator pote
tial in the presence of a magnetic field.18 It was interpreted as
a consequence of Kohn’s theorem19 which has been genera
ized for a parabolic potential.15–17,20–22According to this
theorem, the total Hamiltonian can be divided into two pa
the center-of-mass motion~CM! and the relative motion
which contains the electron-electron interaction. Since
radiation of an external electric dipole field couples only
the CM motion and does not affect the relative motion,
550163-1829/97/55~24!/16310~8!/$10.00
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dipole resonance frequencies for the interacting sys
should be exactly the same as those of the noninterac
system and be independent of the electron-electron inte
tion.

A full understanding of the experimental results needs
analysis of many-body effects. Microscopic calculations
ing Hartree approximation for electron numbersN,10 ~Ref.
23! neglected the exchange and correlation effects. The
rect numerical diagonalization17 has been performed only fo
three- and four-electron systems. The more complica
resonance structure observed in Refs. 11 and 14 raised
question as to the validity of Kohn’s theorem for quantu
dots. In order to describe the experimental data it was
sumed that, in real samples, there is a deviation of the c
fining potential from the parabolic form, and different co
rections have been introduced.24,25 Also, the important role
of the combined effect of the Coulomb forces and spin int
action leading to a redistribution of single-electron leve
was demonstrated for the whole energy spectrum, espec
for the low-lying single-electron states in the homogeneo
magnetic field.26–28The ground state transitions predicted
this way have been observed experimentally.13

It seems therefore natural to assume that the propertie
the electron states close to the Fermi level are determine
an effective mean field. It is true that the external field is t
dominant part of the mean field, and thus the effective c
fining potential should reflect the main features of it. Yet
must also contain the effect of the interplay between C
lomb forces and the external fields which are governed
the charges in the adjacent layers and gates and the mag
field. Due to these considerations, we assume that the
fining potential should also take into account the chan
that affect the properties of the single-electron states ow
to a variation of the homogeneous magnetic field as wel
the slab thickness.

Based on the results discussed in Ref. 29 we conclude
the harmonic oscillator potential can serve as one of the p
nomenological effective confining potentials in real sampl
at least for small electron numbers. In this paper we stud
16 310 © 1997 The American Physical Society
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55 16 311SIMPLE SHELL MODEL FOR QUANTUM DOTS INA . . .
simple model of a three-dimensional quantum dot in an
bitrarily oriented magnetic field for electron numbers f
which the assumption of a parabolic type potential is s
physically reasonable. Our procedure invokes an effec
dependence of the parameters of the confining potentia
the magnetic field. In this way, we accommmodate the
ferent mechanisms mentioned above and we allow the
tem to adjust and change its shape under variation of
applied magnetic field and the particle number. We assu
that the electron system behaves like an isolated yet confi
droplet ~see also discussion in Ref. 30!. One of the major
results is a dependence of the single-electron states on
slab thickness. Such a dependence shows in the FIR freq
cies on which our analysis is focused. We also report
transition strengths in absorption experiments and on
spatial extension of the confining potential in a quantum d
Preliminary results have been reported in Ref. 31.

II. THE MODEL

We consider the Hamiltonian forN noninteracting elec-
trons moving in an effective mean field, i.e., a thre
dimensional harmonic oscillator,

H5
1

2m (
j51

N S pW j2
e

c
AW j D 21 m

2 (
j51

N

~vx
2xj

21vy
2yj

21vz
2zj

2!,

~1!
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with AW 5@BW 3rW#/2 being the vector potential associated w
the homogeneous magnetic fieldBW . The model does not ex
plicitly take into account spin degrees of freedom. In oth
words, the system is assumed to be in a fixed spin state o
arbitrary degree of polarization. Only the orbital motion
affected by the magnetic field. Using quantum mechan
equations of motion Yip21 calculated resonance frequenci
for this model. Our approach is similar in spirit to Ref. 2
but we first solve the classical problem, from which all qua
tum mechanical results easily follow. In contrast to Refs.
and 22 where the FIR frequencies are completely determ
by the external potential, the effective mean field respond
our approach to the change of the magnetic field and par
number and thus affects the properties of single-particle
citations. We determine the frequenciesv i , i5x,y,z by
minimizing the total energy for a given number of electro
N. In this way we allow the system to adjust the shape of
confining potential under the influence of the applied ma
netic field and the particle number.

