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Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative
perturbation theory
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We develop an analytical expression for the self-energy of the infinite-dimensional Hubbard model that is
correct in a number of different limits. The approach represents a generalization of the iterative perturbation
theory to arbitrary fillings. In the weak-coupling regime perturbation theory to second order in the interaction
U is recovered. The theory is exact in the atomic limit. The high-energy behavior of the self-energy up to order
1/E? and thereby the first four moments of the spectral density are reproduced correctly. Referring to a
standard strong-coupling moment method, we analyze theUmite. Different modifications of the approach
are discussed and tested by comparing with the results of an exact diagonalization study.
[S0163-18207)02224-8

[. INTRODUCTION reasons the application of approximate methods for the
infinite-dimensional Hubbard model still remains necessary.
The theoretical understanding of correlated electron sys- The development of approximate methods should be
tems represents a central problem in condensed-matter phyguided by exactly solvable limiting cases and other rigorous
ics. One of the simplest, but nontrivial models that describeanalytical results available. Such information imposes a
interacting fermions on a lattice, is the Hubbard mddélt ~ number of strong necessary conditions on any approxima-
is currently studied intensively to gain insight into the fun- tion. Moreover, comparison with the numerically exact re-
damental mechanisms responsible for itinerant magnetisnsults of ED or QMC techniques allows for a judgment of the
metal-insulator(Mott) transitions, and high-temperature su- quality of the approximation a posteriori.
perconductivity. However, with the exception of the one- For the SIAM, weak-coupling approaches are known to
dimensional cas®,an exact solution is not known, and, to yield reliable quantitative informatiot?*® As has been
our knowledge, a completely satisfactory understanding oflemonstrated by Yosida and Yamdda® perturbation
its properties has not yet been achieved. theory inU is quite well behaved for the symmetric case
As was shown by Metzner and Vollhartdthe Hubbard ~when expanding around the Hartree-Fock solution.
model is simplified considerably in the limit of high spatial ~ Based on these findings, Georges and Kdflimtroduced
dimensionsd. However, it still remains a nontrivial model, a method called iterative perturbation thediT) for the
the essential properties of which are comparable to those &= Hubbard model at half-fillingf=1). Within IPT the
low dimensionsd=2,3. An exact solution of thd=o Hub- SIAM is solved by means of second-order perturbation
bard model or a reliable approximation for the entire ranggheory around the Hartree-Fock soluti®OPT-HF for ar-
of the model parameters will thus provide a proper dynamibitrary hybridization functions followed by the self-
cal mean-field theory of the Hubbard model in anyconsistent mapping onto the Hubbard model. IPT leads to
dimensiorf’ convincing results as has been proven by comparison with
In the limit d=c the Hubbard model can be mapped ontoED and QMC studie&’~*' Furthermore, a direct treatment of
the single-impurity Anderson modéSIAM) supplemented zero temperature and real energies is possible. The method
by a self-consistency conditidfi®° Thereby it becomes pos- turns out to be superior to the direct application of SOPT-HF
sible to make use of various methods that are available foio the Hubbard model. The latter does not yield a metal-
impurity problems. insulator transition, and Fermi-liquid behavior never breaks
Using the mapping onto an effective impurity problem, down??
essentially exact results for the infinite-dimensional Hubbard The success of IPT may be partly due to the fact that at
model can be obtained from quantum Monte CA@MC) n=1 the perturbational treatment accidentally reproduces
calculation§'*1? and exact diagonalization methods the atomic limit. Away from half-filling this desirable prop-
(ED).3* However, these approaches, though exact, suffeerty is lost, andthe naive extension dfPT is known to give
from severe limitations. Within ED calculations one is re- unphysical results.
stricted to a small number of orbitals, and thus a smooth In a recent papéf Kajueter and Kotliar proposed a modi-
density of states cannot be obtained. On the other handication of the IPT scheme introducing an interpolating self-
QMC vyields its results for the discrete Matsubara energies ognergy for the SIAM(see also Refs. 24 and R5The self-
along the imaginary time axis. Therefore, it is difficult to energy exactly reproduces the trivially solvable limiting
access the low-temperature regime where statistical erroigases of vanishing interactiod,= 0, of the completely filled
become important within the QMC method. Furthermore, toand the empty ban@chemical potentiaju— *o), and the
obtain dynamical quantities such as the density of states, thatomic limit. For smallU it is exact up to ordetJ?. The
analytical continuation to the real axis becomes necessarjow-energy behaviorE—0) is fixed by imposing the Frie-
which cannot be performed reliably in all cases. For theselel sum rulé® (equivalently, the Luttinger theoreif?d. At
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half-fllllng the approaCh reduces to the usual IPT. Fina”y,sca|ed appropriate|w<ij>:t:t*/(2\/a) (t* zconst), a non-
the self-energy has the correct asymptotic form for high engvial model is obtained in the limit—.2 The (noninter-
ergiesE—x: the first two coefficients within an expansion acting Bloch density of states for thd=c simple cubic
in 1/E are reproduced exactly. Results for the spectral deNpgice is a Gaussiaha semielliptic Bloch density of states is

sity and the integrated spectral weight based on the approagfhtained for the Bethe lattice with infinite coordination
have been compared with ED calculations, and a rather cory,mper®

vincing agreement between both methods has been observed e pasic quantity to be calculated within the model is the

; 3
indeed’ _ _ o one-electron Green function
The correct high-energy behavior may be quite important,
since this is closely connected with the moments of the spec- Gijo(E)=({(Ci, ;cJTU>>E. 3

tral density?® The moments are defined by , o
Its diagonal elements can be written in the form

m_ 1 o " » A (B)
M f,wE Aqgo(E)dE, (1) GU(E)EG“(,(E)ZJwE_(Z_pM)(_Z)E (E)dz. 4

}Nher_eAd(, denotes_ the one-electron spectral density of thg:Or dsoo the self-energy of the Hubbard moddl, (E),
ocalized {d) state in the SIAM. The moments can be calcu- . . . 157836
lated from the Hamiltonian directf§. With increasingm, becomes independent or S"e'd""?go ; : .
however, they include equal-time correlation functions of . The Anderson model for a single impurigsIAM) is
, y q b

higher and higher order. This fact limits the number of mo-9'Ven BY
ments that can be used in practice for the determination of
the high-energy behavior of the self-energy. Hsiam= 2 (€= 1)Cl,Crot 2 (€4 14)Cl,Cas

