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Many-electron transport in strongly correlated nondegenerate two-dimensional electron systems
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We consider static conductivity and cyclotron resonance in a two-dimensional electron fluid and Wigner
crystal. The theory is nonperturbative in the electron-electron interaction. It is formulated in terms of a
Coulomb force that drives an electron due to thermal fluctuations of electron density. This force is used to
describe the effect of electron-electron interaction on short-wavelength electron scattering by defects, phonons,
and ripplons, and thus on electron transport. In a broad parameter range the force is uniform over the electron
wavelength, and therefore the motion of an electron in the field of other electrons is semiclassical. In this range
we derive the many-electron quantum transport equation and develop techniques for solving it. We find the
static conductivitys. Many-electron effects may ‘‘restore’’ Drude-type behavior ofs in the range from zero
to moderate classically strong magnetic fieldsB, whereas in quantizing fieldss increases withB, i.e., the
conductivity is a nonmonotonous function ofB. Many-electron effects give rise also to a substantial narrowing
of the cyclotron resonance absorption peak compared to what follows from the single-electron theory. The
shape of the peak is found for both fast and slow rate of interelectron momentum exchange as compared with
the relaxation rate. We apply the results to electrons on helium and explain why different types ofB depen-
dence ofs are observed.@S0163-1829~97!05924-9#
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I. INTRODUCTION

Nondegenerate two-dimensional~2D! electron systems
provide an important class of strongly correlated systems
which electrons may form a normal fluid~to be distinguished
from a Fermi liquid and other quantum electron liquids! or a
Wigner crystal. The best known~but not at all the only!
example is the 2D electron system on the surface of liq
helium1,2 where mobilities higher than in any solid state co
ductors have been observed. In a nondegenerate system
interelectron distance;ns

21/2 greatly exceeds the de Brogli
wavelength|T5\/(2mT)1/2 ~wherens is the electron den-
sity, and temperature is measured in the units of ene
k51). Although the system is nondegenerate, the ratio of
characteristic Coulomb energy of electron-electron inter
tion to the kinetic energy, the plasma parameter

G5e2~pns!
1/2/T ~1!

is usually large,G*10. Therefore the system is a norm
fluid or, if G*127 ~lower T), a Wigner crystal.3–6

An electron is not a ‘‘good’’ quasiparticle for a norma
electron fluid, and its motion is very different from that
the much better understood Fermi liquid or low-density el
tron gas. Electron scattering by defects, phonons, or ripp
may also be substantially different. As a consequence,
may expect electron transport in a normal fluid to have d
tinctive features, and new physical effects to occur. Not o
is the analysis of electron dynamics and transport phen
ena interesting from the theoretical point of view, but su
analysis, complemented with that of transport for a Wign
crystal, is necessary for the understanding of a large bod
experimental data accumulated over the last few years~cf.
550163-1829/97/55~24!/16249~23!/$10.00
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Refs. 6–18! on mobility, magnetoconductivity, resonant a
sorption, and tunneling from nearly ideal nondegener
electron layers. It should also help to understand trans
phenomena in strongly correlated low-density electron s
tems in semiconductor heterostructures.19

In the investigation of many-electron effects in nondege
erate 2D systems the emphasis has traditionally been pl
on plasma waves20 ~including edge plasmons21,22! and
Wigner crystallization.3,4,23 The analyses of transport phe
nomena for a plasma and a Wigner crystal are conduc
quite differently. In the case of a plasma the basic transp
coefficients like conductivity and magnetoconductivity a
often considered in the effectively single-electron appro
mation. In this approximation the effect of the electro
electron interaction is described in terms of screening of
random potential that scatters individual electrons.2~a! In con-
trast, for a Wigner crystal the electron relaxation is describ
in terms of the decay of the collective excitations of t
many-electron system, i.e., phonons.4,24–28In between these
two models there lies one in which the effect of electro
electron interaction is described in terms of pair collisio
that may occur more often than collisions with defects or
emission of phonons/ripplons. This approximation is w
known in the physics of semiconductors;29 it was used for
nondegenerate 2D systems in.10 However, in contrast to the
low-density plasma in semiconductors where oft
e2n3D

1/3/eT!1, the 2D electron fluid is strongly correlate
and therefore the approximation of pair collisions does
apply. The effect of viscoelastic shear modes in the elect
fluid on the mobility was considered in Ref. 30.

Electron-electron interaction would be expected to aff
transport particularly strongly when a 2D electron system
placed into a magnetic fieldB perpendicular to the electro
16 249 © 1997 The American Physical Society
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16 250 55M. I. DYKMAN, C. FANG-YEN, AND M. J. LEA
layer. In the single-electron approximation the electron
ergy spectrum in the magnetic field is a set of discrete L
dau levels, with separation\vc ~wherevc5ueBu/m is cy-
clotron frequency!. Electrons do not have a finite grou
velocity. Therefore the standard Drude picture of well se
rated in time elastic or quasielastic collisions of a movi
electron with defects, phonons, or ripplons does not ap
As a consequence, the~quasi!elastic scattering is alway
strong, irrespective of the strength of coupling to the scat
ers, with random potential of the scatterers being the o
reason for the centers of the cyclotron orbits to move.

In contrast, the energy spectrum of a system of interac
electrons is continuous even in the absence of scatte
Therefore, although electron-electron interaction does
change the total momentum of the electron system, it m
mediate the momentum transfer to the scatterers, and
strongly affect the long-wavelength conductivity.

It was suggested in Ref. 31 that, for quantizing magne
fields \vc@T and yet not too low temperatures, one m
describe many-electron transport of a nondegenerate ele
fluid in terms of the fluctuational fieldEf that drives each
electron. Unlike the long-wavelength fluctuational elect
field known in plasma physics,32 the fieldEf , although also
of fluctuational origin, determines the force driving an ind
vidual particle.

A special significance of the fieldEf for a 2D electron
system in a magnetic field stems from the fact that it cau
the cyclotron orbit centers to drift. Thus it may ‘‘restore’’ th
Drude picture of electron scattering in the sense that co
sions with scatterers are short and well separated in ti
The effect of electron-electron interaction on cyclotron re
nance was observed in Ref. 8.

Recently it was outlined theoretically and show
experimentally13,14 that, in the case of scattering by
d-correlated random potential~pointlike defects!, the field
Ef may also strongly affect transport in classically stro
magnetic fields,\vc,T, vctB50

@1 (t
B50

is the momen-

tum relaxation time forB50). In particular, many-electron
effects restore the Drude-typeB22 dependence of the mag
netoconductivity for moderately strongB.

In the present paper we provide a theory of electron tra
port in strongly correlated electron systems. The theory
plies for magnetic fields ranging fromB50 through classi-
cally strong up to quantizing fields provided the motion of
electron in the field of other electrons is semiclassical. I
clear from Fig. 1 that the motion is semiclassical if the ch
acteristic electron wavelength~thermal, or quantum magneti
length! is small compared to the characteristic thermal d
placementd of an electron from its quasiequilibrium positio
in a normal electron liquid or the equilibrium position in
Wigner crystal:

min~|T,l B!!d,

|T5\/~2mT!1/2, l B5~\/mvc!
1/2. ~2!

An estimate ofd and the fluctuational fieldEf can be
obtained by linearizing the equations of motion of annth
electron about its equilibrium position~cf. Fig. 1! and by
setting the potential energy of the fluctuational displacem
equal toT ~cf. Ref. 31!:
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~the derivative is evaluated for the equilibrium electron po
sitions; the characteristic values ofEf ,d are independent of
n). This gives

^Ef
2&'FTns

3/2, d2;Tns
23/2e22. ~3!

The coefficientF in ~3! was found for a Wigner crystal in the
harmonic approximation25~b! to be'8.9. A systematic Monte
Carlo study of the fluctuational fieldEf for a normal electron
fluid and for a Wigner crystal shows thatF[F(G) varies
only slightly ~by ;10%) in the range ofG*10.33

This paper is organized as follows. In Sec. II we provid
a qualitative picture of many-electron transport and obtain
estimate for the conductivity in different ranges of the mag
netic field. In Sec. III we derive the many-electron transpo
equation for the case of short-range scattering. This equat
holds in the semiclassical range both in the absence and p
ence of a magnetic field. In Sec. IV we develop a techniqu
for solving the transport equation in the Wigner represent
tion, and obtain explicit solutions in the limiting cases wher
the rate at which electrons exchange momenta with ea
other is large or small compared to the momentum relaxati
rate due to coupling with scatterers. In Sec. V we analyze t
expression for the conductivity in classically weak and cla
sically strong magnetic fields, and show when and how ma
netoresistance arises in a 2D system of interacting electro
In Sec. VI we analyze static magnetoconductivity and cyclo
tron resonance in quantizing magnetic fields. A solution o
the many-electron transport equation is obtained using t
separation of the fast oscillating and slowly varying in tim
parts of the electron coordinate operators. In Sec. VII ma
netoconductivity as a function ofB is analyzed in the cases
of electron scattering by ad-correlated random potential and
by ripplons. Sec. VIII contains a brief discussion of the re
sults. In the Appendix we analyze quantum corrections to t
classical many-electron relaxation rate.

FIG. 1. Fluctuational electron displacement from a quasiequili
rium position~shown by an empty circle! in a strongly correlated
system.
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II. QUALITATIVE PICTURE OF MANY-ELECTRON
TRANSPORT

A. The domains of classical and semiclassical dynamics

Depending on the electron densityns , the 2D electron
fluid may be a classical or a non-classical fluid or, in t
presence of a magnetic fieldB transverse to the layer,
semiclassical fluid. The type of behavior is determined
the interrelation between temperatureT, cyclotron frequency
vc , and the characteristic frequencyvp of short-wavelength
vibrations in the system forB50 (vp can be estimated from
Fig. 1!. For

T@\vp , vp5~2pe2ns
3/2/m!1/2 ~4!

the fluid is classical forB50. If, on the other hand
T,\vp , then quantum effects come into play. These effe
arenot related to overlapping of the wave functions of d
ferent electrons: it is the motion of an electron in the fie
created by other electrons~e.g., vibrations about a quasiequ
librium position! that becomes quantized.

In a nonquantizing fieldB, \vc,T, the electron fluid
remains classical if~4! is fulfilled. For \vc.T the fluid
becomes semiclassical: the motion of an electron in the fi
Ef is a superposition of a quantum cyclotron motion w
frequencies;vc and a semiclassical drift of the center of th
cyclotron orbit. The frequencyV that characterizes the drif
can be estimated from Fig. 1 if one assumes that the fi
Ef is pointing towards the equilibrium position. Then th
‘‘displaced’’ electron drifts transverse to this field, with
velocityeEf /mvc , along a circle of radiusd. The frequency
V gives the reciprocal period of this motion. For

T@\V, V5vp
2/vc ~vc@vp! ~5!

the drift ~translational motion! is semiclassical. We note tha
the condition~5! may be fulfilled in a sufficiently strong
magnetic fieldvc@vp even ifT,\vp , i.e., even if the fluid
is nonclassical forB50. Since

e^Ef
2&1/2|T;\vp , d;|TT/\vp ,

the conditions~4!, ~5!, which are formulated in terms of en
ergies, coincide with the condition~2! formulated in terms of
lengths.

The conditions~4! and~5! apply also to the dynamics of
Wigner crystal and show where it is classical and semic
sical, respectively. The spectrum of phonons of a crystal
analyzed in Ref. 34;vp is the characteristic Debye frequenc
of the crystal forB50. Forvc@vp the spectrum consists o
the optical branch~that starts atvc) and a low frequency
branch; the widths of the branches are;V, and ~5! means
that the low-frequency vibrations are classical.

We note that the melting temperature of the crystalTm
as given by the conditionG'127 may be greater or les
than \vp depending on the electron density (Tm}ns

1/2,
vp}ns

3/4; for electrons on helium\vp /Tm'1.3 when
ns5108 cm22). From this perspective it is particularly im
portant that the magnetic field can be used to ‘‘switch’’ t
2D system, either a fluid or a crystal, from the domain
quantum dynamics,\vp@T, to the semiclassical domain
T@\V.
y
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The long-wavelength conductivitys(v) depends on both
the many-electron dynamics and the mechanism of elec
scattering. We will consider scattering by short-range sc
terers which include neutral point defects, acoustic phono
and for electrons on liquid helium surface, helium vapor
oms and ripplons~the effects of long-range scattering b
ripplons, including onset of coupled plasmon-ripplo
modes,4 will not be discussed in this paper!. In most cases
the corresponding scattering is elastic or quasielastic.

We will assume coupling to the scatterers to be we
enough that the characteristic scattering ratet21 is small
compared to the reciprocal characteristic duration of a co
sion tcoll

21 ,

tcoll!t. ~6!

The actual conditions that have to be fulfilled for~6! to hold
true depend on the magnetic field and will be specified
low. We notice that~6! may apply in the range of stron
magnetic fields,vct@1, only because of many-electron e
fects; in the single-electron approximation one should sp
of lifting the degeneracy of Landau levels rather than of o
casional collisions with the scatterers.

B. The conductivity for weak to moderately strong
magnetic fields

We will first analyze the effect of the fieldEf on the
collisions with short-range scatterers for not too strong m
netic fields where

T@e^Ef
2&1/2|T;\vp@\vc . ~7!

The condition~7! does not mean that the magnetic field
weak. The field may well be classically strong, i.e., the
may hold the inequalityvct@1, wheret21 is the scattering
rate. In what follows we use the term ‘‘moderately stro
fields’’ for classically strong magnetic fields that satisfy co
dition ~7!.