The classical equations of motion for the Cartesian co
ponents of the momentum and position coordinates read

d

dt S pWrW D 5MS pW
rW
D , ~2!

wherepW and rW are combined to the six-dimensional colum
vector denoted below as$pW ,rW%. The matrixM is given by
M5S 0 2Vz Vy 2vx
22Vy

22Vz
2 VxVy VxVz

Vz 0 2Vx VxVy 2vy
22Vx

22Vz
2 VyVz

2Vy Vx 0 VxVz VyVz 2vz
22Vx

22Vy
2

1 0 0 0 2Vz Vy

0 1 0 Vz 0 2Vx

0 0 1 2Vy Vx 0

D , ~3!
oos-

Ap-
il-
al
where the notationVW 5eBW /(2mc) is used. Denoting the ei
genvalues ofM by 6 iEk , k51,2,3, we obtain from the
formM5UDV the classical solution

$pW ~ t !,rW~ t !%5Uexp~Dt !V$pW ~0!,rW~0!%, ~4!

where D5diag(2 iE1 ,2 iE2 ,2 iE3 ,iE3 ,iE2 ,iE1). While
the classical orbits are of little interest in the present cont
the eigenmodesEk and the system of eigenvectors listed
the matrixU are essential for the quantum mechanical tre
ment.

The eigenmodes which are usually referred to as the
mal modes are obtained from the secular equation,

detuEI2Mu50, ~5!

with I denoting the six-dimensional unit matrix. The abo
equation turns out to be a third order polynomial inE2 and
has also been found by Ref. 21. The column vectors ofU are
the ~complex! right hand eigenvectors ofM ~note thatM is
t,

t-

r-

not symmetric, hence neitherU nor V are unitary, yet
V5U21). We denote the column vectors ofU by u(k), they
obey the equations

~M1 iEkI !u
~k!50, k51,2,3,

~M2 iE72kI !u
~k!50, k54,5,6, ~6!

which can be solved as an inhomogeneous system by ch
ing, for instance , the sixth component ofu(k) equal to unity
and then determining the normalization as described in
pendix A. With the proper normalization the classical Ham
ton function of Eq.~1! is cast into the quantum mechanic
form

H5(
k

3

\EkSQk
†Qk1

1

2D . ~7!

The normal mode boson operatorsQ† andQ are related to
the quantized version of the classical coordinates by
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16 312 55W. D. HEISS AND R. G. NAZMITDINOV
$pW ,rW%5U$Q,Q†%, ~8!

where we denote by$Q,Q†% a column vector which is the
transpose of the vector (Q1 ,Q2 ,Q3 ,Q3

† ,Q2
† ,Q1

†). The prop-
erties of the matrix U guarantee the commutato
@Qk ,Qk8

†
#5 i\ dk,k8 as a consequence of@xi ,pj #5 i\ d i , j .

We note that Eq.~7! is the exact quantized equivalent of E
~1!.

III. QUANTUM ENERGY MINIMIZATION

The total energy of anN-particle system associated wit
the Hamiltonian Eq.~7! is given by

Etot5(
j ,k

\Ek~nk11/2! j . ~9!

The occupation numbersnk are the eigenvalues ofQk
†Qk and

take the values 0,1,2,. . . . Theground state is determined b
filling the single-particle levels(k\Ek(nk11/2) from the
bottom. We take care of the electron spin only in obeying
Pauli principle which allows two particles in one level. It
clear that different sets of normal modes yield different s
of occupation numbers. The normal modes depend on
three components of the magnetic field and on the harm
oscillator frequencies. From our assumption that the sys
adjusts itself under the influence of the magnetic field
minimizing Etot , a variation of the magnetic field streng
leads to a corresponding change of the confining effec
potential which is given by the oscillator frequencies.
other words, for a given magnetic field, we must seek
minimum of Etot under variation of the oscillator frequen
cies. The variation cannot be unrestricted as the confin
potential encloses a fixed number of electrons, and assum
that the electron density does not change we are led
fixed volume constraint which translates into the subsidi
condition vxvyvz5v0

