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Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells
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Instituto Nacional de Pesquisas Espaciais, CP515, 12201 Sa˜o Josédos Campos, Sa˜o Paulo, Brazil
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~Received 12 November 1996!

The spin-orbit splitting in the dispersion relation for electrons in III-V semiconductor asymmetric quantum
wells is studied within the standard envelope-function formalism starting from the eight-band Kane model for
the bulk. The Rashba spin-orbit splitting in the different subbands is obtained for both triangular and square
asymmetric quantum wells. It is shown, for example, that the Rashba splitting in AlAs/GaAs/Ga12xAl xAs
square quantum wells is of the order of 1 meV and presents a maximum as a function of the well width. The
splitting of the excited subband in square and triangular quantum wells is shown to be bigger and smaller than
the splitting in the first subband, respectively. A simple single-band approach, employing spin-dependent
boundary conditions and approximate coupling parameters, is also introduced and its range of validity as-
sessed. The discussion presented clarifies the treatment of abrupt interfaces, the Ando argument against the
splitting, and the use of common approximations such as neglecting the barrier penetration or the energy-
dependent corrections to the parameters. Good agreement is found with available experimental data.
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I. INTRODUCTION AND MOTIVATIONS

Contrary to the case of holes, the existence of a spin-o
splitting for the conducting electrons confined in semico
ductor heterostructures has been a controversial issue
more than 20 years.1–4 New experiments probing spin
dependent static and dynamic properties of these struct
have recently renewed the interest on the problem, whic
also known as the zero-field spin-splitting problem.5–10How-
ever, questions like the so-called Ando argument, the rol
the interface electric field or the treatment of abrupt int
faces, and the connection between the phenomenolog
Rashba and the multiband effective mass Hamiltonians h
not been totally clarified yet.8,9,11,12

It is now recognized that the splitting for asymmetr
III-V semiconductor quantum wells presents two distin
contributions. One contribution is due to the inversion asy
metry of the bulk host material and is well known.13 The
other one, which is the controversial one, comes from
asymmetry in the macroscopic confining potential and is
scribed by the so-called Rashba term.14 This term, derived
from general symmetry arguments, has been used to inte
the results of different experiments with asymmetric qu
tum wells.14–16 There are many reasons to believe that t
term gives the dominant contribution to the splitting in t
case of narrow-gap heterostructures.16–20 In general, though,
both terms are present and their interplay brings abou
characteristic anisotropy of the spin-orbit splitting.21,8Differ-
ent groups have recently suggested that the Rashba te
important also in GaAs heterostructures, where it was
lieved to be negligible.8–10,20 However, comparison of the
experimentally determined coupling parameters with mic
scopic theory has not been easy.8,11 In the following, we
present a study of the problem in the standard envelo
function approximation aimed at bridging the gap betwe
550163-1829/97/55~24!/16293~7!/$10.00
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the experiments and the Rashba model and at clarifyin
few controversial theoretical arguments.

The spin-orbit coupling parameter in the Rashba term
usually taken to be proportional to the average effective e
tric field ^E&5^2(1/e)(d/dz)(Ec1V)&, where Ec stands
for the conduction-band-edge profile,V for the space charge
and/or applied electrostatic potential energy, andz is the
growth direction. This is, however, not correct. It is easy
see that the band-edge profileEc and the electrostatic poten
tial V do not play a similar role. As will be shown below, i
general the Rashba spin-orbit term in a heterostructure
two different contributions. The introduction of two couplin
parameters, instead of one, is helpful. A detailed calculat
of the splitting in triangular~as in a heterojunction! and
square~as when left and right barrier are different! asymmet-
ric quantum wells, together with an analysis of simple a
proximations, will help to illustrate the difference betwee
the two contributions to the Rashba term in a semicondu
quantum well. The difficulties behind the determination
the Rashba spin-orbit coupling parameter are closely c
nected with the controversy around the breakdown of And
argument against the splitting.