In their recent approach, Kajueter and Kotliar could take ke 7
into account exactly the moments up no=2. The main
purpose of this paper is to demonstrate that improvement is +UNgoNg— o+ 2 Vied(ClyChot ClpCao).  (5)
still possible. Modifying their approach, we will show that a ko
self-energy function can be constructed that respects thi all practical calculations the hybridization strength be-
m=3 moment additionally, while all other mentioned limit- tween the conduction band and the localizktdevel, V4,
ing cases are still recovered as before. Thereby, higher-ordenters via the the hybridization function which is defined by
correlation functions enter the theory. As will be shown, 5
these can be expressed without further approximations in A (E)ZE Vid
terms of the one-electron spectral density and can thus be x E—¢’
determined self-consistently. Our analysis stresses the impor- ) ) ) i
tance of thism=3 moment, especially what concerns Spon_Le’[ us also introduce the impurity Green function:
taneous magnetism. _ ot

The interpolating self-energy for the SIAM is exact in the Gao(E)=((CdsiCuo))E - ()
case of smalU and in the atomic limit; to see whether it can From its equation of motion we immediately have
be considered as a reasonable interpolation between the
weak- and the strong-coupling regime, we furthermore in- Gy (E)= h
vestigateganalytically the limit U—c. Contact is made with do E—(eg— 1) —A(E+u)—Zg(E)’
a standard strong-coupling moment methidkde spectral-
density approacSDA)]>*"* The SDA, within the context “\vpjle in thed== limit of the Hubbard model all spatial

of the Hubbard model, has proven its usefulness in sever egrees of freedom are frozen, the lotiampora) fluctua-
previous studies. Thereby, we can provide an additional ingiong still constitute a nontrivial problem. This, however, is

dependent justification for the interpolating self-energy. equivalent to the SIAM. The Hubbard model and the SIAM
The theory is evaluated numerically. Different versions of ., pa  connected by the following self-consistency
the approach are tested, which are all compatible with the - jition8-10

mentioned limiting cases. Finally, we compare with the re-
sults of an exact diagonalization study from Ref. 23. AJAE+u)=E—(eg—u)—2,(E)—h(G,(E))" L (9

A has to be interpreted as an effective hybridization function
IIl. MAPPING ONTO SIAM that provides a coupling of the level to the external bath of

To begin with, we briefly recall the procedure by which conduction electrons that simulates all temporal degrees of

the Hubbard model can be mapped onto the SIAM and infreédom in the Hubbard model. In the case of a ferromag-
troduce some basic notations. netic phase, the hybridization function must be spin depen-

The Hubbard model reads dent. Provided that the conditiof®) is fulfilled, the self-
energy of the Hubbard model is identical with tbdevel
1 self-energy of the impurity problent, ,(E) =3 4,(E). This
H=i2 (Tij_:"““"ij)c;racja+ EUZ NigNi—o - 2 also implies the corresponding identity between the respec-
I 7 tive Green functionsG ,(E) =Gg4,(E).
We consider a-dimensional lattice with hopping between  If one is able to solve the SIAM for arbitrary hybridiza-
nearest neighbors. Provided that the hopping integrals aron functionsA ,(E), the following two-step procedure for

(6)

®

where 4,(E) is thed-level self-energy.
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solving thed=co Hubbard model is suggest&dt® Given a  Expanding the denominator in powers oElive get
hybridization function, we calculatéby solving the SIAM

the self-energy. 4,(E) in the first step. In the second step, ok m
using Egs.(4) and(9), a new hybridization function is gen- Gda(E)=m§=:o gl Mgy - (15
erated. Both steps are iterated until self-consistency is
achieved. The coefficients in the E expansion of the self-energy,

In the following we concentrate on the first step, which -
represents the actual problem. We intend to derive an ana- S (E)= 2 = cm 16
lytical expression for the self-energy of the SIAM that re- dol( )—m:O EmCdo » (
spects various exactly solvable limiting cases and other rig- ) ) )
orous facts available. can be obtained by inserting Eg€l5) and (16) and the

analogous expansion to the hybridization function into Eq.
Il. SPECTRAL MOMENTS (8):
The overall shape of the one-electron spectral density, C&?=U<nm>,
1 . Clid=UXng_)(1—(ng_)), (17)
Ad(r(E) = ;ImGd(r(E—i_ l 0)1 (10)

(212 _ = -

is fixed by their low-order spectral moments to a large ex- Co =UANa- ) (1=(Na-o)[Ba- s+ UL~ (Ng0)) .
tent. The definition of the moments is given in HQ). A An approximate expression for the self-energy of the SIAM
completely equivalent but independent representation is eashould be consistent with this rigorously derived high-energy
ily derived using the Heisenberg equation of motion for thebehavior.
time-dependent operators in the definition of the spectral The Hartree-Fock approximation for the self-energy,
density. We obtain

SG(E)=U(ng_), (18)

only respects the zeroth-order coefficient in the high-energy
where LO=[O,Hgam]- denotes the commutator of an op- expansion. The zeroth and the first coefficient are reproduced
eratorO with the Hamiltonian, and,], is the anticommu- by the self-energy

tator. The straightforward calculation up o= 3 yields

H(E)= +
g?r):l, Edo'( ) U<nd70>

Mg:]r):<[£mcd(r!cg(r]+>i (11)

U2<nd—0'>(1_<nd—0'>)
E+p—eg—U(1—(ng_))’

