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We consider static conductivity and cyclotron resonance in a two-dimensional electron fluid and Wigner
crystal. The theory is nonperturbative in the electron-electron interaction. It is formulated in terms of a
Coulomb force that drives an electron due to thermal fluctuations of electron density. This force is used to
describe the effect of electron-electron interaction on short-wavelength electron scattering by defects, phonons,
and ripplons, and thus on electron transport. In a broad parameter range the force is uniform over the electron
wavelength, and therefore the motion of an electron in the field of other electrons is semiclassical. In this range
we derive the many-electron quantum transport equation and develop techniques for solving it. We find the
static conductivityo. Many-electron effects may “restore” Drude-type behavioroofn the range from zero
to moderate classically strong magnetic fieBlswhereas in quantizing fields increases withB, i.e., the
conductivity is a nonmonotonous function Bf Many-electron effects give rise also to a substantial narrowing
of the cyclotron resonance absorption peak compared to what follows from the single-electron theory. The
shape of the peak is found for both fast and slow rate of interelectron momentum exchange as compared with
the relaxation rate. We apply the results to electrons on helium and explain why different tyBetepen-
dence ofc are observed.S0163-18207)05924-9

I. INTRODUCTION Refs. 6—18 on mobility, magnetoconductivity, resonant ab-
sorption, and tunneling from nearly ideal nondegenerate
Nondegenerate two-dimensionéD) electron systems electron layers. It should also help to understand transport
provide an important class of strongly correlated systems, iphenomena in strongly correlated low-density electron sys-
which electrons may form a normal fluitb be distinguished tems in semiconductor heterostructutes.
from a Fermi liquid and other quantum electron liquids a In the investigation of many-electron effects in nondegen-
Wigner crystal. The best knowtbut not at all the only  erate 2D systems the emphasis has traditionally been placed
example is the 2D electron system on the surface of liquitbn plasma wavé8 (including edge plasmofs®) and
helium®?where mobilities higher than in any solid state con-Wigner crystallization:*?® The analyses of transport phe-
ductors have been observed. In a nondegenerate system themena for a plasma and a Wigner crystal are conducted
interelectron distance n;l’z greatly exceeds the de Broglie quite differently. In the case of a plasma the basic transport
wavelengthx=%/(2mT)Y? (wherens is the electron den- coefficients like conductivity and magnetoconductivity are
sity, and temperature is measured in the units of energyften considered in the effectively single-electron approxi-
k= 1). Although the system is nondegenerate, the ratio of thenation. In this approximation the effect of the electron-
characteristic Coulomb energy of electron-electron interacelectron interaction is described in terms of screening of the

tion to the kinetic energy, the plasma parameter random potential that scatters individual electr8fisn con-
trast, for a Wigner crystal the electron relaxation is described
I'=e?(wn VAT 1) in terms of the decay of the collective excitations of the

many-electron system, i.e., phond¥8-28In between these

is usually large I'=10. Therefore the system is a normal two models there lies one in which the effect of electron-
fluid or, if I'=127 (lower T), a Wigner crystaf® electron interaction is described in terms of pair collisions

An electron is not a “good” quasiparticle for a normal that may occur more often than collisions with defects or the
electron fluid, and its motion is very different from that in emission of phonons/ripplons. This approximation is well
the much better understood Fermi liquid or low-density elecknown in the physics of semiconductdrsit was used for
tron gas. Electron scattering by defects, phonons, or ripplongondegenerate 2D systems'frHowever, in contrast to the
may also be substantially different. As a consequence, onew-density plasma in semiconductors where often
may expect electron transport in a normal fluid to have disezn§§/6T<1, the 2D electron fluid is strongly correlated,
tinctive features, and new physical effects to occur. Not onlyand therefore the approximation of pair collisions does not
is the analysis of electron dynamics and transport phenomapply. The effect of viscoelastic shear modes in the electron
ena interesting from the theoretical point of view, but suchfluid on the mobility was considered in Ref. 30.
analysis, complemented with that of transport for a Wigner Electron-electron interaction would be expected to affect
crystal, is necessary for the understanding of a large body dfansport particularly strongly when a 2D electron system is
experimental data accumulated over the last few yéefts placed into a magnetic fielB perpendicular to the electron
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layer. In the single-electron approximation the electron en ®
ergy spectrum in the magnetic field is a set of discrete Lan ®
dau levels, with separatiohw. (Where w.=|eB|/m is cy-
clotron frequency Electrons do not have a finite group
velocity. Therefore the standard Drude picture of well sepa
rated in time elastic or quasielastic collisions of a moving
electron with defects, phonons, or ripplons does not apply o
As a consequence, th@uasjelastic scattering is always /'
strong, irrespective of the strength of coupling to the scatter ® o
ers, with random potential of the scatterers being the onl
reason for the centers of the cyclotron orbits to move.
In contrast, the energy spectrum of a system of interactin
electrons is continuous even in the absence of scatterer
Therefore, although electron-electron interaction does nc o
change the total momentum of the electron system, it ma
mediate the momentum transfer to the scatterers, and tht @
strongly affect the long-wavelength conductivity.
It was suggested in Ref. 31 that, for quantizing magnetic

fields 2w.>T and yet not too low temperatures, one may g, 1. Fluctuational electron displacement from a quasiequilib-

describe many-electron transport of a nondegenerate electrefym position (shown by an empty circjein a strongly correlated
fluid in terms of the fluctuational fiel@&; that drives each gystem.

electron. Unlike the long-wavelength fluctuational electric
field known in plasma physic& the fieldE;, although also
of fluctuational origin, determines the force driving an indi- eE6~e?
vidual particle.

A special significance of the fiel&; for a 2D electron

2

J _
eI L S

n

8°~T,
eq

; o ; the derivative is evaluated for the equilibrium electron po-
system in a magnetic field stems from the fact that it causes.,.~ " I .

: . X M . Sitions; the characteristic values Bf, 6 are independent of
the cyclotron orbit centers to drift. Thus it may “restore” the n). This gives

Drude picture of electron scattering in the sense that colli-
sions with scatterers are short and well separated in time.
The effect of electron-electron interaction on cyclotron reso-

nance was observed in Ref. 8. The coefficienF in (3) was found for a Wigner crystal in the
Recently it was outlined theoretically and showedharmonic approximaticii® to be~8.9. A systematic Monte
experimentally*'* that, in the case of scattering by a Carlo study of the fluctuational fiel, for a normal electron
o-correlated random potentigpointlike Qefectis _the field  fluid and for a Wigner crystal shows th&t=F(I') varies
Es may al§o strongly affect transport in plassmally strongonly slightly (by ~10%) in the range of =103°
magnetic fieldsfiw <T, wc7,_ >1 (7 _ is the momen- This paper is organized as follows. In Sec. Il we provide
tum relaxation time foB=0). In particular, many-electron a qualitative picture of many-electron transport and obtain an
effects restore the Drude-tyf@ 2 dependence of the mag- estimate for the conductivity in different ranges of the mag-
netoconductivity for moderately strorig} netic field. In Sec. Il we derive the many-electron transport
In the present paper we provide a theory of electron transequation for the case of short-range scattering. This equation
port in strongly correlated electron systems. The theory apholds in the semiclassical range both in the absence and pres-
plies for magnetic fields ranging fro®=0 through classi- ence of a magnetic field. In Sec. IV we develop a technique
cally strong up to quantizing fields provided the motion of anfor solving the transport equation in the Wigner representa-
electron in the field of other electrons is semiclassical. It igion, and obtain explicit solutions in the limiting cases where
clear from Fig. 1 that the motion is semiclassical if the charthe rate at which electrons exchange momenta with each
acteristic electron wavelengtthermal, or quantum magnetic other is large or small compared to the momentum relaxation
length is small compared to the characteristic thermal dis-rate due to coupling with scatterers. In Sec. V we analyze the
placement of an electron from its quasiequilibrium position expression for the conductivity in classically weak and clas-
in a normal electron liquid or the equilibrium position in a sically strong magnetic fields, and show when and how mag-

(E)~FTnd?, §2~Tn; %% 2, 3

s 1

Wigner crystal: netoresistance arises in a 2D system of interacting electrons.
In Sec. VI we analyze static magnetoconductivity and cyclo-
min(xt,lg) <4, tron resonance in quantizing magnetic fields. A solution of

the many-electron transport equation is obtained using the
Xr=hl(2mN)Y2 |g=(h/mo)Y2 (2)  separation of the fast oscillating and slowly varying in time

parts of the electron coordinate operators. In Sec. VIl mag-
An estimate ofs and the fluctuational fielde; can be netoconductivity as a function & is analyzed in the cases
obtained by linearizing the equations of motion of milh  of electron scattering by &-correlated random potential and
electron about its equilibrium positiofcf. Fig. 1) and by by ripplons. Sec. VIII contains a brief discussion of the re-
setting the potential energy of the fluctuational displacemensults. In the Appendix we analyze quantum corrections to the
equal toT (cf. Ref. 31: classical many-electron relaxation rate.
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[l. QUALITATIVE PICTURE OF MANY-ELECTRON The long-wavelength conductivity(w) depends on both
TRANSPORT the many-electron dynamics and the mechanism of electron

scattering. We will consider scattering by short-range scat-
terers which include neutral point defects, acoustic phonons,

Depending on the electron density, the 2D electron and for electrons on liquid helium surface, helium vapor at-
fluid may be a classical or a non-classical fluid or, in theoms and ripplondthe effects of long-range scattering by
presence of a magnetic field transverse to the layer, a ripplons, including onset of coupled plasmon-ripplon
semiclassical fluid. The type of behavior is determined bymodes® will not be discussed in this papedn most cases
the interrelation between temperatdrecyclotron frequency the corresponding scattering is elastic or quasielastic.

A. The domains of classical and semiclassical dynamics

w¢, and the characteristic frequenay, of short-wavelength We will assume coupling to the scatterers to be weak
vibrations in the system fd8=0 (w, can be estimated from enough that the characteristic scattering raté is small
Fig. 1). For compared to the reciprocal characteristic duration of a colli-
siont_,
T>he,, 0p=(2me2n¥m)2 (4) col
tco||< 7. (6)

the fluid is classical forB=0. If, on the other hand,
T<fiw,, then quantum effects come into play. These effectsthe actual conditions that have to be fulfilled i) to hold

are not related to overlapping of the wave functions of dif- true depend on the magnetic field and will be specified be-
ferent electrons: it is the motion of an electron in the fieldjow. We notice that(6) may apply in the range of strong
created by other electroris.qg., vibrations about a quasiequi- magnetic fieldsw.7>1, only because of many-electron ef-
librium position) that becomes quantized. fects; in the single-electron approximation one should speak

In a nonquantizing field, 7w <T, the electron fluid of lifting the degeneracy of Landau levels rather than of oc-
remains classical if4) is fulfilled. For 2w, >T the fluid casional collisions with the scatterers.

becomes semiclassical: the motion of an electron in the field
E; is a superposition of a quantum cyclotron motion with
frequencies- o, and a semiclassical drift of the center of the
cyclotron orbit. The frequenc§) that characterizes the drift
can be estimated from Fig. 1 if one assumes that the field We will first analyze the effect of the fiel&; on the

E; is pointing towards the equilibrium position. Then the collisions with short-range scatterers for not too strong mag-
“displaced” electron drifts transverse to this field, with a netic fields where

velocity eE; /mw,, along a circle of radiug. The frequency 21

Q gives the reciprocal period of this motion. For T>&(Ef) " Ar~howp>hoc. )

B. The conductivity for weak to moderately strong
magnetic fields

5) The condition(7) does not mean that the magnetic field is
weak. The field may well be classically strong, i.e., there
the drift (translational motionis semiclassical. We note that may hold the inequalitys,7>1, wherer™* is the scattering
the condition(5) may be fulfilled in a sufficiently strong rate. In what follows we use the term “moderately strong
magnetic fieldw > w, even ifT<fw,, i.e., even if the fluid fields” for classically strong magnetic fields that satisfy con-

