PHYSICAL REVIEW B VOLUME 55, NUMBER 24 15 JUNE 1997-II

Simple shell model for quantum dots in a tilted magnetic field

W. D. Heiss
Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa

R. G. Nazmitdinov
Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
(Received 10 June 1996; revised manuscript received 11 Novembey 1996

A model for quantum dots is proposed, in which the motion of a few electrons in a three-dimensional
harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is
studied. The spectrum and the wave functions are obtained by solving the classical problem. The ground state
of the Fermi system is obtained by minimizing the total energy with regard to the confining frequencies. From
this a dependence of the equilibrium shape of the quantum dot on the electron number, the magnetic field
parameters, and the slab thickness is found.
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[. INTRODUCTION dipole resonance frequencies for the interacting system
should be exactly the same as those of the noninteracting
Recent progress in semiconductor technology now allowsystem and be independent of the electron-electron interac-
the fabrication of artificially structured atoms in semiconduc-tion.
tors called quantum dots, in which electrons are trapped in a A full understanding of the experimental results needs an
small localized region of space of a few hundred angstromsanalysis of many-body effects. Microscopic calculations us-
In these nanostructures the electron wavelength is of thag Hartree approximation for electron numbérs: 10 (Ref.
same length scale as the confinement so that quantum effe@8) neglected the exchange and correlation effects. The di-
are important, which results in the quantization of single-rect numerical diagonalizatiéhhas been performed only for
electron energy levels with excitation energy of several meMthree- and four-electron systems. The more complicated
(see, for review, Refs. 143A prominent feature of a Fermi resonance structure observed in Refs. 11 and 14 raised the
system which is confined to a finite region of space is thequestion as to the validity of Kohn’s theorem for quantum
emergence of shell effects in the single-particle spectrum adots. In order to describe the experimental data it was as-
is well known in nuclear physiésand more recently for large sumed that, in real samples, there is a deviation of the con-
metallic clusters(Refs. 5—8 and references thepeiin the  fining potential from the parabolic form, and different cor-
present work we address this problem to mesoscopic systemsctions have been introduc&t?® Also, the important role
like quantum dots which contain a small number of elec-of the combined effect of the Coulomb forces and spin inter-
trons. action leading to a redistribution of single-electron levels
The electron states of few-electron quantum dots subwas demonstrated for the whole energy spectrum, especially
jected to a strong magnetic field have been studied exterfer the low-lying single-electron states in the homogeneous
sively in Refs. 9—-14. The electrodynamic response of amagnetic fiel?°*=28 The ground state transitions predicted in
interacting electron system in the presence of a confininghis way have been observed experimentilly.
potential is expected to be dominated by the many-body ef- It seems therefore natural to assume that the properties of
fects of the electrons. Sikorski and Metkound experimen-  the electron states close to the Fermi level are determined by
tally the surprising result that the resonance frequencies ian effective mean field. It is true that the external field is the
the magneto-optical spectrum are independent of the numbeominant part of the mean field, and thus the effective con-
of electrons in the quantum dot. The systems which are exfining potential should reflect the main features of it. Yet it
perimentally realized extent much less in the théirection  must also contain the effect of the interplay between Cou-
than in thex-y plane. This has led to a simple description of lomb forces and the external fields which are governed by
the far-infrared resonand@IR) frequencie® " as the en- the charges in the adjacent layers and gates and the magnetic
ergy levels of a two-dimensional harmonic oscillator poten-field. Due to these considerations, we assume that the con-
tial in the presence of a magnetic fi¢ftlt was interpreted as fining potential should also take into account the changes
a consequence of Kohn's theorErwhich has been general- that affect the properties of the single-electron states owing
ized for a parabolic potentidf1"2°-22According to this to a variation of the homogeneous magnetic field as well as
theorem, the total Hamiltonian can be divided into two partsthe slab thickness.
the center-of-mass motioflCM) and the relative motion Based on the results discussed in Ref. 29 we conclude that
which contains the electron-electron interaction. Since thehe harmonic oscillator potential can serve as one of the phe-
radiation of an external electric dipole field couples only tonomenological effective confining potentials in real samples,
the CM motion and does not affect the relative motion, theat least for small electron numbers. In this paper we study a
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simple model of a three-dimensional quantum dot in an aryith A=[Bxr]/2 being the vector potential associated with
b|tr.ar|Iy oriented magnetic field for_ electron num_bers fo_r the homogeneous magnetic fidhd The model does not ex-
which the assumption of a parabolic type potential is still yicity take into account spin degrees of freedom. In other
physically reasonable. Our procedure invokes an effectivg,ords, the system is assumed to be in a fixed spin state of an
dependence of the parameters of the confining potential ogrpitrary degree of polarization. Only the orbital motion is
the magnetic field. In this way, we accommmodate the dif-affected by the magnetic field. Using quantum mechanical
ferent mechanisms mentioned above and we allow the sygquations of motion Yift calculated resonance frequencies
tem to adjust and change its shape under variation of thfor this model. Our approach is similar in spirit to Ref. 21,
applied magnetic field and the particle number. We assumbut we first solve the classical problem, from which all quan-
that the electron system behaves like an isolated yet confinegdm mechanical results easily follow. In contrast to Refs. 21
droplet (see also discussion in Ref. 3@ne of the major and 22 where the FIR frequencies are completely determined
results is a dependence of the single-electron states on tiigy the external potential, the effective mean field responds in
slab thickness. Such a dependence shows in the FIR freque@dr approach to the change of the magnetic field and particle
cies on which our analysis is focused. We also report orfmumber and thus affects the properties of single-particle ex-
transition strengths in absorption experiments and on théitations. We determine the frequencies, i=x,y,z by
spatial extension of the confining potential in a quantum dotMinimizing the total energy for a given number of electrons