19

which is obtained when applying the Hartree-Fock decou-
(12 pling scheme not at the first but at the second level in the
hierarchy of equations of motion for the Green function. This
Mgﬁ;=23+ 2Zdu<ndﬂ7>+ U2<nd70>+2 Vﬁm is analogous to the “Hubbard-I" approximatibmithin the
k context of the Hubbard model. The simplest form of a self-
_ _ _ energy that implies the correct expansion coefficients up to
M ="¢3+3€iU(ng_,) + €qUANg_,)(2+(Ng_,)) order 1E? is given by

Mo ="€g+U(ng-),

U2<ndfo'>(1_<ndfa>)
E+u—Bg_ ,—U(1—(Ng_,)) (

+U¥(ng_ )+ Ek: Vig(eit 2eqt2U(ng_ ) S@E)=U(ng_,)+

+U%(Ng_ o) (1= (Ng- ) By, - : . o
The higher-order correlation functions includedBg, have
Here we have definedy ;= eq — i, Bgy=Bg,— 1, and to be determined self-consistently as well as the mean occu-
' ’ pation numbergng,). Both 3™ and=(? are correct in the
S Vil can(2ng . — 1)) atomic limit. By, reduces toey in this case, an® ) just
(Ngo)(1—(ng,)) % = K&\ kordotSld=o ' coincides with the self-energy of the atomic limit.
(13 The self-energy(20) is the result found within the
. _ . SDA313* Actually, the SDA is a standard strong-coupling
We notice that then=3 moment includes higher-order cor- approach to the Hubbard model. Its main idea is to start from
relation functions. o _a two-pole ansatz for the spectral density and to fix all pa-
W_e can use these _epr|C|t results for the moments to fixameters in the ansatz such that the momémngsto m=3)
the high-energy behavior of the self-energy. For this purposgye correct. Recent investigations of tide=2 Hubbard
we consider the following representation of theGreen  mpdef?38 point out that the results of the SDA are identical
function: to those of the Roth approathand the Mori-Zwanzig pro-
) jection techniqué®*! All methods yield a two-pole structure
* Ago(E )dE’ (14) for the interacting Green function. Neglecting quasiparticle
-« E-FE' ' damping (for damping effects cf. Ref. 42 this two-pole

— ~ 1
BdO': Ed"r‘

Gd(r(E) =
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structure can be made plausible for the strong-coupling reThe parametew,, has been introduced for later purposes.
gime: an analysis of Harris and Larfdeigorously shows Y\/ithin IPT we haven, = u
0 7o

that additional structures merely have a spectral weight Following Kajueter and Kotliaf® we consider an ansatz
the order {/U)* or less. It is remarkable that such a simplefor the self-energy: '
form (20) of the self-energy is able to reproduce at least '

qualitatively the correct dispersion of the Hubbard bands. a3 (S99 (E)
This has been proven for thie=2 case by comparisoffs™ S 00(E)=U(Ng_ )+ o= (25
with QMC (Refs. 44 and 4band with ED calculatiorf§ on 1-b,%g, (E)

small square Hubbard arrays. We thus believe that the st
going from the Hubbard-I solutiofEqg. (19)] to a solution
[Eqg. (20)] that respects then=3 moment additionally is
quite important, at least fold—oo. It is even decisive if
spontaneous magnetism is considered as it is known th
Hubbard’s original solution predicts magnetic order only un-
der extreme circumstanc&Vithin the SDA the spin depen- .

dence ofB,, induces a spin-dependent shift of the bands thafjens'_ty gn_d the pafametbfr to get the co_rrect r_esult for the
favors magnetism. Indeed, the results for the ferromagnetiétomlc limit. Here, in contrasd,, andb,, will be fitted to the
and antiferromagnetic Hubbard models seem to be qualitamzz.and to them=3 moments. .

tively correct’” On the other hand, the SDA completely fails | IS can be performed straightforwardly: We start by ex-
to reproduce Fermi-liquid behavior for small. At half-  Panding the denominator in EQZZ)SQC)powers of 1E to
filling it predicts an insulator for eacti>0 and thereby is ©btain the high-energy behavior Bfs>

egg, b, , andu, are treated as free parameters, which will be
fixed such that the approximation becomes exact in a number
of limiting cases. It is assumed that E@5) provides a rea-
f§tonable interpolation between the different limits.

In Ref. 23 Kajueter and Kotliar determined the parameter
a, to get the correcm=2 moment of the resulting spectral

not able to describe the Mott transition as well. Apart from w
the neglection of quasiparticle damping, however, the SDA 3,(S00(E) = E iD(m) (26)
yields plausible results fdg—>. do =y EM T do

The conclusion from the preceding discussion should be o )
that it may be quite important to account for the=3 mo-  Where the coefficients are given by
ment, especially what concerns spontaneous magnetism.

1)_112 HF _ HF

This will guide our search for an approximate self-energy in Do =U%(ng- ) "7 (1= (ng_,)"")
the case of the SIAM, which can be identified with the self- _
energy of thed=o Hubbard model via the self-consistent D@ =U%ng_,)MP(1—(ng_,Y ") BYR — 7%,
mapping.

bping +U(Ng_,)). @27

IV. MODIFICATION OF IPT Here

Our approach is a modification of the IB¥Within the 1 (e
usual IPT the SIAM is solved by means of perturbation <ndg>(HF>=gf f(E)A'P(E)dE (28)
theory up to second order in the couplidg The self-energy -
is given by is a fictive (Hartree-Fock particle number, and

g (E)=U(ng_,) +2G20(E). (29 1

HF) _ t
Bgu)—fd+<nd YFP(1—(n, >(HF))Ek Vi( ClyCao)
g, g,

The first-order term is the Hartree-Fo@KF) self-energy; the
second-order contributio(60OQ0 reads

X(2(ng- )" =1) (29
2 (HF) o\ A (HF (HF)
E(SOQ(E):U_J J JAdo (¥)AG=(Y)AG=4(2) is the Hartree-Fock value of the higher-order correlation
do 3 E-x+y—z functions defined in Eq(13). Comparing with the exact co-
efficients given in Eq.(17), we notice that the IPT self-

XTI+ =0T (Y)T(=2)] energy> {"" does not have the correct high-energy behavior

X dxdydz (22) away from half-filling.
From the equation of motion for the Green function
Here f(x)=1[exp(B)+1] is the Fermi function, and ((c, :c! })" it can be seen that the hybridization-induced
B=1ksT. The Hartree-Fock spectral density correlation functions in the definition d8{'” can be ex-

pressed in terms of the localized HF Green function:

1
AYP(E)=— ;|megﬂF>(E+i0) (23) L )
2 Vi Gy Cap) M7= = —Im f f(E)A(E+i0+u)
is obtained from k ™ —w
" X GYP(E+i0)dE. (30)
GIP(E)= = : _ _ _ .
E—(eg— py) —ALE+p)—U(ng_,) The high-energy behavior of the interpolating self-energy

(24 can be derived from the expansig26) and from Eq.(25).