T>hQ, Q=0 (0> w,)

is nonclassical foB=0. Since dition (7).
In the range(7) an electron moves classically and has a
e<E§>1/2;(T~ﬁwp, 8~ X1Tlhw,, well-defined kinetic energp?/2m~T and a well-defined po-

tential energy in the field of other electrons. Uncertainty of

the conditiong4), (5), which are formulated in terms of en- each of these energies is determined by smearing of the elec-
ergies, coincide with the conditid2) formulated in terms of  tron wave packet. For an electron in an electric figldthis
lengths. uncertainty is characterized l®F; A and is small compared

The conditiong4) and(5) apply also to the dynamics of a to T. This means that, in spite of the electron system being
Wigner crystal and show where it is classical and semiclasstrongly correlated, the electron-electron interaction has little
sical, respectively. The spectrum of phonons of a crystal wagffect on collisions with short-range scatterers in the absence
analyzed in Ref. 34¢,, is the characteristic Debye frequency of a magnetic field. One can also see this from the following
of the crystal forB=0. Forw:>w,, the spectrum consists of arguments. The duration of a collision is determined by the
the optical branchthat starts atw;) and a low frequency time it takes an electron to fly past the scatterer. For short-
branch; the widths of the branches ard), and(5) means range scatterers and for electrons with thermal velocities
that the low-frequency vibrations are classical. vr=(2T/m)*? this time istoy~A7/vr~4/T. The accelera-

We note that the melting temperature of the cry§tal  tion of the electron in the fieldE; over this time is
as given by the conditiod’~127 may be greater or less ~eEx;v1/T<vr.
than %w, depending on the electron density (ng?, The role of the fieldE; becomes very different in the
wpocn§’4; for electrons on heliumZw,/T,~1.3 when presence of a magnetic field, since the figldtilts Landau
ns=1C% cm~2). From this perspective it is particularly im- levels and makes the electron energy spectrum continuous. It
portant that the magnetic field can be used to “switch” theis clear from Fig. 2 that for an electron wave packet of size
2D system, either a fluid or a crystal, from the domain ofx; the discreteness of the one-electron energy spectrum due
quantum dynamicstw,>T, to the semiclassical domain, to Landau quantization is washed out by many-electron ef-
T>4Q. fects ife E; x> .. 1> One would therefore expect that even
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FIG. 3. Classical electron trajectory in the fluctuational electric

FIG. 2. Single-electron energy levalg, in the electric fielde
and transverse magnetic figfilted Landau levels Uncertainty of
the electron kinetic energy exceetle . for the shown size of the
electron wave packet .

field E; and transverse magnetic fied The characteristic radius of
the spiralRg=(T/h w ) Xt .

coefficientD, o=e?n,D/T. It is seen from Fig. 3 that scat-

tering results in a shift of the electron orbit by the cyclotron
in classically strong magnetic fields.7>1, collisions with  radius Rg. Therefore R3/2 may be associated with the
scatterers will occur nearly as if there were no magnetic fieldsquared diffusion length, and thén= R2/27. The scattering

at all. Then the many-electron system should not displayate +~1 is proportional to the encountering factsf® and
magnetoresistance, and in the whole raf@ehe static con-  he expression foo takes on the form

ductivity o is given by a simple expression

e’ng
m

r -1_ s -1
B=0 T 578:01

1+ wCZTz '
B=0

o=0x(w=0)= (9)
)

_ 2\1/2 _ 112
e(Ef2>l/27(T>ﬁwc,ﬁTE;lo, (=X BRT(EF)™4, X=lg[tanHfiw/2T)]"~

1 . . (Here, A is the characteristic scale over which the electron
where 7~ is the scattering rate calculated B0 in the . Lo o
B=0 . wave function variesx=x; for hw <T, and Xx=1g for
approximation where the effect of the electron-electron inters, w>T.)
action on collisions with scatterers is ignored. A distinctive feature of the many-electron magnetocon-
If the scattering remains the same as in the absence of thg, qivity (9) is its independencef the fieldB for classically
magnetic field, the off-diagonal component of the CO”dUCt'V'strong fields wher®g~ (T/h wo) A7<B 1 and f<B2
. . . _ c .
'iy should be given by the expre35|0||vxy(_w—0)|. The arguments used to obtain an estimate @fpply also
=owcT, . In this casez ther:z is no magnetoresistance: the he electron fluid is in a quantizing magnetic field. For
resistivity p(B) = o /[ o3¢+ 05 ] = p(0). fiw>T an electron is a “hard disk” with characteristic size
We emphasize that the absence of magnetoresistance lig=(%/mw)Y2 It drifts transverse to the magnetic field
the range(7) for classically strong magnetic fieldknown  with a velocity E;/B, and the characteristic duration of a
experimentally since Ref. 7, is a purely many-electron effectcollision is (cf. Ref. 31

C. The conductivity for “strong” strong magnetic fields te=I1gB(E; b). (10
Onset of magnetoresistance in classically strong magnet
fields, T>%w.>e(E?)Y?X+, can be qualitatively understood

in the following way. If there were no fluctuational electric . . : . )
field, an electron in the magnetic field would be moving©Pt@ined using density-of-states arguments: the single-

along a trajectory of the shape of a rosette: it is a nearlf'em,ron energies are “s_,queezed” Into Lan_dau bands with
closed circle, with its center slowly rotating around the de-SPacingfiwc; the potential(and thus also kineticenergy
fect, so that the electron is coming back to the defect, ovefncertainty of an electron wave packet of a sigein the
and over again, with period7 w,.%® In the presence of the field Ef is ~gEfIB, and therefore the overall d_en.sny of
field E, the center of the electron cyclotron orbit drifts with states into which the electron may be scatte'red is increased
a velocityE; /B. Therefore the number of times the scatterer®Y a_factor§~th/eEle compared to the_ smgle-elect.ron
is encountered is finite. It is clear from Fig. 3 that in order of density of states foB=0.] The value ofRg in the domain
magnitude, this number &= X1(27E;/Bw,) " * for a point- w:=T is given by the cha.ract_erlstlc radius _of the el_ectron
like scatterer. One would expect classical magnetoresistand¥2ve function, whereagy, is given by the time of flight
to arise in the many-electron system for 1. over the wavelengtix,

The magnetoconductivity can be estimated using the
Einstein relation between the conductivity and the diffusion

The scattering rate is increased relativerlgglo by the en-
countering factorf ~ w.t,xB>2 [This estimate can be also

Re=lglcothiw/2T) ]2 tey=AB(E;%).  (11)
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It follows from (8), (9) that the magnetoconductivity is  on the level number andE; . Even if all partial spectra are
nonmonotonous as a function B It decreases in the range | grentzian, but with different widths, the total spectrum may
(8), reaches a minimum for “strong” classically strong fields pe non-Lorentziai?®
where />1, and then, for pointlike scatterers, increases as |nterelectron momentum exchange gives rise to transi-
B'2in the rangei w >T (see Fig. 6 in Sec. VIl A tions between the Landau levels of individual electrons. In a

Equation (9) gives also the characteristic value of the transition one electron “jumps” up and another electron
halfwidth y~7~* of the peak of cyclotron resonance of a “jumps” down by one Landau levelwe neglect processes
many-electron system in a strong magnetic field. We notgyhere the quantized cyclotron motion with the frequency
that in the classical rangE>% w the expressions foy and 4, is transformed into low-frequency motion of the centers
for the relaxation rate in Eqs8), (9) for the static conduc-  of the electron wave packetsThe transition probability can
thlty coincide with each other. This is no |Onger true in the be estimated by Separating fast_osci”aﬁng and SIOle vary-
quantum rangé¢see Sec. Y. ing terms in electron coordinates and momenta, as described
in Sec. V. Forhw =T this probability is~Q=w}/w.. The
frequency() gives also the reciprocal time over which the
fluctuational field on an electron is averaged, as it is clear
The exchange of momentum between electrons does n@lom Fig. 1. The condition for the interelectron momentum

affect the long-wavelength conductivity direcfifsince it  exchange to be faster than the momentum exchange with the
does not change the total momentum of the electron systermacatterers is then of the form

However, its role in the transport may be substantial. This is

well-known in the theory of low-density electron plasma in 7-;)(1:wgwgl~ez<E$>I§/ﬁT*1> " (13)
semiconductor® from the analysis of the case where the

single-electron rate of collisions with scattereS'(e) de-  For fast interelectron momentum exchange this is relaxation
pends on the electron energy In the single-electron ap- of the total momentum of the electron system that determines
proximation the static conductivity (for B=0) is a sum of  the shape of the cyclotron resonance spectrum, and the spec-
the conductivities of electrons with different energies andtrum is Lorentzian with a width given by the appropriately
thus different scattering rates. Therefore it is given by theaveragedy,(E;) (see Sec. ¥

appropriately averagetbver €) reciprocal scattering rate, In the opposite caser,'<7 !, the cyclotron resonance
o=e’ngr4(€)/m. The interelectron momentum exchange oc-spectrum is non-Lorentzian. Far<f . the conductivity is
curs via pair electron-electron collisions. If their frequencydetermined by the transitions from the lowest Landau level
greatly exceedss‘l(T), then the electron energy varies sub- (v=0). The explicit form of the spectrum in this case for
stantially between collisions with the scatterers, and relaxGaussian distribution of the fluctuational ficfg is obtained
ation of the total momentum of the electron system is charin Sec. VIl (see Fig. 5.

acterized by the average collision rate Ye), so that

o=e’ng/mr; (e). ll. MANY-ELECTRON QUANTUM TRANSPORT
From the discussion in Sec. Il B one would expect that EQUATION
similar arguments apply to the static conductivity of a

strongly correlatectlassical electron fluid for weak magnetic

fields. Here, an electron exchanges its momentum with othe‘?qul"l‘ltion for thg (t:)aszeDof _(;Iecf[rons ﬁo%plegiandhquasielas-
electrons not via pair collisions but by being accelerated b)p_ca y scattered by 2D vibrations of the battiphonons or

the Coulomb force from these electrons. The rate of inter/iPPIONS. The Hamiltonian of the system is of the form
rom now on we seh=1)

electron momentum exchangg,' is given by the frequency
of the electron vibrations,, as it is clear from Fig. 1this 1
frequency also characterizes time evolution of the velocity H=Ho+Hy+H;, Hy=o—> p2+Hee;
autocorrelation function in the electron syst&inlf t 2 nooee

D. Interelectron momentum exchange

We will initially formulate the many-electron transport

(14
7-e7><1:"’p>7::L (C’)p>wc)a (12) HbZE wqﬁa—t’\)q; ﬂiZE 2 quiqrn(Bq_’_th).
q q n

as it was assumed in E(), the conductivity is determined
by the average rate; *(e).

The role of interelectron momentum exchange in stron
fields B, where collisions with scatterers are mediated by th
electron-electron interaction, is clear from the analysis o
cyclotron resonance. Resonant absorption at frequendg
due to tranﬁition§ betweerll, neighboring Landau levels, Heem=€? > [r—ro| % (15)
|v)—|v+1). “Partial spectra” which correspond to differ- 2
ent transitions are broadened because of collisions with scat-
terers(the collision probabilities are determined by the fluc- The wave vectorg of the vibrations as well as the vectors
tuational fieldE;). Prior to averaging over the many-electron r,,p, are 2D vectors. In the equations of motie; — |e| is
ensemble the broadening of a spectryp(E;) depends both the “true” electron charge.

Here,BJ, Bq are creation and annihilation operators of the
vibrations, p,= —iV,—eA(r,) is the electron momentum,
gA(r) is the vector-potential of the magnetic field transverse
o the electron layer, and
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The real part of the long-wavelength conductivity is ex-
pressed in terms of the correlation function of the total mo- °

mentum of the electron systefin a standard way as

o(0) =0y 0)=0oy(w)=(e’/m*wS)(1-e F*) e

xRef dt deYPH(tPH(0)), P=>, p,. (16
0 n

Here,Sis the area of the syster8=1/T, and the superscript FIG. 4. An electron-scatterer collision. At most one electron
H means that the operators are evaluated in Heisenberg reffilled circle) collides with a short-range scatter@pen circlg at a
resentation with a complete Hamiltoni&h(14). It is conve- ~ UMe:

nient to write the momentum correlator in the interaction

representation: Here we have taken into account that the characteristic elec-
tron momentum that may be transferred to vibrations, and
PH(t)PH(0)) = iHotD a—iFotd thus the characteristic values qf are determined by the
< x(t)Px (0)>_Tre[e Pxe gx(t)]:

thermal wavelengthx; (2) or the quantum magnetic length
lg (for x;>1g).