Preliminary results have been reported in Ref. 31. N. In this way we allow the system to adjust the shape of the
confining potential under the influence of the applied mag-
Il. THE MODEL netic field and the particle number.

The classical equations of motion for the Cartesian com-
We consider the Hamiltonian faX noninteracting elec- ponents of the momentum and position coordinates read
trons moving in an effective mean field, i.e., a three-

dimensional harmonic oscillator, d(p _ p )
N N dt F F ,
2m < Pim g 2/ yYi T @zZp), wherep andr are combined to the six-dimensional column

(1)  vector denoted below &®,r}. The matrixM is given by

0 -0, 0, -w;-0-07 2,9, 0,0,
Q, 0 -0, 2,0, —w;— 002 0,0,
Mo -0, Q, 0 0,0, 0,0, —0;-07-07 | @
1 0 0 0 -Q, Q,
0 1 0 Q, 0 -Q,
0 0 1 -Q, Q, 0

where the notatiorﬁzeé/(ch) is used. Denoting the ei- not symmetric, hence neithgd nor V are unitary, yet
genvalues ofM by *iE,, k=1,2,3, we obtain from the V=i"1). We denote the column vectors tfby u®, they

form M=UDYV the classical solution obey the equations
{B(1),F (1)} =Uexp( DY) V{p(0),F(0)}, @ (MHIEDUN=0, k=123,
where D=diag(—iE,,—iE,,—iE3,iE3,iE;,iE;). While (M—iE;_ Hu®¥=0, k=456, (6)

the classical orbits are of little interest in the present context, . .
the eigenmode&, and the system of eigenvectors listed in Which can be solved as an inhomogeneous system by choos-

the matrix{ are essential for the quantum mechanical treati"d, for instance , the sixth compqne_ntudf() equal to unity
ment. and then determining the normalization as described in Ap-

The eigenmodes which are usually referred to as the noRendix A. With the proper normalization the classical Ha_mil-
mal modes are obtained from the secular equation, ton function of Eq.(1) is cast into the quantum mechanical
form

defEl— M|=0, 5

> 1
with | denoting the six-dimensional unit matrix. The above H:; ﬁEk(QleJr 5)- ™
equation turns out to be a third order polynomialGf and
has also been found by Ref. 21. The column vectoig afe  The normal mode boson operatd@$ and Q are related to
the (complex right hand eigenvectors oY1 (note thatM is  the quantized version of the classical coordinates by
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5 =1 t 8 bers 2,6,12,20,3Q,. . . At these numbers strong shell effects
{p.r}={Q.,Q"}, 8 . .