16 136 M. POTTHOFF, T. WEGNER, AND W. NOLTING 55

Comparing with the exact coefficients of theEléxpansion temperatures. On the other hand, the conditi@3s and(34)

in Eqg. (17) again, we have to choose do not suffer from this difficulty.
The second conditiofB4) implies (for a constant hybrid-
__ (N4-0)(1=(Ng—o)) (31)  ization functionA,) that u,= pe+U(ng_,). This exactly
7 (g o) "P(1—(ng_,)"7) compensates the energetic shift of the Hartree-Fock Green
and function (24) by U(ng4_,). G{IP) thereby becomes indepen-
dent ofU, and3{3°% reduces to the second-order contribu-
By_o—p— B + 70, +U(1-2(ng_,)) tion from a weak-coupling theory in which tifeee (U=0)

by= U2(ng_ (1 (ng_)™) (32 instead of the HRl Green function is used in the calculation

of the proper irreducible self-energy. This, however, must
to ensure the correct high-energy behavior of the self-energgot be confused with the plaifor conventionagl weak-
24, and thereby the correct moments of the resulting speceoupling theory, where the free chemical potentiglwould
tral density up ton=3. The result(31) and (32) reduces to have to be replaced by additionally and which artificially
the approach of Ref. 23 By, and Bg'f) are replaced by breaks particle-hole symmetf§ The second-order contribu-
€. tion within SOPT-HF is recovered only when using the first
It is easily verified that our approach is correct in thecondition (33). Arguments in favor or against a particular
atomic limit. SettingV,4=0, the Hartree-Fock spectral den- weak-coupling approach have previously been developed by
sity (23) reduces to & function, which allows one to calcu- demanding the correct high-energy behaviap to order
late the second-order contributid®2) and thus the self- 1/E).’%°Such reasoning, however, is not meaningful in the
energy (25) immediately. It turns out to coincide with the present context since the correct high-energy behadujpto
self-energy of the atomic limi¢19). order 1E?) is reproduced in each case.

Next, we have to check the weak-coupling limit: provided | et us mention that Choosinﬁaz,u (first condition in-
that the parameteg, is chosen such thai,—uo=u|y_o troduces a slight complication: Because of the shift of
for U—0 (see below, we have(ng,)—>(ng,) for U—0.  G{P by the HF contributionJ(ny_,), it may happen that
Furthermore, since By,—B{/” as U~0, we have (ng,)"P=0 (or (ny,)"P=1) for strongU and T=0,
b,~1/J. Therefore, expanding the self-ener@p) in pow-  which means that the parametexg and b, are no longer
ers of U, we see that it is correct up to ordeF indeed. In  well defined. However, within the limi{ng_,)"P—0 (or
particular, this implies that all Fermi-liquid properties as de-—1) we have
scribed in Ref. 28 will be recovered for small at least.

Finally, the parameter,, has to be fixed. The most natu- 3,(S00 ()
ral choice is the following: (HF)d” G
<nd—0'> (1_<nd—o'> )

Moo= . (33
Another possibility is due to an approach of Martin-Rodero Uzj J f ALY OOAR (VAT (2)
et al?*?>whereu, is determined from the condition 3 E-x+y—z

dxdydz

(36)
<nd0'>(HF):<nda>' (34)

In Ref. 23 Kajueter and Kotliar imposed the Friedel sumTherefore, althougha, and b, diverge, the interpolating

rule?® as a condition to fixz,, . Via the self-consistency con- self-energy remains finite.

o g . . . So far it can be concluded that there are no differences
dition (9) this is equivalent to the Luttinger theorérfwhich o . .
in the case of thel=c Hubbard model read® between the three possibilities considered that ceial.

However, we notice that the third condition implies a restric-
w=po+3,(0). (35)  tion of the theory to zero temperature. We defer further dis-
cussion to Secs. VIl and VIII.
Let us briefly discuss the implications of the different

choices. First we notice that in all cases we haye> u, for

U~—0 as it must be to ensure the correct weak-coupling be-

havior of the self-energy. Furthermore, the validity of the

approach within all other limiting cases that have been con- The definition of the parametdx, involves the band fill-

sidered is not affected by the condition chosen. ing (ngq,) and the higher-order correlation functions included
Inspecting the original derivation in Ref. 27, we recall in By, , which are still unknown. A satisfactory theory can-

that the validity of the Luttinger theorem depends on a numnot be constructed unless it is possible to determine these

ber of presuppositions. For example, the theorem holds i€orrelation functions without further approximations. No

perturbation theory applies. Obviously, for smédllall con-  problems are introduced for the band filling that may be

ditions (33)—(35) yield a theory that is compatible with the expressed in terms of the spectral density:

Luttinger theorem up to ordes? at least. Here, another sup-

position is more important, namely, ER(E)=0 at E=0.