GO =Z"'Tr[S(t)P,e” PAST(1)], 17 The condition(19) means also that the polaronic renor-
. . PR malization of the electron energy is small compared to elec-
S(t)=e'Hote MY, tron damping. In what follows we ignore polaron effefitse

) shift of the cyclotron resonance peak in quantizing magnetic
where Tr, and Tr, are the traces over the wave fl_Jnct|ons of fields was analyzed in Ref. #9]. In this approximation the
the electron system and of the vibrations, andyiprations of the bath may be considered as creating a qua-
Z=Tr.Tryexp(—BH) is the partition function. sistationary classical zero-mean Gaussian field.

A. Transport equation in operator form B. “Single-site” approximation

In Eq. (17) the coupling to the scatterers has been moved |n a strongly correlated electron system at most one elec-
into the operatorG,(t). In the parameter rangés) where tron at a time may collide with a given short-range scatterer
collisions with the vibrations are short compared to the in-(see Fig. 4; we notice that the colliding electron is driven by
tercollision intervals, i.e., the interactidi; is small enough, ~the field from other electronsTherefore short-range scatter-
ing may be described in the “single-site” approximatigf.

) N ' Ref. 25. In this approximation only diagonal terms are re-
in each order oH; account is taken only of the terms that aineq in the double sum over the electrons that enters the

most strongly diverge wheti-co. This is the quantum trans- roductH; (t)H;(t') in (18). Equation(18) may then be writ-
port equation approximation. In the single-electron proble en in the form

this approximation corresponds, in terms of Feynman dia-
grams, to the neglect of nested diagrams and diagrams with A
intersecting lines. (9_gx: —E _|V |22 ftdt’
. . . q
The many-electron transport equation may be written in at q n Jo
the operator form as

G.(t) may be evaluated by perturbation theoryHn where

X [expliar(t)),[exp(—iara(t")),Gx(1)1],

ﬁg (t) ! "o N AN B ~ -
(;(t :—TerOdt [Hi(t),[Hi(t ),Png(t)]], Fn(t)=eiH0tFne_iH0‘; @x(o)zze—llsxe—BHo,
(18)
(1) = (FotFntf e iHot At 5 — 7-Tayry — BFY,), Vol?=2Twg '|Vyl% Ze=Treexp(—BHo).  (20)
where Z,=Tr,exp(—B8H,) is the partition function of the Equation (20) applies also if electrons are scattered by
bath. defects or helium vapor atoms. In this ca%g|? should be

The most substantial assumptions made in derivil®)  replaced by the mean squared Fourier component of the ran-
are thatt,7>t.,,T~ 1. The quantityt., characterizes the dom potential of the defects.
width of the intervalt—t’ that contributes to the integral in The first step towards solution of the operator equation
(18): this interval is supposed to be small compared &amd  (20) is transformation of this equation into a set of equations

to the relaxation timer over which@x(t) varies. for the matrix elements c@x. It follows from (17), (20) that
In what follows we consider short-range scattering andt is convenient to evaluate these matrix elements on the
assume it to be quasielastic. The latter means that the charave functions of the many-electron systentat0.
acteristic frequencies of the vibrations of the bath are It is a distinctive feature of the transport equati{@0) that
small: the time evolution of the operators,(t) is given by the
solution of a problem of many-electron dynamics which is
ogteor<l for g=gmae=max A7t Igh). (19 not known. Therefore the matrix elements of the operators
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exp(iqfn(t)) in (20) for actualt~ 7>t on the wave func- and it is convenient to use the Wigner representation for the

tions att=0 are also not known. This is in contrast to what €/€Ctron operators,
is the case for simple systems described by a transport equa-

tion, like a single electron or an oscillator, where the evolu- K({pn}!{rn}):f [H dgnexmgnrn)}

tion of the dynamical variables of the system in the absence n

of coupling to the scatterers can be found exPIicitIy. It is 1 i 1
convenieAnt therefore to change from the oper&ipoto the ><< K,+ Egn K { K,— Egn] >
operatorG, , (24)

N A~ s - =k,—eA(r,).
Gu(t)=exp(—iHot) Gy(t)exp(iF ot), Pa=kn—eA(ry)
It follows from (24) that the correlatof17) that deter-
&Gx} mines the conductivityr,,(w) can be written in the form
at '
coll

X

ot

=i[Gx(1),Hol+

A A B erwtion-[[ [T @n apr, putipah )
G| N KL n
p Lon—exp(— iH ot)(7> expliHt).

X Gy(t{Pn}Arn}), (25

It is seen from(20) that the collision ternfdG,/dt]ey  WhereGx(t:{Pn},{rn}) is the matrix element of the operator
contains the operators expilg)r () expig)=rn(0),  Cx(D)- .
exp(—iHt)r,(t" ) exp(Hot)=r,(t' —t). The matrix elements The equation forGy(t;{pn}.{rn}) follows from (21). In
of the latter operators on the wave functions of the manywrltmg this equation we will take into account that the char-

P ot - 1/2
electron system &t=0 can be evaluated taking into account ?Ctgg'sﬁﬁigﬁgi‘f{‘_?pg ?:e}) \(/r;]r-igs i,s a?\(/je;hzt t&i Se(f:i:?rg:l
that the instants of timé andt’ in (20), (21) are close to " L aPnfln 9 y

- 12, ;
each otherf—t’'~t.,<<7. In what follows we will analyze mean free path. [L~(T/m)™7 in the range(22)] and the

. L characteristic displacemet of an electron from its quasi-
g}et;g:;ggrzf Eq(21) in different ranges of the parameters equilibrium position(cf. Fig. 1). To lowest order inx+/ 4,

A¢/L we have

IV. TRANSPORT EQUATION FOR CLASSICAL 9G,
MAGNETIC FIELDS at

={GxHo}+ [ (26)

aGX}

at coII,
Equations(16), (17), (20), (21) reduce the calculation of

the conductivity to evaluation of the expressions that argVhereGy=Gy(t;{pn}.{rn})- , _

determined by dynamics of the isolated many-electron sys- The first term in(26) is the Poisson bracket Qf the matrix

tem. In transforming Eq(21) into a set of equations for €leMentsS(t;{pn},{rn}),Ho({Pn} {rn}). It describes evolu-

. A . tion of the classical many-electron distribution function in
matrix elements of the operat@, it is convenient to use

different wave functions for different ranges of the magneti the absence of scatterers. In deriving the expression for

C o A . g
field. In the present subsection we investigate the range éfGXHO} from Eqs.(?l),_ (24) itis convenient to write it first
B where in terms of the derivatives ovéq, ,r, (in these variables the

expression has a standard f4fm and then go over to de-
T >wp,0, of T >eEXroc. (22) rivatives overm,,ry. The.matrix elementeio({pn}',{rn}) of .
the HamiltonianH, are given by the corresponding terms in
When (22) holds an electron has a well-defined kinetic (14) with the operatorp, replaced by numbers, . Finally
energyp?/2m~T and a well-defined potential energy in the we obtain
field of other electrons. Uncertainty of each of these energies

is determined by the smearing of the electron wave packet GH=—S E PnXB)dGy  pn dGy
A1. For an electron in an electric field; this uncertainty is {GxHo} = = el Ent JPn + m ary |’
given byeE; X1, and it is small compared 6. Although the
field E; is small in a certain sense, it may still dramatically J r—r.,
. . _ -1 ee ’ n'n
affect magnetotransport, as explained in Secs. Il B and Il C, E.=-e o —82 —|r mraEh (27)
n n’ n n’

and the transport is qualitatively different depending on the

relation betweereEsAr and the Landau level spacing. Here, E, is the electric field that drives theth electron

because of its interaction with other electrons.
A. Wigner representation of the transport equation

In the domain(22) the electron dynamics are nearly clas- The collision term

sical. Therefore an appropriate set of wave functions of the To find the collision term in(26) we have to perform

many-electron system are plane waves, integration ovett’ in (20), (21). The characteristic range of
t’ that contributes to the integral is given by,. We will
Kly= 27)~ Lexplik.r o), 23 see that.y, is small compared to the time during which an
H{kal) l_n[ (2m) Aikarn) @3 electron moves by the distanees (see Fig. 1and the fluc-
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tuational electric field varies substantially. TherefGezcept
when analyzing correctiopsve will assume the fiel&, to
be independent of time when evaluating

A 1 (v ~
o) =Fa0+ | Ut

and we will use forp,(t’) the solution of the equation of
motion dp,,/dt=eE,+(e/m)p,XB in a uniform time-
independent electric fiel&E,, and transverse magnetic field
Bl

exd —igra(t’)]~exd —iar,(t)]exgd —igF(t’ —t,pa(1)]

9t
Xexi{i 2mwcsmw°(t t)|, (28
where
F(t,pn) =f(t,pn) — f(t,mv®) + v D¢,
R 5% B
f(t,pn) = Slnw t+e—5(1 coswct), (29

V9= (E, X B)/B?.

Although the operatorg,, andp,,x B do not commute, the
commutator of the respective terms (29) is small in the
range(22). It is seen from(21), (26) that to findG, we need
the matrix elements of the operators
exp(—iHqt)exd —igF(t’ —t,pa(t))]exp(Hqt) on the wave
functions (23). They can be obtained in the WKB approxi-
mation simply by replacing the operatars,p, by the num-
bersr,,,pn=k,—€A(r,). Then the collision term in26)
takes on the form

[ﬁGx(t:{pn},{rn})}
at coll

= _Eq: Wz &0 (0,0 ) [Gx(t{Pn}{rn})

_Gx(t;{pn+q5nn’}a{rn})]v (30)

t
én(d,pn)=2Re 0dt’eXiI—in(t’—t,|on)

+i(g?/2me.)sino(t’ —t)].
In (30) we have assumed th@¥,|* is independent of the
direction ofq.

B. Single-electron approximation for B=0
Equationg16), (25)—(30) give a well-known result in the

M. I. DYKMAN, C. FANG-

YEN, AND M. J. LEA

apn . 97

—+ . (31)

£9(q,pn) = 2776(

The solution of Eq.(26) in the single-electron zerB- ap-
proximation is given by

G§S><t;{pn},{rn}>=zglg exd —t/ 7% (€7)1Pnx

|

(BI2m) Y, pZ,

xXexg —
n'

qp+q)

(32

2m/’

v
(9 (e))” 1=—2§ 2|vq|2(

2

€(p) =5
Equations(16),(25),(32) result in a standard expression for
single-electron conductivity in the absence of a magnetic
field, with a frequency-dependent relaxation rate,

2
e’n
o (w)=—

9(e)/[1+ w?(1(€))?],

where averaging over is performed with the weighting fac-
tor «eexp(—Be). In particular the low-frequencya(r<<1)
conductivity o{®(w) is determined byr®(e), whereas the
high-frequency conductivity is determined by the average
collision frequencyl/=9(e).

In the presence of a magnetic field the structure of the
time dependence of the exponential in the expresgi28)s-
(30) for the kernelé,(q,p,) is completely changed: the func-
tion F becomes periodically oscillating in time, with a fre-
guencyw.. Therefore integration over’ in (30) does not
give aé function of the type(31). In fact, the integral over
t" explicitly depends o and diverges with increasirtg(the
orbit of an electron is a closed circle, and therefore the elec-
tron encounters a scatterer infinitely many tim&sis is an
indication of the inapplicability of the transport equation in
the single-electron approximation.