In view of the first experimental attempts to estimate t
spin-orbit splitting in the conduction subband of narrow-g
semiconductor heterostructures, which led to values m
smaller than those predicted theoretically,2,3 a qualitative ar-
gument was put forward by Ando and attracted much att
tion @see footnote in Ref. 4#. It questioned the first calcula
tions and seemingly justified the early experimental resu
The argument points out essentially that the splitting—sin
it results from the relativistic effect in which a moving ele
tron with nonzero wave vectork sees in its reference fram
the interface electric field transformed into a magne
field—should be very small~zero in first-order perturbation
theory!: the reason being the fact that the confined electr
16 293 © 1997 The American Physical Society



d
ts
h
-
e
is
t
il
th

ss
h
a
te
-

e
r-

e-
ng
ov
ttin
th
ec

ar
he

V
ri
in
riz
tio
e

en
i
e-
ria
er
in
e
ve
ur

if
av

to

rly

a
of
lti-
e

n,

ion

n-
as
d
the
rip-
ith

t to
. A
ing
10.
20,
e
he

e-
t
t

16 294 55de ANDRADA e SILVA, LA ROCCA, AND BASSANI
see an average effective electric field~or force! equal to zero.
Such explanation was later criticized as oversimplifie

partly in view of subsequent more accurate measuremen
which large splittings were observed with different tec
niques and in different structures.8,15–18It has then been sug
gested that the Ando argument breaks down because th
erage effective electric field felt by a localized electron
nonzero when the effective mass is not constant across
interface.19,22 The usual unperturbed effective-mass Ham
tonian allowing for changes in the effective mass along
growth direction, reads

H52
\2

2

d

dz

1

m* ~z!

d

dz
1Ec~z!1V~z!, ~1!

wherem* (z) is the conduction-band-edge effective ma
which changes from semiconductor to semiconductor. T
discontinuity in the effective mass leads at the interface to
impulsive force. The force balance for the confined sta
which is given by^@H,pz#&50, leads then to a nonzero ex
pectation value for the effective electric field@i.e., ^E&5
^2(1/e)(d/dz)(Ec1V)&Þ0]. But this did not solve the
problem because the evaluation of the interface electric fi
is not unambiguous;8,11 some confusion has arisen, in pa
ticular, when trying to argue whether to useEc or Ev in the
band-edge discontinuity contribution toE ~Ev standing for
valence-band edge!.

It is shown below that Ando’s argument fails firstly b
cause there is a spin-orbit correction coming from a cha
in the boundary conditions which goes beyond the ab
approach; and secondly because the main spin-orbit spli
term in the conduction band due to the interaction with
valence band is not simply proportional to the effective el
tric field.

Next, after presenting in some detail the stand
envelope-function treatment of the spin-orbit splitting in t
conduction subband~Sec. II!, we show results~Sec. III! for
the Rashba splitting in both triangular and square~also
known as flat band! asymmetric quantum wells. In Sec. I
we present a perturbation expansion of the model and de
approximate expressions for the coupling parameters
simple one-band model. In the conclusions we summa
the results and discuss possible experiments and applica
of this simple one-band model in the study of spin-depend
properties of the semiconductor heterostructures.

II. THE THEORETICAL MODEL

To explain our approach, we start noting that the eig
value problem associated with the effective-mass Ham
tonian~1! above is exactly equivalent to that with the corr
sponding bulk effective-mass Hamiltonian in each mate
plus the Ben-Daniel Duke boundary conditions at the int
faces. To work with the bulk effective-mass Hamiltonian
each layer plus appropriate boundary conditions for the
velope functions at the interfaces is the spirit of the effecti
mass theory for the semiconductor heterostruct
problem.23 Generalized ~energy dependent! Ben-Daniel
Duke boundary conditions for the envelope functions in d
ferent models have been derived matching the total w
function and its derivative at the interface.24,25

Hamiltonian ~1! has indeed been successfully applied
,
in
-

av-

he
-
e

,
e
n
s,

ld

e
e
g
e
-

d

ve
a
e
ns
nt

-
l-

l
-

n-
-
e

-
e

describe a wide range of structures with materials of nea
the same interband matrix elements.26 It can be derived from
a two-bandk•p effective-mass model for the bulk with
simple projection into the conduction band. One method
deriving the boundary conditions is to integrate the mu
band effective-mass Schro¨dinger equation across th
interface.23,26 The Ben-Daniel Duke conditions result from
the two-band model. To include the spin-orbit interactio
however, one has to start from an eight-bandkp model ~or
six band in the case of strong spin-orbit coupling!, consider-
ing the top valence and split-off bands and the conduct
band.