3 with v0 fixed. Denoting the
Lagrange multiplier byl we solve the variational problem

d~^guHug&2lvxvyvz!50, ~10!

whereug& denotes the ground state as described above.
From Eq.~10! we obtain, after differentiation with respec

to the frequencies and using Feynman’s theorem,32

d

dvk
^guHug&5 K gU dHdvk

UgL , ~11!

the useful condition

vx
2^gux2ug&5vy

2^guy2ug&5vz
2^guz2ug&, ~12!

which must be obeyed at the minimum ofEtot .
In this paper we restrict ourselves to the consideration

a thin slab which extents essentially in two dimensions. T
is achieved by varying onlyvx andvy in the minimization
procedure while keepingvz fixed at a value which is, say
five times larger than the other two frequencies. In this c
onlyvx

2^gux2ug&5vy
2^guy2ug& can be fulfilled. Choosing dif-

ferent~fixed! values ofvz allows us to study the dependen
of the results on the slab thickness.

It is known from the two-dimensional isotropic harmon
oscillator that shell closing occurs for Fermions at the nu
e
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bers 2,6,12,20,30,. . . . At these numbers strong shell effec
manifest themselves as the most stable quantum config
tions. As a consequence, forvz@vx and B50 we must
expect the minimum ofEtot at the symmetric condition
vx5vy for such electron numbers. In the mean field a
proach, the breaking of spherical symmetry of the poten
gives rise to a deformed shape~Jahn-Teller effect33!. For
example, rotational spectra of nuclei and fine structure in
mass spectra of metallic clusters are explained as a co
quence of deformed equilibrium potentials of these syste
~see Refs. 4 and 8!. Therefore, for numbers between the sh
numbers a deformed configuration (vxÞvy) can be ex-
pected; we note that there are always two symmetric s
tions: vx.vy andvx,vy . The conditionvz@vx ensures
that we have a genuine two-dimensional problem in that
particle occupies a quantum mode in thez direction
(nz50). However, if the slab is made thicker (vz smaller!,
the occupation of the first mode (nz51) will occur at the top
end of the occupied levels, which could mean that we fi
then the symmetric minimum at 8,14,22,. . . , since two par-
ticles are occupying thez mode that has become availabl
The distinction between a slab that is sufficiently thin so
to prevent occupation of the first mode in thez direction, and
the slab which can accommodate the first mode is s
physically in the degeneracy of the two lowest normal mod
at B50. An estimate forvz

0 ~see Appendix B! which is the
frequency that just forbids the occupation of az mode is
given byvz

0>v'(A4N1123)/2 withv' being the average
of vx andvy .

IV. DISCUSSION OF RESULTS

The level spacing\v0 of the oscillator potential is deter
mined by equating the Fermi energy«F of a free electron gas
with the potential energyV(r )5 1

2m
!v0

2^r 2&. Assuming that
the radius of a quantum dot grows withN1/3, we have
^r 2&53/5R0

2N2/3. Consequently, we have chose
\v051.35N21/3eF , where the Fermi energy is obtaine
from the mean radiusR0 and effective mass of typical quan
tum dots; for GaAs,R05320 Å andm!50.067me yield
eF52 meV. Throughout the paper we use meV as ene
units, Å for length, and tesla for the magnetic field strengt