C. Many-electron theory

1. General form of the solution of the transport equation
for strong electron-electron interaction

The interelectron momentum exchange is described by
the termseE, dG,/dp, and m~1p,dG,/dr, in Egs. (26),
(27). The former terms are-eE;x1G,, and so are the latter
as is clear from(32) if one uses the full Boltzmann factor
exp(—=BHy) in fo) (instead of retaining only kinetic energy
in Hg). Therefore the interelectron momentum exchange
may substantially affect the conductivity éfEixt= 71

The analysis of many-electron transport is simplified if

absence of a magnetic field and in the single-electron apthe interelectron momentum exchange ratg ~eEiAy

proximation, i.e., in the neglect of the electron-electron in-s
teraction Hge in (14). In this case, for characteristic
q~pn~(MTY? and for time t>ty,=1/T the function
&= gﬁ? in (30) becomes & function of the energy conser-
vation law:

>7 7, or equivalentlyw,7>1 [cf. (12)]. This condition may
also be understood as the condition for the uncertainty of the
kinetic energy of an electron due to interaction with other
electrons to be much larger than the uncertainty due to col-
lisions with scatterers. In the corresponding parameter range
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the solution forG, may be sought in the form #n’ [to show this one may writé(P— = ,p,,) in the form of
) A a Fourier integral and then perform averaging over all mo-
Gu(ti{pnt {rnh) = 9x (& QcP{Pn}) Ho({ Pt {rn})), mentap,, with the Boltzmann weighting facthrTherefore to

. the lowest order in the number of electrons
cosw,t smwct) )
. 3

P= , 0=0ct)=|
; Ps e=0elt) ( —sinwgt  coswt P2 2N
) ~ pPr=2NmT.
The sign of the off-diagonal terms of the matfix.(t) cor- "
responds td pointing in the positive direction of theaxis |t follows from (30), (35 that in the collision integral
and allows for the sign of the electron charge. [dg/dt].o the term that depends on the direction pfis
The functiong, depends on the coordinates and mome”tébroportional to the expressiod,(q.p,)=.(q-p,). This
of individual electrons only in terms of the total momentum o m should be averaged ovegrdirections[this is a part of
and energy of the whole system. F8x given by (33) the o symmation oveq in (30)]. Since the momenta of differ-
sum of the terms that contaiB, and G, /dr, in (27) IS gnt electrons are approximately independent from each other,
equal to zero(becauseZ,E,=0). Qualitatively, EQ.(33)  he major contribution to the average comes from the term in
means that, for fast interelectron momentum exchange, thg. sum over n’ with n’=n. According to (31)

change of the momentum of arth electron due to a colli- 19 . N
sion with a scatterer is “shared” by other electrons beforedPn™ ~ 20" Therefore upqn averaging qver the directions of
the electron is scattered again. q (denoted by the subscriptq) we obtain

In view of the initial conditions forG, that follow from 1
(17), (21), and allowing for symmetry arguments( is the (qP)E &(qpn | ~— S g2N(&n(a.p),
x component of a vectprwe will assume thag, is the x n 2

- ; . a'q (37)
component of a vectog(t;(2.P,Hy), and we will seek this

vector in the form o . .
<§n(q,pn)>~§(q)5f dt (e'9n(Ve™1am(0),

9(t:QcP,Ho)=g()Qe(t)PZ; exp(— BHy)  (34)
with the initial conditiong(0)=1. In fact, we could seek Here, we have set the limits of integration over time to be
3 in a more general form of a function bandH-. but in the infinite; this can be done if the duration of a collisi¢tie
9 9 . 01 ™ actual range of time that contributes to the integral ayas
case of elastic scattering the energy of a colliding electron L ; )
Mmuch smaller than the relaxation tiiwhich determines the
and thus the energy of the electron system as a whole, % e . L ;
Characteristic limit of the integral over time in the expression
conserved, and therefore the dependenagmfH, does not

o : : P o 30) for , . The statistical averaging i is per-
vary in time and is determined by the initial conditions. lﬂorgned tgg(gegg)ta\ order in the couplin% tgo (:?]2 scgtterers.

Clearly, £(q) in (37) is a dynamical structure factor of the
electron system at zero frequency evaluated in the single-site
The collision integral dg/dt]cq for the solution of the  approximation(it should not be confused with a static struc-

kinetic equation of the forni33), (34) is given by(30) with  ture factor which is the integral over the frequehcy
G, replaced byg(t;Q).P,H,). Since the value oH, is not The above expressions result in the following simple form
changed in a collision, we have of the collision term for the functiog:

gi(t;ﬁcp({pn})1HO({pn}1{rn}))

_gi(t;ﬁcp({pn""q5nn’}):H0({pn+qgnn’}r{rn}))
— (DDA T (1) zZ-1 —BH i=x.y). For zero magnetic field Eq38) was derived in Ref. 28)
(@:(1)a)g(t)Ze "exp(~BHo) (i=xy) assuming that electrons form a Wigner crystal. The relation

The only singled out direction of the transferred momen-between losses of an electron system moving above the he-
tum for the many-electron system is the direction of the totalium surface and the structure factor was considered for an

momentumP. Therefore in the last line of the above equa-€lectron fluid aB=0 in Ref. 41[in the case of strong mag-

2. Many-electron collision term

g ., ., 1 2_2
¢9th._ Ter _4mT§q|Vq| &q). (39

tion one may replace netic fields this relation was also considered in Refafl
and the problem of corrections due to simultaneous scatter-
(q-P)P ing of several electrons by one ripplon was addressed there.
=—pz (39 The solution of the kinetic equation for the function

g(t) in (34 i tialg (t) =exp(-t/7.
The characteristic values &f we are interested in are the g(t) in (34) is exponentialg(t) =exp(-t/7)

fluctuational ones,
V. CLASSICAL MANY-ELECTRON CONDUCTIVITY

_[/(P2\1l/2— 12 (N=

[PI~[{P] (2NmT™= (N=n,S). (36) Equations(16), (25), (33), (38) provide a simple expres-
The momenta of different electrons subject to the conditiorsion for the frequency-dependent conductivity of the many-
that the total momentum be equal Roare basically uncor- electron system. In particular the static conductivity is of the
related forP of the order of(36), (p,pn)~N"%2 for n  Drude type,
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e’ng T [clearly, the distribution43) is independent of]. Detailed
o=0(0)=— 1122 (39  results on the probability distributiof#2) are presented in
PeT Ref. 33b).
For w.m>1 (classically strong magnetic fieldthe conduc- In the rest of this section we consider the explicit form of

tivity as a function of frequencyw has a sharp peak at the correlatoi(q) (41) in the two interesting limiting cases.
®=w.. This peak corresponds to cyclotron resonance,

e’ng T A. Weak to moderately strong magnetic fields
o(w)= 2m 1+ (w—wy)’r’ The expression fog(qg) and thus for the collision fre-
(40) quencyr ! (38) is simplified in the range of weak to mod-
lo—wd<wc, ocm>1. erately strong magnetic field3>e(E?)Y?x1>w, (7). As

discussed in Sec. Il B, in this range the effects of magnetic

calztr;lilt% %r?rmﬁtee:nar:n-é?e??:}r(gr?)t;lseg:e ;22'5'%2:??;5@ field on the electron energy spectrum, as well as on the elec-
y y 9 YERL - tron collisions with scatterers, are washed out by the fluctua-

We note that one and the same collision frequency deter- : : N .
. . . . tional field. Mathematically this is immediately seen from
mines static conductivity and cyclotron resonance in th

classical theoryit is no longer true in quantizing magnetic eEq' (42 if one notices that in®e(t), for characteristic

1/2
fields). It is expressed in terms of tH&ourier transformed q~(mT* [cf. Eg. (45 below], the parameter
: j v D~ (e(E) Y1/ o) T>T>w,. Therefore ®g(t) is a

short-wavelength electron density correlagéq) (37), and it q n 7 AT e T c ) E
depends both on the magnetic field and the fluctuational elec@pidly oscillating function of time it=w ", and the con-
tric field in the system. It isr~! that describes onset of fribution of this time domain to the integral over tirtel) is
magnetoresistance, the dependence of mobility on electrofgdligibly small. _
density, as well as the density and temperature dependence The major contribution tc¢(q) in the range(7) comes
of the width of the cyclotron resonance peak in classicallyfom the domainwt<1. To lowest order inwt
strong magnetic fields.

In the classical limit we are considering in this section the ¢(t)~exﬁ{ — —(Tt2+it)
statistical averaging for the isolated electron system in Eq. 2m
(37) for £(q) is reduced to integration over electron coordi-
nates and over electron momenta with the weightThe characteristic time that contributes to the integral of
exd —BHo({pn},{rn})] (quantum corrections are discussed in ¢(t)Pg(t) (the collision time is seen to be equal to
the Appendix. The averaging ofé,(q,p,) over p, is
straightforward with account taken of the explicit form of the tei=T" %, T>e(EHY% > w. (44a
function F(t,p,) (29), and the resulting expression fé(q)
contains only configuration averaging which comes to theThis can be easily understood, since &QE?)“Z}(T> e an

2
, De(H)=~1, t<w. .

averaging over the fluctuational fiek : electron has a continuous spectrum and moves with a ther-
w mal velocity (T/m)¥2. Therefore a collision with a short-
&(q)= f dto(t) Pe(t), range scatterer “lasts” for the time it takes an electron to fly
- over the thermal wavelength;. One may also say that an
92T 92 electron is “blown away” by the fluctuational field once it
o(t) =ex;{ — ——(1—cosw.t)—i 2—sinwct , has collided with a scatterer.
Mg Me Both the magnetic fieldndthe fluctuational electric field
(42) drop out from&(q) in the above approximation. They give
Wid) B rise only to quantum corrections. These corrections are found
O(t)=1{ ex (wct—sinmt)—ie . in the Appendix. With account taken of them the expression
¢ @e for £(q) takes on the form
quv(fd)(l—cosx)ct)b, (42 27m\ 2 q?
&)= TE (1+F)expg — m(l—f) ,
E;XB
V=g nt o, e
fzﬁ W+ m_(EQ) (45)

The probability density distribution of the fluctuational
field p(Ef) to be used for the averaging mrg(t) is the

probability density of the fieldE, on annth electron: It is clear from Eq.(45) that not only are the quantum

corrections parametrically small, but that they also contain a
small numerical factor. This means that in the rari@g
although the electron system is strongly correlated, the
electron-electron interaction only weakly affects the rate of
short-range scattering 1,

P(Ef)EZc_o%ﬁf

I1 drnr}5(Ef—En)e_'BHee({fn’})’
n/

E = — E ﬂee e_BHee({rn'})
n e ar,

) Zconf:f [H dr
n/

(43) rl~r 1 for T>e(E) Y>> w;. (46)
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The fact that the correlatai(q), and thusr 1, are nearly  relaxation rate depends explicitly on the many-electron fluc-
independent of the magnetic field, is an indication of thetuational field. This dependence becomes particularly simple
extremely important role of electron-electron interaction: it isin sufficiently high magnetic fields where the inequaliy)
because of this interaction, and only in the raiigewhere is strong. In this case the exponent (48) varies only
this interaction is in a certain senstongerthan the mag- slightly whens is changed by 1, and therefore one may go
netic field, that the magnetic field just drops out of the ex-from the sum oves to the integral,
pression for a static conductivity, even when the field is clas-
sically strong,w.m>1. As explained in Sec. Il B, in the
range(7) electron-electron interaction “restores” a simple- &q)=
minded Drude model of conductivity which shows no mag-
netoresistance. We notice that the peak of the cyclotron reso-
nance may be very sharp in the rar@)a anﬁd its halfwidth is (Ef 1>Ef E; YdE; p(Ef), wc>(2me(EX)Y2x,T)V2
approximately given by the scattering rate' calculated for

B=0 and in the neglect of the effect of the fluctuational .
field. Equation(49) corresponds to the case where an electron

collides with one and the same scatterer many times.
The encountering facto is given by the coefficient
(0B/mq)(Ef Yy in (49) for characteristicq '~y , and
It follows from the qualitative arguments given in Sec. Il thjs factor coincides with the estimate 6fin Eq. (9). We
C that scattering by short-range scatterers should change aggtice that each “individual” collision event is an elastic
magnetoresistance in classical magnetic fields should arisg|iision, and in this collision the electron kinetic energy is
when the displacement of cyclotron orbit center over theconservednp, = —q2/2 whereq is the transferred momen-
time 27/w. due to the electron drift in fluctuational field tym. This can be seen from E@O) for &(q,p,) if instead of
becomes smaller than the thermal wavelength, averaging ovep, [made to obtair(41)] one first performed
integration over time. In the rangd?) the major contribu-
"’CE(ZWG<E?>U2KTT)1/2' (47) tiongto the integral over time co%es from thé integrals over