The eight-band Kane model for III-V semiconductor i
version layers in the infinite barrier approximation w
treated in detail recently.20 Besides leading to simple an
useful analytic expressions for the coupling parameters
model was also shown to be quite accurate for the desc
tion of the spin-dependent properties of heterostructures w
intermediate gap materials like InAs and GaSb.20 We here
consider a finite barrier height and extend the treatmen
include effects from the interface and barrier penetration
more sophisticated model for GaAs quantum wells includ
higher conduction bands was recently considered in Ref.

With the same notation and basis functions as in Ref.
the Schro¨dinger-like equation for the two components of th
conduction-band envelope function, with allowance for t
z dependence of the band parameters, becomes@see also Ref.
12#

F2
\2

2

d

dz

1

m~z,«6!

d

dz
1

\2k2

2m~z,«6!
1Ec~z!1V~z!

7S db

dz
~z,«6! D k2«6G f650, ~2!

with

1

m~z,«6!
5
P2

\2 S 2

«62V~z!2Ev~z!

1
1

«62V~z!2Ev~z!1D~z! D ~3!

and

b~z,«6!5
P2

2 S 1

«62V~z!2Ev~z!

2
1

«62V~z!2Ev~z!1D~z! D . ~4!

The6 sign refers to spin up and down along they direction.
The parallel wave vectork is set alongx and the linear in
k term corresponds to the Rashba term~proportional to
sW •kW3 ẑ!. The momentum matrix element, taken to be ind
pendent ofz,25 is denoted byP, D stands for the spin-orbi
splitting in the valence band, and«6 are the spin-dependen
eigenenergies;u«12«2u being the spin-orbit splitting.
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A. Boundary conditions

Let us now consider atz50 an interface between tw
semi-infinite layers of semiconductors 1 and 2, so that
may write

1

m
5

1

m1
u~2z!1

1

m2
u~z! ~5!

and

b5b1u~2z!1b2u~z!. ~6!

From integration across the interface we obtain as bound
conditionsf6 continuousand

2
\2

2m

df6
dz

7bk f6 continuous. ~7!

The two-spin components always remain decoupled. As
basis functions for the spin states are those pointing al
the y direction, if we callC the spinor with component
f1 and f2 , the boundary conditions can be given asC con-
tinuousand

\2

2m

d

dz
c1sybkc continuous, ~8!

wheresy is the usual Pauli spin matrix. This simpler for
shows transparently the cross product symmetry in
Rashba term~remember thatk is alongx!.

The boundary conditions above are equivalent to th
obtained in Refs. 10 and 26–28. The decoupling of the sp
and the consequent simplicity in the expressions above o
because here we set the spin-quantization direction along

kW -dependent effective magnetic field. The boundary con
tions above reduce to the generalized Ben-Daniel D
boundary conditions whenk or D goes to zero. Note also tha
in the case of symmetric quantum wells the mirror reflect
will take the spin-up condition into the spin-down one a
vice versa, so that the Rashba splitting is exactly zero.

When considering the dependence ofb on z in Eq. ~2!,
two contributions to the Rashba spin-orbit splitting can
identified: the first is related to the discontinuity in the ba
parameters and the second is related to the space ch
and/or external electrostatic field. The former brings ab
the spin-dependent boundary condition of Eqs.~7! or ~8!, the
latter gives a spin-dependent term in the effective-m
Hamiltonian. These two contributions to the Rashba te
have been identified also in a previous estimation of
Rashba coupling parameter.12 In order to clarify the differ-
ence between the two contributions, and the correct wa
calculate them, we will consider next asymmetric quant
wells where one or the other contribution dominates.