In the range~7! an electron moves classically and has
well-defined kinetic energyp2/2m;T and a well-defined po-
tential energy in the field of other electrons. Uncertainty
each of these energies is determined by smearing of the e
tron wave packet. For an electron in an electric fieldEf this
uncertainty is characterized byeEf|T and is small compared
to T. This means that, in spite of the electron system be
strongly correlated, the electron-electron interaction has li
effect on collisions with short-range scatterers in the abse
of a magnetic field. One can also see this from the follow
arguments. The duration of a collision is determined by
time it takes an electron to fly past the scatterer. For sh
range scatterers and for electrons with thermal veloci
vT5(2T/m)1/2 this time istcoll;|T/vT;\/T. The accelera-
tion of the electron in the fieldEf over this time is
;eEf|TvT /T!vT .

The role of the fieldEf becomes very different in the
presence of a magnetic field, since the fieldEf tilts Landau
levels and makes the electron energy spectrum continuou
is clear from Fig. 2 that for an electron wave packet of s
|T the discreteness of the one-electron energy spectrum
to Landau quantization is washed out by many-electron
fects ifeEf|T@\vc.

13 One would therefore expect that eve
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in classically strong magnetic fields,vct@1, collisions with
scatterers will occur nearly as if there were no magnetic fi
at all. Then the many-electron system should not disp
magnetoresistance, and in the whole range~7! the static con-
ductivity s is given by a simple expression

s[sxx~v50!5
e2ns
m

t
B50

11vc
2t

B50

2 ,

~8!

e^Ef
2&1/2|T@\vc ,\t

B50

21 ,

wheret
B50

21 is the scattering rate calculated forB50 in the
approximation where the effect of the electron-electron in
action on collisions with scatterers is ignored.

If the scattering remains the same as in the absence o
magnetic field, the off-diagonal component of the conduc
ity should be given by the expressionusxy(v50)u
5svctB50

. In this case there is no magnetoresistance:

resistivity r(B)5sxx /@sxx
2 1sxy

2 #5r(0).
We emphasize that the absence of magnetoresistanc

the range~7! for classically strong magnetic fields, known
experimentally since Ref. 7, is a purely many-electron effe

C. The conductivity for ‘‘strong’’ strong magnetic fields

Onset of magnetoresistance in classically strong magn
fields,T.\vc.e^Ef

2&1/2|T , can be qualitatively understoo
in the following way. If there were no fluctuational electr
field, an electron in the magnetic field would be movi
along a trajectory of the shape of a rosette: it is a nea
closed circle, with its center slowly rotating around the d
fect, so that the electron is coming back to the defect, o
and over again, with period 2p/vc .

35 In the presence of the
field Ef the center of the electron cyclotron orbit drifts wi
a velocityEf /B. Therefore the number of times the scatte
is encountered is finite. It is clear from Fig. 3 that in order
magnitude, this number isz5|T(2pEf /Bvc)

21 for a point-
like scatterer. One would expect classical magnetoresista
to arise in the many-electron system forz.1.

The magnetoconductivitys can be estimated using th
Einstein relation between the conductivity and the diffus

FIG. 2. Single-electron energy levelsWn in the electric fieldE
and transverse magnetic field~tilted Landau levels!. Uncertainty of
the electron kinetic energy exceeds\vc for the shown size of the
electron wave packet|T .
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coefficientD, s5e2nsD/T. It is seen from Fig. 3 that scat
tering results in a shift of the electron orbit by the cyclotr
radius RB . ThereforeRB

2/2 may be associated with th
squared diffusion length, and thenD5RB

2/2t. The scattering
rate t21 is proportional to the encountering factorz,36 and
the expression fors takes on the form

s5
e2ns
2T

RB
2t21, t21;zt

B50

21 ,
~9!

z5|vcB/2p^Ef
2&1/2, |5 l B@ tanh~\vc/2T!#1/2.

~Here,| is the characteristic scale over which the electr
wave function varies;|5|T for \vc!T, and |5 l B for
\vc@T.!

A distinctive feature of the many-electron magnetoco
ductivity ~9! is its independenceof the fieldB for classically
strong fields whereRB;(T/\vc)|T}B

21 andz}B2.
The arguments used to obtain an estimate ofs apply also

if the electron fluid is in a quantizing magnetic field. F
\vc@T an electron is a ‘‘hard disk’’ with characteristic siz
l B5(\/mvc)

1/2. It drifts transverse to the magnetic fiel
with a velocity Ef /B, and the characteristic duration of
collision is ~cf. Ref. 31!

te5 l BB^Ef
21&. ~10!

The scattering rate is increased relative tot
B50

21 by the en-

countering factorz;vcte}B
3/2. @This estimate can be als

obtained using density-of-states arguments: the sin
electron energies are ‘‘squeezed’’ into Landau bands w
spacing\vc ; the potential~and thus also kinetic! energy
uncertainty of an electron wave packet of a sizel B in the
field Ef is ;eEf l B , and therefore the overall density o
states into which the electron may be scattered is increa
by a factorz;\vc /eEf l B compared to the single-electro
density of states forB50.# The value ofRB in the domain
\vc*T is given by the characteristic radius of the electr
wave function, whereastcoll is given by the time of flight
over the wavelength|,

RB5 l B@coth~\vc/2T!#1/2, tcoll5|B^Ef
21&. ~11!

FIG. 3. Classical electron trajectory in the fluctuational elect
fieldEf and transverse magnetic fieldB. The characteristic radius o
the spiralRB5(T/\vc)|T .
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It follows from ~8!, ~9! that the magnetoconductivitys is
nonmonotonous as a function ofB. It decreases in the rang
~8!, reaches a minimum for ‘‘strong’’ classically strong field
wherez@1, and then, for pointlike scatterers, increases
B1/2 in the range\vc@T ~see Fig. 6 in Sec. VII A!.

Equation ~9! gives also the characteristic value of th
halfwidth g;t21 of the peak of cyclotron resonance of
many-electron system in a strong magnetic field. We n
that in the classical rangeT@\vc the expressions forg and
for the relaxation rate in Eqs.~8!, ~9! for the static conduc-
tivity coincide with each other. This is no longer true in th
quantum range~see Sec. V!.

D. Interelectron momentum exchange

The exchange of momentum between electrons does
affect the long-wavelength conductivity directly,37 since it
does not change the total momentum of the electron sys
However, its role in the transport may be substantial. Thi
well-known in the theory of low-density electron plasma
semiconductors29 from the analysis of the case where t
single-electron rate of collisions with scatterersts

21(e) de-
pends on the electron energye. In the single-electron ap
proximation the static conductivitys ~for B50) is a sum of
the conductivities of electrons with different energies a
thus different scattering rates. Therefore it is given by
appropriately averaged~over e) reciprocal scattering rate,
s5e2nsts(e)/m. The interelectron momentum exchange o
curs via pair electron-electron collisions. If their frequen
greatly exceedsts

21(T), then the electron energy varies su
stantially between collisions with the scatterers, and rel
ation of the total momentum of the electron system is ch
acterized by the average collision ratets

21(e), so that
s5e2ns /mts

21(e).
From the discussion in Sec. II B one would expect th

similar arguments apply to the static conductivity of
strongly correlatedclassical electron fluid for weak magnet
fields. Here, an electron exchanges its momentum with o
electrons not via pair collisions but by being accelerated
the Coulomb force from these electrons. The rate of in
electron momentum exchangetex

21 is given by the frequency
of the electron vibrationsvp , as it is clear from Fig. 1~this
frequency also characterizes time evolution of the veloc
autocorrelation function in the electron system.38! If

tex
215vp@t21 ~vp@vc!, ~12!

as it was assumed in Eq.~8!, the conductivity is determined
by the average ratets

21(e).
The role of interelectron momentum exchange in stro

fieldsB, where collisions with scatterers are mediated by
electron-electron interaction, is clear from the analysis
cyclotron resonance. Resonant absorption at frequencyvc is
due to transitions between neighboring Landau lev
un&→un11&. ‘‘Partial spectra’’ which correspond to differ
ent transitions are broadened because of collisions with s
terers~the collision probabilities are determined by the flu
tuational fieldEf). Prior to averaging over the many-electro
ensemble the broadening of a spectrumgn(Ef) depends both
s

te
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on the level numbern andEf . Even if all partial spectra are
Lorentzian, but with different widths, the total spectrum m
be non-Lorentzian.39

Interelectron momentum exchange gives rise to tran
tions between the Landau levels of individual electrons. I
transition one electron ‘‘jumps’’ up and another electr
‘‘jumps’’ down by one Landau level~we neglect processe
where the quantized cyclotron motion with the frequen
vc is transformed into low-frequency motion of the cente
of the electron wave packets!. The transition probability can
be estimated by separating fast-oscillating and slowly va
ing terms in electron coordinates and momenta, as descr
in Sec. V. For\vc*T this probability is;V[vp

2/vc . The
frequencyV gives also the reciprocal time over which th
fluctuational field on an electron is averaged, as it is cl
from Fig. 1. The condition for the interelectron momentu
exchange to be faster than the momentum exchange with
scatterers is then of the form

tex
215vp

2vc
21;e2^Ef

2& l B
2/\T21@t21. ~13!

For fast interelectron momentum exchange this is relaxa
of the total momentum of the electron system that determi
the shape of the cyclotron resonance spectrum, and the s
trum is Lorentzian with a width given by the appropriate
averagedgn(Ef) ~see Sec. V!.

In the opposite case,tex
21!t21, the cyclotron resonance

spectrum is non-Lorentzian. ForT!\vc the conductivity is
determined by the transitions from the lowest Landau le
(n50). The explicit form of the spectrum in this case f
Gaussian distribution of the fluctuational fieldEf is obtained
in Sec. VII ~see Fig. 5!.

III. MANY-ELECTRON QUANTUM TRANSPORT
EQUATION

We will initially formulate the many-electron transpo
equation for the case of electrons coupled to~and quasielas-
tically scattered by! 2D vibrations of the bath~phonons or
ripplons!. The Hamiltonian of the system is of the form
~from now on we set\51)

Ĥ5Ĥ01Ĥb1Ĥ i , Ĥ05
1

2m(
n

p̂n
21Ĥee;

~14!

Ĥb5(
q

vqb̂q
1b̂q ; Ĥ i5(

q
(
n

Vqe
iqrn~ b̂q1b̂2q

1 !.

Here, b̂q
1 , b̂q are creation and annihilation operators of t

vibrations, p̂n52 i¹n2eA(rn) is the electron momentum
A„r … is the vector-potential of the magnetic field transve
to the electron layer, and

Ĥee5
1

2
e2( 8

n,n8
urn2rn8u

21. ~15!

The wave vectorsq of the vibrations as well as the vecto
rn ,pn are 2D vectors. In the equations of motion,e52ueu is
the ‘‘true’’ electron charge.
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The real part of the long-wavelength conductivity is e
pressed in terms of the correlation function of the total m
mentum of the electron systemP̂ in a standard way as

s~v![sxx~v!5syy~v!5~e2/m2vS!~12e2bv!

3Re E
0

`

dt eivt^P̂x
H~ t !P̂x

H~0!&, P̂5(
n

p̂n . ~16!

Here,S is the area of the system,b51/T, and the superscrip
H means that the operators are evaluated in Heisenberg
resentation with a complete HamiltonianĤ ~14!. It is conve-
nient to write the momentum correlator in the interacti
representation:

^P̂x
H~ t !P̂x

H~0!&5Tre@e
iĤ0t P̂xe

2 iĤ0tĜx~ t !#,

Ĝx~ t !5Z21Trb@Ŝ~ t !P̂xe
2bĤŜ1~ t !#, ~17!

Ŝ~ t !5eiĤ0te2 iHt̂ ,

where Tre and Trb are the traces over the wave functions
the electron system and of the vibrations, a
Z5TreTrbexp(2bĤ) is the partition function.

A. Transport equation in operator form

In Eq. ~17! the coupling to the scatterers has been mo
into the operatorĜx(t). In the parameter range~6! where
collisions with the vibrations are short compared to the
tercollision intervals, i.e., the interactionĤ i is small enough,
Ĝx(t) may be evaluated by perturbation theory inĤ i where
in each order ofĤ i account is taken only of the terms th
most strongly diverge whent→`. This is the quantum trans
port equation approximation. In the single-electron probl
this approximation corresponds, in terms of Feynman d
grams, to the neglect of nested diagrams and diagrams
intersecting lines.

The many-electron transport equation may be written
the operator form as

]Ĝx~ t !
]t

52TrbE
0

t

dt8†Ĥ i~ t !,@Ĥ i~ t8!,r̂bĜx~ t !#‡,
~18!

Ĥ i~ t !5ei ~Ĥ01Ĥb!tĤ ie
2 i ~Ĥ01Ĥb!t; r̂b5Zb

21exp~2bĤb!,

where Zb5Trbexp(2bĤb) is the partition function of the
bath.

The most substantial assumptions made in deriving~18!
are thatt,t@tcoll ,T

21. The quantitytcoll characterizes the
width of the intervalt2t8 that contributes to the integral i
~18!: this interval is supposed to be small compared tot and
to the relaxation timet over whichĜx(t) varies.

In what follows we consider short-range scattering a
assume it to be quasielastic. The latter means that the c
acteristic frequenciesvq of the vibrations of the bath ar
small:

vqtcoll!1 for q&qmax5max~|T
21 ,l B

21!. ~19!
-

ep-

f

d

-

-
ith

n

d
ar-

Here we have taken into account that the characteristic e
tron momentum that may be transferred to vibrations, a
thus the characteristic values ofq, are determined by the
thermal wavelength|T ~2! or the quantum magnetic lengt
l B ~for |T. l B).