In this case an electron collides with the same scatterers seff1® intervals which are centered &t 2ws/w, and have
eral timeg[the encountering factaf is estimated in Eq9)]. charﬁlcl:tenstlc widths thgt excegd 'but are smal! compared
We note that the occurrence of magnetoresistance in th€ @ - Each of these integrals gives tiefunction of the
range (47), predicted based on the picture of an electron€n€rgy conservatlofi%l). The total duration of a collision in
spiralling along a semiclassical orbit, is consistent with thethe range(47) is

guantum picture. Indeed, it follows from the condition

e(E?)Y2x;<T [which, in turn, follows from(2)] that in the teon=BA(E; )~ wclw,T. (44b)
range(47) we have

oB

1/2 q2
__r -1
exr{ BmT| g ()

A2
Ta (49

B. “Strong” classically strong magnetic fields

It is small compared to the tim@ ! (5) over which the
w>e(EHY2x, fluqtuationa_l fiel_d Qr_ivin_g an electron noticeably _varie_s,
which provides justification of the approach in which this
and therefore the Landau level spacing exceeds the uncefield is assumed to be time independent.
tainty of the kinetic energy of an electron wave packet in the we notice also that, in contrast to the case of moderately
fluctuational field. ~ strong magnetic field&”) where theE¢-dependent correction
To calculate the correlataf(q) and thus the relaxation o the relaxation rate it45) contains(E?), Eq. (49) contains
rate in the domair(47) we will evaluate the integral over g different moment of the probability density distribution of

time in (41) by the steepest descent method. This is justifiedhe fluctuational field, the mean reciprocal fluctuational field
since for characteristig~ (mT) 2 the exponent inp(t) (41) (E7Y).

is a large negative number(T/w.)? everywhere except for
comparatively narrow T~ 1) time intervals around the
points w.t=2ms with integers. For the same the param-
eter qvi¥w, in ®g(t) is ~eExT/w2<1. Therefore the
positions of the saddle points of the integrap) ®g(t) are
determined by the functiong(t) and are given by In quantizing magnetic fields,

te=27sw, *—i(2T) "1, and the result of the integration over

t in (41) reads w=T, (50

_[2mm\ 12 q? i - 27s
&q)= T, O amrl.=. \FHIE LB

VI. MANY-ELECTRON CONDUCTIVITY
AND CYCLOTRON RESONANCE
IN QUANTIZING MAGNETIC FIELDS

the band structure of the electron energy spectrum should be
> taken into account explicitly. The qualitative picture of elec-
(48) tron scattering in this case was described in Sec. Il C.

For w.>T electrons occupy the lowest Landau level,
[averaging oveE; is done with the probability distribution whereas for highef higher Landau levels are occupied. The
p(E¢) defined in(43)]. characteristic wavelength of an electrétme distance be-

It follows from (48) that in the range of comparatively tween the nodes of the wave functipnis given in order of
strong (but still classical magnetic fields(47) the electron magnitude by the expression
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e’ng

2mTw,

A=[Mw2n+1)]"Y2 n=[expw./T)—1]"*

(51) o=0(0)= 2n+1)771, wr>1,

[cf. (9)]. The value ofx ! determines the momentum that (4
may be transferred to a short-range scatterer in the collision. 1 L
The total scattering probability would be expected to be pro- 7‘1=§7(2h‘22 9°|Vgl%&(a)
portional to the “encountering factor” discussed in Sec. Il C q
and given by Eq(9). _

The quantitative many-electron theory in quantizing mag-(for clarity, we have explicitly incorporate#l). Here,|Vq|2
netic fields should be formulated in a different way for staticis the mean square Fourier component of the potential of the
conductivity and for cyclotron resonance. This is clear fromscatterers, and(q) is the (Fourier transformed electron
the fact that, e.g., fof < w, static conductivity is determined density correlator defined in EG37).
by the scattering within the lowest Landau level, whereas Equation(54) has the form of Eq(9) which gives the
broadening of the cyclotron resonance peak is determined byonductivity in terms of phenomenologically introduced dif-
the scattering both in the lowest and first excited levels. Irfusion lengthRg and scattering rate™, with Rg given by
more formal terms, the conductiviy(w) is determined by the estimat€11). In the limit of classically strong magnetic
the polarization operatdd (). The difference ofl(w) for  fields,w.<T butw.> 71, Eq.(54) goes over into Eq$38),
=0 andw= 0. becomes substantial when the duration of a(39) obtained before in a different way.
collision exceedso_ !, as it does in the rang&0).

1. Operators of the centers of the electron wave packets

A. Static conductivity To evaluate the electron density correlatg(g) for a

In the range of strong magnetic fields,7>1, it is con- many-electron system in the quantum raig@) it is conve-

motion

d. . A1) ~ .~  PaXB o . .
P =~ ko P~ 2 ——, Fo=Tnte 57, [Foi,Pn]=0 (i,i=xy),
dt VY n dYn m-wg

(55)
(k=eB,/mw;, |k|=1) (52 ~ =
~ [Xn,Ynl=—1x/Mmo
by P)':'(O) from the right and perform statistical averaging
and a Fourier transform over time. Then E§2) may be [« is defined in(52), |«|=1].

multiplied by 3,dH{"(0)/dy, from the left, and again statis-  In the semiclassical domaid), (5) the characteristic val-
tical averaging and a Fourier transform over tife¢ fre-  ues of the momentg, are ~x 1, and they are very much
quency— w) should be performed. Neglecting the terms pro-smaller than the characteristic rangg3) within which the
portional tow in thg result_ing two equatiqns and allowing for. centers of the wave packets, vary. In the analysis of the
the system to be isotropic one then arrives at the expressiqfynamics of the centers of electron orbits, to the lowest order

~ g2 - in x/6 one can eAxpress the operaktg{{r,}) in terms of the
o(w)= 2m2wg-|-5Re o dte operatorg, andp, and retain only the zeroth-order terms in
P, in the expansion of 4:

X2 ((VoAP(D))- (Vo AP(0))), w<T, 0.

' Heé{Fn})mﬂee({?n}) (56)
(53
(cf. Ref. 3). It follows from (55) and also from(2), (3) that

To lowest order in ~1 the correlation function of the .
©c7) the terms dropped if66) are

operatorsan:IiH can be calculated in the neglect of interac-

tion between the electrons and the scatterers, i.e., one can
replace ~eEp,/Mo~eEl3/x<eElg<T<w,.

~H i(Ho+Hpty a—i(HotHpt— Y. L
Hi'(t)=e""0 Hie "o Hi(t). In the approximatior(56) the electron motion is a super-

In the case of short-range scattering, as is clear from Fig. 40sition of quantum cyclotron motion and semiclassical drift
one should keep only diagonal terms with=n’ in the  Of the orbit centers. The cyclotron motion has much in com-
double sum in(53). If one further assumes that electrons aremon with vibrations of a harmonic oscillator. It is described
scattered by defects or by 2D vibrations of the bifionons by the raising and lowering operatqus, that move the elec-
or ripplong with typical frequencies small compared 19  tron to an uppeffor a=+) or lower (for «=—) Landau
t_., the expression for the static conductivity can be writtenlevel, and by the wave functions,) in the occupation num-

in the form ber representation:



—1/2 H —
(pnx_laKpny)y a==

Pne=(2May)

[Pn_ Pns1=1 (|«|=1),

1/2
yn+ Eiz) |Vni1>, yn=0,l, e (57)

bnthn>:

(the functions v,)) with different v, correspond to the same
position of the center of the cyclotron orbit of ti¢h elec-
tron).

The operator,,, commute with the operaton%h, and
the Hamiltonian of the electron system takes on the form

~ - 1\ . =
Ho~ wc; ( Pn+Pn- T+ E) + Hee({?n})- (59
2. Electron density correlator
Using (55), (57), (58) one can write the operator
exp(iqr,(t)) in &(q) (37) in the form

E al Bq—aﬁna(o)eiawct:|

a

exp(iqfn(t))%ex;{

x exfligVi?(0)t]exiigr(0)],

UW=gh=—gr — =5 7 Y. (59

The field E, here is the fluctuational field driving theth

electron. It is given by Eq(27), with r,, replaced bfn,. In
deriving the expression for the drift velocity

d?n/dtz—i[?n,ﬂee] we used the commutation relations
(55) and dropped the higher-order commutater,,,E, ]

(or «[T,,v(P]), so that, in fact, the operators, in (59)
should be considered amumbers. This is justified provided
the field E,, is smooth on the characteristic wavelength
(51, i.e.,

A[(VaEn)| = e(EDXIT<(EP)Y2 (60)

The latter inequality is the condition for the electron drift in

the fluctuational field to be semiclassidaif. (2), (3); in
evaluating(V,E,) we used Eq(A2)]. It follows from the
estimate of the fiel&; (3) that(60) and the conditior{5) for
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taken ovelv,) and over the eigenfunctions of the operators

¥, (or X,), but the latter is reduced to the integral over
{r.} in the semiclassical rangeWith the account taken of
the commutation relation&?) for p,,. we obtain

(expligr,(1))exp(—iqr,(0)))

= (exli V. t])

X < EXF{ 2 algq ,Pna(0) (€™~ 1)

)
cod

A simple (and useful for what will be done in the analysis
of cyclotron resonangeway of finding the trace ovew,,) is
to replace in the second line (1)

(62)

1
—i Eléqzsinwct}.

ex{A P (0)=A, P, (0)]=My(A,A_;0)e (M2AA

. S (—ALA)S, .
Ma(ALA50)= 2 5 —P3(0)P;-(0), (62
whereA ,=1gq,[ exp(—iawt)—1]. To perform averaging the
matrix elements

R Vn (_|A|2)s v,

<Vn|Mn(|A|2;O)|Vn>:E ] (623
$=0 s! S

should be multiplied by exp{Bw.v,), and then the summa-

tion over v, should be dongit is convenient to sum over

v, prior to taking the sum oves in (629 ]. Finally we arrive

at the expression
<exp[2 aIBq_aﬁna<0>[exmawct>—1]}>

=exp[— %|§q2(2n+1)(1—cosﬂct)} (63
[the Planck numben is defined in(51)].

The functions cos.t, sinwt are fast oscillating . is the
highest frequency in the problem for quantizing magnetic
fields). Therefore when(61) is integrated over timéfrom
—oo to ) to obtain&(q) (37) one may expand the integrand

the drift of the orbit centers to be semiclassical coincide within exp(*iwt) with account taken of63) and retain the terms

each other.
The other approximation made {89) concerns the time

in which the exponents with the opposite signs cancel each
other. Then the only term i(61) that remaing dependent is

t which was assumed comparatively small so that the varia(exmq@'gd&]), and we have

tion of the fieldE, could be ignored and the drift velocity
could be assumed time independent.
En~(Vann)'5$ﬁ), the condition(60) justifies this approxi-
mation fort=<t.,~ AB/E; [t.y is given by Eq.(65) below].
Equations(58), (59) make it straightforward to perform
the averaging/exp(igr,(t))exp(—igr,(0))). Since the op-

Since

f " dt(exiquOt]) = 2 ()

=24 'B(E( ). (64)

Here, we took into account that the semiclassical averaging

eratorsp, andt,, commute, the trace over the electron statespver the positions of the centers of electron wave packets

with the Weightzglexp(—,BHo) factors into the trace over
the wave functionv,) and the integral over the positions of

the centerg,, of all electrons(strictly speaking, the trace is

?n comes to integrating overr, with the weight
xexp(—BHed. Therefore(E; ') can be evaluated using the
classical distribution of the fluctuational field3). We em-
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phasize that it is only the drift of the centers of the wave
packets that is classical: fast cyclotron motion of the elec-
trons is quantized. We notice also that, although the distri-

bution of E; may be anisotropic for a Wigner monocrystal,

M. I. DYKMAN, C. FANG-

YEN, AND M. J. LEA

AR a .
(PE()PL(0))=Tr[P_(0)G.(1)], 69

G, ()=e MG, (e, G, (0)=2;1P e A,

the anisotropy dropped out ¢64), since we consider scat- \yhere the operata, (t) satisfies the kinetic equatiof20)
tering which is isotropic irg, and we performed averaging \yith the initial conditions specified it68). As in Sec. Ill B,

over the directions of] in (64).
Equation(64) is the condition of energy conservation for

in Eq. (68) we introduced the operatds. (t) instead of

elastic scattering: the scattered electron remains on the sarffe (1), because the matrix elements of the operators in the
Landau level, and the recoil is such that the cyclotron orbitcollision integral forG, (t) on the wave functions of the

center moves transverse to the fluctuational fiejd
The resulting expression for the correlatfiq) is of the
form

&ap=2(l Bq)‘lteexr{ - %I 202(2n+1)

2M(n+1)m

—mnz te=Blg(E; Y).