A. The spectrum

The three normal modes which can be discerned exp
mentally as excitation energies in FIR spectroscopy14 behave
in a distinctly characteristic way when the magnetic field
switched on. We recall that the values forvx and vy are
fixed by minimizingEtot . In Fig. 1 we display typical pat-
terns for two different electron numbers. In both cases,vz is
chosen so large thatn3 remains zero. Note that when th
magnetic field is switched on, the occupation numb
n1 ,n2 ,n3 refer to the normal modes and can no longer n
essarily be associated with anx, y, or z direction. The de-
generacy forN530 is clearly seen atB50, whereas three
distinct modes, corresponding to a deformed shape, are
at B50 for N516. The behavior is shown for values o
u500,100, and 300. For u50 the third mode~the highest at
B50) does not interact with the applied field, therefore the
is a level crossing at aboutB55. This becomes a level re
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55 16 313SIMPLE SHELL MODEL FOR QUANTUM DOTS INA . . .
pulsion foruÞ0 as now all modes are affected by the ma
netic field. As a consequence, theu dependence is strongl
pronounced for the two upper modes, while such a dep
dence is insignificant for the lowest mode. Here we find qu
naturally an interpretation of avoided level crossing obser
in the experiments14 associated with shape variations in
tilted magnetic field. We have also investigated thef depen-
dence of the normal modes, which is expected to beco
significant only for large values ofu; the differences are
small, they cannot be seen in Fig. 1. Below we return t
particular situation where thef dependence is important.

There are windows of magnetic field strength for whi
the normal modes are virtually constant. They are discern
especially at smaller values of the magnetic field stren
and are a reflection of shape changes. ForN530 the system
is rotationally symmetric atB50. At B.0.2 it changes into
a deformed shape (vxÞvy) which is associated with the
larger derivatives of the two lower normal modes. The sy
metric shape (vx5vy) is now being restored in a continuou
fashion whenB is further increased, the two normal mod
are virtually constant during this smooth transition. The co
stancy of the normal modes holds strictly only foru50 and
can be shown analytically; this is deferred to Appendix C.
B50.7, where the system has eventually regained its s
metric shape, a second shape transition occurs forB.0.7,
which is reflected by the second sharp decrease/increas
the first/second normal mode. This pattern continues, yet
less and less pronounced with increasing field strength
remains to be seen whether these shape changes can b
solved experimentally; finite temperature could disturb t
pattern.

FIG. 1. Normal mode frequencies as a function of magnetic fi
strength forN516 ~top! andN530 ~bottom!. Solid, dashed, and
dotted lines illustrate results foru500,100, and 300, respectively.
Values for\vz are 9.2 in all cases.
-
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Making the slab thicker, that is choosingvz smaller so as
to allow occupation of the next level of the third mode
(n351), invokes distinct changes which could possibly b
dissolved experimentally. In Fig. 2 we display the effect o
varying the slab thickness forN530. For clarity we focus on
smaller magnetic field strength and we display only resul
for u50. The top figure is to facilitate comparison; the re
sults are a repeat of Fig. 1~b!. In the middle figure the slab
thickness has been decreased in such a way that the th
mode becomes occupied when the field is switched on wh
it is unoccupied for zero field strength. As a consequenc
the shape transition occurs for smaller field strength, it
here directly associated with the switch fromn350 to
n351 which is induced by the magnetic field in this particu
lar case. The bottom figure refers to the case wheren351
throughout. The major effect is the lifting of degeneracy fo
BW 50. Since there are effectively only 28 particles occupyin

d

FIG. 2. Normal mode frequencies forN530 andu50. The slab
thickness increases from the top to the bottom.
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16 314 55W. D. HEISS AND R. G. NAZMITDINOV
the two lower modes, the confining potential is deform
With increasing field strength the potential changes int
symmetric shape which is attained at aboutuBW u50.55, where
it again undergoes a transition to a deformed shape in
with the discussion above. In this context we note that
increase ofvz beyond the values used in the results p
sented, which means an even thinner slab, pushes the u
level further away. A truly two-dimensional setting shou
therefore yield only two observable levels.

The effective occupation in the two lower modes can a
be demonstrated by usingN522 orN532. Forn351 this
yields the effective numbers 20 or 30 in the planary mot
with the expectation that the energy minimum is adopted
a symmetric shape. This is nicely confirmed and dem
strated in Fig. 3 where results forN532 are presented. Th
top and bottom figures illustrate the cases wheren350 and
n351, respectively. The interpretation is self-explanatory
ter the previous discussions.

In all the examples we see quantum mechanics nicel
work. Despite the simplicity of the model, these effec
should be seen in an experiment.