III. RESULTS

The band-edge discontinuities and the space cha
and/or external electrostatic potential would contribute to
Rashba term in a similar way only if the edge discontinuit
were all the same, as in a single potential step. In r
samples, though, the contributions are of a different chara
and they are both present. It is instructive to look at
splitting in two basic types of asymmetric quantum wel
e
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triangular and square. In the infinite-barrier approximati
for a heterojunction the splitting depends exclusively on
space-charge field while in a square asymmetric flat-b
quantum well the splitting is only due to the band-edge d
continuities. We start with the latter.

A. Asymmetric square quantum well

Let us consider the problem of the stationary states
electrons confined in semiconductor quantum wells of
type AlxGa12xAs/GaAs/AlyGa12yAs with xÞy. The eigen-
values«6 , for every value ofk parallel, are obtained by
solving Eq.~2!. In this flat-band well case one proceeds
usually, i.e., writes down plane-wave solutions forf6 in the
different regions and matches the solutions at the interfa
with the appropriate boundary conditions@Eq. ~7!#. The so-
lutions are obtained from the equality

S \2kw
2mw

D 22 \2kw
2mwtan~kwL ! F\2

2 S qrmr
1

ql
ml

D1~b r2b l !kG
5S \2qr

2mr
1~b r2bw!kD S \2ql

2ml
2~b l2bw!kD , ~9!

wherer , l , andw refer to the barrier on the right, to the on
on the left, and to the well material, respectively; the wa
vectors in the growth direction are given by

qi5A~2mi /\
2!~Ec,i2«!1k2, i5r ,l ~10!

and

kw5A~2mw /\
2!~«2Ec,w!2k2, ~11!

andmj andb j are given by Eqs.~3! and ~4! with the corre-
sponding band parameters.L is the well width and«6 is the
energy« that satisfies Eq.~9! above with6b j .

Particularly large splittings are obtained with a pure AlA
barrier in one side of the GaAs quantum well. Th
conduction-band-edge profile, the density of probability
the first bound state and its energy in a 50 Å-wi
AlAs/GaAs/Al15Ga85As quantum well, for example, ar
as shown in Fig. 1. In Fig. 2 we plot the splitting at
fixed parallel wave vectork50.02 Å2152.03106 cm21 as
a function of the well width. Note that the splitting presen
a maximum as a function ofL. Starting from large values o
L, the splitting first increases with decreasing well width
to when it is close to the critical width for another boun
state, where the competition between confinement and
rier penetration effects produces the maximum. A simi
behavior is observed in the well-width dependence of
binding energy of excitons in quantum wells.

One should also note that the splitting is bigger in t
excited subband due to the larger amplitude of the envel
function at the small barrier interface that, in accord to t
spin-dependent boundary conditions@Eq. ~7!#, leads to a
larger spin-orbit effect. We should also mention that t
splitting initially grows both withk and with the aluminum
concentrationx. The quantized subband energy, howev
should remain below the AlAsX state in the conduction
band to preventG-X mixing effects, which are not included
in the model.
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In order to evaluate the role played by the large bar
interface, we compare the results above with those obta
in the infinite-barrier approximation, when no wave-functi
penetration is allowed in the AlAs barrier. The solution
this case is simpler and given by

2
\2

2mr
kr1b rk51

\2

2mw

kw
tan~kwL !

1bwk. ~12!

FIG. 1. Conduction-band-edge profile of a
AlAs/GaAs/Al0.15Ga0.85As asymmetric square quantum well. Th
density probability and the energy of the lower-bound state
shown with continuous lines. The dashed lines show the infin
barrier approximation, where there is no barrier penetration.
band parameters used for the alloy wereEg5(1.51911.247x) eV
and D5(1.85911.115x10.37x22Eg) eV. For the conduction-
band offset we used the 72% rule forx,0.4 and 1 eV for a pure
AlAs barrier.