1
><mE:0 (§|§q2)
(65)

The quantityt, here is the time during which an electron
drifts, in the crossed fieldg; ,B, over the quantum magnetic
lengthlg [cf. Eq. (10)]. Thereforet, gives the characteristic
duration of a collisiont, for T<w,. It follows from (51)
that for higherT

teor=(2n+1) Y% =(2n+1)"YBIg(E; ), (66

wctco||> 1.

Equations(54), (65) provide a simple explicit expression
for the static many-electron conductivity(0) in quantizing
magnetic field§the inequality(66) specifies the range of the
fields where(65) applied. For low temperaturesy <1, the
major contribution to£(q) comes from the term in the sum
(65) with m=0, and the expression fer(0) coincides with
the result obtained earliét.In the opposite limit of highT

wheren> 1, the sum in(65) can be replaced by an integral,

many-electron system are determined by the evolution of the
system during the time-t.,,. This evolution can be de-
scribed explicitly in the range where the drift of the cyclo-
tron orbit centers is semiclassidah contrast, the collision

integral forG, (t) is determined by the evolution of the elec-
tron variables during the time = which is not know.

2. The solution of the kinetic equation for fast interelectron
momentum exchange

Electron-electron interaction affects the shape of the peak
of cyclotron resonance?) through its effect on the decay of

the operatoiG, (t). As explained in Sec. Il D, this effect is
twofold: (i) electron-electron interaction defines the mecha-
nism of collisions with the scatterers in a strong magnetic
field, and(ii) if the interaction is strong enough so that the
rate of interelectron momentum exchangg' exceeds the
collision rater %, it defines the functional form of the op-

eratorG, (), and thus not only the broadening, but also the
shape of the absorption spectrimg., Lorentzian vs non-
Lorentzian.

Resonant absorption at cyclotron frequency corresponds
to the transitions between the Landau levélg,—|v+1).
We note that broadening of the absorption line is due not to
very occasional collision-induced transitions between the
levels (“longitudinal relaxation,” in spectroscopic terms
The actual mechanism is random modulation of the differ-
ence of phases of the wave functions of adjacent Landau
levels, which is induced by electron collisions with scatterers

method. The result coincides with EG9) obtained above
by a completely different method.

B. Cyclotron resonance
1. General expression for the conductivity

For strong magnetic fieldsy.7>1, the resonant contri-
bution to the many-electron conductivity(w) (16) at the
cyclotron resonance frequenay= w, comes from the term
in the correlation function of the momentu(®!!(t) P (0))
which, in the absence of scattering,
exp(—iwgt). Keeping this term only and expressing it in
terms of the raising and lowering operatqrs, (57) we get

e?(n+1)°1
2mS

o(w)=~

Rerdtéw%ﬁﬁ(t)ﬁ':(o»,
0

(lo—wd<we), ﬁf@ P - (67)

Similar to (17) we may write

lation of the transition frequency. Modulational broadening
of resonant absorption lines is well known in different con-
texts in solid state spectroscopsf. Ref. 42.

Although electron-electron interaction does not give rise
to the spectrum broadening, it may cause transitions between
the Landau levels of individual electrons. The transition
probability is given by the rate at which the amplitude
Pr.eXp(—iawct) of the quantized electron momentum is
changed. For anth electron this rate can be estimated from
the equation

oscillates as

- - €.
dp,/dt=eE,({r,/}) +Ep>< B.

If one expands . in 13p, using(55), one finds that the rate
of the momentum amplitude change~i£e(VnEn)I§ (for the
mean occupation number of the Landau leveis1). There-

fore it follows from (A2) that the interlevel transitions occur
more frequently than collisions with scatterers provided

Tow = (05l wo) ~eXENIE/T> 771 (69)
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[we have used here the estimate of the fluctuational {@ld tially. Consequently we may assume the field to be constant,

and the expression for the characteristic plasma frequencgnd then write the operators {818 in the form similar to

wp, (4)]. The criterion(69) justifies the conditiorf13) and, as  that used in Eq(59):

explained in the discussion ¢13), is also sufficient for the

fluctuational field that drives an electron to be randomized R R

between successive collisions with scatterers. exp{iqrn(t)]zexp{ E algg_ ,Pna(t)
We notice that(69) is not necessary for applicability of “==

the quantum transport equation and of the decoupling used in

exdigry(t)],

the transition from(53) to (54), this decoupling requires a exp[—iqf ]
weaker inequalityt o< 7 [t is defined in(66)]. i
In the range(69) the dominating term in the equation of - (! —1)
motion for the operatoé+(t), ~ex o;i @lgd-aPna(t)e
T FTcH X exg iV (1)(t' — 1) Jexd —idra(t)].
=G (0. A+ =
coll The exponentials eXgiwt'—t)] in the term
N exgd —igrn(t')] are fast oscillating fort—t' ~te> w; *
+} _ Z 2 f dt’eiHot Therefore one should keep only diagonal terms in the expan-
It Jean q n sion of exf—igry(t’)] in exd +iw(t'—t)], which means

o LA Hot that the corresponding operator may be expressed in terms of
X[expliara(t), [exp(—iqra(t)),g.(t)]le the operator M, introduced in (62 [with
(21a A,=lgg.exp(—iaw(t’'—t))]. At the same time, in the
derivation of the kinetic equatiofR0) it has been assumed

that both the operatog itself and the collision term as a
whole are smooth functions of tinié is seen from(68), (70)

that time evolution o@+(t) is given by that ofg . (1), i.e.,
G.(t) is indeed smoofh It follows from these arguments,
with account taken of the fact that the operatpfs(t) os-

is the first term which is linear in the electron-electron
interaction Hg [Eq. (213 is similar to Egs.(20), (21)].
Therefore the major term in the solution @219 is a
function of the total electron momentumP. (t)
=exf{iHt]P-(0)exd —iHqt] and of the energH, [cf. Eq.
33)]. In vi f the initial dition(68) and taking int . : . N
(33)]. In view of the initial condition(68) and taking into cillate approximately as exp;(wct) that the substitutiof62)
account that() the operatoiG ., (t) has a symmetry of the hould b lied he - -d q |
momentum operator, ar{d) we are considering elastic scat- >0U'd D€ applie to then..- epen ent terms not only in
tering, and therefore the total electron energy and dlStl’IbUeXF{_|qrn(t )], but also in exfiqr,(t)] (in the latter case

A= —1g0d,).
tion over the energy do not change, we will se@k(t) in a l60a . .
, v 4 ge, we will seBk (1) i With Eq. (62) taken into account we can rewrite the col-
the form . . )
lision term in(219 in the form
G.()=0.(Z e P (0)exd — BHo].  (70)

+

ot

- vV 2a- (1/2)13¢2 =(d
The functiong . (t) is slowly varying; it accounts for relax- N_qu: 2 zn: 5(qVi(0)
ation. Fast oscillating terms ig, are small and nonreso-
nant, and they have b?fm dropped. In fact, even in the neglect (_|Bq 0) [ (_|Bq 0) G, (1) }
of fast oscillating termg , still may be an arbitrary function
of the operatoP, (0)P_(0)=P, (t)P_(t); however, it fol- (71)
lows from the form of the collision integral derived below

[see Eq.(71)] that the terms(P, (0)P_(0)™ in g. that We notice that all operators heféncluding the ones in
have differenim are decoupled from each other in the statis-G- (t), cf. (70)] are evaluated at the same time0. .
tical limit of the large number of electrons. Therefore from  In deriving(71) we took into account that in the semiclas-

the initial condition(68) it follows that§+(t) is ac number. sical domain(5), different components drA’n ,'Q"ﬁd) commute
not only with f)n: but also with each other, and hence with
exp(-BHo) and withG_(t) as a whole. In the same semi-
Time evolution of the functiong, (t) in (70) is deter- classical approximation the operatét, in Eq. (70) for

mined by_the collision t_erm_i(lz_la. To find it_We notige that G, (t) can be written in the forn{58) of the sum of the
the duration of a collision is given by the time of flighty  terms that correspond to quantized cyclotron motion and to
(66) of an electron past a scatterer in the fluctuational f'eIdSemicIassical drift of the centers of electron orits There-

Therefore, in the collision integral if21g the actual time
difference t—t'~t.y. Although t—t' largely exceeds fore the operator$/, in (71) commute with exp¢ BH,) in

w. !, it is still small compared to the time- wclwp over  G.(t), and the only term irG.(t) they do not commute
which the electric field driving an electron varies substan-with is P+(0)

coll

3. The collision term
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It follows from the above arguments that the right-hand 1—exp—Bw) _
side of Eq.(71) is a sum of collision probabilities for indi- y=v(w¢), V(w):WE 9°|Vql?&(a, ),
vidual electrons, d

S S M, [V o Tlex — BHo) aq'“’):f_xdt & po()p—q(0)). 49

(this expression should be further summed over the momen-
tum transferg). The above form is not the same as the form

of the expressior(70) for G_ (t), which is a sum ofp, . : . . .
multiplied by an operator independentmf This is a conse- This form IS fam|l|_ar from th_e memory function theotyWe
emphasize that, in evaluating the structure factor, we allow

guence of the collision probability being dependent on the ' . . )
. . explicitly for strong electron correlations. Also, in contrast to
state of the electron, as explained in Sec. Il D. In the rang

(69), where the interlevel transitions due to electron-electro the memory function theory, our technique makes it possible

interaction are comparatively frequent, the relaxation rate i 0 Lgvﬁlsé'%it;tzzr:'{:xfl%iﬁrg_ragd Ssr?%") r?;r%/ Tc.) over
determined by the collision probabilities averaged over the the r Itq f Ref. 31 Incth gs. " iimib <9T [but
electron states, and therefore the above expression has to jpLo the result of Ret. 31. € opposite ' u

2\1/2 1/ H
appropriately averaged. Formally, the averaging can be don‘é°>|€[27;3<]Ef >t KTTf)_ E IIEqs._(72l)ih(73) 90 ovetr) mé(o t;]e
and the equation for the functiog, (t) in (70) can be ob- result of the strong-field classical theory given by EGH),

. o ; L ! (40), (49 [however, guantum corrections {d9) may be
tained by substituting70), (71) into the kinetic equation sometimes substantial even fog<T; see beloy, We note

(213, multiplying by P_(0) from the left and taking trace that, as expected, in quantizing magnetic fields the frequency
over the states of the many-electron system. With accourjspersion of the structure factor is substantial, and the relax-

pq=(nsS) 2> explidry).

taken of the expression ation rater~ ! that determines the static conductivity and is
. . - ot expressed in terms of(q,w—0) [cf. (54), (65)], and the
Tr[P_(0)G () ]=nsS(n+1)g ., (t)e ', halfwidth of the cyclotron resonance peak72), (74) do not

. . L~ coincide with each other.
one arrives at the following equation for, (t):

4. Cyclotron resonance for slow interelectron momentum

ag.4 (1) _ exchange
=784 (1), ?