R o manifest themselves as the most stable quantum configura-
where we denote byQ,Q'} a cquan V$Ct0Tf which is the tions. As a consequence, fas,>w, and B=0 we must
transpose of the vecto;,Q;,Q3,Q3,Q2,Q;). The prop-  expect the minimum ofE,, at the symmetric condition
erties of the matrix i/ guarantee the commutator w,=w, for such electron numbers. In the mean field ap-

[Qk,Ql,]=iﬁ Sk a@s a consequence Pk;,p;l=i% & ;. proach, the breaking of spherical symmetry of the potential
We note that Eq(7) is the exact quantized equivalent of Eq. gives rise to a deformed shag@ahn-Teller effecf). For
D). example, rotational spectra of nuclei and fine structure in the
mass spectra of metallic clusters are explained as a conse-
IIl. QUANTUM ENERGY MINIMIZATION gquence of deformed equilibrium potentials of these systems

_ _ _ (see Refs. 4 and)8Therefore, for numbers between the shell
The total energy of aM-particle system associated with numbers a deformed configurationw,(+ w,) can be ex-

the Hamiltonian Eq(7) is given by pected; we note that there are always two symmetric solu-
tions: > wy, and w,<w,. The conditionw,> w, ensures

Eo= E RE (Nt 1/2); . (9) that_we have a genuine two—dlmensmna_l problem in _that no
K particle occupies a quantum mode in tle direction

(n,=0). However, if the slab is made thickew{ smalle,
the occupation of the first mode{=1) will occur at the top
end of the occupied levels, which could mean that we find
then the symmetric minimum at 8,14,22,. , since two par-
Sicles are occupying the mode that has become available.
The distinction between a slab that is sufficiently thin so as
o prevent occupation of the first mode in thdirection, and

e slab which can accommodate the first mode is seen

The occupation numbers, are the eigenvalues QEQK and

take the values 0,1,2.. . . Theground state is determined by
filling the single-particle levelS,AE, (N +1/2) from the

bottom. We take care of the electron spin only in obeying th
Pauli principle which allows two particles in one level. It is
clear that different sets of normal modes yield different set
of occupation numbers. The normal modes depend on t

osciltor feguencies. From our assampton hat the systerYScall inthe degeneracy ofthe two lowest normal modes
q . P YSIeI B—0. An estimate forw? (see Appendix Bwhich is the

adjusts itself under the influence of the magnetic field byf that iust forbids th i tanode i

minimizing E;, a variation of the magnetic field strength r_equencyo at Just forbids the occtipation olzamode 15
leads to a corresponding change of the confining effectivdVen PY®;=w, (VAN+1-3)/2 withw, being the average
potential which is given by the oscillator frequencies. In°f @x andoy.

other words, for a given magnetic field, we must seek the

minimum of E,,; under variation of the oscillator frequen- IV. DISCUSSION OF RESULTS

cies. The variation cannot be unrestricted as the confining The level : f th illat tential is deter-
potential encloses a fixed number of electrons, and assuming. € leve Spf?c'”@“’o orthe oscillator potential IS deter
that the electron density does not change we are led to rﬁlned by equating the Fermi energy of a free electron gas

. . _ 1% 2/.2 :
fixed volume constraint which translates into the subsidian)Vith the potential energy/(r) =zm"wo(re). Alsgummg that
condition w,wyw,= wg with wy fixed. Denoting the the radius of a quantum dot grows witk™, we have

Lagrange multiplier by\ we solve the variational problem (r2>:3/5R§N2’3. Consequently, ~we have  chosen
hwo=1.3N"Y3¢-, where the Fermi energy is obtained
5(<g|H|g>_)\wxwywz):01 (10) from the mean radiuR, and effective mass of typical quan-
tum dots; for GaAsR,=320 A andm*=0.067n, yield
ex=2 meV. Throughout the paper we use meV as energy
units, A for length, and tesla for the magnetic field strengths.