The condition~19! means also that the polaronic reno
malization of the electron energy is small compared to el
tron damping. In what follows we ignore polaron effects@the
shift of the cyclotron resonance peak in quantizing magn
fields was analyzed in Ref. 25~b!#. In this approximation the
vibrations of the bath may be considered as creating a q
sistationary classical zero-mean Gaussian field.

B. ‘‘Single-site’’ approximation

In a strongly correlated electron system at most one e
tron at a time may collide with a given short-range scatte
~see Fig. 4; we notice that the colliding electron is driven
the field from other electrons!. Therefore short-range scatte
ing may be described in the ‘‘single-site’’ approximation~cf.
Ref. 25!. In this approximation only diagonal terms are r
tained in the double sum over the electrons that enters
productĤ i(t)Ĥ i(t8) in ~18!. Equation~18! may then be writ-
ten in the form

]Ĝx
]t

52(
q

uVqu2(
n
E
0

t

dt8

3†exp„iqr̂n~ t !…,@exp„2 iqr̂n~ t8!…,Ĝx~ t !#‡,

r̂n~ t !5eiĤ0t r̂ne
2 iĤ0t; Ĝx~0!5Ze

21P̂xe
2bĤ0,

uVqu252Tvq
21uVqu2; Ze5Treexp~2bĤ0!. ~20!

Equation ~20! applies also if electrons are scattered
defects or helium vapor atoms. In this caseuVqu2 should be
replaced by the mean squared Fourier component of the
dom potential of the defects.

The first step towards solution of the operator equat
~20! is transformation of this equation into a set of equatio
for the matrix elements ofĜx . It follows from ~17!, ~20! that
it is convenient to evaluate these matrix elements on
wave functions of the many-electron system att50.

It is a distinctive feature of the transport equation~20! that
the time evolution of the operatorsr̂n(t) is given by the
solution of a problem of many-electron dynamics which
not known. Therefore the matrix elements of the operat

FIG. 4. An electron-scatterer collision. At most one electr
~filled circle! collides with a short-range scatterer~open circle! at a
time.
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exp„iqr̂n(t)… in ~20! for actualt;t@tcoll on the wave func-
tions att50 are also not known. This is in contrast to wh
is the case for simple systems described by a transport e
tion, like a single electron or an oscillator, where the evo
tion of the dynamical variables of the system in the abse
of coupling to the scatterers can be found explicitly. It
convenient therefore to change from the operatorĜx to the
operatorĜx ,

Ĝx~ t ![exp~2 iĤ 0t !Ĝx~ t !exp~ iĤ 0t !,

]Gx

]t
5 i @Gx~ t !,H0#1F]Gx

]t G
coll

,

~21!

F ]Ĝx

]t
G
coll

5exp~2 iĤ 0t !S ]Ĝx
]t

D exp~ iĤ 0t !.

It is seen from~20! that the collision term@]Gx /]t#coll
contains the operators exp(2iĤ0t)r̂n(t)exp(iĤ0t)[ r̂n(0),
exp(2iĤ0t)r̂n(t8)exp(iĤ0t)[ r̂n(t82t). The matrix elements
of the latter operators on the wave functions of the ma
electron system att50 can be evaluated taking into accou
that the instants of timet and t8 in ~20!, ~21! are close to
each other,t2t8;tcoll!t. In what follows we will analyze
the solution of Eq.~21! in different ranges of the paramete
of the system.

IV. TRANSPORT EQUATION FOR CLASSICAL
MAGNETIC FIELDS

Equations~16!, ~17!, ~20!, ~21! reduce the calculation o
the conductivity to evaluation of the expressions that
determined by dynamics of the isolated many-electron s
tem. In transforming Eq.~21! into a set of equations fo
matrix elements of the operatorĜx it is convenient to use
different wave functions for different ranges of the magne
field. In the present subsection we investigate the rang
B where

T @vp ,vc , or T @eEf|T,vc . ~22!

When ~22! holds an electron has a well-defined kine
energyp2/2m;T and a well-defined potential energy in th
field of other electrons. Uncertainty of each of these energ
is determined by the smearing of the electron wave pac
|T . For an electron in an electric fieldEf this uncertainty is
given byeEf|T , and it is small compared toT. Although the
field Ef is small in a certain sense, it may still dramatica
affect magnetotransport, as explained in Secs. II B and I
and the transport is qualitatively different depending on
relation betweeneEf|T and the Landau level spacingvc.

A. Wigner representation of the transport equation

In the domain~22! the electron dynamics are nearly cla
sical. Therefore an appropriate set of wave functions of
many-electron system are plane waves,

u$kn%&[)
n

~2p!21exp~ iknrn!, ~23!
t
a-
-
e

-

e
s-

c
of

s
et

,
e

e

and it is convenient to use the Wigner representation for
electron operators,

K~$pn%,$rn%!5E F)
n

dznexp~ i znrn!G
3 K H kn1 1

2
znJ UK̂UH kn2 1

2
znJ L ,

~24!

pn[kn2eA„rn).

It follows from ~24! that the correlator~17! that deter-
mines the conductivitysxx(v) can be written in the form

^P̂x
H~ t !P̂x

H~0!&5EE F)
n

~2p!22 dpndrnGPx~$pn%,$rn%!

3Gx~ t;$pn%,$rn%!, ~25!

whereGx(t;$pn%,$rn%) is the matrix element of the operato
Ĝx(t).

The equation forGx(t;$pn%,$rn%) follows from ~21!. In
writing this equation we will take into account that the cha
acteristic values ofpn are;(mT)1/2, and that the scale o
rn on whichGx(t;$pn%,$rn%) varies is given by the electron
mean free pathL @L;(T/m)1/2t in the range~22!# and the
characteristic displacementd of an electron from its quasi
equilibrium position~cf. Fig. 1!. To lowest order in|T/d,
|T/L we have

]Gx

]t
5$GxH0%1F]Gx

]t G
coll

, ~26!

whereGx[Gx(t;$pn%,$rn%).
The first term in~26! is the Poisson bracket of the matr

elementsGx(t;$pn%,$rn%),H0($pn%,$rn%). It describes evolu-
tion of the classical many-electron distribution function
the absence of scatterers. In deriving the expression
$GxH0% from Eqs.~21!, ~24! it is convenient to write it first
in terms of the derivatives overkn ,rn ~in these variables the
expression has a standard form40!, and then go over to de
rivatives overpn ,rn . The matrix elementsH0($pn%,$rn%) of
the HamiltonianH0 are given by the corresponding terms
~14! with the operatorsp̂n replaced by numberspn . Finally
we obtain

$GxH0%52(
n

FeSEn1
pn3B

m D ]Gx

]pn
1
pn
m

]Gx

]rn
G ,

En[2e21
]Hee

]rn
5e( 8

n8

rn2rn8
urn2rn8u

3 . ~27!

Here, En is the electric field that drives thenth electron
because of its interaction with other electrons.

The collision term

To find the collision term in~26! we have to perform
integration overt8 in ~20!, ~21!. The characteristic range o
t8 that contributes to the integral is given bytcoll . We will
see thattcoll is small compared to the time during which a
electron moves by the distance;d ~see Fig. 1! and the fluc-
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tuational electric field varies substantially. Therefore~except
when analyzing corrections! we will assume the fieldEn to
be independent of time when evaluating

r̂n~ t8!5 r̂n~ t !1
1

mEtt8dt1p̂n~ t1!,
and we will use forp̂n(t8) the solution of the equation o
motion dp̂n /dt5eEn1(e/m)p̂n3B in a uniform time-
independent electric fieldEn and transverse magnetic fie
B,

exp@2 iqr̂n~ t8!#'exp@2 iqr̂n~ t !#exp@2 iqF„t82t,p̂n~ t !…#

3expF i q2

2mvc
sinvc~ t82t !G , ~28!

where

F~ t,p̂n!5f~ t,p̂n!2f~ t,mvn
~d!!1vn

~d!t,

f~ t,p̂n!5
p̂n
mvc

sinvct1e
p̂n3B

m2vc
2 ~12cosvct !, ~29!

vn
~d!5~En3B!/B2.

Although the operatorsp̂n andp̂n3B do not commute, the
commutator of the respective terms in~29! is small in the
range~22!. It is seen from~21!, ~26! that to findGx we need
the matrix elements of the operato
exp(2iĤ0t)exp@2iqF„t82t,p̂n(t)…#exp(iĤ0t) on the wave
functions~23!. They can be obtained in the WKB approx
mation simply by replacing the operatorsr̂n ,p̂n by the num-
bers rn ,pn5kn2eA(rn). Then the collision term in~26!
takes on the form

F]Gx~ t;$pn%,$rn%!

]t G
coll

52(
q

uVqu2(
n8

jn8~q,pn8!@Gx~ t;$pn%,$rn%!

2Gx~ t;$pn1qdnn8%,$rn%!], ~30!

jn~q,pn!52ReE
0

t

dt8exp@2 iqF~ t82t,pn!

1 i ~q2/2mvc!sinvc~ t82t !#.

In ~30! we have assumed thatuVqu2 is independent of the
direction ofq.

B. Single-electron approximation for B50

Equations~16!, ~25!–~30! give a well-known result in the
absence of a magnetic field and in the single-electron
proximation, i.e., in the neglect of the electron-electron
teraction Hee in ~14!. In this case, for characteristi
q;pn;(mT)1/2 and for time t@tcoll51/T the function
jn[jn

(s) in ~30! becomes ad function of the energy conser
vation law:
p-
-

jn
~s!~q,pn!52pdS qpnm 1

q2

2mD . ~31!

The solution of Eq.~26! in the single-electron zero-B ap-
proximation is given by

Gx
~s!~ t;$pn%,$rn%!5Ze

21(
n

exp@2t/t~s!~en!#pnx

3expF2~b/2m!(
n8

pn8
2 G ,

~32!

„t~s!~e !…215
p

p2(q q2uVqu2dS qpm 1
q2

2mD ,
e~p!5

p2

2m
.

Equations~16!,~25!,~32! result in a standard expression fo
single-electron conductivity in the absence of a magne
field, with a frequency-dependent relaxation rate,

s~s!~v!5
e2ns
m

t~s!~e !/@11v2
„t~s!~e !…2#,

where averaging overe is performed with the weighting fac
tor }eexp(2be). In particular the low-frequency (vt!1)
conductivitys (s)(v) is determined byt (s)(e), whereas the
high-frequency conductivity is determined by the avera
collision frequency1/t (s)(e).

In the presence of a magnetic field the structure of
time dependence of the exponential in the expressions~28!–
~30! for the kerneljn(q,pn) is completely changed: the func
tion F becomes periodically oscillating in time, with a fre
quencyvc . Therefore integration overt8 in ~30! does not
give ad function of the type~31!. In fact, the integral over
t8 explicitly depends ont and diverges with increasingt ~the
orbit of an electron is a closed circle, and therefore the e
tron encounters a scatterer infinitely many times!. This is an
indication of the inapplicability of the transport equation
the single-electron approximation.

C. Many-electron theory

1. General form of the solution of the transport equation
for strong electron-electron interaction

The interelectron momentum exchange is described
the termseEn]Gx /]pn and m21pn]Gx /]rn in Eqs. ~26!,
~27!. The former terms are;eEf|TGx , and so are the latte
as is clear from~32! if one uses the full Boltzmann facto
exp(2bH0) in Gx

(s) ~instead of retaining only kinetic energ
in H0). Therefore the interelectron momentum exchan
may substantially affect the conductivity ifeEf|T*t21.

The analysis of many-electron transport is simplified
the interelectron momentum exchange ratetex

21;eEf|T

@t21, or equivalentlyvpt@1 @cf. ~12!#. This condition may
also be understood as the condition for the uncertainty of
kinetic energy of an electron due to interaction with oth
electrons to be much larger than the uncertainty due to
lisions with scatterers. In the corresponding parameter ra
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the solution forGx may be sought in the form

Gx~ t;$pn%,$rn%!'gx„t;V̂cP~$pn%!,H0~$pn%,$rn%!…,

P5(
n

pn , V̂c[V̂c~ t !5S cosvct sinvct

2sinvct cosvct
D . ~33!

The sign of the off-diagonal terms of the matrixV̂c(t) cor-
responds toB pointing in the positive direction of thez axis
and allows for the sign of the electron charge.

The functiongx depends on the coordinates and mome
of individual electrons only in terms of the total momentu
and energy of the whole system. ForGx given by ~33! the
sum of the terms that containEn and ]Gx /]rn in ~27! is
equal to zero~because(nEn50). Qualitatively, Eq.~33!
means that, for fast interelectron momentum exchange,
change of the momentum of annth electron due to a colli-
sion with a scatterer is ‘‘shared’’ by other electrons befo
the electron is scattered again.

In view of the initial conditions forGx that follow from
~17!, ~21!, and allowing for symmetry arguments (Gx is the
x component of a vector! we will assume thatgx is the x
component of a vectorg(t;V̂cP,H0), and we will seek this
vector in the form

g~ t;V̂cP,H0!5 g̃~ t !V̂c~ t !PZe
21exp~2bH0! ~34!

with the initial condition g̃(0)51. In fact, we could seek
g̃ in a more general form of a function oft andH0, but in the
case of elastic scattering the energy of a colliding electr
and thus the energy of the electron system as a whole
conserved, and therefore the dependence ofg onH0 does not
vary in time and is determined by the initial conditions.