It The shape of the cyclotron resonance peak differs from
Lorentzian in the case where the duration of the collision

1 VRV 1 — i I d to the reciprocal scattering ratbut
~ Tt 1.a)3IV Pexd — = 1202(21n + 1 teon is small compared to the reciprocal scattering ra
Y74 e; (150)7 V| XF{ 2 84" )| (@2 the latter is small compared to the timg, over which the
p —— correlations in the electron system decay,
1 Mn(n+1)]"
2.2 _ _ _
sz:o (Equ ) m!(m+1)! ° 7-exlzo’)[ZJ/wc<T 1<tcoﬁ- (79

In this case the electron momentum is randomized because

Both P_(0) and the collision tern{71) are sums over the ¢ cqjlisions with scatterers faster than it is exchanged with
electrons; the contribution t672) comes from the diagonal qiher electrongcf. the discussion in Sec. 11D

terms in the trace of their produtthe terms that refer to the  gince the collisions are short compared to the intervals
same electrons Averaging over the occupation numbers of peyween successive collisions, the many-electron  kinetic
the La-ndau I.evel$'n of the.term in the double commutator in equation(213 still applies, but now the teri{ &, ,Fod in

(71) with a givenn multiplied by p,(0) may be performed (214 is small compared to the collision term, and to zeroth

using Eq.(62) (in fact, it can be simplified using some op- g, qer inwf)r/wc it can be neglected. A solution of the kinetic
erator identities, but the details go beyond the scope of thigq ation can be obtained in the extreme quantum limit where

papej. —
: electrons occupy only the lowest Landau levekk1l. One
It follows from Egs. (67), (68), (72) that in the range69) can seek it in a quasi-single-electron foiffguasi”’ here

the con_ductlwtyfr(w) near the cyclotron frequency has a means that we take into account that collisions with scatter-
Lorentzian peak: . :
ers are strongly affected by the electron-electron interajtion

2
Ng Y

e
T~ S (om0t 2 73 R A A

The halfwidth of the pealy is determined by the rate of the
collisions in the many-electron fluctuational field. For
wte>1 it is proportional to the time of flight, past a

One then finds fronf71) that the functionsy,, (t) exponen-
tially decay in time, but the decrements for different elec-
short-range scatter¢6s). trons (different n) are determined by the “instantaneous”

We note that Eq(72) for the relaxation ratey can be values of the reciprocal fluctuational fiel, *: this field is
written in the form in whichy is expressed in terms of the randomized over the time./w, which exceeds the time
frequency-dependent electron structure faéfar, w), over which the functiong,, (t) decay. The averaging over
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the field has to be done in the final expression for the con
ductivity, and therefore we get

ezns/ Yo(Ef)
2m \ (0—we)2+ ¥5(Ep) |

o(w)~ e,

¢ (W)

1 _
Yo(En)=716BE "2 (1) Vyl*exp(~150%2.  (76)

The averaging over the field; is performed with the distri-
bution (43).

It is seen from(76) that in its maximum {=w.) the
conductivity is given by the averageciprocal scattering
rate. This is similar to the static conductivity(0) in the
single-electron approximation fa@=0. On the tails of the
cyclotron resonance peaky — w.|> 7y, the expressiori76)
goes over into Eq.73). This is again similar to what happens
for low-frequency single-electron conductivity in the ab-
sence of the magnetic field: fabr>1 it is given by the
average single-electron scattering ratet the average recip-
rocal rate.

FIG. 5. Reduced high-frequency conductivity(w)=
2myqo(w)! meng [vo= yo((E?)Y?] near the cyclotron resonance
peak as a function of the reduced frequedey=(w— w.)/yq for
slow interelectron momentum exchan@) (solid line). Lorentz-
ian distribution with the same area and with the halfwidif?y, is
VII. CONDUCTIVITY AND CYCLOTRON RESONANCE shown with a dashed line.

FOR SPECIFIC SCATTERING MECHANISMS

. . 2 . . . .
The expressions for the static conductivityand for the cusse_d in Sec. 11l B is-BBy in _classwal magnetic fields
parameters of the cyclotron resonance spectrum are simplf-N€ fieldBr “separates f'thfj regf|ons of quantizing and non-
fied for specific scattering mechanisms. In the analysis wguantizing magnetic fields for a given temperature

will assume that the distribution of the fluctuational field (A@c=T for B=By). 12 U _
E, is Gaussian, The ratioBy/Br=(2e(Ef)~“A1 /T)~'4, and therefore if

the electron motion is classical in the absence of magnetic
p(Eq)=(m(E?)) *exp( —EZ/(E?)). (770  field (see Sec. Il A thenBy<B7. In this case the decrease
of the static many-electron conductivity with increasigg
which is described by the Drude la(@89) for B<B,, satu-
rates forBo<B<Bt. The conductivity becomes nearly in-
dependent from magnetic field, and according39), (49) is
given by the expression

Equation(77) has been showi” to describe the substantial
central part of the distributiorp(E¢) in the broad range
20=<I'=200. In particular, to an accuracy better than 10%
the mean reciprocal field,

( Ef_ 1> — 771/2< E%> - 1/2‘

mn, 1 5 [ —h*q?

Equation(77) makes it possible to characterize the effect of Tsat- gz ﬁE |Vq| €x 8mT |’
the electron-electron interaction on the conductivity and cy- 0 a
clotron resonance by one parameter, the mean square fluc-
tuational field(E?). The dependence ofE?) on electron
density and temperature is given by H®) with F being
nearly a constarit®

One of the results that immediately follows frofm?) is sublinear and, in fact, very wealt,¢n%*, according ta3).

the explicit shape_ of the cyclptrqn resonance padk in the The value(79) provides the scaling factor for the conductiv-
range of quantizing magnetic fields for the case where th«.ﬁy in strong magnetic fields

relaxation rate exceeds the interelectron momentum ex- . .
change rater_t< 7 1<t-1 It is seen from Fig. 5 that this In the rarlgeB< Bt the expression for the scaled static
shape is notig)é:ably diffecﬁgnt from Lorentzian. conductivity o for Gaussian distribution of the fiel; is of

In the range of fast interelectron momentum exchangeth® form
which is of central interest for the present paper, the depen-

(79
Bo<B<Br.
The conductivity(79) is determined by the fluctuational elec-

tric field. Its dependence on the electron density is strongly
1/4

dence of the conductivity and cyclotron resonance on the pll T
magnetic field is characterized by two parametBi&g, and Osat
B/B+ where
3 1/4 B(ZJ — - —h%g? Bé
2am°T mT =2 _— 2 + 47252 —
BOZ 720/ =—1\2 y BT:_- (78) g BZXT% qlvq| S;m exp{ 8mT 1+4m’s BAH
fice*(Ef 7) he
. . . . _ﬁZ 2\1-1
The parameteB, gives the magnetic fleld for which t_here « E |Vq|2ex;< g ) . B<Br (80)
arises magnetoresistang@e encountering factaf (9) dis- q 8mT
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(clearly, o—1 for B/By—). The explicit expression for B>B (i.e., sIovx_/e_r than in the rangg,>B>B+). The_ pa-
the reduced Conductivitﬁ for quantizing fields,B=Br, rameter y explicity depends on electron density for
follows from (54), (65), (79). We note that the fluctuational B=Bo-

field drops out ofz in quantizing fields. )
B. Electrons on helium surface

A. Delta-correlated random potential For electrons on helium surface with a dengity=10°

cm 2 and T=1 K the fluctuational field is

(E’)Y¥2=FYAT)n3*TY2~11 Vicm, and the characteristic

magnetic field for the onset of magnetoresistance is

The analysis of the conductivity becomes particularly
simple in the important case ofécorrelated random poten-

tial, Bo~ (2m°F/#2e?)¥4n¥®T12~0 54 T. Therefore the specific
#3 features of many-electron transport are accessible to experi-
Vql?= 55_17;0- (81)  mental investigation.
Electrons on helium are scattered by helium vapor atoms
Here,rgjo is the scattering rate”* (38) for B=0. and by capillary waves, ripplons. The advantageous feature
The value ofo at saturation(79) for 5-correlated potential Of the system is that the interaction with the scatterers is
is of the form known and can be easily controlled: the saturated vapor den-
sity can be changed by orders of magnitude in a compara-
a'sat=(mn3/7'ng) 1-;_10. (820  tively narrow range arouhl K just by changing tempera-
ture, whereas the coupling to ripplons can be changed by
In classically strong fields we obtain fro(80) varying the fieldE, that presses electrons against the helium
B2 = 4y —3f2 surface.
~_ bo 2.2°0 . Since in the limit of weak coupling to the scatterers the
o= BZS:E_OC 1+4n"s ga » B<Br, (83 scattering events are independent from each other, the relax-

, ation rates for scattering by vapor atoms and by ripplons add
whereas in the range up, and they will be analyzed separately. In the analysis we
will imply the standard variational form of the wave function

4
BS; n_+% <1, n_E[exp(B/BT)—l]‘l (84) gf th? ?;ectron motion transverse to the surfdie the z
T irectio
(which includes the range of quantizing fieldse obtain w(z)=2yf’2zexq—nz). 87)

from (54), (65)

1 | 1. Vapor scattering
2m+ 5/ [ ﬂ_(ﬂ_+ 1)
mo (M)% | (2n+1)2

12 * m

The cross section of a helium atobf,~5 A?, and so
helium vapor atoms create a nearly idéatorrelated poten-
85) tial. Th_erefore the magnetoconducti_vity and cyclqtron reso-

nance in the case of vapor scattering are described by the
[ as given by(85) approaches 1 fon>1; we note that the €xpression$81)—(86). The explicit form of the squared ma-
condition (84) coincides with the conditiomt.>1 (66)].  trix elements of the coupling to the vapor atori¥'is

It is seen from(83), (85) that the conductivity has a mini-
mum as a function oB in the rangeB~By: it decays as
B2 for B<B,, and for B>B; it increases aB32 The
dependence of the reduced conductivity Bris shown in
Fig. 6. ~

The halfwidth of the cyclotron resonance absorption pealc
v in the range of classically strong fields is seen fr@f) to 40 .
be given bymwﬁa/ezns. It is independent of electron den-
sity and ofB for B<B,. As B approache8, the halfwidth i T
starts increasing witiB; for By>B>B, we havey=B2. In

the rangeg84) vy is given by Eq.(72). It can be easily evalu- 2
ated for thes-correlated potential81): i L /

12

_ 7B
0': —_—
[4Bﬁ2n+1f

BB
4mwBg(2n+1)5

— -1
Y= Teo0

OO

.5 1.5 2.5 1 3 5

m

2m+ 1| n(n-
(2m+ %) [n(n+1) - (86)

" & mimt 1| (2n+1)2

FIG. 6. Reduced conductivityy=oc/oey as a function of
B/B, for classical fields and oB/Br=%w./T for B®>(BY/

It is seen from Eq(86) that the halfwidth of the cyclotron B;)(n+1/2), for as-correlated random potential and for Gaussian
resonance peak increases with the magnetic fiel®&sfor  distribution of the fluctuational field.
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4

—_— B particular, 7z «B~ Y2 for B>B;. In the opposite limit of
V= BN, gy  Paricuaroe
8m e

largen (i.e., for B<By) the sum ovem in (92) is close to

. . . 2/7)Y4n[B;/B], and therve  decreases with the increasin
whereN, is the(3D) vapor density. The corresponding value( ™) In[Bq/B] £ 9

of the scattering rate foB—0 fo be used i82)—(86) is 5 & IfB;/B] [the expression fotrg diverges logarithmi-
71 =(37h/8m) b2 N cally for #—0; we note that the sum overin the classical
B=0 Y1 He o expression folo g, (79) logarithmically diverges at smafi

for [V,|? being of the form of the termE? in (89)].
To analyzec~rEL in the intermediate rang8~By it is

convenient to write the correlatd{q) in the expressiofs4)
for the conductivity in the form

2. Ripplon scattering

The effective intensity of the random field of short-
wavelength ripplons is of the forth

v |2=S’1—T62[E2+2E Epor+ Epall i !
alr aqz 1 1 Epol polds @9 E(q):f_mdtex[{—EléqZW(wct) ,
(93
Epo=E (q)=ﬁ2ﬁqu‘»"( q) o
20=Epol T 30" W(x)=(n+1)(1—e ™)+ n(l—e‘x)+ZBaé X2,
N

where « is the surface tensiony{®)=(me*/4#?)(e—1)/ o
(s+1) is the value of the variational parametgr for N deriving (93 we used Eqs(37), (59), (61), (63); averag-
E, =0, s is the dielectric constant of ing over fluctuational field was done usiri@7). Equations
helium. and (54), (93) make it possible to write the reduced conductivity

o in the form
1

1+(1-x2)1?
(P(X):(XZ_1)—1+(1_X2)—3/2|n # , x<1, BZ .
~ 0 , _
(909 og, =mgzIm X [W ()]
e(X)=(x*=1)"1=(x*~ 1) ¥an [ (x*~1)*7], X(>1-b) wherex are the roots of the equation
90

i . . . . W(xs) =0, Imxs<O.
The first term in(89) describes coupling to ripplons due to

the field E; that presses electrons against the surfacelNumerical results fo?liEL are shown in Fig. 7.