In particular, this impliesT=0.5° Therefore, applying the <nda>zljw f(E)Ag,(E)dE. (37)

third condition (35) does not allow one to consider finite hl) -

V. SELF-CONSISTENT DETERMINATION
OF HIGHER CORRELATION FUNCTIONS
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In the following we demgnstrate that al®y,, can be énda>(1_<nda>)Bda
reduced to the spectral density or the Green function, respec-

tively. According to its definitionBy, partly consists of a ©+i0

sum of one-particle correlation functions. Applying the gen- = (Mo (1~ (Ngo)) €4~ —ﬁ"’ﬂf x+iof(E)Alr(E+M)
eral spectral theorethand exploiting the equation of motion

for the Green functiod(cy, ;c},)), we have 2
X| g Zar(E)=1|Ggo(E)dE, (44)
o +i0
t _
; Vi CkoCao) = — E'mf_m“of(E) where once more we exploited the equation of motion for

Gys - This completes the theory sinéa,) andBy, can be
XA E+u)Gy,(E)dE. (389)  determined self-consistently from tloeGreen function.

Now we are left with the higher-order correlation functions

only. Using the commutator VI. STRONG-COUPLING LIMIT

So far we have shown that the appropriate choice of the
[Cao H]-=€4CqptUCuoNg_ o+ > VodCpos (39 parameters, andb, in the ansat£25) yields a self-energy
p that is exact in a number of limiting cases, namely, trivially
for U=0, for (ny,)=0 and{ny,)=1 and furthermore in the
atomic limit and for smallU up to orderU2. The high-
~ energy expansion yields the correct coefficients up to order
€d 2 ! .
v.(cf ¢ Ny_g)=— -3y of ¢ . (1/E)“. Thereby the first moments of the spectral density up
2 Vil ChoCaota- o) u ; o ChrCa) to m=3 are reproduced exactly, which is one additional mo-
ment compared with the approach of Kajueter and Koffiar.
_ iz ViV d<CT Coo) It is easily shown that the general particle-hole symmetry
pd\“ko=pa requiresBy, to be zero at half-filling in the paramagnetic
1 phase(and for a symmetric Bloch density of stateSince in
+ > Vig(el [ Cgo HT). this caseB{!M=0 andu=,=U/2, it follows thatb,=0.
U Consequently, the theory reduces to the conventional IPT for
@0 {Nay)=(ng-,)=0.5.
We now turn to the strong-coupling case—>« in order
The first term on the right-hand side has just been treategh check whether the theory can be regarded as a reasonable
above. Using the spectral theorem and the equation of mQnterpolation between the weak- and the strong-coupling re-

the remaining terms By, can be written in the form

tion, one gets for the second one: gime. In the following we exclusively focus on the SIAM;
1 o any approach that uses the self-consistent mapping of the
0o +ij .
VoV del o y=— _|mf f(EVA (E+ Hubbard mpdel onto the SIAM can or_wly be as reliable as the
2 VidVpal i Cpo) fi ) —evtio (B)Ao(E+n) approximation employed for the solution of the latter. Hence,

for the present purposes the hybridization functioican be
X[AHE+u)Gyo(E)+R]dE. (41)  assumed to be independentldf

Applying once more the general spectral theorem, perform- Let us consider the first conditidGS) for determining the
ing a Fourier transformation to the time representation, andictive chemical potential, i.e,= . As mentioned above,

using the Heisenberg equation of motion, the third term carfor small U all Fermi-liquid properties are recovered. For
be written as large U the spectral densityh,, is expected to consist

roughly of two dominant features separated Wyat about
€4 andey+U. Assuming(ny,)=(ny_,)<0.5 for simplicity,

s
; Vi Col Car HI-) the chemical potential will be located within the lower part;
u~€q. Looking at the HF Green functiof24), we notice
1 = [ O B that(ny_,)"P=0 for T=0 and forU larger than a certain
- _ E(t—t')/% 7 d-o
= de( )Imj mj_xf(E)el ('h at) critical valueU,,, and thus the relatiof86) applies. In par-
ticular, at the Fermi edge=0,
X ((Cao(t)iCl,(t))d(t—t")dE. (42
. . 1 Sy 2(i0)
Integration by part and back transformation to energy repre-- —|m D G
sentation finally yields T (Ng—g)" (1=(Ng—)"™)
T 1 ©+i0 (HF HF HF)
Ek: Vi Ciol Caor H]-)=— ﬁ'mfﬂcﬂof(E) f f ASPOAT(YAL ) (y—x)dxdy.  (45)
XEA(E+ w)Gqy,(E)dE. A simple analysis shows this twofold convolution integral to

43) be nonzero for interactiond smaller than another critical
valueU, (>U,;). Via Eq.(25) this implies a nonzero value
Combining all results, we obtain of the imaginary part of the interpolating self-energy at
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E=0. ForU>U, we have Inty,(E)=0 in the vicinity of effi_cients from the expansio(jZG). Analogously, the _total
E=0. Therefore, non-Fermi-liquid behavior is implied for Weight and the center of gravity ef Im>.4,(E)/ are given

all U>U,,. in terms of its 1E expansion coefficients a€{") and
On the contrary, aT=0 the second conditio(84) yields c@icy.
Im3.4,(E)~E? for E—0 irrespective of the value fdd. At energies with E—DZ/D{})|~>, the imaginary part

Some more statements can be mad&#>~. For this  of the second-order contribution vanishes, and the real part
purpose we first determine the total weight and the center adipproaches:
gravity of the imaginary part of the second-order contribu-
tion 339 Let us consider the integral D

ReS (SO (E)s —— o —r. (47
E-DEIDW

® 1
f Em( - —) Im3 3°9(E+i0)dE, (46) _ ©)
% ™ Now let usassumethat there is a zer&=E_’ of the de-

for m=0,1. Since> 3°is analytical in the upper half of the nominator in Eq.(25),

complex E plane, the contour along the real axis can be 1-b,3SOO(EO) =0 (48)
deformed into a contou€ where each point ofZ has a o= do v '

distance from O that is larger thaR and R—o. On the 4t 5 sufficiently high energy; i.e., we assume that
contourC one is allowed to replace{>°° by its asymptotic

form (26). After thatC can be redeformed into an integration |[EQ —D@/DH|>00 (49
along the real axis and the evaluation of the integral becomes

trivial. The total weight and the center of gravity turn out to for U—>oco. This implies that the imaginary part of the inter-

beD{Y andD{?/D{Y, respectively, wher®{? are the co- polating self-energy

- | b0| ImzéSOO(E)