where|g) denotes the ground state as described above.
From Eq.(10) we obtain, after differentiation with respect
to the frequencies and using Feynman’s theotem,

d dH A. The spectrum
d—wk(g|H|g>=<g‘ d_wk‘g> (1 The three normal modes which can be discerned experi-
th ful diti mentally as excitation energies in FIR spectrosédpghave
€ usetul condition in a distinctly characteristic way when the magnetic field is
w§<g|x2|g)=w§<g|y2|g>=w§(g|zz|g), 12 switched on. We recall that the values fey and w, are

fixed by minimizingE,. In Fig. 1 we display typical pat-
which must be obeyed at the minimum B§;. terns for two different electron numbers. In both casgsis

In this paper we restrict ourselves to the consideration othosen so large that; remains zero. Note that when the
a thin slab which extents essentially in two dimensions. Thisnagnetic field is switched on, the occupation numbers
is achieved by varying only, and w in the minimization  n,,n,,n; refer to the normal modes and can no longer nec-
procedure while keeping, fixed at a value which is, say, essarily be associated with any, or z direction. The de-
five times larger than the other two frequencies. In this casgeneracy folN=230 is clearly seen aB=0, whereas three
only w3(g|x?|g)= w§<g|y2|g> can be fulfilled. Choosing dif- distinct modes, corresponding to a deformed shape, are seen
ferent(fixed) values ofw, allows us to study the dependence at B=0 for N=16. The behavior is shown for values of
of the results on the slab thickness. 6=0°10", and 36. For =0 the third modethe highest at

It is known from the two-dimensional isotropic harmonic B=0) does not interact with the applied field, therefore there
oscillator that shell closing occurs for Fermions at the numis a level crossing at abol=5. This becomes a level re-
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E[meV]

; BlTesla]

1 02 3 4 5 6 1 B(Tesla] P . . ; B[Tesla]

FIG. 1. Normal mode frequencies as a function of magnetic fielc
strength forN=16 (top) and N=30 (bottom. Solid, dashed, and
dotted lines illustrate results fa#=0°,10°, and 38, respectively.
Values forfiw, are 9.2 in all cases.

pulsion for ##0 as now all modes are affected by the mag-
netic field. As a consequence, tRedependence is strongly
pronounced for the two upper modes, while such a deper
dence is insignificant for the lowest mode. Here we find quite
naturally an interpretation of avoided level crossing observel
in the experimenté associated with shape variations in a
tilted magnetic field. We have also investigated #hdepen- —\
dence of the normal modes, which is expected to becom
significant only for large values of; the differences are 0.5 1 1.5 2 2.5 3 BlTesla]
small, they cannot be seen in Fig. 1. Below we return to ¢
particular situation where thé dependence is important.

There are windows of magnetic field strength for which FIG. 2. Normal mode frequencies fbr=30 and¢=0. The slab
the normal modes are virtually constant. They are discernibléickness increases from the top to the bottom.
especially at smaller values of the magnetic field strength
and are a reflection of shape changes. IRer30 the system
is rotationally symmetric aB=0. At B>0.2 it changes into

Making the slab thicker, that is choosiag smaller so as
to allow occupation of the next level of the third mode

a deformed shapea(,# w,) which is associated with the (r_13=1), invoke_s distinct changes WhiCh. could possibly be
larger derivatives of the two lower normal modes. The sym-.dissolved experimentally. In Fig. 2 we display the effect of
metric shape ¢, = w,) is now being restored in a continuous varying the slab_th|pkness fov=30. For clar_lty we focus on
fashion whenB is further increased, the two normal modes Smaller magnetic field strength and we display only results
are virtually constant during this smooth transition. The confor 6=0. The top figure is to facilitate comparison; the re-
stancy of the normal modes holds strictly only #+0 and ~ Sults are a repeat of Fig(t. In the middle figure the slab
can be shown analytically; this is deferred to Appendix C. Atthickness has been decreased in such a way that the third
B=0.7, where the system has eventually regained its syrrf-m_)de becom_es occupied vyhen the field is switched on while
metric shape, a second shape transition occurBfe0.7, itis unoccup|ed.f.or zero field strength. As a consequence,
which is reflected by the second sharp decrease/increase ¥ shape transition occurs for smaller field strength, it is
the first/second normal mode. This pattern continues, yet it i§ere directly associated with the switch from=0 to
less and less pronounced with increasing field strength. ®s=1 which is induced by the magnetic field in this particu-
remains to be seen whether these shape changes can be df§-case. The bottom figure refers to the case wimgre1
solved experimentally; finite temperature could disturb thisthroughout. The major effect is the lifting of degeneracy for
pattern. B=0. Since there are effectively only 28 particles occupying
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E[meV] TABLE I. Dipole strengthsS for various values of the magnetic
field. The associated frequencies are indicated next to the strengths.
The numbers are normalized to the lowest frequency transitions at
zero field.