FIG. 2. Rashba spin-orbit splitting in the ground~0! and first
excited~1! subbands of the asymmetric AlAs/GaAs/Al0.15Ga0.85As
quantum well, as a function of the well width. The results within t
infinite-barrier approximation are plotted with dashed lines. T
lines, for smallL, end at the respective critical values for anoth
bound state in the well andk52.03106 cm21.
r
ed

The results are shown with the dashed lines in Figs. 1 an
One should note that the penetration, when small, contrib
very little to the splitting and does not cause the drastic
duction one would expect following Ando’s reasoning.

B. Triangular quantum well

Here, as a model for a heterojunction, we consider a
angular quantum well formed by a heterointerface plus
constant electric field in the small-gap material, which
proportional to the carrier concentration (E5ens /«sc) and
confines the electrons near the interface. Equation~2! in this
case is integrated numerically. In Fig. 3 we show the res
using typical parameters for two different heterojunction
AlAs/GaAs and CdTe/InSb. Figure 3~a! shows the obtained
splittings in the ground~0! and first excited~1! subbands as
a function of parallel wave vector for the case of
AlAs/GaAs heterojunction with an interface electric fie
E5105 V/cm. We first note that, in accord with other mult

s
-
e

e
r

FIG. 3. Rahsba spin-orbit splitting for a triangular asymmet
quantum well. The upper panel~a! shows the obtained splittings in
the first two subbands of the model AlAs/GaAs heterojunction a
function of parallel wave vector, both with~dashed lines! and with-
out ~solid lines! the infinite-barrier approximation. The interfac
electric field is fixedE5105 V/cm. In the lower panel~b! we plot-
ted similar results using the parameters of a CdTe/InSb heteroj
tion ~m*50.015me , Eg50.24 eV, andD50.81 eV for InSb, and
Eg51.59 eV andD50.8 eV for CdTe!.
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55 16 297SPIN-ORBIT SPLITTING OF ELECTRONIC STATES . . .
band calculations,29–32 the splitting grows linearly withk
only in the small-k limit. Contrary to the square well case
we see that the splitting in the excited subband of a triang
quantum well is close to the splitting in the first subband
smaller. The reason is that, in this case, the splitting
mainly due to thez dependence of the electrostatic potent
V ~or the electric field!, which is the same for both subband
In accord to the expression forb @Eq. ~4!#, due to nonpara-
bolicity effects, a larger energy subband will have a sma
spin-orbit effect, as observed in the figure.

As before, it is instructive to check the infinite-barri
approximation. Again, contrary to what one would expe
from Ando’s reasoning, one gets bigger splittings by allo
ing wave-function barrier penetration. This is a direct res
of the spin-dependent boundary conditions, which adds
the total splitting. The effect is bigger in the triangular ca
since the electrons are pushed towards the interface an
amplitude of the envelope function there is bigger than in
square well case when the density of probability peaks
larger distance from the interface. The subband quantiza
energy increases less than 10% in the infinite barrier appr
mation so that the nonparabolicity reduction in this case
much smaller than in the excited subband case and con
utes very little.

The spin-orbit effects in the conduction band are kno
to be bigger in the smaller gap semiconductors. In Fig. 3~b!
we show the results for the above triangular quantum-w
model made of CdTe as barrier and InSb as well, with
conduction-band discontinuity of 550 meV. The spin sp
ting in such heterojunction has been investigated in Ref.
Here we want to call attention to two facts. First, as shown
the figure, note that the infinite-barrier approximation for t
conduction-band offset is worse in this case, due to both
smaller band offset and the smaller gap. And second, n
that the splitting, instead of saturating for increasingk,
reaches a maximum splitting and then decreases. This
fact may be used for optimizing the spin-dependent prop
ties of possible heterostructure devices.

C. Perturbative expansion: simple one-band model

Different perturbation expansions can be used, depen
on the structure and on the kind of band alignment, in or
to make the model simpler and more transparent. Here
are interested in the reduction to a one-band model to m
contact with the Rashba model Hamiltonian that has b
used to describe different experimental results. When
conduction bands in the barrier and in the well are parab
and the band offset is somewhat smaller than the gaps,
GaAs/Ga12xAl xAs heterostructures, a good expansion p
rameter to use is

d5
«62V2Ec

Eg1D
, ~13!

whereEg is the band gap and to simplify the notation w
have not indicated thez dependence. For GaAs
Ga12xAl xAs quantum wells, for example,d is of the order of
0.05, both in the well and in the barrier.