[oa

7|b,| [1—b,ReZEOV(E)12+[ —|b,/ImSO%(E) 2

(o

- i|m2dU(E+i0)= (50)
o

has as singularity atE:Ef,O). Using Eq.(47) we can derive  self-energy(25) in powers of U directly. However, com-

the asymptotic position pared with the SDA part, its weight is smaller by a factor
o U2. In fact, for strongU the remaining part can be neglected
EV—>Bg_p—u+U(1—(ng_,)) (51)  completely, provided that its energetic position, which is

well approximated by the center of gravii;)ff,)/DEﬁ,) of

and the asymptotic weight of th& function: S00) - 9T .
3399 is well apart fromey and thereby insignificant with

1 _ ) ) respect to the states that form the lower Hubbard lagdin
- ;'mEdU(E“O)HU (Ng- ) (1=(Ng- ) S(E-E;"). we assume thaing,)=(nq_,)<0.5, for simplicity).
(52 It can be concluded that fdd—co the interpolating self-

energy?,4,(E) reduces to the SDA self-ener@fﬁ)(E), if
two conditions are fulfilled: the first is given by E@L9) and
the second one reads

The weight turns out to be equal to thel weight C{%) of
—Im%4,(E)/ 7. Subject to the assumptio@9), Eq. (52
tells us that the weight of thé peak atE‘®) will dominate
Im2,4,(E) eventually. The real part can be obtained from a ID@/DW) — ¢ |00 (54)
Kramers-Kronig-type relation do’ Zdo "d

for U—. Inserting Eq.(51) and the coefficients from Eq.

” wdg_ (26) into (49), the first condition can be rewritten:

1
ReX ¢, (E)=U(ng_,)— ;Pf

— E_ E’
(53) U2<nd—<r>(HF)(1_<nd—(r>(HF))|b<r|
It turns out that it is given by (2)(E), which is just the
self-energy of the SDACf. Eq. (20)]. =|By_,— u— By +u,+U(1-2(ng_,))|—>°.
Equation(50) shows that the imaginary part of the inter- (55)

polating self-energy is nonvanishing &t E(% as well as at . . - N
those energie& where In®S°9(E)#0, i.e., within a cer- ASU—>® the correlation function8,, andB{ " stay finite.
tain energy interval arounB(2/D{L) . We can thus consider Restricting ourselves to the cageg,)=(ny_,)<0.5, we

S 4,(E) to consist of two additive parts. The dominating parthave,uHconst. Thus we can write the two conditions in the
of the self-energy has been identified as being equal to thiorm:

self-energy of the SDA. The remaining part does not vanish _

asU—x as can be seen when expanding the interpolating [yt U(1=2(ng_,))|—>, (56)



55 INTERPOLATING SELF-ENERGY OF THE INFINITE- ... 16 139

|7’L¢7_U<nd—0'>|HOO' (57) 0.06 — T T T 1

In the following let us discuss the implications for the | U=2 el ]
three choices that are considered for the determination of the A

parametej, according to Eqs(33)—(35). We start with the +0.04 e “~

caseﬁ(,:,u. Obviously, both condition$56) and (57) are
fulfilled. Therefore, the first choice yields the SDA self-
energy in the limitU—>oo. 0.02 / N\
The second choice,(ny,)HP=(ny,), implies u, / \
~U(ng_,). While this fulfills the first condition, it is at  / W\ |
variance with the second one. As—x the overall energy 00 R T T T TR
dependence of the self-energy is given by the SDA; there 00 02 04 06 08 1.0
are, however, non-negligible modifications for energies n
aroundE=D{?/D{", i.e., within the lower Hubbard band.
Compared with the SDA, the upper Hubbard band is com- FIG. 1. “Band shift’ (n,)B, as a function of filling
pletely unaffected, especially what concerns its spectraﬁ:<m>'+<'nl> for U=2 (eneré’ies"are given in units O W:

We?gm ang t';[]S Centte r 0]; grav@:y. ?:;13 iPplieschl?lg algob thE:jwidth of the semielliptic Bloch-density of staje®otted line: cal-
weig a_nh h € Cer:j_er_o gra;VIhy of the fower Hu ﬁr dan culation forﬁ(,=,u [first condition(33)]. Dashed line: calculation
agree with the predictions of the SDA, since teroth an ith u, being determined byn,)"P=(n,) [second condition
the) first moment of the total spectral density is reproduced(":’M)] MSU lid line: s ot S (0 [t?ird nd(irti n(35]

exactly. In contrast to the SDA, however, the nonzero imagi-~ 7~ ° & 1= pot2,(0) conditio '

nary part of the self-energy leads to quasiparticle damping_ _ _

within the lower band. Via the Kramers-Kronig-type relation 4= i, this would imply In¥4,(0)#0, a consequence that

(53) the quasiparticle energies will be modified too. is not compatible with the Friedel sum rule. Hence, we must

The determination ofx, according to the Friedel sum have(ng_ )"0 implying that forU~—c the second con-
rule (or equivalently the Luttinger theoreris more implicit.  dition does not hold. Similar to the caéey,)"?=(ng,), it
Nevertheless, the following indirect argument can be givencan thus be concluded that apart from quasiparticle damping

We takeT=0; furthermore we again restrict ourselves to the overall shape of the spectral density follows the predic-
the case(ng,)=(Nnq_,)<0.5. Let us first mention that for tions of the SDA, in particular, what concerns the energetic
the general prodf of the Friedel sum rule for the SIAM one Positions and the spectral weights of both Hubbard bands.
has to resort to various identities that apply to Fermi liquids. Summing up, it has turned out that all three choices to

o I 4 \, b

<n >B
N
7/

In particular, one need® determineu, more or less make contact with a standard
. ) strong-coupling approactSDA) for U—~. This fact pro-
Im24,(E+i0)~E* for E—~O0. (58)  vides additional justification for the interpolating self-energy

) ] ) since the SDA is known to yield rather satisfactory results, at

Seconscgly, we show that the SDA is at variance with thejeast on the qualitative level. Therefore, we believe that the
sum rule>* For (nq,)<0.5 the pole of the SDA self-energy theory is able to yield reliable results well beyond the weak-
at E=By_,~u—U(1—-(ny_,))>0 lies outside the range coupling regime. Let us also mention that within this context

of integration. Thuss {?)(E) is real and it is important that the theory correctly accounts for the
@) ) m=3 moment. Otherwise, we would have ended up for
24z (E)  —UXng_,)(1—(ng_,)) 0 (59 U~ with the “Hubbard-I" self-energy> ("(E) only.