2. Many-electron collision term

The collision integral@]g/]t#coll for the solution of the
kinetic equation of the form~33!, ~34! is given by~30! with
Gx replaced byg(t;V̂cP,H0). Since the value ofH0 is not
changed in a collision, we have

gi„t;V̂cP~$pn%!,H0~$pn%,$rn%!…

2gi„t;V̂cP~$pn1qdnn8%!,H0~$pn1qdnn8%,$rn%!…

52„V̂c~ t !q…i g̃~ t !Ze
21exp~2bH0! ~ i5x,y!.

The only singled out direction of the transferred mome
tum for the many-electron system is the direction of the to
momentumP. Therefore in the last line of the above equ
tion one may replace

q⇒ ~q–P!P

P2
. ~35!

The characteristic values ofP we are interested in are th
fluctuational ones,

uPu;@^P2&#1/25~2NmT!1/2 ~N5nsS!. ~36!

The momenta of different electrons subject to the condit
that the total momentum be equal toP are basically uncor-
related forP of the order of ~36!, ^pnpn8&;N23/2 for n
a

he

n,
is

-
l
-

n

Þn8 @to show this one may writed(P2(npn) in the form of
a Fourier integral and then perform averaging over all m
mentapn with the Boltzmann weighting factor#. Therefore to
the lowest order in the number of electrons

P2'(
n

pn
252NmT.

It follows from ~30!, ~35! that in the collision integral
@]g/]t#coll the term that depends on the direction ofq is
proportional to the expressionjn(q,pn)(n8(q•pn8). This
term should be averaged overq directions@this is a part of
the summation overq in ~30!#. Since the momenta of differ
ent electrons are approximately independent from each ot
the major contribution to the average comes from the term
the sum over n8 with n85n. According to ~31!

qpn52 1
2q

2. Therefore upon averaging over the directions
q ~denoted by the subscriptq/q) we obtain

F ~qP!(
n

jn~q,pn!G
q/q

'2
1

2
q2N^jn~q,pn!&,

~37!

^jn~q,pn!&'j~q![E
2`

`

dt ^eiqr̂n~ t !e2 iqr̂n~0!&.

Here, we have set the limits of integration over time to
infinite; this can be done if the duration of a collision~the
actual range of time that contributes to the integral overt) is
much smaller than the relaxation time@which determines the
characteristic limit of the integral over time in the expressi
~30! for jn(q,pn)#. The statistical averaging in~37! is per-
formed to zeroth order in the coupling to the scattere
Clearly, j(q) in ~37! is a dynamical structure factor of th
electron system at zero frequency evaluated in the single
approximation~it should not be confused with a static stru
ture factor which is the integral over the frequency!.

The above expressions result in the following simple fo
of the collision term for the functiong:

F]g]t G
coll

52t21g, t215
1

4mT(q q2uVqu2j~q!. ~38!

For zero magnetic field Eq.~38! was derived in Ref. 25~c!
assuming that electrons form a Wigner crystal. The relat
between losses of an electron system moving above the
lium surface and the structure factor was considered for
electron fluid atB50 in Ref. 41@in the case of strong mag
netic fields this relation was also considered in Ref. 31~a!#,
and the problem of corrections due to simultaneous sca
ing of several electrons by one ripplon was addressed th

The solution of the kinetic equation for the functio
g̃(t) in ~34! is exponential,g̃(t)5exp(2t/t).

V. CLASSICAL MANY-ELECTRON CONDUCTIVITY

Equations~16!, ~25!, ~33!, ~38! provide a simple expres
sion for the frequency-dependent conductivity of the ma
electron system. In particular the static conductivity is of t
Drude type,
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s[s~0!5
e2ns
m

t

11vc
2t2

. ~39!

For vct@1 ~classically strong magnetic fields! the conduc-
tivity as a function of frequencyv has a sharp peak a
v5vc . This peak corresponds to cyclotron resonance,

s~v!5
e2ns
2m

t

11~v2vc!
2t2

,
~40!

uv2vcu!vc , vct@1.

The parametert21 in ~39!, ~40! is the collision frequency
calculated in the many-electron theory and given by Eq.~38!.
We note that one and the same collision frequency de
mines static conductivity and cyclotron resonance in
classical theory~it is no longer true in quantizing magnet
fields!. It is expressed in terms of the~Fourier transformed!
short-wavelength electron density correlatorj(q) ~37!, and it
depends both on the magnetic field and the fluctuational e
tric field in the system. It ist21 that describes onset o
magnetoresistance, the dependence of mobility on elec
density, as well as the density and temperature depend
of the width of the cyclotron resonance peak in classica
strong magnetic fields.

In the classical limit we are considering in this section t
statistical averaging for the isolated electron system in
~37! for j(q) is reduced to integration over electron coord
nates and over electron momenta with the wei
exp@2bH0($pn%,$rn%)# ~quantum corrections are discussed
the Appendix!. The averaging ofjn(q,pn) over pn is
straightforward with account taken of the explicit form of th
functionF(t,pn) ~29!, and the resulting expression forj(q)
contains only configuration averaging which comes to
averaging over the fluctuational fieldEf :

j~q!5E
2`

`

dtf~ t !FE~ t !,

f~ t !5expF2
q2T

mvc
2 ~12cosvct !2 i

q2

2mvc
sinvctG ,

~41!

FE~ t !5K expF i qvf~d!

vc
~vct2sinvct !2 ie

B

mvc
2

3q3vf
~d!~12cosvct !G L , ~42!

vf
~d!5

Ef3B

B2 .

The probability density distribution of the fluctuation
field r(Ef) to be used for the averaging inFE(t) is the
probability density of the fieldEn on annth electron:

r~Ef ![Zconf
21 E F)

n8
drn8Gd~Ef2En!e

2bHee~$rn8%!,

En52
1

e

]Hee

]rn
, Zconf5E F)

n8
drn8Ge2bHee~$rn8%!

(43)
r-
e

c-

on
ce
y

q.

t

e

@clearly, the distribution~43! is independent ofn#. Detailed
results on the probability distribution~42! are presented in
Ref. 33~b!.

In the rest of this section we consider the explicit form
the correlatorj(q) ~41! in the two interesting limiting cases

A. Weak to moderately strong magnetic fields

The expression forj(q) and thus for the collision fre-
quencyt21 ~38! is simplified in the range of weak to mod
erately strong magnetic fields,T@e^Ef

2&1/2|T@vc ~7!. As
discussed in Sec. II B, in this range the effects of magn
field on the electron energy spectrum, as well as on the e
tron collisions with scatterers, are washed out by the fluct
tional field. Mathematically this is immediately seen fro
Eq. ~42! if one notices that inFE(t), for characteristic
q;(mT)1/2 @cf. Eq. ~45! below#, the parameter
qvn

(d);(e^Ef
2&1/2|T/vc)T@T@vc . ThereforeFE(t) is a

rapidly oscillating function of time ift*vc
21 , and the con-

tribution of this time domain to the integral over time~41! is
negligibly small.

The major contribution toj(q) in the range~7! comes
from the domainvct!1. To lowest order invct

f~ t !'expF2
q2

2m
~Tt21 i t !G , FE~ t !'1, t!vc

21 .

The characteristic time that contributes to the integral
f(t)FE(t) ~the collision time! is seen to be equal to

tcoll5T21, T@e^Ef
2&1/2|T@vc . ~44a!

This can be easily understood, since fore^Ef
2&1/2|T@vc an

electron has a continuous spectrum and moves with a t
mal velocity (T/m)1/2. Therefore a collision with a short
range scatterer ‘‘lasts’’ for the time it takes an electron to
over the thermal wavelength|T . One may also say that a
electron is ‘‘blown away’’ by the fluctuational field once
has collided with a scatterer.

Both the magnetic fieldand the fluctuational electric field
drop out fromj(q) in the above approximation. They giv
rise only to quantum corrections. These corrections are fo
in the Appendix. With account taken of them the express
for j(q) takes on the form

j~q!5S 2pm

Tq2 D 1/2~11F!expF2
q2

8mT
~12F!G ,

F5
\2

48T2S vc
21

e2

2mT
^Ef

2& D . ~45!

It is clear from Eq.~45! that not only are the quantum
corrections parametrically small, but that they also contai
small numerical factor. This means that in the range~7!,
although the electron system is strongly correlated,
electron-electron interaction only weakly affects the rate
short-range scatteringt21,

t21't
B50

21 , for T@e^Ef
2&1/2|T@vc . ~46!
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The fact that the correlatorj(q), and thust21, are nearly
independent of the magnetic field, is an indication of t
extremely important role of electron-electron interaction: it
because of this interaction, and only in the range~7! where
this interaction is in a certain sensestronger than the mag-
netic field, that the magnetic field just drops out of the e
pression for a static conductivity, even when the field is cl
sically strong,vct@1. As explained in Sec. II B, in the
range~7! electron-electron interaction ‘‘restores’’ a simpl
minded Drude model of conductivity which shows no ma
netoresistance. We notice that the peak of the cyclotron r
nance may be very sharp in the range~7!, and its halfwidth is
approximately given by the scattering ratet21 calculated for
B50 and in the neglect of the effect of the fluctuation
field.

B. ‘‘Strong’’ classically strong magnetic fields

It follows from the qualitative arguments given in Sec.
C that scattering by short-range scatterers should change
magnetoresistance in classical magnetic fields should a
when the displacement of cyclotron orbit center over
time 2p/vc due to the electron drift in fluctuational fiel
becomes smaller than the thermal wavelength,

vc*~2pe^Ef
2&1/2|TT!1/2. ~47!

In this case an electron collides with the same scatterers
eral times@the encountering factorz is estimated in Eq.~9!#.
We note that the occurrence of magnetoresistance in
range ~47!, predicted based on the picture of an electr
spiralling along a semiclassical orbit, is consistent with
quantum picture. Indeed, it follows from the conditio
e^Ef

2&1/2|T!T @which, in turn, follows from~2!# that in the
range~47! we have

vc@e^Ef
2&1/2|T,

and therefore the Landau level spacing exceeds the un
tainty of the kinetic energy of an electron wave packet in
fluctuational field.

To calculate the correlatorj(q) and thus the relaxation
rate in the domain~47! we will evaluate the integral ove
time in ~41! by the steepest descent method. This is justifi
since for characteristicq;(mT)1/2 the exponent inf(t) ~41!
is a large negative number;(T/vc)

2 everywhere except fo
comparatively narrow (;T21) time intervals around the
pointsvct52ps with integers. For the sameq the param-
eter qvf

(d)/vc in FE(t) is ;eEf|TT/vc
2&1. Therefore the

positions of the saddle points of the integrandf(t)FE(t) are
determined by the functionf(t) and are given by
ts52psvc

212 i (2T)21, and the result of the integration ove
t in ~41! reads

j~q!5S 2pm

Tq2 D 1/2expF2
q2

8mTG (
s52`

` K expF iqEf

2ps

vcB
G L

~48!

@averaging overEf is done with the probability distribution
r(Ef) defined in~43!#.

It follows from ~48! that in the range of comparativel
strong ~but still classical! magnetic fields~47! the electron
e
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e
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e
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relaxation rate depends explicitly on the many-electron fl
tuational field. This dependence becomes particularly sim
in sufficiently high magnetic fields where the inequality~47!
is strong. In this case the exponent in~48! varies only
slightly whens is changed by 1, and therefore one may
from the sum overs to the integral,

j~q!5S 2pm

Tq2 D 1/2expF2
q2

8mTGvcB

pq
^Ef

21&,
~49!

^Ef
21&[E Ef

21dEf r~Ef !, vc@~2pe^Ef
2&1/2|TT!1/2.

Equation~49! corresponds to the case where an elect
collides with one and the same scatterer many tim
The encountering factorz is given by the coefficient
(vcB/pq)^Ef

21& in ~49! for characteristicq21;|T , and
this factor coincides with the estimate ofz in Eq. ~9!. We
notice that each ‘‘individual’’ collision event is an elast
collision, and in this collision the electron kinetic energy
conserved:qpn52q2/2 whereq is the transferred momen
tum. This can be seen from Eq.~30! for j(q,pn) if instead of
averaging overpn @made to obtain~41!# one first performed
integration over time. In the range~47! the major contribu-
tion to the integral over time comes from the integrals ov
the intervals which are centered att52ps/vc and have
characteristic widths that exceedT21 but are small compared
to vc

21 . Each of these integrals gives thed function of the
energy conservation~31!. The total duration of a collision in
the range~47! is

tcoll5B|T^Ef
21&;vc /vpT. ~44b!

It is small compared to the timeV21 ~5! over which the
fluctuational field driving an electron noticeably varie
which provides justification of the approach in which th
field is assumed to be time independent.

We notice also that, in contrast to the case of modera
strong magnetic fields~7! where theEf-dependent correction
to the relaxation rate in~45! containŝ Ef

2&, Eq. ~49! contains
a different moment of the probability density distribution
the fluctuational field, the mean reciprocal fluctuational fie
^Ef

21&.

VI. MANY-ELECTRON CONDUCTIVITY
AND CYCLOTRON RESONANCE

IN QUANTIZING MAGNETIC FIELDS

In quantizing magnetic fields,

vc*T, ~50!

the band structure of the electron energy spectrum shoul
taken into account explicitly. The qualitative picture of ele
tron scattering in this case was described in Sec. II C.

For vc@T electrons occupy the lowest Landau leve
whereas for higherT higher Landau levels are occupied. Th
characteristic wavelength of an electron~the distance be-
tween the nodes of the wave functions! is given in order of
magnitude by the expression
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|5@mvc~2 n̄11!#21/2, n̄5@exp~vc /T!21#21

~51!