A perturbative series is obtained by expanding the ene
dependent parameters as
ar
t
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l
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1

m
5 (

n50

`

cnd
n and b5 (

n50

`

bnd
n. ~14!

The zeroth-order approximation, when all terms involvingd
are neglected, corresponds to the parabolic approxima
The effective-mass Hamiltonian@Eq. ~2!# becomes

H52
\2

2

d

dz

1

m* ~z!

d

dz
1

\2k2

2m* ~z!
1Ec1V~z!, ~15!

wherem* is the conduction-band-edge effective mass t
depends only onz and in each material is given by

m*5
\2

P2

Eg~Eg1D!

3Eg12D
. ~16!

In zeroth orderb5b0 and we get

b5
\2

2m*
D

3Eg12D
. ~17!

It is important to realize that, even in this parabolic appro
mation, the boundary conditions are spin dependent@f6 and
2(\2/2m* )(d f6 /dz)7bk f6 continuous#. In this approxi-
mation, the contribution to the splitting fromV(z) is only
indirect through the value of the wave function at the int
face.

To better compare the two contributions we go to the n
order. Including the next term in the expansions above
obtain an approximate effective Hamiltonian of the form

H52
\2

2

d

dz

1

m~«6 ,z!

d

dz
1

\2k2

2m~«6 ,z!
1Ec1V~z!

7asok
dV

dz
, ~18!

where

aso5
\2

2m*
D

Eg

2Eg1D

~Eg1D!~3Eg12D!
~19!

is the same Rashba spin-orbit coupling parameter obtaine
Ref. 20. The energy dependence that appears in bothm and
b (5b01b1d) corresponds to nonparabolicity correctio
which in GaAs/Ga12xAl xAs systems are small due to th
smallness ofd. Neglecting these small corrections, th
boundary conditions remain the same. In Table I we list
values of the coupling parametersaso and b for different
semiconducting III-V compounds.

TABLE I. Spin-orbit coupling parametersaso, Eq. ~19!, andb,
Eq. ~17!, for different III-V semiconductor compounds. The bu
parameters used are those from theNumerical Data and Functional
Relationships in Science and Technology, edited by O. Madelung,
M. Schultz, and M. Weiss, Landolt-Bo¨rnstein, New Series Group
III, Vol. 22, Pt. a ~Spring-Verlag, Berlin, 1982!.

GaAs GaSb InAs InSb

aso (Å
2) 4.4 33 110 500

b (eV Å2) 3.7 18 31 96
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In the infinite-barrier approximation the splitting in th
triangular quantum well can then be approximated byu«1

2«2u52asokE ~linear with bothk andE, and independen
of the subband!. The small parameter in the perturbation e
pansion in this case increases both withk and withE. The
limits of applicability of the one-band model can then
evaluated from Fig. 4. There we compare the complete
merical solution of Eq.~2! with the solution neglecting non
parabolicity corrections, i.e., the solution of Eq.~18! with
m andaso given by Eqs.~16! and~19!, respectively. We can
see that the simple one-band model gives an upper bo
value for the Rashba splitting. In a GaAs heterojunction,
approximation gives very accurate values fork<106 cm21

when E;105 V/cm or for E<105 V/cm when k
;106 cm21 ~recall, for example, that in a GaAs heterojun
tion with ns55.031011 cm21 we haveE;0.83105 V/cm
andkF;1.73106 cm21!.