B. Dipole transitions

The actual observation of the three modes is achieved
electromagnetic transitions, for instance, in absorption
periments. Within the single-particle model considered h
transition matrix elements between the ground state
single-particle excitations are available for any sing
particle operator. The electric dipole transition is expected
feature prominently. We note that this transition rules ou

FIG. 3. Normal mode frequencies forN532 andu50. The slab
thickness increases from the top to the bottom.
.
a

e
n
-
per

o

n
r
-

-

at

y
-
e
d
-
o
a

spin flip, which is in line with our assumption about fixe
spin states. We interpret the three observed frequencies14 as
the three normal modes. If no photon polarization is m
sured in the initial and final states, the dipole transiti
strength is given by

S5 (
f ,mf ,mg

z^ f uE1ug& z2

5 (
f ,mf

~ z^ f uxug& z21 z^ f uyug& z21 z^ f uzug& z2!, ~13!

since the electric dipole operator is proprtional torW. Using
Eq. ~8! the matrix elements are given by a sum over t
appropriate entries of the matrixU. The selection rules allow
only transitions withnk→nk61 by which all accessible fina
states are determined. Note that the configuration$nk% is
different for different magnetic field strength. We list som
results in Table I. They refer tou50 and n350 for the
ground state. These figures do change as a function ou,
electron number, and slab thickness. The results demons
that there is a redistribution of dipole strength due to var
tion of these parameters and therefore of the shape of
system. This aspect could be the subject of further exp
mental analysis.

C. Mean square values

The calculation of matrix elements ofx2 andy2 which are
characterized by the shape of the effective confining pot
tial follows similar lines as for the dipole matrix elements.
Table II we give a few values forN530 andu50. Note the
strong deformation atB50.8. For larger field strengths th
mean values decrease, since the effective frequencies o
confining potential are augmented by the Larmor frequen
this effect also enhances a symmetric shape to an increa
extent for increasing field strength. We stress that these
ues all obey the condition Eq.~12!. For u.0 the pattern
remains essentially the same except for the fact that
shape is not symmetric for large field strength but deform
the degree of deformation depends onu. This is again un-

TABLE I. Dipole strengthsS for various values of the magneti
field. The associated frequencies are indicated next to the stren
The numbers are normalized to the lowest frequency transition
zero field.

S E1 S E2 S E3

B50.1 1.0 2.0 1.0 2.1 0.7 9.2
B51 0.7 1.2 1.2 3.5 0.7 9.2
B57 0.07 0.3 0.7 9.2 1.1 12.4

TABLE II. Mean square values of the extension in thex-y plane
of the quantum dot under variation of the magnetic field streng

A^gux2ug& A^guy2ug&

B50 1167 1167
B50.8 770 1773
B57 981 981
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55 16 315SIMPLE SHELL MODEL FOR QUANTUM DOTS INA . . .
derstood from the Larmor frequencies which are now diff
ent for the different directions. This argument is nicely co
firmed when usingu.0 andf5450; now the symmetry is
guaranteed by the choiceBx5By , and, in fact, the system
settles down to a symmetric configuration for large fie
strength. ForB57,u5300,f50 the mean values are 101
and 1069, respectively, while forf5450 they are both equa
to 1044. Note that such pattern for large field strength
independent of the particle number. For instance, irrespec
of the strongly deformed shape forN516 atB50, we find
at B57 also a symmetric shape forf5450 but a slight
deformation foru5300 andf50. Again we stress that th
figures depend on the slab thickness in the spirit of the p
vious paragraph.