@cf. ~9!#. The value of|21 determines the momentum th
may be transferred to a short-range scatterer in the collis
The total scattering probability would be expected to be p
portional to the ‘‘encountering factor’’ discussed in Sec. II
and given by Eq.~9!.

The quantitative many-electron theory in quantizing ma
netic fields should be formulated in a different way for sta
conductivity and for cyclotron resonance. This is clear fro
the fact that, e.g., forT!vc static conductivity is determined
by the scattering within the lowest Landau level, where
broadening of the cyclotron resonance peak is determine
the scattering both in the lowest and first excited levels.
more formal terms, the conductivitys(v) is determined by
the polarization operatorP(v). The difference ofP(v) for
v50 andv5vc becomes substantial when the duration o
collision exceedsvc

21 , as it does in the range~50!.

A. Static conductivity

In the range of strong magnetic fields,vct@1, it is con-
venient to transform Eq.~16! when evaluating static conduc
tivity. One may first multiply the Heisenberg equation
motion

d

dt
P̂y
H~ t !52kvcP̂x

H~ t !2(
n

]Ĥ i
H~ t !

]yn
,

~k5eBz /mvc , uku51! ~52!

by P̂x
H(0) from the right and perform statistical averagin

and a Fourier transform over time. Then Eq.~52! may be
multiplied by(n]Ĥ i

H(0)/]yn from the left, and again statis
tical averaging and a Fourier transform over time~at fre-
quency2v) should be performed. Neglecting the terms p
portional tov in the resulting two equations and allowing fo
the system to be isotropic one then arrives at the expres

s~v!5
e2

2m2vc
2TS

ReE
0

`

dteivt

3(
nn8

^„¹nĤ i
H~ t !…•„¹n8Ĥ i

H~0!…&, v!T,vc .

~53!

To lowest order in (vct)
21 the correlation function of the

operators¹nĤ i
H can be calculated in the neglect of intera

tion between the electrons and the scatterers, i.e., one
replace

Ĥ i
H~ t !⇒ei ~Ĥ01Ĥb!tĤ ie

2 i ~Ĥ01Ĥb!t[Ĥ i~ t !.

In the case of short-range scattering, as is clear from Fig
one should keep only diagonal terms withn5n8 in the
double sum in~53!. If one further assumes that electrons a
scattered by defects or by 2D vibrations of the bath~phonons
or ripplons! with typical frequencies small compared toT,
tcoll

21 , the expression for the static conductivity can be writt
in the form
n.
-

-

s
by
n

-

on

an

4,

n

s[sxx~0!5
\e2ns
2mTvc

~2 n̄11!t21, vct@1,
~54!

t215
1

2
|2\22(

q
q2uVqu2j~q!

~for clarity, we have explicitly incorporated\). Here,uVqu2
is the mean square Fourier component of the potential of
scatterers, andj(q) is the ~Fourier transformed! electron
density correlator defined in Eq.~37!.

Equation ~54! has the form of Eq.~9! which gives the
conductivity in terms of phenomenologically introduced d
fusion lengthRB and scattering ratet21, with RB given by
the estimate~11!. In the limit of classically strong magneti
fields,vc!T butvc@t21, Eq.~54! goes over into Eqs.~38!,
~39! obtained before in a different way.

1. Operators of the centers of the electron wave packets

To evaluate the electron density correlatorj(q) for a
many-electron system in the quantum range~50! it is conve-

nient to introduce the operatorsr̃̂n of the positions of the
centers of the electron wave packets:

r̂̃n5 r̂n1e
p̂n3B

m2vc
2 , @ r̃̂ni ,p̂n j#50 ~ i , j5x,y!,

~55!

@ x̂̃n , ŷ̃n#52 ik/mvc

@k is defined in~52!, uku51#.
In the semiclassical domain~4!, ~5! the characteristic val-

ues of the momentapn are;|21, and they are very much
smaller than the characteristic ranged ~3! within which the
centers of the wave packetsr̃ n vary. In the analysis of the
dynamics of the centers of electron orbits, to the lowest or
in |/d one can express the operatorĤee($ r̂n%) in terms of the

operatorsr̃̂n andp̂n and retain only the zeroth-order terms
p̂n in the expansion ofĤee:

Ĥee~$ r̂n%!'Ĥee~$ r̃̂n%! ~56!

~cf. Ref. 31!. It follows from ~55! and also from~2!, ~3! that
the terms dropped in~56! are

;eEfpn /mvc;eEf l B
2/|<eEf l B!T&vc .

In the approximation~56! the electron motion is a super
position of quantum cyclotron motion and semiclassical d
of the orbit centers. The cyclotron motion has much in co
mon with vibrations of a harmonic oscillator. It is describe
by the raising and lowering operatorsp̂na that move the elec-
tron to an upper~for a51) or lower ~for a52) Landau
level, and by the wave functionsunn& in the occupation num-
ber representation:
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p̂na5~2mvc!
21/2~ p̂nx2 iakpny!, a56,

@ p̂n2 ,p̂n1#51 ~ uku51!,

p̂n6unn&5S nn1
1

2
6
1

2D
1/2

unn61&, nn50,1, . . . ~57!

~the functionsunn& with different nn correspond to the sam
position of the center of the cyclotron orbit of thenth elec-
tron!.

The operatorsp̂na commute with the operatorsr̃̂n , and
the Hamiltonian of the electron system takes on the form

Ĥ0'vc(
n

S p̂n1p̂n21
1

2D1Ĥee~$ r̃̂n%!. ~58!

2. Electron density correlator

Using ~55!, ~57!, ~58! one can write the operato
exp„iqr̂n(t)… in j(q) ~37! in the form

exp„iqr̂n~ t !…'expF(
a

a l Bq2ap̂na~0!eiavctG
3exp@ iqṽ̂n

~d!~0!t#exp@ iqr̃̂n~0!#,

v̂̃n
~d![

d

dt
r̃̂n5

En~$ r̃̂n8%!3B

B2 , qa5
qx2 iakqy

A2
. ~59!

The field En here is the fluctuational field driving thenth

electron. It is given by Eq.~27!, with rn8 replaced byr̃̂n8. In
deriving the expression for the drift velocit

dr̃̂n /dt52 i @ r̃̂n ,Ĥee# we used the commutation relation

~55! and dropped the higher-order commutators}@ r̃̂n8,Ẽn#

~or }@ r̃̂n8,vn
(d)#), so that, in fact, the operatorsr̃̂n8 in ~59!

should be considered asc numbers. This is justified provide
the field En is smooth on the characteristic wavelength|
~51!, i.e.,

|u^¹nEn&u5e^Ef
2&|/T!^Ef

2&1/2. ~60!

The latter inequality is the condition for the electron drift
the fluctuational field to be semiclassical@cf. ~2!, ~3!; in
evaluating^¹nEn& we used Eq.~A2!#. It follows from the
estimate of the fieldEf ~3! that ~60! and the condition~5! for
the drift of the orbit centers to be semiclassical coincide w
each other.

The other approximation made in~59! concerns the time
t which was assumed comparatively small so that the va
tion of the fieldEn could be ignored and the drift velocit
could be assumed time independent. Sin
Ėn;(¹n8En) ṽ n8

(d), the condition~60! justifies this approxi-
mation fort&tcoll;|B/Ef @tcoll is given by Eq.~65! below#.

Equations~58!, ~59! make it straightforward to perform
the averaginĝ exp„iqr̂n(t)…exp„2 iqr̂n(0)…&. Since the op-

eratorsp̂n and r̃̂n commute, the trace over the electron sta
with the weightZe

21exp(2bH0) factors into the trace ove
the wave functionsunn& and the integral over the positions o
the centersr̃ n of all electrons~strictly speaking, the trace i
h

a-

e

s

taken overunn& and over the eigenfunctions of the operato
ŷ̃n ~or x̂̃n), but the latter is reduced to the integral ov

$ r̃ n% in the semiclassical range!. With the account taken o
the commutation relations~57! for p̂n6 we obtain

^exp„iqr̂n~ t !…exp„2 iqr̂n~0!…&

5^exp†iqṽ̂n
~d!t‡&

3K expF(
a

a l Bq2ap̂na~0!~eiavct21!G L
3expF2 i

1

2
l B
2q2sinvct G . ~61!

A simple ~and useful for what will be done in the analys
of cyclotron resonance! way of finding the trace overunn& is
to replace in the second line of~61!

exp@A2p̂n1~0!2A1p̂n2~0!#⇒M̂n~A1A2 ;0!e2~1/2!A1A2,

M̂n~A1A2 ;0!5(
s50

`
~2A1A2!s

~s! !2
p̂n1
s ~0! p̂n2

s ~0!, ~62!

whereAa5 l Bqa@exp(2iavct)21#. To perform averaging the
matrix elements

^nnuM̂n~ uAu2;0!unn&5(
s50

nn ~2uAu2!s

s! S nn

s D ~62a!

should be multiplied by exp(2bvcnn), and then the summa
tion over nn should be done@it is convenient to sum ove
nn prior to taking the sum overs in ~62a!#. Finally we arrive
at the expression

K expF(
a

a l Bq2ap̂na~0!@exp~ iavct !21#G L
5expF2

1

2
l B
2q2~2 n̄11!~12cosvct !G ~63!

@the Planck numbern̄ is defined in~51!#.
The functions cosvct, sinvct are fast oscillating (vc is the

highest frequency in the problem for quantizing magne
fields!. Therefore when~61! is integrated over time~from
2` to `) to obtainj(q) ~37! one may expand the integran
in exp(6ivct) with account taken of~63! and retain the terms
in which the exponents with the opposite signs cancel e
other. Then the only term in~61! that remainst dependent is

^exp@iqṽ̂n
(d)t#&, and we have

E
2`

`

dt^exp@ iqṽ̂n
~d!t#&52p^d~qṽ̂n

~d!!&

52q21B^Ef
21&. ~64!

Here, we took into account that the semiclassical averag
over the positions of the centers of electron wave pack

r̂̃n comes to integrating over r̃ n with the weight
}exp(2bHee). Therefore^Ef

21& can be evaluated using th
classical distribution of the fluctuational field~43!. We em-
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phasize that it is only the drift of the centers of the wa
packets that is classical: fast cyclotron motion of the el
trons is quantized. We notice also that, although the dis
bution ofEf may be anisotropic for a Wigner monocrysta
the anisotropy dropped out of~64!, since we consider scat
tering which is isotropic inq, and we performed averagin
over the directions ofq in ~64!.

Equation~64! is the condition of energy conservation fo
elastic scattering: the scattered electron remains on the s
Landau level, and the recoil is such that the cyclotron o
center moves transverse to the fluctuational fieldEf .

The resulting expression for the correlatorj(q) is of the
form

j~q!52~ l Bq!21teexpF2
1

2
l B
2q2~2 n̄11!G

3 (
m50

S 12 l B2q2D
2m @ n̄~ n̄11!#m

~m! !2
, te5BlB^Ef

21&.

~65!

The quantityte here is the time during which an electro
drifts, in the crossed fieldsEf ,B, over the quantum magneti
length l B @cf. Eq. ~10!#. Thereforete gives the characteristic
duration of a collisiontcoll for T!vc . It follows from ~51!
that for higherT

tcoll5~2 n̄11!21/2te[~2 n̄11!21/2BlB^Ef
21&,

~66!

vctcoll@1.

Equations~54!, ~65! provide a simple explicit expressio
for the static many-electron conductivitys(0) in quantizing
magnetic fields@the inequality~66! specifies the range of th
fields where~65! applies#. For low temperatures,n̄!1, the
major contribution toj(q) comes from the term in the sum
~65! with m50, and the expression fors(0) coincides with
the result obtained earlier.31 In the opposite limit of highT
where n̄@1, the sum in~65! can be replaced by an integra
and the latter can be evaluated by the steepest des
method. The result coincides with Eq.~49! obtained above
by a completely different method.

B. Cyclotron resonance

1. General expression for the conductivity

For strong magnetic fields,vct@1, the resonant contri
bution to the many-electron conductivitys(v) ~16! at the
cyclotron resonance frequencyv5vc comes from the term
in the correlation function of the momentum̂P̂x

H(t) P̂x
H(0)&

which, in the absence of scattering, oscillates
exp(2ivct). Keeping this term only and expressing it
terms of the raising and lowering operatorspna ~57! we get

s~v!'
e2~ n̄11!21

2mS
ReE

0

`

dteivt^P̂2
H ~ t !P̂1

H ~0!&,

~ uv2vcu!vc!, P̂a[(
n

p̂na . ~67!

Similar to ~17! we may write
-
i-

me
it

ent

s

^P̂2
H ~ t !P̂1

H ~0!&5Tre@ P̂2~0!Ĝ1~ t !#,
~68!

Ĝ1~ t !5e2 iĤ0tĜ1~ t !eiĤ0t, Ĝ1~0!5Ze
21P̂1e

2bĤ0,

where the operatorĜ1(t) satisfies the kinetic equation~20!
with the initial conditions specified in~68!. As in Sec. III B,
in Eq. ~68! we introduced the operatorĜ1(t) instead of
Ĝ1(t), because the matrix elements of the operators in
collision integral for Ĝ1(t) on the wave functions of the
many-electron system are determined by the evolution of
system during the time;tcoll . This evolution can be de
scribed explicitly in the range where the drift of the cycl
tron orbit centers is semiclassical@in contrast, the collision
integral forĜ1(t) is determined by the evolution of the ele
tron variables during the time;t which is not known#.