JE  [E+u—Bg ,—U(1—(ng_,N7

for all energies—<E<O0. Since InG,,(E+i10)=<0 for all VII. RESULTS

E and InGy,(E+i0)<0 for a certain energy range within  We have evaluated the theory numerically. The procedure
—<E<O, it follows that is described briefly in Ref. 23. The additional computational
‘ @ effort due to the inclusion of the higher-order correlation
ImJIO G (E)aEdU(E) q functions viaBy, is almost negligible, and thus the algorithm

io 9o JE remains comparatively fast. The results being discussed in
the following have been obtained for the Bethe lattice with
which according to Ref. 26 implies that the Friedel sum ruleinfinite coordination number. The semielliptic Bloch density

E>0, (60)

— o4

is not obeyed. of states has a finite widtt/. All energies are given in units
Thirdly, sinceu,, is fixed by imposing the validity of the of W. Furthermore, we choosg=0.
Friedel sum rule and since the SDA impli€80), we can Within the SDA the correlation functiorBy,, lead to an

conclude that the interpolating self-energy must be differenaidditional energetic shift of the lower and the upper Hubbard
from the SDA self-energy in all cases, especially forband. For strond) the effective shift of the lower- o Hub-
U~—o0. Consequently, one of the two conditiofi6) or (57) bard band is given bf(n(,)B(,.53 Figure 1 shows the depen-
must be violated. If it is assumed that the first one holds, idence of this “band shift” on the occupation numberfor
follows that(ny_,)(HP=0 for U larger than a certain criti- U=2 as obtained from our modified IPT. Results for the
cal value. Analogously to the above discussion of the casthree different condition$33)—(35) are shown. In all cases
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FIG. 2. Spectral density as a function of energy b2 and FIG. 3. Integrated spectral weight as a function of energy for
n=0.6. Calculations assuming=uy+2,(0). Solid line: com- U=2 and n=0.86. Solid lines: result for(@ w,=u. (b)
plete theory. Dashed lind,=0. (n YA =(n_), (c) w=uo+2,(0). Dashed line[(a)—(c)]: exact

diagonalization8 siteg, from Ref. 23, slightly smoothediThe ver-
tical scale applies toa). The curveslf) and () have been shifted

we find a nonzero but small band shift. Except for the cas&onstantlyl

.=, the curves closely resemble the corresponding re- . )
sults of the SDA(Ref. 53 for a d=3 bcc lattice. This re- ment between the ED result and the modified IPT calculation

gards the absolute magnitude as well as the overall depeRrovided that conditiori34) or (39) is used(curves p) and
dence onn. The calculation fora. = ields a nonzero (c)]. In both cases the residual discrepancies can be attrib-
value forB.. asn—1. while it rel;GItsMiné —0 for n=1 uted to the finite system size in the ED calculation. Signifi-

Contrary, the second and the third condition predict a con9 ant differences, however, are observed between the ED re-

tinuous dependence anat half filling. Another difficulty is ~ Sult and the calculation fqa, = u [curve (@)]. In particular,
observed for the case= o+ 3,(0). Belown=0.23 a self-  SPectral weight is missing arourtt= —0.5. o
consistent solution could not be found. This also holds true Figure 4 shows the corresponding spectral densities. We
(at a slightly different) if we setB,=0. notice that tr(lliaFr)e are only minor differences between the re-

The effect ofB, on the spectral density can be seen inSults for(n,)"™=(n,) andu = uo+2,(0). Apart from the -
Fig. 2 where we compare the result for the complete theoryoWer and the upper Hubbard bands the spectra exhibit a
with the result forB, =0 (the approach of Ref. 23In both ~ Sharp(Kondo) resonance aE=0. On the other hand, the
cases we have chosen the third conditi@B) to determine ~ spectral density that is calculated fpr,=u looks com-

. The occupation number has been fixethat0.6 where pletely different. One can no longer distinguish unambigu-
according to Fig. 1 the band shift is at its maximum. Quali-CUSly between the lower Hubbard band and the resonance.
tatively similar to the spectra expected for the SIAM, bothAt E=—0.6 a minimum can be found. The corresponding
curves clearly show up three features: the lower and the ugl€@rly constant trend of the integrated weight in Fig. 3 at the
per Hubbard band &~ — 0.5 andE~2.2 and a peak around S&Me €nergy, howeve_r, is at variance with the ED result,
E=0, which is reminiscent of the Kondo resonance being‘t’)"h'Ch predicts a steep increase. Furthermore, the upper Hub-
strongly broadened away from half filling. We notice that thePard band is significantly shifted to higher energies com-
difference between both spectra is rather small. While the
low-energy features are completely unaffected, the upper
Hubbard band slightly shifts to lower energies when taking 20
into account then=3 moment. This is contrary to the SDA,
which predicts an energetic shift of the upper Hubbard band
(with respect to the Fermi energjo higher energies by an
amount (+n)B,>0. The effect can be traced back to the
(implicit) U dependence of the hybridization function.