B=0.1 1.0 2.0 1.0 2.1 0.7 9.2
4 B=1 0.7 12 12 3.5 0.7 9.2
B=7

0.07 0.3 0.7 9.2 11 12.4

0.5 1 1.5 2 2.5 3 BlTesla] spin flip, which is in line with our assumption about fixed

spin states. We interpret the three observed frequetiaiss
the three normal modes. If no photon polarization is mea-

E[meV] sured in the initial and final states, the dipole transition
strength is given by

5= > KflELg)P

6 Mg ,m,,
4 =f§) (KXl P+ KFlylay P+ flzlg)P),  (13)
;Mg

since the electric dipole operator is proprtionaIFtoUsing

Bl[Tesla] Eqg. (8) the matrix elements are given by a sum over the
appropriate entries of the matiix The selection rules allow
only transitions withn,—n,* 1 by which all accessible final
states are determined. Note that the configurafiog is
different for different magnetic field strength. We list some
. o results in Table I. They refer t#d=0 andn;=0 for the
the two lower modes, the confining potential is deformed.ground state. These figures do change as a functios, of
With increasing field strength the potential changes into &iectron number, and slab thickness. The results demonstrate
symmetric shape which is attained at ab®jt=0.55, where that there is a redistribution of dipole strength due to varia-
it again undergoes a transition to a deformed shape in lindon of these parameters and therefore of the shape of the
with the discussion above. In this context we note that arsystem. This aspect could be the subject of further experi-
increase ofw, beyond the values used in the results pre-mental analysis.
sented, which means an even thinner slab, pushes the upper
level further away. A truly two-dimensional setting should C. Mean square values
therefore yield only two observable levels. ) ] —

The effective occupation in the two lower modes can also = 1€ calculation of matrix elements o andy” which are
be demonstrated by usinfg=22 or N=32. Fornz=1 this qharacterlze_d by the shape of the_effectlve (_:onfmlng poten-
yields the effective numbers 20 or 30 in the planary motiontia! follows sn_mlar lines as for the dipole matrix elements. In
with the expectation that the energy minimum is adopted for! @Ple Il we give a few values fdi=30 and6=0. Note the
a symmetric shape. This is nicely confirmed and demonstrong deformation aB=0_.8. For larger _fleld strengths the
strated in Fig. 3 where results fof=32 are presented. The mean _values de.crease, since the effective frequencies of the
top and bottom figures illustrate the cases wheye 0 and cqnﬁnlng potential are augmented by the Larmor fr(_aquency;
ns=1, respectively. The interpretation is self-explanatory af-this effect .also en'hant_:es a symmetric shape to an increasing
ter the previous discussions. extent for increasing fle_zl_d strength. We stress that these val-

In all the examples we see quantum mechanics nicely d{€S all obey the condition Eq12). For 6>0 the pattern

work. Despite the simplicity of the model, these effects’®mains essentially the same except for the fact that the
should be seen in an experiment. shape is not symmetric for large field strength but deformed;

the degree of deformation depends @nThis is again un-

0.5 1 1.5 2 2.5

FIG. 3. Normal mode frequencies fidi=32 andg=0. The slab
thickness increases from the top to the bottom.