2. The solution of the kinetic equation for fast interelectron
momentum exchange

Electron-electron interaction affects the shape of the p
of cyclotron resonance~67! through its effect on the decay o
the operatorĜ1(t). As explained in Sec. II D, this effect is
twofold: ~i! electron-electron interaction defines the mech
nism of collisions with the scatterers in a strong magne
field, and~ii ! if the interaction is strong enough so that th
rate of interelectron momentum exchangetex

21 exceeds the
collision ratet21, it defines the functional form of the op
eratorĜ1(t), and thus not only the broadening, but also t
shape of the absorption spectrum~e.g., Lorentzian vs non-
Lorentzian!.

Resonant absorption at cyclotron frequency correspo
to the transitions between the Landau levels,un&→un11&.
We note that broadening of the absorption line is due no
very occasional collision-induced transitions between
levels ~‘‘longitudinal relaxation,’’ in spectroscopic terms!.
The actual mechanism is random modulation of the diff
ence of phases of the wave functions of adjacent Lan
levels, which is induced by electron collisions with scatter
in the fluctuational field. This modulation is also the mod
lation of the transition frequency. Modulational broadeni
of resonant absorption lines is well known in different co
texts in solid state spectroscopy~cf. Ref. 42!.

Although electron-electron interaction does not give r
to the spectrum broadening, it may cause transitions betw
the Landau levels of individual electrons. The transiti
probability is given by the rate at which the amplitud
p̂naexp(2 iavct) of the quantized electron momentum
changed. For annth electron this rate can be estimated fro
the equation

dp̂n /dt5eEn~$ r̂n8%!1
e

m
p̂3B.

If one expandsr̂n8 in l B
2 p̂n8 using~55!, one finds that the rate

of the momentum amplitude change is;e(¹nEn) l B
2 ~for the

mean occupation number of the Landau levelsn̄&1). There-
fore it follows from ~A2! that the interlevel transitions occu
more frequently than collisions with scatterers provided

tex
215~vp

2/vc!;e2^Ef
2& l B

2/T@t21 ~69!



n

e

f
d

f

on

t-
bu

-
-
gle

w

is
m

ld

n

ant,

an-

s of

d

,

l-

s-

th
i-

to

55 16 263MANY-ELECTRON TRANSPORT IN STRONGLY . . .
@we have used here the estimate of the fluctuational field~3!
and the expression for the characteristic plasma freque
vp ~4!#. The criterion~69! justifies the condition~13! and, as
explained in the discussion of~13!, is also sufficient for the
fluctuational field that drives an electron to be randomiz
between successive collisions with scatterers.

We notice that~69! is not necessary for applicability o
the quantum transport equation and of the decoupling use
the transition from~53! to ~54!, this decoupling requires a
weaker inequalitytcoll!t @tcoll is defined in~66!#.

In the range~69! the dominating term in the equation o
motion for the operatorĜ1(t),

]Ĝ1

]t
5 i @Ĝ1~ t !,Ĥ0#1F ]Ĝ1

]t
G
coll

,

F ]Ĝ1

]t
G
coll

52(
q

uVqu2(
n
E
0

t

dt8e2 iH0t

3†exp„iqr̂n~ t !…, @exp„2 iqr̂n~ t8!…,Ĝ1~ t !#‡eiH0t

~21a!

is the first term which is linear in the electron-electr
interactionHee @Eq. ~21a! is similar to Eqs.~20!, ~21!#.
Therefore the major term in the solution of~21a! is a
function of the total electron momentumP̂6(t)
[exp@iĤ0t#P̂6(0)exp@2iĤ0t# and of the energyĤ0 @cf. Eq.
~33!#. In view of the initial condition~68! and taking into
account that~i! the operatorĜ1(t) has a symmetry of the
momentum operator, and~ii ! we are considering elastic sca
tering, and therefore the total electron energy and distri
tion over the energy do not change, we will seekĜ1(t) in
the form

Ĝ1~ t !5 g̃1~ t !Ze
21e2 ivctP̂1~0!exp@2bĤ0# . ~70!

The functiong̃1(t) is slowly varying; it accounts for relax
ation. Fast oscillating terms ing̃1 are small and nonreso
nant, and they have been dropped. In fact, even in the ne
of fast oscillating termsg̃1 still may be an arbitrary function
of the operatorP̂1(0)P̂2(0)[ P̂1(t) P̂2(t); however, it fol-
lows from the form of the collision integral derived belo
@see Eq.~71!# that the terms„P̂1(0)P̂2(0)…

m in g̃1 that
have differentm are decoupled from each other in the stat
tical limit of the large number of electrons. Therefore fro
the initial condition~68! it follows that g̃1(t) is ac number.

3. The collision term

Time evolution of the functiong̃1(t) in ~70! is deter-
mined by the collision term in~21a!. To find it we notice that
the duration of a collision is given by the time of flighttcoll
~66! of an electron past a scatterer in the fluctuational fie
Therefore, in the collision integral in~21a! the actual time
difference t2t8;tcoll . Although t2t8 largely exceeds
vc

21 , it is still small compared to the time;vc /vp
2 over

which the electric field driving an electron varies substa
cy

d

in

-

ct

-

.

-

tially. Consequently we may assume the field to be const
and then write the operators in~21a! in the form similar to
that used in Eq.~59!:

exp@ iqr̂n~ t !#5expF (
a56

a l Bq2ap̂na~ t !Gexp@ iqr̃̂n~ t !#,
exp@2 iqr̂n~ t8!#

'expF2 (
a56

a l Bq2ap̂na~ t !eiavc~ t82t !G
3exp@2 iqṽ̂n

~d!~ t !~ t82t !#exp@2 iqr̃̂n~ t !#.

The exponentials exp@6ivc(t82t)# in the term
exp@2iqr̂n(t8)# are fast oscillating fort2t8;tcoll@vc

21 .
Therefore one should keep only diagonal terms in the exp
sion of exp@2iqr̂n(t8)# in exp@6ivc(t82t)#, which means
that the corresponding operator may be expressed in term
the operator M̂n introduced in ~62! @with
Aa5 l Bqaexp„2 iavc(t82t)…#. At the same time, in the
derivation of the kinetic equation~20! it has been assume
that both the operatorĜ itself and the collision term as a
whole are smooth functions of time@it is seen from~68!, ~70!
that time evolution ofĜ1(t) is given by that ofg̃1(t), i.e.,
Ĝ1(t) is indeed smooth#. It follows from these arguments
with account taken of the fact that the operatorsp̂na(t) os-
cillate approximately as exp(iavct), that the substitution~62!
should be applied to thep̂n6-dependent terms not only in
exp@2iqr̂n(t8)#, but also in exp@iqr̂n(t)# ~in the latter case
Aa52 l Bqa).

With Eq. ~62! taken into account we can rewrite the co
lision term in ~21a! in the form

F ]Ĝ1

]t
G
coll

'2p(
q

uVqu2e2 ~1/2! l B
2q2(

n
d„qṽ̂n

~d!~0!…

3F M̂nS 12 l B2q2;0D ,F M̂nS 12 l B2q2;0D ,Ĝ1~ t !G G .
~71!

We notice that all operators here@including the ones in
Ĝ1(t), cf. ~70!# are evaluated at the same timet50.

In deriving~71! we took into account that in the semicla

sical domain~5!, different components ofr̃̂n , ṽ̂n
(d) commute

not only with p̂n6 but also with each other, and hence wi
exp(2bH0) and with Ĝ1(t) as a whole. In the same sem
classical approximation the operatorĤ0 in Eq. ~70! for
Ĝ1(t) can be written in the form~58! of the sum of the
terms that correspond to quantized cyclotron motion and

semiclassical drift of the centers of electron orbitsr̃̂n . There-
fore the operatorsM̂n in ~71! commute with exp(2bH0) in
Ĝ1(t), and the only term inĜ1(t) they do not commute
with is P̂1(0).
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It follows from the above arguments that the right-ha
side of Eq.~71! is a sum of collision probabilities for indi
vidual electrons,

(
n

d~qṽ̂n
~d!!†M̂n ,@M̂n ,p̂n1#‡exp~2bH0!

~this expression should be further summed over the mom
tum transferq). The above form is not the same as the fo
of the expression~70! for Ĝ1(t), which is a sum ofp̂n1

multiplied by an operator independent ofn. This is a conse-
quence of the collision probability being dependent on
state of the electron, as explained in Sec. II D. In the ra
~69!, where the interlevel transitions due to electron-elect
interaction are comparatively frequent, the relaxation rat
determined by the collision probabilities averaged over
electron states, and therefore the above expression has
appropriately averaged. Formally, the averaging can be d
and the equation for the functiong̃1(t) in ~70! can be ob-
tained by substituting~70!, ~71! into the kinetic equation
~21a!, multiplying by P̂2(0) from the left and taking trace
over the states of the many-electron system. With acco
taken of the expression

Tre@ P̂2~0!Ĝ1~ t !#'nsS~ n̄11! g̃1~ t !e2 ivct,

one arrives at the following equation forg̃1(t):

] g̃1~ t !

]t
52g g̃1~ t !,

g5
1

4
te(

q
~ l Bq!3uVqu2expF2

1

2
l B
2q2~2 n̄11!G

3 (
m50

S 12 l B2q2D
2m @ n̄~ n̄11!#m

m! ~m11!!
.

~72!

Both P̂2(0) and the collision term~71! are sums over the
electrons; the contribution to~72! comes from the diagona
terms in the trace of their product~the terms that refer to the
same electrons!. Averaging over the occupation numbers
the Landau levelsnn of the term in the double commutator i
~71! with a givenn multiplied by p̂n2(0) may be performed
using Eq.~62! ~in fact, it can be simplified using some op
erator identities, but the details go beyond the scope of
paper!.

It follows from Eqs.~67!, ~68!, ~72! that in the range~69!
the conductivitys(v) near the cyclotron frequency has
Lorentzian peak:

s~v!'
e2ns
2m

g

~v2vc!
21g2 . ~73!

The halfwidth of the peakg is determined by the rate of th
collisions in the many-electron fluctuational field. F
vctcoll@1 it is proportional to the time of flightte past a
short-range scatterer~65!.

We note that Eq.~72! for the relaxation rateg can be
written in the form in whichg is expressed in terms of th
frequency-dependent electron structure factorj(q,v),
n-

e
e
n
is
e
be
ne

nt

is

g[g~vc!, g~v!5
12exp~2bv!

4m\v (
q
q2uVqu2j~q,v!,

j~q,v!5E
2`

`

dt eivt^rq~ t !r2q~0!&, ~74!

rq5~nsS!21/2(
n

exp~ iqrn!.

This form is familiar from the memory function theory.43We
emphasize that, in evaluating the structure factor, we al
explicitly for strong electron correlations. Also, in contrast
the memory function theory, our technique makes it poss
to investigate the limits of large and small ratiotex/t.

In the ultraquantum limitvc@T Eqs. ~72!, ~73! go over
into the result of Ref. 31. In the opposite limit,vc!T @but
vc@(2pe^Ef

2&1/2|TT)
1/2#, Eqs. ~72!, ~73! go over into the

result of the strong-field classical theory given by Eqs.~38!,
~40!, ~49! @however, quantum corrections to~49! may be
sometimes substantial even forvc!T; see below#. We note
that, as expected, in quantizing magnetic fields the freque
dispersion of the structure factor is substantial, and the re
ation ratet21 that determines the static conductivity and
expressed in terms ofj(q,v→0) @cf. ~54!, ~65!#, and the
halfwidth of the cyclotron resonance peakg ~72!, ~74! do not
coincide with each other.

4. Cyclotron resonance for slow interelectron momentum
exchange

The shape of the cyclotron resonance peak differs fr
Lorentzian in the case where the duration of the collis
tcoll is small compared to the reciprocal scattering ratet, but
the latter is small compared to the timetex over which the
correlations in the electron system decay,

tex
215vp

2/vc!t21!tcoll
21 . ~75!

In this case the electron momentum is randomized beca
of collisions with scatterers faster than it is exchanged w
other electrons~cf. the discussion in Sec. II D!.

Since the collisions are short compared to the interv
between successive collisions, the many-electron kin
equation~21a! still applies, but now the termi @Ĝ1 ,Ĥee# in
~21a! is small compared to the collision term, and to zero
order invp

2t/vc it can be neglected. A solution of the kinet
equation can be obtained in the extreme quantum limit wh
electrons occupy only the lowest Landau level,n̄!1. One
can seek it in a quasi-single-electron form~‘‘quasi’’ here
means that we take into account that collisions with scat
ers are strongly affected by the electron-electron interactio!,

Ĝ1~ t !5e2 ivct(
n

g̃n1~ t !pn1Ze
21exp~2bĤ0!.

One then finds from~71! that the functionsg̃n1(t) exponen-
tially decay in time, but the decrements for different ele
trons ~different n) are determined by the ‘‘instantaneous
values of the reciprocal fluctuational fieldEn

21 : this field is
randomized over the timevc /vp

2 which exceeds the time

over which the functionsg̃n1(t) decay. The averaging ove
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the field has to be done in the final expression for the c
ductivity, and therefore we get

s~v!'
e2ns
2m K g0~Ef !

~v2vc!
21g0

2~Ef !
L , n̄!1,

g0~Ef !5
1

4
l BBEf

21(
q

~ l Bq!3uVqu2exp~2 l B
2q2/2!. ~76!

The averaging over the fieldEf is performed with the distri-
bution ~43!.

It is seen from~76! that in its maximum (v5vc) the
conductivity is given by the averagereciprocal scattering
rate. This is similar to the static conductivitys(0) in the
single-electron approximation forB50. On the tails of the
cyclotron resonance peak,uv2vcu@g, the expression~76!
goes over into Eq.~73!. This is again similar to what happen
for low-frequency single-electron conductivity in the a
sence of the magnetic field: forvt@1 it is given by the
average single-electron scattering rate~not the average recip
rocal rate!.