whereas the terms with,, are related to the change in the  The analysis of the second and third terms in the expres-
energy of the electron.-lnduced polarization of helium due_ tGsion for the ripplon conductivitydl), o, ando, is similar
ripplons. The terms witle,, correspond to & random quasi- g the analysis of the conductivity for @correlated random
static Gaussian potential with a small correlation length. Thebotential. The dependence of the conductivitigs, oo ON
term <E? diverges for smal (it has a cutoff at the recip- B js nonmonotonous, they reach minima in the range
rocal capillary length i.e., the corresponding term describesg,<B<B; and then increase with the further increase of
a long-range potential. This divergence is seen from EQsg. Their behavior foB<B; is described by Eq€79), (80),
(38) and(45), and(54) and(69) to be “dangerous” only in  (gg). In particular, the values o0, at saturation are
the rangeB~By: in both quantizing field8=B; and com- given by

paratively weak fieldsB<B, the sums overg contain

weighting factors that fall down fast with the decreasing eEM’(lO)T mng omT
It is convenient to evaluate separately the contributions to Tersa — 7~ g2 P1| 522 ]
the magnetoconductivity of each of the three term$89). 0 .
Respectively, we write the magnetoconductivity in the form
o=0(0)=0g +0gt 0pg. (91) Teolsat g g wBE P2 h2y2) 69

The dependence of the termLocEf on B in the range of where

strong fields(84) can be obtained from Eq¢54), (65), w _ .
- <p,-(z>=f dx X~ le*QI[(207] (j=12. (95
© o _SEImns °

O =0g O o) =—F7—
EOURETE UELT 4ot B3R

The functionse, , depend on temperature and, through
the variational parametey, , on the pressing fiel&, . In
M2m— ! the actual case where the thermal wavelengthis large

(mhHZ - compared to the localization length in the direction trans-
(92) verse to the helium surface we obtain fr@g®9), (95)

22 In(n+1)

(2n+1)2

7TBT
B(2n+1)

O

L

m=0

It follows from (92) thato does not display saturation with J

: : : (2mT/h2y?)~
the increasingB. Its dependence oB is monotonous. In @il 7L

1 2.2 ;
Eln(h viimT)| (j=1,2.
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12 T T T T T
GEL 8| i
4 b
0 1 1 1 1
0 1 1 I L 1 0.5 1.5 2.5 1 3 5
0 2 4 6 8 10 B/B B/B
B/B, 0 T

FIG. 8. Reduced conductivity o= 0,/ 7, s Which is deter-

FIG. 7. Reduced conductivityg, (92) as a function of/B, mined by the secon(tross term in the ripplon field intensity89),

for t.he. contnbqunl 1o the rate of ripplon scattering which is qua- as a function oB/B, for classical fields and dB/Br=fw./T for
dratic in the pressing fielE, . The curvesa to ¢ correspond to 3 4 — i .
Bo/Br=0.6,0.4,0.2. The dashed lines show the I&B¢B asymp- B >(Bg/§T_)(n+5)' The solid and dashed lines refer to
totes OfGEL- 2mT/Ay;=0.1 and 0.01, respectively.

so that the fluctuational field does not vary in time during a
collision and is uniform over the electron wavelength. Both
«B12 Tpor® B%2 to an accuracy of a factor that smoothly these two conditions are met in the classical domain,

depends orB (approximately as a logarithm of, 1g). The T>e(Ef)Y?xr, hw, and the specific for many-electron
explicit expressions for the relaxation rate® in the case Systems semiclassical domairkw.=T>e(EZ)Y25(2n

v, 1g>1 are given in Ref. 45. The reduced conductivities + 1)~2 where the electron motion is a superposition of a
O¢r, Opol @S functions ofB obtained from(54), (65), (80), quantized cyclotron motion and a nearly classical drift of the
(89) are shown in Figs. 8 and 9. centers of cyclotron orbits.

The overall conductivityr (91) due to the ripplon scat- The analysis is based on the many-electron quantum
tering has a minimum as a function of magnetic field. Thetransport equation. We derive this equation and develop
position of the minimum depends on temperature, electrofechniques for solving it, for classical and semiclassical do-
density (in terms of the mean square fluctuational field mains. The solutions are obtained in the limiting cases of
(E?)), and the pressing fiel@, . The occurrence of the large and small ratios between the rafg" of interelectron
minimum is a many-electron effect. Figures 6-9 refer to thgmomentum exchange due to electron-electron interaction and
case where the saturation of * with the increasing® oc-  the relaxation rate-~* due to collisions with the scatterers.
curs in classical magnetic fields, i.e., Bg<Bt. However, For 7< 7 the general expression for the conductivity coin-
the theory applies for an arbitrary ratio between the field
By (78) andBy=mT/%e provided there holds the inequality

Br
o

=)
Br/ |B(2n+1)

pol
which is equivalent t@¢2). Detailed comparison of the theory 4}

and the experiment for electrons on helium will be given in
Ref. 45. -

In the rangeB=B+ the conductivitieso¢,, oo iNCrease
with the magnetic field. In the limiB>B; we haveo,

1/2

<1

VIIl. CONCLUSIONS

We have considered electron transport in classical an r
semiclassical strongly correlated electron systems for shor
range electron scattering. The effects of electron-electron ir 05 15 25 1 3 5
teraction on electron transport have been described in a nol B/B B/B
perturbative way. The basic physical idea is that althougt 0 T
relaxation of the total electron momentum occurs via indi-
vidual electron collisions with scatterers, during the collision FIG. 9. Reduced conductivit§p0|: Opoll Tpol, san Which is de-
the electron is driven by a fluctuational field from other elec-termined by the thirdpolarizatior) term in the ripplon field inten-
trons, and this field may dramatically change the character ofity (89, as a function ofB/B, for classical fields and of
the collisions, particularly in a strong magnetic field. B/Br=hw./T for B3> (B#/B)(n+3). The solid and dashed lines

We investigate the case in which the collisions are shortrefer to 2nT/%27?=0.1 and 0.01, respectively.
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cides with the expression which can be formally written intuational electric fieldwhich have been taken into account
terms of the memory functiofcf. Eq. (74)]. We emphasize in (28)] as well as the acceleration due to the electric field
that, in evaluating the electron structure factor, we do not usbeing time-dependent itself:
the random phase approximation: the major effects come
from strong electron correlations. It follows from the results
that, in the classical and semiclassical domains, polaronic
effects of the mass renormalization due to short-wavelength
scattering are small. [the explicit form of the operatoEn is given by Eq.(27)

If 7,,<T then,because of the many-electron effects to  with r,,, replaced byr,,; to the lowest approximation in the
moderately strongB (including classically strong fields, acceleration of the electrons we have set the velocity of an

wcr>1, but A< e<Ef2>1_/2}(T)v the frequency-dependent n'th electron equal to its valug, (0)/m att=0]. An esti-
conductivity o(w) is described by the single-electron Drude mate of V,E,, for a classical system follows from the esti-

- N 1 - -
En(O~EA 0+ (B (0)V)EL(0)  (AD

formula. mate(3) of (E?) and from the relatioricf. Ref. 46
For higher magnetic fields the scattering rate starts to in-
crease withB, and in quantizing fields the conductivity as a eX(EH=((VHed?)=—eT(V,E,). (A2)

whole increases witlB, i.e., o is a nomonotonous function

of B. The dependence of the conductivity on the magnetmfA‘IIO
field has a simple form for @-correlated random potential
(cf. Fig. 6). A detailed comparison of the results on the static
conductivity with the experiment is given in Ref. 45.

If coupling to the scatterers is comparatlvely strong, so
that forB=0 there holds the inequality,'< 7, the static
conductivity of the classical strongly correlated many-
electron system is still given by the single-electron theory g 1) L~ iar(0
provided T>#47"1. The many-electron effects may come e/ 0~ exifigF(t,pn(0))]e!
into play in a certain range of classically strong magnetic F{ 2 (

X ex

wing for this estimate we see that, for the characteristic
(mNY2 t~T71, the time-dependent term (A1) gives
rlse to a correct|on to the reduced electron displacement
or,/Xy of the order ofe’(E?)x2/T2. This is the quantum
correction we are looking for.
With account taken ofAl) the expression&28), (29) are
modified:

fields, 7 '<w.<T/#, but the range of classically stroriy =i Z_t
where there is no magnetoresistance disappears. With further
increase oB the relaxation rate— ! increases quickly, and t<w; !, (eExy) L (A3)
the duration of a collisior,,; as determined by the time of ’ ’
flight past a defect becomes larger tharwhich means that where
the idea of successive collisions no longer applies. The
crossover to effectively strong coupling occurs in strong
enough quantizing fields even 1'1;1> 71 for B=0, since,
for iw,>T and for short-range scattering,,>B'? and

7 1xB%?2 These arguments explain why in some cases the € 30 =

. > S +emz U (PaVn)E (Ad)
single-electron theory which ignores correlations in the non-

degenerate electron system is in reasonable agreement Withy o |45 term ir{A3), which will be evaluated to the lowest
experiment!!2whereas in other cases many-electron effect

are dominating:#131417.45 rder gf the perturbation theory, we replacefy’{) (qE,) by
(1/2)g°(V,E,). In the last term in(A4) we dropped the
terms withn’ #n in (Al), because for a classical electron

1 2
1- g wlt?+ —(V E, )2

- D 1
( P n)__t(l_éwt

ACKNOWLEDGMENTS system the momenta of different electrons are uncorrelated.
We are grateful to P. M. Platzman for valuable discus- 1N€ evaluation of the correlatd(q) (37) comes to sta-
sions. tistical averaging of expgF) and further integration over
time. In doing averaging we have to retain terms
APPENDIX: QUANTUM CORRECTIONS ~wit?~ I T? and ~eX(Ef)A3/T? (clearly, there may be
TO THE MANY-ELECTRON CLASSICAL no corrections of first order il?l)c orin Ef). Therefore the
RELAXATION RATE commutator

In the range of weak to moderately strong magnetic fields - \
where T>eE;X1> w, an electron is moving nearly classi- [(aPn).(qEn) |=— 2!
cally. The characteristic duration of a collision with a short- )
range scatteret,, =T ! (44) is small compared tao should be allowed for to the lowest order of the perturbation
The change of the velocity of an electron due to the acceltheory Then one can write exgf) as a product of the
eration in the fluctuational field over the tintg,, is small  exponential of the first twp,-dependent terms i(A4) (mul-
compared to the thermal velocityT{m)2. Therefore in tiplied by igq) and of the exponential that contains the re-

evaluating the increment,(t)—r,(0) of the electron coor- mainingr ,-dependent terms i, the above commutator, and
dinate in&(q) (37) for t<T 1! it suffices to allow for a few the last term in(A4). When this is done one may perform
lowest-order terms in electron acceleration. These terms inconfiguration averaging of the terms that depend on the elec-
clude the acceleration due to the Lorentz force and the fluctron coordinates:

a%(VnEn)
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. . . e’(E 23 gpat®  qppt?
<exp[i o QB2 QT ) i %t%pnvn)(qEn)Dmnfexr{ - fnz g ( ey L M H
(AS)
Here we have allowed for the fact that, to zeroth ordefi/ili (the expansion parameter, Ref.) 4the configuration averaging
(K({rn'}))cont cOMeS to integration over the coordinatgswith the weight expt BHeg). To first order in%/T one should add
the configuration average of the commutatbf2T)[K,H,]. In (A5) we used

1 . 1 1
2 [(QBw) & Mo~ = 5 LiB 2, (o Vi) (G PMo= —i 2o (o) (Vo))

and also allowed fotA2).
Averaging over electron momenta comes to integration pyewith the Maxwell distribution as a weighting factor. As is
well knowrf® the lowest-order quantum corrections can be reduced to renormalization of temperature

2<E )
* *
The evaluation of the corresponding Gaussian integral pyés straightforward, and the result is
- - q°
(exp[iqrn(t)]exp[—iqrn(O)])%exp{ T T( 2T2+|tT——J-'(t))
(A7)

2 2
Fit)= (—2 - TQ

2 1
414 1313 T 1212
(3 T+3|tT 3tT).
The value of the functiog(q) is given by the integral of the expressioi7) over time. In doing integration the function
JF{(t) should be considered as a perturbation. The resulting expressiétgfois of the form(45), and the parametef in (45)

is given by the value ofF(t) for t=—i/2T [where the exponent ifA7) has a saddle point, to zeroth orderAit) ].
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