B. Dipole transitions TABLE Il. Mean square values of the extension in thg plane
The actual observation of the three modes is achieved b?/f the quantum dot under variation of the magnetic field strength.
electromagnetic transitions, for instance, in absorption ex- o T
periments. Within the single-particle model considered here (ghle) {alylo)
transition matrix elements between the ground state ang=0 1167 1167
single-particle excitations are available for any single-a=0.8 770 1773
particle operator. The electric dipole transition is expected tqg =7 981 981

feature prominently. We note that this transition rules out a
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derstood from the Larmor frequencies which are now differ-high accuracy. As long as the shape of the effective confin-
ent for the different directions. This argument is nicely con-ing potential is similar for different electron numbers, the
firmed when usingg>0 and ¢=45"; now the symmetry is splitting of the FIR frequencies due to the magnetic field
guaranteed by the choid®,=B,, and, in fact, the system should be equally alike. When the tilting anglés switched
settles down to a symmetric configuration for large fieldon, all three modes are globally affected by the magnetic
strength. ForB=7,6=30°,#=0 the mean values are 1015 field leading to an avoided level crossing or anticrossfha.

and 1069, respectively, while fab=45° they are both equal thorough experimental analysis of a variation of slab thick-
to 1044. Note that such pattern for large field strength isness, tilted angle, and strength of the magnetic field, which
independent of the particle number. For instance, irrespectivieads to the manifestation of quantum effects such as shape
of the strongly deformed shape fbi=16 atB=0, we find  variations for fixed and different numbers of electrons, could
at B=7 also a symmetric shape fap=45" but a slight assess the reality and limitations of the model.

deformation ford=30° and $=0. Again we stress that the Note added in proofA report about recent experiments,
figures depend on the slab thickness in the spirit of the prewhich confirm essential aspects of this investigation, has ap-

vious paragraph. peared in S. Tarucha, D. G. Austing, T. Honda, R. J. van der
V. SUMMARY Hage, and L. P. Kouwenhoven, Phys. Rev. L&, 3613
(1996.

In view of the good qualitative agreement with experi-
mental dat¥ we think that the model gives a fair account
about the essential features of quantum dots on semiconduc- The authors acknowledge financial support from the
tor interfaces. The simplicity of the soluble model allows theFoundation for Research Development of South Africa
consideration of an arbitrarily oriented magnetic field. Thewhich was provided under the auspices of the Russian/South
minimal energy requirement invokes a rearrangement of thfrican Agreement on Science and Technology. R.G.N. is
guantum configuration which is manifested as shell effectshankful for the warm hospitality which he experienced from
and hence shape changes of the quantum dot. By this mechige whole Department of Physics during his visit.
nism we find an effectivé\ dependence of the FIR frequen-
cies in quantum dot&ee Fig. 1 An interesting aspect of the APPENDIX A:
model is the constancy of the FIR frequencig®e normal NORMALIZATION OF THE EIGENVECTORS
modes under the variation of the magnetic field as long as
the potential is deformed. As is discussed in Sec. IV the The Hamilton function of Eq(1) can be written in matrix
system responds to the increasing magnetic field strength tprm
changing the confining potential towards a spherical shape
rather than by changing its energy. This is shown analyti- H={§,F}TH{5,F}, (A1)
cally in Appendix C for6=0, where it strictly holds. It is
interesting to note that foé+0 the statement still holds to where

ACKNOWLEDGMENTS

1 0 0 0 -Q, Q,
0 1 0 Q, 0 -Q,
0 0 1 -Q, Qy 0
"=l o 0, -0, o2+0202  -0,0, ~0,0, (A2)
-Q, 0 0O -0,0, e+t -0,0,
Q -9, 0 -0,0, -0,0, W+ QI+0]
|
We aim at the quantum mechanical form 0 —I
- : M= I 0 H, (A5)
where wherel is a 3 3 unit matrix, it follows that, up to normal-
0 0 0 0 0k ization factors, the matriy=4/"1 can be written as
0 0 0 0 E, O .
0 00 0O O ~—i
0 0 0 & 00 000 O —i O
_ A4 _
Ham=| o ¢ E; 0O 0 O (A4) ,
o E. 0 0 0 o 0 00 -i O O N —1 6
2 Y=o o i o o|Yl o O
E, 0O 0 0 O O .
N 0 i 0 0 O
Exploiting the fact that i 0 o0 0 0
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This implies that/"HU is in fact skew diagonal as in Eq. To ensure thatw,, and w5, are real, A must obey the con-
(A4), and thereforel/ can be normalized such that dition
UHU=Hqm. Using Eq.(8), Eq. (A3) follows.