V. SUMMARY

In view of the good qualitative agreement with expe
mental data14 we think that the model gives a fair accou
about the essential features of quantum dots on semicon
tor interfaces. The simplicity of the soluble model allows t
consideration of an arbitrarily oriented magnetic field. T
minimal energy requirement invokes a rearrangement of
quantum configuration which is manifested as shell effe
and hence shape changes of the quantum dot. By this me
nism we find an effectiveN dependence of the FIR frequen
cies in quantum dots~see Fig. 1!. An interesting aspect of the
model is the constancy of the FIR frequencies~the normal
modes! under the variation of the magnetic field as long
the potential is deformed. As is discussed in Sec. IV
system responds to the increasing magnetic field strengt
changing the confining potential towards a spherical sh
rather than by changing its energy. This is shown anal
cally in Appendix C foru50, where it strictly holds. It is
interesting to note that foruÞ0 the statement still holds to
-
-

s
ve

e-

uc-

e
ts
ha-

s
e
by
e
i-

high accuracy. As long as the shape of the effective con
ing potential is similar for different electron numbers, th
splitting of the FIR frequencies due to the magnetic fie
should be equally alike. When the tilting angleu is switched
on, all three modes are globally affected by the magne
field leading to an avoided level crossing or anticrossing.14 A
thorough experimental analysis of a variation of slab thic
ness, tilted angle, and strength of the magnetic field, wh
leads to the manifestation of quantum effects such as sh
variations for fixed and different numbers of electrons, co
assess the reality and limitations of the model.

Note added in proof.A report about recent experiment
which confirm essential aspects of this investigation, has
peared in S. Tarucha, D. G. Austing, T. Honda, R. J. van
Hage, and L. P. Kouwenhoven, Phys. Rev. Lett.77, 3613
~1996!.

ACKNOWLEDGMENTS

The authors acknowledge financial support from t
Foundation for Research Development of South Afr
which was provided under the auspices of the Russian/S
African Agreement on Science and Technology. R.G.N.
thankful for the warm hospitality which he experienced fro
the whole Department of Physics during his visit.

APPENDIX A:
NORMALIZATION OF THE EIGENVECTORS

The Hamilton function of Eq.~1! can be written in matrix
form

H5$pW ,rW%TH$pW ,rW%, ~A1!

where
H5S 1 0 0 0 2Vz Vy

0 1 0 Vz 0 2Vx

0 0 1 2Vy Vx 0

0 Vz 2Vy vx
21Vy

21Vz
2 2VxVy 2VxVz

2Vz 0 Vx 2VxVy vy
21Vz

21Vx
2 2VyVz

Vy 2Vx 0 2VxVz 2VyVz vz
21Vx

21Vy
2

D . ~A2!
We aim at the quantum mechanical form

H5$Q,Q†%THqm$Q,Q†%, ~A3!

where

Hqm5S 0 0 0 0 0 E1

0 0 0 0 E2 0

0 0 0 E3 0 0

0 0 E3 0 0 0

0 E2 0 0 0 0

E1 0 0 0 0 0

D . ~A4!

Exploiting the fact that
M5S 0 2I

I 0 DH, ~A5!

whereI is a 333 unit matrix, it follows that, up to normal-
ization factors, the matrixV5U21 can be written as

V5S 0 0 0 0 0 2 i

0 0 0 0 2 i 0

0 0 0 2 i 0 0

0 0 i 0 0 0

0 i 0 0 0 0

i 0 0 0 0 0

D UTS 0 2I

I 0 D . ~A6!
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This implies thatUTHU is in fact skew diagonal as in Eq
~A4!, and thereforeU can be normalized such tha
UTHU5Hqm . Using Eq.~8!, Eq. ~A3! follows.

APPENDIX B: ESTIMATE OF vz
0

Consider the energy of the three-dimensional oscillato

E5\vz~nz11/2!1\v'~n'11!5Ez1E' , ~B1!

where vx5vy5v'Þvz . The conditionvz@v' ensures
that we have a genuine two-dimensional problem in that
particle occupies a quantum mode in thez direction (nx
Þ0,nyÞ0,nz50), i.e., the first level with
(nx50,ny50,nz51) lies higher than the ones which a
filled for a given particle number. From the conditio
E0(nx5ny50,nz51)>E(nx1ny5n'Þ0,nz50), it follows

vz
0>n'v' . ~B2!

For a two-dimensional system the number of particles~two
particles per level! is A5(N11)(N12), where
N5nx1ny5n' is the shell number of the last filled she
Therefore, from the equations above it follows

A5~n'11!~n'12!, i.e., n'5
A4A1123

2
. ~B3!