It has not yet been finally clarified what is the optimum
choice to determine the fictive chemical poteniig). For
this purpose we compare with results from the exact diago-
nalization method of Caffarel and Krauth!* We take the
data from Kajueter and Kotli4t for 8 sites,U=2 and
n=0.86. Because of the finite number of orbitals considered

spectral density
o ()
) T

o
o
T

T

N L S
.0 20 30

5
Saak

e B |

0.0
20 -1.0 00 1

in the calculation, the resulting spectral density is not E

smooth. Rather than comparing the spectral densities di-

rectly, a comparison of the integrated spectral weight is more FIG. 4. Spectral density fo=2 andn=0.86. Dotted line:
appropriate. This is shown in Fig. 3. There is close agreeu,=u. Dashed line{n,)"P=(n ). Solid line: u= po+3 ,(0).
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densities, especially for very strong interactidn Thus fur-

ther information was needed to get a conclusive theory. We
have compared our results with the data of an ED study
taken from Ref. 23. By the comparison the most simple

choice,= u is excluded.

For both choicesy = uo+3,(0) and(n,)"P=(n,), we
encountered a minor difficulty: self-consistent solutions
could not be found for fillings belown=0.23 (at U=2)
when taking the first one; using the latter, we observed an
implausible drop of the spectral density just below the Fermi
edge which, however, is present in the case of very strong
interaction only.

The condition u=ue+2,(0) represents the Luttinger
theorem for thed=o Hubbard model. Imposing the Lut-
FIG. 5. The same as Fig. 4, but=1. tinger theorem as a condition to fix, as has been suggested
by Kajueter and Kotli&® implies a considerable restriction
of the theory: in this form the theorem is only meaningful for
a paramagnet at=0.>C This disadvantage is not present

spectral density

pared with the results for the second and the third condition

i . g HF _ . .
which according to Fig. 3 reliably reproduce the peak posiVhen using the conditiofin,)"”=(n,), which was intro-

tion. duced by Martin-Roderet al. originally.?*?°Finite tempera-

There is one unsatisfactory property of the modified |PTIUreS and ferromagnetism or antiferromagnetism can be
when using the second conditigm,)"P=(n,), namely treated without difficulty. Furthermore, the condition is much
g, al/ i)

the drop of the spectral density just below the Fermi edgéaasier to handle numerically. On. the other hand, the differ-
E=0 as can be seen in Fig. 4. This behavior, however, i£M¢€ found between the numerical results for the spectral

. . . i i i = (HF) —
only found for very strong interaction. Figure 3 shows resultsd€nsity using eithep= .o+ ,(0) or (n,) (n,) are
for U=1, which still means strong correlation. Here we no-'ather small, and the agreement with the ED data is equally
tice an almost perfect agreement between the results for trﬂeoo?]' .  then , -
second and the third conditions. Although much closer, 1N€ usefulness of then=3 moment is apparent in the

agreement between all three versions is obtained generally Tt Of strong correlationd)—c. This limit of the approach

the interaction is reduced frod=2 to U=1, the result for has been investigated within the SIAM, i.e., for a fixed hy-
~ L . bridization functionA (E). The mean energetic positions and
um,= um is still significantly different. Remarkably, all three

S O - . the weights of the upper and the lower Hubbard bands agree
curves In '.:'g' > almost °9'”C"?e &=0. A<_:cord|_ng to Ref. . with the predictions of the SDA and with the exact results of
28 this indicates that Luttinger’s theorem is fulfilled approxi-

. . " Harris and Langé® Here them=3 moment turns out to be
mately when using the firs83) or second(34) condition. decisive. Othe?wise, one would have ended up with the
“Hubbard-1" solution only.

VIll. CONCLUSIONS AND OUTLOOK The results for the paramagnetie-« Hubbard model on
] o the Bethe lattice af =0 have shown the effect &, on the
In this paper we have presented a modification of thespeciral density to be rather small. Previous studies, how-

recent approach_ of Kajueter and Kotl?ﬁrUsing the self- _ever, strongly suggest that the=3 moment is quite impor-
consistent mapping onto the SIAM, an approximate analytiyant in the context of spontaneous magnetism. This is obvi-

cal expression for the self-energy of the infinite-dimensional, ;s for instance. when comparing the SDg@orrect
Hubbard model could be constructed that reproduces a NUn¥;oments up tan=3) with the Hubbard-I solutioricorrect

ber of exactly solvable limits. The conceptual improvement.,,ments up tan=2). While the Hubbard-I solution yields
consists in the con3|derat|on of an additional, tine 3, mo- magnetic order only under extreme circumstances, magne-
ment of the spectral density. It has been shown that thggp, s fayored within the SDA: the terf,. opens the pos-
higher-order correlation functlons_that are included in thesibility for a spin-dependent band shift. Consistent with the
extra termB,, can be expressed without further approxima-regyjts found here, the effect Bf, in the paramagnetic phase
tions by means of the spectral density. This allows for gg gma)| within the SDA as wel® Comparing the Hubbard-
self-consistentnumerical solution. The additional computa- |, alloy-analogy solution with a recently developed
tional effort needed is almost negligible. The Green function, . qificatiof?2 where agairB,, is included additionally also

on the real axis aT =0 can be computed fast compared with gyresses the importance of the=3 moment for spontaneous
QMC or ED techniques. magnetism.

The theory contains a fictive chemical potenjig| that is The application of the presented method to magnetic
considered to be a free parameter that can be fixed by ghases represents an interesting task for future studies. Let us
rather arbitrary condition without losing rigor in all limiting mention that ferromagnetism in tie=© Hubbard model for
cases mentioned. In this paper we hgve taken into accouah fcc-type lattice has been found recently in a QMC
three different possibilities to determine,. The numerical  calculation?® Particle-hole symmetry requird, =0 at half
results prove that the different choices may imply considerfilling (for a symmetric Bloch density of stajeism the para-
able differences between the shapes of the resulting spectmalagnetic phase. In this case the usual IPT is recovered.
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However,B,+#0 is possible for an antiferromagnet at half

filling. Future work may thus check whether the approach
can improve the IPT results for antiferromagnetic order al.

n=1 which are not completely satisfactdty.
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