|w1x_ w1y|
APPENDIX B: ESTIMATE OF @? VA= — s (C3)

Consider the energy of the three-dimensional oscillator, This means that the normal modesust change with the

E=fw,(n,+1/2+fw, (n, +1)=E,+E,, (Bl  Magnetic field strength for a spherical shapg,=w,,) as
- is established by the results. In turn, it is possible thaand

where w,=wy=w, #w,. The conditionw,>w, ensures E, do not change under variation & as long aswy
that we have a genuine two-dimensional problem in that nax ,, . Further, if the magnetic field strength has increased
particle occupies a quantum mode in thedirection )y  yp to the value where conditiof€3) becomes an equality,
#0ny#0n,=0), e, ~the first level ~ with then the spherical shapef,=w,,) is attained. Recall that
(nk=0,n,=0n,=1) lies higher than the ones which are throughout this transition from deformed to spherical shape
filled for a given particle number. From the condition the normal mode§Eq. (C1)] have not changed.
E°(ny=n,=0,n,=1)=E(n,+ny=n, #0,n,=0), it follows It remains to be shown that this solution is in fact the
minimal energy solution. Fo#=0 the explicit expressions

0
V2= MLOL - B2) " for (glx?g) and(g|y’|g) read
For a two-dimensional system the number of parti¢tes
particles per level is A=(N+1)(N+2), where , 1[5, 3, oi-w;+40%(3, 3,
N=n,+ny=n, is the shell number of the last filled shell. (glx“lg)y= om E_+E_+ T E“E2 |\E. B,/
Therefore, from the equations above it follows ! 2 o2 ! 2
JaA+1-3 1[3; 3, oj-ei+407(3; 3,
A=(n,+1)(n,+2), ie,n=—>7>——. (B3 <g|y2|g>=%{E—l+E—2+yEiT(E—l—E—2) ,
(CH

Substituting Eq(B3) into Eq. (B2), we obtain

where % = (n+ %)j denotes the sum over all occupied
wd= ﬂ( [4A+1-3). (B4)  Single-particle levels. Suppose the condition Exp) is ful-
2 filled for the confining frequencies;, andw,, for the value
of the magnetic fieldB,({2;,). Substituting Eqs(C4) into
APPENDIX C: CONSTANCY OF THE NORMAL MODES Eq. (12) and taking into account that,,# w4, , we obtain

For 6=0 the normal modes are

&+é+wix+wiy+4ﬂiz 33, _o. (€5
E3=1[wl+ wl+402 E: E EI-E2 \Ex Epf] ©
+\(0F— 05)2+ 80 (0l + ) +1607], From Eq.(C2) it follows
Ei=3[wi+wi+407 Wt 03y = 0 02— 405, 0F)., (C6)

— V(0 0))?+80%(w+ w)) +16Q;], (CD Using the result of Eqs(C4), (C5), and (C6), and the fact
that>; and>, remain the same, we obtain
E3: (OF®

The last equation shows that the largest mEgés indepen- w3,(92|x?|g2)— wgy(gZ|y2|gz>
dent of the magnetic field strength, sinee is kept fixed.
From the first two equations we obtain a relation between
two sets of frequencies i, , w1, and wy,, w5, Which yield
the same normal modes for different field strength. With the
notationA?=Q3,— 02,>0, where();, and(),, refer to the x(é _é”
different field strength®8, and B,, we obtain from the re- E: B
quirementsE; A(B;) =E; AB,),

_ 2 2 21 22 w§x+wgy+4ﬂgz
= (w5~ w3y) E—1+E—2+W

2 _ 17,2 2 =(cu2 — w? ) &—Fé —wfx+w§y+4ﬂiz

w3=7 [0+ 0l —4A? 2" Y E TE, EZ—E3

+ V(0 01)*—8A%(wf, + w])) +16A7], S, 3,

E E/|7° €
1 2

w§y=%[wix+ wiy—4A2

— (0% — 02 )7 —8A%(w’ + 0l 16A%] where|g2) denotes the ground state referring to the frequen-

1x 1y 1x 1y :

cieswy, ,wpy and the magnetic field,. This means that Eq.
(C2) (12 is fulfilled.
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