Substituting Eq.~B3! into Eq. ~B2!, we obtain

vz
0>

v'

2
~A4A1123!. ~B4!

APPENDIX C: CONSTANCY OF THE NORMAL MODES

For u50 the normal modes are

E1
25 1

2 @vx
21vy

214Vz
2

1A~vx
22vy

2!218Vz
2~vx

21vy
2!116Vz

4#,

E2
25 1

2 @vx
21vy

214Vz
2

2A~vx
22vy

2!218Vz
2~vx

21vy
2!116Vz

4#, ~C1!

E35vz .

The last equation shows that the largest modeE3 is indepen-
dent of the magnetic field strength, sincevz is kept fixed.
From the first two equations we obtain a relation betwe
two sets of frequenciesv1x ,v1y andv2x ,v2y which yield
the same normal modes for different field strength. With
notationD25V2z

2 2V1z
2 .0, whereV1z andV2z refer to the

different field strengthsB1 andB2, we obtain from the re-
quirementsE1,2(B1)5E1,2(B2),

v2x
2 5 1

2 @v1x
2 1v1y

2 24D2

1A~v1x
2 2v1y

2 !228D2~v1x
2 1v1y

2 !116D4#,

v2y
2 5 1

2 @v1x
2 1v1y

2 24D2

2A~v1x
2 2v1y

2 !228D2~v1x
2 1v1y

2 !116D4#.

~C2!
o

n

e

To ensure thatv2x andv2y are real,D must obey the con-
dition

AD<
uv1x2v1yu

2
. ~C3!

This means that the normal modesmust change with the
magnetic field strength for a spherical shape (v1x5v1y) as
is established by the results. In turn, it is possible thatE1 and
E2 do not change under variation ofB as long asv1x
Þv1y . Further, if the magnetic field strength has increas
up to the value where condition~C3! becomes an equality
then the spherical shape (v2x5v2y) is attained. Recall tha
throughout this transition from deformed to spherical sha
the normal modes@Eq. ~C1!# have not changed.

It remains to be shown that this solution is in fact t
minimal energy solution. Foru50 the explicit expressions
for ^gux2ug& and ^guy2ug& read

^gux2ug&5
1

2m FS1

E1
1

S2

E2
1

vx
22vy

214Vz
2

E1
22E2

2 S S1

E1
2

S2

E2
D G ,

^guy2ug&5
1

2m FS1

E1
1

S2

E2
1

vy
22vx

214Vz
2

E1
22E2

2 S S1

E1
2

S2

E2
D G ,
~C4!

whereSk5( j (nk1
1
2) j denotes the sum over all occupie

single-particle levels. Suppose the condition Eq.~12! is ful-
filled for the confining frequenciesv1x andv1y for the value
of the magnetic fieldB1(V1z). Substituting Eqs.~C4! into
Eq. ~12! and taking into account thatv1xÞv1y , we obtain

FS1

E1
1

S2

E2
1

v1x
2 1v1y

2 14V1z
2

E1
22E2

2 S S1

E1
2

S2

E2
D G50. ~C5!

From Eq.~C2! it follows

v2x
2 1v2y

2 5v1x
2 1v1y

2 24~V2z
2 2V1z

2 !. ~C6!

Using the result of Eqs.~C4!, ~C5!, and ~C6!, and the fact
thatS1 andS2 remain the same, we obtain

v2x
2 ^g2ux2ug2&2v2y

2 ^g2uy2ug2&

5~v2x
2 2v2y

2 !FS1

E1
1

S2

E2
1

v2x
2 1v2y

2 14V2z
2

E1
22E2

2

3S S1

E1
2

S2

E2
D G

5~v2x
2 2v2y

2 !FS1

E1
1

S2

E2
1

v1x
2 1v1y

2 14V1z
2

E1
22E2

2

3S S1

E1
2

S2

E2
D G[0 ~C7!

whereug2& denotes the ground state referring to the frequ
ciesv2x ,v2y and the magnetic fieldB2. This means that Eq
~12! is fulfilled.
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