VII. CONDUCTIVITY AND CYCLOTRON RESONANCE
FOR SPECIFIC SCATTERING MECHANISMS

The expressions for the static conductivitys and for the
parameters of the cyclotron resonance spectrum are sim
fied for specific scattering mechanisms. In the analysis
will assume that the distribution of the fluctuational fie
Ef is Gaussian,

r~Ef !5~p^Ef
2&!21exp~2Ef

2/^Ef
2&!. ~77!

Equation~77! has been shown33~b! to describe the substantia
central part of the distributionr(Ef) in the broad range
20&G&200. In particular, to an accuracy better than 10
the mean reciprocal field,

^Ef
21&5p1/2^Ef

2&21/2.

Equation~77! makes it possible to characterize the effect
the electron-electron interaction on the conductivity and
clotron resonance by one parameter, the mean square
tuational field ^Ef

2&. The dependence of̂Ef
2& on electron

density and temperature is given by Eq.~3! with F being
nearly a constant.33~b!

One of the results that immediately follows from~77! is
the explicit shape of the cyclotron resonance peak~76! in the
range of quantizing magnetic fields for the case where
relaxation rate exceeds the interelectron momentum
change rate,tex

21!t21!tcoll
21 . It is seen from Fig. 5 that this

shape is noticeably different from Lorentzian.
In the range of fast interelectron momentum exchan

which is of central interest for the present paper, the dep
dence of the conductivity and cyclotron resonance on
magnetic field is characterized by two parameters,B/B0 and
B/BT where

B05S 2pm3T

\2e2^Ef
21&2D

1/4

, BT5
mT

\e
. ~78!

The parameterB0 gives the magnetic field for which ther
arises magnetoresistance@the encountering factorz ~9! dis-
-

li-
e

f
-
uc-

e
x-

e,
n-
e

cussed in Sec. III B is;B2/B0
2 in classical magnetic fields#.

The fieldBT ‘‘separates’’ the regions of quantizing and non
quantizing magnetic fields for a given temperatur
(\vc5T for B5BT).

The ratioB0 /BT5(2e^Ef
2&1/2|T /T)

1/2, and therefore if
the electron motion is classical in the absence of magne
field ~see Sec. II A!, thenB0!BT . In this case the decrease
of the static many-electron conductivity with increasingB,
which is described by the Drude law~39! for B!B0, satu-
rates forB0!B!BT . The conductivity becomes nearly in-
dependent from magnetic field, and according to~39!, ~49! is
given by the expression

ssat5
mns
B0
2

1

2\T(q uVqu2expS 2\2q2

8mT D ,
~79!

B0!B!BT .

The conductivity~79! is determined by the fluctuational elec-
tric field. Its dependence on the electron density is strong
sublinear and, in fact, very weak,ssat}ns

1/4, according to~3!.
The value~79! provides the scaling factor for the conductiv-
ity in strong magnetic fields.

In the rangeB!BT the expression for the scaled static
conductivity s̃ for Gaussian distribution of the fieldEf is of
the form

s̃5
s

ssat
,

s̃5p1/2
B0
2

B2|T(
q
quVqu2 (

s52`

`

expF2\2q2

8mT S 114p2s2
B0
4

B4D G
3F(

q
uVqu2expS 2\2q2

8mT D G21

, B!BT ~80!

FIG. 5. Reduced high-frequency conductivitys̃(v)5
2mg0s(v)/pe

2ns @g0[g0(^Ef
2&1/2)# near the cyclotron resonance

peak as a function of the reduced frequencydv5(v2vc)/g0 for
slow interelectron momentum exchange~76! ~solid line!. Lorentz-
ian distribution with the same area and with the halfwidthp1/2g0 is
shown with a dashed line.



l

rly
-

l

-

a

-

r

is

eri-

ms
ture
is
en-
ra-
-
by
m

he
lax-
dd
we
n

o-
the
-

an

16 266 55M. I. DYKMAN, C. FANG-YEN, AND M. J. LEA
~clearly, s̃→1 for B/B0→`). The explicit expression for
the reduced conductivitys̃ for quantizing fields,B*BT ,
follows from ~54!, ~65!, ~79!. We note that the fluctuationa
field drops out ofs̃ in quantizing fields.

A. Delta-correlated random potential

The analysis of the conductivity becomes particula
simple in the important case of ad-correlated random poten
tial,

uVqu25
\3

m
S21t

B50

21 . ~81!

Here,t
B50

21 is the scattering ratet21 ~38! for B50.

The value ofs at saturation~79! for d-correlated potentia
is of the form

ssat5~mns /pB0
2!t

B50

21 . ~82!

In classically strong fields we obtain from~80!

s̃5p
B0
2

B2 (
s52`

` S 114p2s2
B0
4

B4D 23/2

, B!BT , ~83!

whereas in the range

B0
4

B3BT
S n̄1

1

2D!1, n̄[@exp~B/BT!21#21 ~84!

~which includes the range of quantizing fields! we obtain
from ~54!, ~65!

s̃5F pB

4BT~2 n̄11!3
G1/2(

m50

` S 2m1
1

2D !
~m! !2 F n̄~ n̄11!

~2 n̄11!2
Gm

~85!

@ s̃ as given by~85! approaches 1 forn̄@1; we note that the
condition ~84! coincides with the conditionvctcoll@1 ~66!#.

It is seen from~83!, ~85! that the conductivity has a mini
mum as a function ofB in the rangeB;B0: it decays as
B22 for B!B0, and for B@BT it increases asB1/2. The
dependence of the reduced conductivity onB is shown in
Fig. 6.

The halfwidth of the cyclotron resonance absorption pe
g in the range of classically strong fields is seen from~40! to
be given bymvc

2s/e2ns . It is independent of electron den
sity and ofB for B!B0. As B approachesB0 the halfwidth
starts increasing withB; for BT@B@B0 we haveg}B2. In
the range~84! g is given by Eq.~72!. It can be easily evalu-
ated for thed-correlated potential~81!:

g5t
B50

21 F B3BT

4pB0
4~2 n̄11!5

G1/2

3 (
m50

` ~2m1 3
2 !!

m! ~m11!! F n̄~ n̄11!

~2 n̄11!2
Gm. ~86!

It is seen from Eq.~86! that the halfwidth of the cyclotron
resonance peak increases with the magnetic field asB3/2 for
k

B@BT ~i.e., slower than in the rangeB0@B@BT). The pa-
rameter g explicitly depends on electron density fo
B*B0.

B. Electrons on helium surface

For electrons on helium surface with a densityns5108

cm22 and T51 K the fluctuational field is
^Ef

2&1/25F1/2(G)ns
3/4T1/2'11 V/cm, and the characteristic

magnetic field for the onset of magnetoresistance
B0'(2m3F/\2e2)1/4ns

3/8T1/2'0.54 T. Therefore the specific
features of many-electron transport are accessible to exp
mental investigation.

Electrons on helium are scattered by helium vapor ato
and by capillary waves, ripplons. The advantageous fea
of the system is that the interaction with the scatterers
known and can be easily controlled: the saturated vapor d
sity can be changed by orders of magnitude in a compa
tively narrow range around 1 K just by changing tempera
ture, whereas the coupling to ripplons can be changed
varying the fieldE' that presses electrons against the heliu
surface.

Since in the limit of weak coupling to the scatterers t
scattering events are independent from each other, the re
ation rates for scattering by vapor atoms and by ripplons a
up, and they will be analyzed separately. In the analysis
will imply the standard variational form of the wave functio
of the electron motion transverse to the surface~in the z
direction!

c~z!52g'
3/2zexp~2g'z!. ~87!

1. Vapor scattering

The cross section of a helium atombHe
2 '5 Å2, and so

helium vapor atoms create a nearly ideald-correlated poten-
tial. Therefore the magnetoconductivity and cyclotron res
nance in the case of vapor scattering are described by
expressions~81!–~86!. The explicit form of the squared ma
trix elements of the coupling to the vapor atoms is44

FIG. 6. Reduced conductivitys̃5s/ssat as a function of
B/B0 for classical fields and ofB/BT[\vc /T for B3@(B0

4/

BT)( n̄11/2), for ad-correlated random potential and for Gaussi
distribution of the fluctuational field.
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uVquv
25

3p\4

8m2 g'bHe
2 NvS

21, ~88!

whereNv is the~3D! vapor density. The corresponding valu
of the scattering rate forB50 to be used in~82!–~86! is
t
B50

21 5(3p\/8m)g'bHe
2 Nv .

2. Ripplon scattering

The effective intensity of the random field of shor
wavelength ripplons is of the form44

uVqur
25S21

Te2

aq2
@E'

212E'Epol1Epol
2 #,

~89!

Epol[Epol~q!5
\2g'

~0!

2me
q2wS q

2g'
D ,

where a is the surface tension,g'
(0)5(me2/4\2)(«21)/

(«11) is the value of the variational parameterg' for
E'50, « is the dielectric constant o
helium, and

w~x!5~x221!211~12x2!23/2lnF11~12x2!1/2

x G , x,1,

~90a!

w~x!5~x221!212~x221!23/2tan21@~x221!1/2#, x.1.
~90b!

The first term in~89! describes coupling to ripplons due
the field E' that presses electrons against the surfa
whereas the terms withEpol are related to the change in th
energy of the electron-induced polarization of helium due
ripplons. The terms withEpol correspond to a random quas
static Gaussian potential with a small correlation length. T
term}E'

2 diverges for smallq ~it has a cutoff at the recip
rocal capillary length!, i.e., the corresponding term describ
a long-range potential. This divergence is seen from E
~38! and ~45!, and~54! and ~65! to be ‘‘dangerous’’ only in
the rangeB;B0: in both quantizing fieldsB*BT and com-
paratively weak fieldsB!B0 the sums overq contain
weighting factors that fall down fast with the decreasingq.

It is convenient to evaluate separately the contribution
the magnetoconductivity of each of the three terms in~89!.
Respectively, we write the magnetoconductivity in the fo

s[s~0!5sE'
1scr1spol . ~91!

The dependence of the termsE'}E'
2 onB in the range of

strong fields~84! can be obtained from Eqs.~54!, ~65!,

sE'
5s̃E'

sE'

~0! , sE'

~0!5
e2E'

2

4a\

mns
pB0

2 ,

s̃E'
5F pBT

B~2 n̄11!
G1/2(

m50

` F n̄~ n̄11!

~2 n̄11!2
Gm ~2m2 1

2 !!

~m! !2
.

~92!

It follows from ~92! thatsE' does not display saturation wit

the increasingB. Its dependence onB is monotonous. In
e,

o

e

s.

o

particular, s̃E'
}B21/2 for B@BT . In the opposite limit of

large n̄ ~i.e., forB!BT) the sum overm in ~92! is close to
(2/p)1/2ln@BT /B#, and thensE'

decreases with the increasin
B as ln@BT /B# @the expression fors̃E'

diverges logarithmi-
cally for \→0; we note that the sum overq in the classical
expression forssat ~79! logarithmically diverges at smallq
for uVqu2 being of the form of the term}E'

2 in ~89!#.

To analyzes̃E'
in the intermediate rangeB;B0 it is

convenient to write the correlatorj(q) in the expression~54!
for the conductivity in the form

j~q!5E
2`

`

dtexpF2
1

2
l B
2q2W~vct !G ,

~93!

W~x!5~ n̄11!~12e2 ix!1 n̄~12eix!1
1

4

B0
4

B3BT
x2.

In deriving ~93! we used Eqs.~37!, ~59!, ~61!, ~63!; averag-
ing over fluctuational field was done using~77!. Equations
~54!, ~93! make it possible to write the reduced conductiv
s̃E'

in the form

s̃E'
5p

B0
2

B2 Im (
s52`

`

@W8~xs!#
21,

wherexs are the roots of the equation

W~xs!50, Imxs,0.

Numerical results fors̃E'
are shown in Fig. 7.

The analysis of the second and third terms in the exp
sion for the ripplon conductivity~91!, scr andspol , is similar
to the analysis of the conductivity for ad-correlated random
potential. The dependence of the conductivitiesscr , spol on
B is nonmonotonous, they reach minima in the ran
B0!B!BT and then increase with the further increase
B. Their behavior forB!BT is described by Eqs.~79!, ~80!,
~89!. In particular, the values ofscr ,spol at saturation are
given by

scr, sat5
eE'g'

~0!T

\a

mns
pB0

2 w1S 2mT

\2g'
2 D ,

spol, sat5
2~g'

~0!!2T2

\a

mns
pB0

2 w2S 2mT

\2g'
2 D , ~94!

where

w j~z!5E
0

`

dx xj21e2xw j@~zx!1/2# ~ j51,2!. ~95!

The functionsw1,2 depend on temperature and, throu
the variational parameterg' , on the pressing fieldE' . In
the actual case where the thermal wavelength|T is large
compared to the localization length in the direction tran
verse to the helium surface we obtain from~89!, ~95!

w j~2mT/\2g'
2 !'F12ln~\2g'

2/mT!G j ~ j51,2!.
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In the rangeB*BT the conductivitiesscr , spol increase
with the magnetic field. In the limitB@BT we havescr
}B1/2, spol}B

3/2 to an accuracy of a factor that smooth
depends onB ~approximately as a logarithm ofg'l B). The
explicit expressions for the relaxation ratet21 in the case
g'l B@1 are given in Ref. 45. The reduced conductiviti
scr , spol as functions ofB obtained from~54!, ~65!, ~80!,
~89! are shown in Figs. 8 and 9.