The one-band~first order ind or ‘‘parabolic’’! approxi-
mation is less effective in the asymmetric square quan
well problem. In Fig. 5, where the dashed lines give t
one-band approximation, we see that it gives sens
smaller splittings down to low values ofk and large values o
the well width. Here we see a partial breakdown of the p
turbation expansion, due to the nonlinear sensibility of

FIG. 4. Comparison between the splittings obtained in the mu
band and one-band~dashed lines! models. The spin-orbit splitting in
the first two subbands of a GaAs infinite-barrier heterojunction
plotted in the upper panel~a! as a function ofk for a fixed electric
field and in the lower panel~b! as a function of the electric field fo
a fixedk5106 cm21. See text for the discussion.
-

u-

nd
e

m
e
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r-
e

splitting to the envelope-function value at the interface a
to the energy. The simple model nevertheless reproduce
the major features besides giving quite reasonable estim
of the splitting.

More experiments would be needed in order to fully te
the present approach. We limit ourselves here to a few c
ments on very recent experiments. In the Raman scatte
experiment of Ref. 8, a Rashba contribution of 2ak with a
526.960.4 meV Å was extracted from different measur
ments of the spin splitting in a sample consisting of an asy
metrically doped thick GaAs quantum well, with small ba
rier penetration. In the simplest one-band or Rashba mo
we seta5asoe^E&, where^E& is average space-charge ele
tric field in the well, which in this case was inferred to b
21.063105 V/cm. We then obtainaso56.560.4 Å2. The
theoretical value in Table I corresponds to the splitting in
infinite-barrier approximation which is, as discussed abo
35–40 % smaller. Considering the uncertainties both in
experiment and in the material parameters entering the th
retical value, we obtain here a very good agreement betw
theory and experiment.

i-

s
FIG. 5. Comparison between the multiband and one-b

~dashed lines! splittings in the case of asymmetric square quant
wells. The splittings in the first two subbands of a
AlAs/GaAs/Al0.15Ga0.85As quantum well are plotted on top as
function ofk (L5120 Å) and below as a function of the well widt
(k52.03106 cm21); the infinite-barrier approximation is em
ployed on the AlAs side.
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A quantitative description of recent antilocalization da
was given with the same one-band model in Ref. 9. Go
agreement with other experimental data was shown als
Ref. 10, whose calculation with a larger Hamiltonian ga
splittings 35–40 % larger than those obtained before20 with
the simplest model discussed above, i.e., in the infinite b
rier approximation and in first order ind. In view of the
present results we can say that the difference comes ma
from the barrier penetration and from the spin-depend
boundary conditions.

IV. CONCLUSIONS

We have presented a detailed study of the so-ca
Rashba spin-orbit splitting in the spectrum of the tw
dimensional electron gas in asymmetric semiconductor qu
tum wells. A few theoretical issues much debated in the
erature, like the treatment of abrupt interfaces, the An
argument, and simpler approximations have been discu
and clarified. A simple one-band model with spin-depend
boundary conditions and approximate coupling constants
been suggested. The model can be used as a starting poi
the calculation of spin-dependent effects in the quant
transport of small semiconductor heterostructure.33 The spin-
orbit splitting in the conduction subband plays an import
or

m
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n
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-
n-
-
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role also in the luminescence polarization studies of the
citon and of the electron ultrafast spin dynamics.33 The split-
ting in the different subbands of both triangular and squ
asymmetric quantum wells have been investigated. The s
ting in the excited subband was shown to be bigger in
square well and smaller in the triangular well, which can
explained in view of the two different contributions to th
Rashba term in semiconductor heterostructure plus nonp
bolicity corrections. Good agreement was found with ava
able experimental data, but more experiments are neede
order to fully test the theory presented here. In particular,
well-width dependence of the splitting i
AlAs/GaAs/AlxGa12xAs asymmetric quantum wells and th
k dependence of the splitting in InSb heterojunctions, b
exhibiting a nonmonotonic behavior, are still to be test
experimentally.

Finally, we want to point out that for a quantitative com
parison with the experiment one should add thek3 contribu-
tion, as explained in Ref. 20, and use a self-consistent e
trostatic potential. The model and the procedure, includ
the boundary conditions, are, however, as explained ab
and the simple one-band approximation can be used to ob
semiquantitative estimates and the qualitative dependenc
different parameters.
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