The overall conductivitys ~91! due to the ripplon scat
tering has a minimum as a function of magnetic field. T
position of the minimum depends on temperature, elect
density ~in terms of the mean square fluctuational fie
^Ef

2&), and the pressing fieldE' . The occurrence of the
minimum is a many-electron effect. Figures 6–9 refer to
case where the saturation ofs21 with the increasingB oc-
curs in classical magnetic fields, i.e., forB0!BT . However,
the theory applies for an arbitrary ratio between the fi
B0 ~78! andBT[mT/\e provided there holds the inequalit

S B0

BT
D 2F BT

B~2 n̄11!
G1/2!1

which is equivalent to~2!. Detailed comparison of the theor
and the experiment for electrons on helium will be given
Ref. 45.

VIII. CONCLUSIONS

We have considered electron transport in classical
semiclassical strongly correlated electron systems for sh
range electron scattering. The effects of electron-electron
teraction on electron transport have been described in a
perturbative way. The basic physical idea is that althou
relaxation of the total electron momentum occurs via in
vidual electron collisions with scatterers, during the collisi
the electron is driven by a fluctuational field from other ele
trons, and this field may dramatically change the characte
the collisions, particularly in a strong magnetic field.

We investigate the case in which the collisions are sh

FIG. 7. Reduced conductivitys̃E'
~92! as a function ofB/B0

for the contribution to the rate of ripplon scattering which is qu
dratic in the pressing fieldE' . The curvesa to c correspond to
B0 /BT50.6,0.4,0.2. The dashed lines show the largeB/BT asymp-
totes ofG̃E'

.

e
n

e

d

d
rt-
n-
n-
h
-

-
of

t,

so that the fluctuational field does not vary in time during
collision and is uniform over the electron wavelength. Bot
these two conditions are met in the classical doma
T@e^Ef

2&1/2|T, \vc , and the specific for many-electron

systems semiclassical domain,\vc*T@e^Ef
2&1/2l B(2 n̄

11)21/2, where the electron motion is a superposition of
quantized cyclotron motion and a nearly classical drift of th
centers of cyclotron orbits.

The analysis is based on the many-electron quantu
transport equation. We derive this equation and devel
techniques for solving it, for classical and semiclassical d
mains. The solutions are obtained in the limiting cases
large and small ratios between the ratetex

21 of interelectron
momentum exchange due to electron-electron interaction a
the relaxation ratet21 due to collisions with the scatterers
For tex!t the general expression for the conductivity coin

-

FIG. 8. Reduced conductivitys̃cr5scr /scr, sat, which is deter-
mined by the second~cross! term in the ripplon field intensity~89!,
as a function ofB/B0 for classical fields and ofB/BT[\vc /T for

B3@(B0
4/BT)( n̄1

1
2). The solid and dashed lines refer to

2mT/\2g'
250.1 and 0.01, respectively.

FIG. 9. Reduced conductivitys̃pol5spol /spol, sat, which is de-
termined by the third~polarization! term in the ripplon field inten-
sity ~89!, as a function ofB/B0 for classical fields and of

B/BT[\vc /T for B3@(B0
4/BT)( n̄1

1
2). The solid and dashed lines

refer to 2mT/\2g'
250.1 and 0.01, respectively.
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cides with the expression which can be formally written
terms of the memory function@cf. Eq. ~74!#. We emphasize
that, in evaluating the electron structure factor, we do not
the random phase approximation: the major effects co
from strong electron correlations. It follows from the resu
that, in the classical and semiclassical domains, polaro
effects of the mass renormalization due to short-wavelen
scattering are small.

If tex!t then,because of the many-electron effects, up to
moderately strongB ~including classically strong fields
vct@1, but \vc,e^Ef

2&1/2|T), the frequency-dependen
conductivitys(v) is described by the single-electron Drud
formula.

For higher magnetic fields the scattering rate starts to
crease withB, and in quantizing fields the conductivity as
whole increases withB, i.e., s is a nomonotonous function
of B. The dependence of the conductivity on the magne
field has a simple form for ad-correlated random potentia
~cf. Fig. 6!. A detailed comparison of the results on the sta
conductivity with the experiment is given in Ref. 45.

If coupling to the scatterers is comparatively strong,
that forB50 there holds the inequalitytex

21&t21, the static
conductivity of the classical strongly correlated man
electron system is still given by the single-electron the
provided T@\t21. The many-electron effects may com
into play in a certain range of classically strong magne
fields, t21!vc!T/\, but the range of classically strongB
where there is no magnetoresistance disappears. With fu
increase ofB the relaxation ratet21 increases quickly, and
the duration of a collisiontcoll as determined by the time o
flight past a defect becomes larger thant, which means that
the idea of successive collisions no longer applies. T
crossover to effectively strong coupling occurs in stro
enough quantizing fields even iftex

21@t21 for B50, since,
for \vc.T and for short-range scattering,tcoll}B

1/2 and
t21}B3/2. These arguments explain why in some cases
single-electron theory which ignores correlations in the n
degenerate electron system is in reasonable agreement
experiment,11,12whereas in other cases many-electron effe
are dominating.7,8,13,14,17,45
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APPENDIX: QUANTUM CORRECTIONS
TO THE MANY-ELECTRON CLASSICAL

RELAXATION RATE

In the range of weak to moderately strong magnetic fie
whereT@eEf|T@vc an electron is moving nearly class
cally. The characteristic duration of a collision with a sho
range scatterertcoll5T21 ~44! is small compared tovc

21 .
The change of the velocity of an electron due to the ac
eration in the fluctuational field over the timetcoll is small
compared to the thermal velocity (T/m)1/2. Therefore in
evaluating the incrementr̂n(t)2 r̂n(0) of the electron coor-
dinate inj(q) ~37! for t&T21 it suffices to allow for a few
lowest-order terms in electron acceleration. These terms
clude the acceleration due to the Lorentz force and the fl
e
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tuational electric field@which have been taken into accou
in ~28!# as well as the acceleration due to the electric fi
being time-dependent itself:

Ên~ t !'Ên~0!1t
1

m(
n8

„p̂n8~0!¹n8…Ên~0! ~A1!

@the explicit form of the operatorÊn is given by Eq.~27!
with rn8 replaced byr̂n8; to the lowest approximation in the
acceleration of the electrons we have set the velocity of
n8th electron equal to its valuep̂n8(0)/m at t50#. An esti-
mate of¹nEn for a classical system follows from the est
mate~3! of ^Ef

2& and from the relation~cf. Ref. 46!

e2^Ef
2&[^~¹nHee!

2&52eT^¹nEn&. ~A2!

Allowing for this estimate we see that, for the characteris
pn;(mT)1/2, t;T21, the time-dependent term in~A1! gives
rise to a correction to the reduced electron displacem
dr n /|T of the order ofe2^Ef

2&|T
2/T2. This is the quantum

correction we are looking for.
With account taken of~A1! the expressions~28!, ~29! are

modified:

eiqr̂n~ t !'exp@ iqF̃„t,p̂n~0!…#eiqr̂n~0!

3expF2 i
q2

2m
tS 12

1

6
vc
2t21

e

12m
~¹nEn!t

2D G ,
t!vc

21 ,~eEf|T!21, ~A3!

where

F̃~ t,p̂n!5
p̂n
m
tS 12

1

6
vc
2t2D1e

p̂n3B

2m2vc
vct

21
e

2m
Ênt

2

1
e

6m2 t
3~ p̂n¹n!Ên . ~A4!

In the last term in~A3!, which will be evaluated to the lowes
order of the perturbation theory, we replaced (q¹n)(qEn) by
(1/2)q2(¹nEn). In the last term in~A4! we dropped the
terms withn8Þn in ~A1!, because for a classical electro
system the momenta of different electrons are uncorrela

The evaluation of the correlatorj(q) ~37! comes to sta-
tistical averaging of exp(iqF̃) and further integration ove
time. In doing averaging we have to retain term
;vc

2t2;vc
2/T2 and ;e2^Ef

2&|T
2/T2 ~clearly, there may be

no corrections of first order invc or in Ef). Therefore the
commutator

@~qp̂n!,~qÊn!#⇒2
1

2
iq2~¹nEn!

should be allowed for to the lowest order of the perturbat
theory. Then one can write exp(iqF̃) as a product of the
exponential of the first twop̂n-dependent terms in~A4! ~mul-
tiplied by iq) and of the exponential that contains the r
mainingr̂n-dependent terms inF̃, the above commutator, an
the last term in~A4!. When this is done one may perform
configuration averaging of the terms that depend on the e
tron coordinates:
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K expF i e

2m
qÊnt

22 i
e

6m2 t
3q2~¹nEn!1 i

e

6m2t
3~ p̂n¹n!~qÊn!G L

conf

'expF2
e2^Ef

2&
m2 S q2t4

16
2 i

q2t3

6T
1 i

qp̂nt
3

12T
1
qp̂nt

2

8T2
D G .
~A5!

Here we have allowed for the fact that, to zeroth order in\/T ~the expansion parameter, Ref. 46!, the configuration averaging

^K̂($rn8%)&conf comes to integration over the coordinatesrn8 with the weight exp(2bHee). To first order in\/T one should add
the configuration average of the commutator (\/2T)@K̂,H0#. In ~A5! we used

1

2
@~qÊn!,e

2bH0#'2
1

2m
ib(

n8
~pn8¹n8!~qEn!e

2bH0⇒2 i
1

4mT
~qpn!^~¹nEn!&

and also allowed for~A2!.
Averaging over electron momenta comes to integration overpn with the Maxwell distribution as a weighting factor. As is

well known46 the lowest-order quantum corrections can be reduced to renormalization of temperature

T⇒T* , T*5TF11
e2^Ef

2&
24mT3

1
vc
2

12T2G . ~A6!

The evaluation of the corresponding Gaussian integral overpn is straightforward, and the result is

^exp@ iqr̂n~ t !#exp@2 iqr̂n~0!#&'expF2
q2

2mTS t2T21 i tT2
1

4
F~ t ! D G ,

~A7!

F~ t !5S vc
2

T2
1
e2^Ef

2&
2mT3 D S 13 t4T41 2

3
i t 3T32

1

3
t2T2D .

The value of the functionj(q) is given by the integral of the expression~A7! over time. In doing integration the function
F(t) should be considered as a perturbation. The resulting expression forj(q) is of the form~45!, and the parameterF in ~45!
is given by the value ofF(t) for t52 i /2T @where the exponent in~A7! has a saddle point, to zeroth order inF(t)#.
b

F.

et

m

,

.

ar
o-

y
n-

.P.
n,

ett.

ys.

on,
n,

,

-
K.

d

*Also at Department of Physics, MIT, Cambridge, MA 02139.
1M.W. Cole and M.H. Cohen, Phys. Rev. Lett.23, 1238~1969!.
2~a! T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys.54, 437

~1982!; ~b! 2D Electron Systems on Helium and Other Su
strates, edited by E.Y. Andrei~Kluwer Academic, New York,
1997!; ~c! for an introductory review, see A.J. Dahm and W.
Vinen, Phys. Today40, 43 ~1987!.

3C.C. Grimes and G. Adams, Phys. Rev. Lett.42, 795 ~1979!.
4D.S. Fisher, B.I. Halperin, and P.M. Platzman, Phys. Rev. L
42, 798 ~1979!.

5G. Deville, J. Low Temp. Phys.72, 135 ~1988!.
6M.A. Stan and A.J. Dahm, Phys. Rev. B40, 8995~1989!.
7Y. Iye, J. Low Temp. Phys.40, 441 ~1980!.
8V.S. Edel’man, JETP50, 338~1980!; L. Wilen and R. Giannetta,
Phys. Rev. Lett.60, 231 ~1988!; Surf. Sci.196, 24 ~1988!.

9R. Mehrotra, C.J. Guo, Y.Z. Ruan, D.B. Mast, and A.J. Dah
Phys. Rev. B29, 5239~1984!.

10V.A. Buntar’, Yu.Z. Kovdrya, V.N. Grigoriev, Yu.P. Monarkha
and S.S. Sokolov, Sov. J. Low Temp. Phys13, 451~1987!; V.A.
Buntar’, V.N. Grigoriev, O.I. Kirichek, Yu.Z. Kovdrya, Yu.P
Monarkha, and S.S. Sokolov, J. Low Temp. Phys.79, 323
~1990!.

11R.W. van der Heijden, M.C.M. van de Sanden, J.H.G. Surewa
A.T.A.M. de Waele, H.M. Gijsman, and F.M. Peeters, Eur
phys. Lett.6, 75 ~1988!.

12P.W. Adams and M.A. Paalanen, Phys. Rev. B37, 3805~1988!;
A.O. Stone, P. Fozooni, M.J. Lea, and M. Abdul-Gader, J. Ph
Condens. Matter1, 2743~1989!; P. Scheuzger, J. Neuenschwa
-

t.

,

d,

s.

der, and P. Wyder, Physica B165&166, 845 ~1990!; 194-196,
1231 ~1994!; P.J.M. Peters, P. Scheuzger, M.J. Lea, Yu
Monarkha, P.K.H. Sommerfeld, and R.W. van der Heijde
Phys. Rev. B50, 11 570~1994!.

13M.I. Dykman, M.J. Lea, P. Fozooni, and J. Frost, Phys. Rev. L
70, 3975~1993!; Physica B197, 340 ~1994!.

14M.J. Lea, P. Fozooni, P.J. Richardson, and A. Blackburn, Ph
Rev. Lett.73, 1142~1994!.
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