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Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative
perturbation theory

M. Potthoff, T. Wegner, and W. Nolting
Lehrstuhl Festko¨rpertheorie, Institut fu¨r Physik, Humboldt-Universita¨t zu Berlin, D-10115 Berlin, Germany

~Received 3 January 1997!

We develop an analytical expression for the self-energy of the infinite-dimensional Hubbard model that is
correct in a number of different limits. The approach represents a generalization of the iterative perturbation
theory to arbitrary fillings. In the weak-coupling regime perturbation theory to second order in the interaction
U is recovered. The theory is exact in the atomic limit. The high-energy behavior of the self-energy up to order
1/E2 and thereby the first four moments of the spectral density are reproduced correctly. Referring to a
standard strong-coupling moment method, we analyze the limitU°`. Different modifications of the approach
are discussed and tested by comparing with the results of an exact diagonalization study.
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I. INTRODUCTION

The theoretical understanding of correlated electron s
tems represents a central problem in condensed-matter p
ics. One of the simplest, but nontrivial models that descr
interacting fermions on a lattice, is the Hubbard model.1–3 It
is currently studied intensively to gain insight into the fu
damental mechanisms responsible for itinerant magnet
metal-insulator~Mott! transitions, and high-temperature s
perconductivity. However, with the exception of the on
dimensional case,4 an exact solution is not known, and,
our knowledge, a completely satisfactory understanding
its properties has not yet been achieved.

As was shown by Metzner and Vollhardt,5 the Hubbard
model is simplified considerably in the limit of high spati
dimensionsd. However, it still remains a nontrivial mode
the essential properties of which are comparable to thos
low dimensionsd52,3. An exact solution of thed5` Hub-
bard model or a reliable approximation for the entire ran
of the model parameters will thus provide a proper dyna
cal mean-field theory of the Hubbard model in a
dimension.6,7

In the limit d5` the Hubbard model can be mapped on
the single-impurity Anderson model~SIAM! supplemented
by a self-consistency condition.10,8,9Thereby it becomes pos
sible to make use of various methods that are available
impurity problems.

Using the mapping onto an effective impurity problem
essentially exact results for the infinite-dimensional Hubb
model can be obtained from quantum Monte Carlo~QMC!
calculations8,11,12 and exact diagonalization method
~ED!.13,14 However, these approaches, though exact, su
from severe limitations. Within ED calculations one is r
stricted to a small number of orbitals, and thus a smo
density of states cannot be obtained. On the other h
QMC yields its results for the discrete Matsubara energie
along the imaginary time axis. Therefore, it is difficult
access the low-temperature regime where statistical er
become important within the QMC method. Furthermore,
obtain dynamical quantities such as the density of states
analytical continuation to the real axis becomes necess
which cannot be performed reliably in all cases. For th
550163-1829/97/55~24!/16132~11!/$10.00
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reasons the application of approximate methods for
infinite-dimensional Hubbard model still remains necessa

The development of approximate methods should
guided by exactly solvable limiting cases and other rigoro
analytical results available. Such information imposes
number of strong necessary conditions on any approxi
tion. Moreover, comparison with the numerically exact r
sults of ED or QMC techniques allows for a judgment of t
quality of the approximation a posteriori.

For the SIAM, weak-coupling approaches are known
yield reliable quantitative information.15–18 As has been
demonstrated by Yosida and Yamada,15,16 perturbation
theory in U is quite well behaved for the symmetric ca
when expanding around the Hartree-Fock solution.

Based on these findings, Georges and Kotliar10 introduced
a method called iterative perturbation theory~IPT! for the
d5` Hubbard model at half-filling (n51). Within IPT the
SIAM is solved by means of second-order perturbat
theory around the Hartree-Fock solution~SOPT-HF! for ar-
bitrary hybridization functions followed by the self
consistent mapping onto the Hubbard model. IPT leads
convincing results as has been proven by comparison w
ED and QMC studies.19–21Furthermore, a direct treatment o
zero temperature and real energies is possible. The me
turns out to be superior to the direct application of SOPT-
to the Hubbard model. The latter does not yield a me
insulator transition, and Fermi-liquid behavior never brea
down.22

The success of IPT may be partly due to the fact tha
n51 the perturbational treatment accidentally reprodu
the atomic limit. Away from half-filling this desirable prop
erty is lost, and~the naive extension of! IPT is known to give
unphysical results.

In a recent paper23 Kajueter and Kotliar proposed a mod
fication of the IPT scheme introducing an interpolating se
energy for the SIAM~see also Refs. 24 and 25!. The self-
energy exactly reproduces the trivially solvable limitin
cases of vanishing interaction,U50, of the completely filled
and the empty band~chemical potentialm°6`), and the
atomic limit. For smallU it is exact up to orderU2. The
low-energy behavior (E°0) is fixed by imposing the Frie-
del sum rule26 ~equivalently, the Luttinger theorem27,28!. At
16 132 © 1997 The American Physical Society
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55 16 133INTERPOLATING SELF-ENERGY OF THE INFINITE- . . .
half-filling the approach reduces to the usual IPT. Fina
the self-energy has the correct asymptotic form for high
ergiesE°`: the first two coefficients within an expansio
in 1/E are reproduced exactly. Results for the spectral d
sity and the integrated spectral weight based on the appr
have been compared with ED calculations, and a rather c
vincing agreement between both methods has been obse
indeed.23

The correct high-energy behavior may be quite importa
since this is closely connected with the moments of the sp
tral density.29 The moments are defined by

Mds
~m!5

1

\E2`

`

EmAds~E!dE, ~1!

whereAds denotes the one-electron spectral density of
localized (d) state in the SIAM. The moments can be calc
lated from the Hamiltonian directly.30 With increasingm,
however, they include equal-time correlation functions
higher and higher order. This fact limits the number of m
ments that can be used in practice for the determination
the high-energy behavior of the self-energy.

In their recent approach, Kajueter and Kotliar could ta
into account exactly the moments up tom52. The main
purpose of this paper is to demonstrate that improvemen
still possible. Modifying their approach, we will show that
self-energy function can be constructed that respects
m53 moment additionally, while all other mentioned limi
ing cases are still recovered as before. Thereby, higher-o
correlation functions enter the theory. As will be show
these can be expressed without further approximation
terms of the one-electron spectral density and can thus
determined self-consistently. Our analysis stresses the im
tance of thism53 moment, especially what concerns spo
taneous magnetism.

The interpolating self-energy for the SIAM is exact in th
case of smallU and in the atomic limit; to see whether it ca
be considered as a reasonable interpolation between
weak- and the strong-coupling regime, we furthermore
vestigate~analytically! the limitU°`. Contact is made with
a standard strong-coupling moment method@the spectral-
density approach~SDA!#.31–34 The SDA, within the context
of the Hubbard model, has proven its usefulness in sev
previous studies. Thereby, we can provide an additional
dependent justification for the interpolating self-energy.

The theory is evaluated numerically. Different versions
the approach are tested, which are all compatible with
mentioned limiting cases. Finally, we compare with the
sults of an exact diagonalization study from Ref. 23.

II. MAPPING ONTO SIAM

To begin with, we briefly recall the procedure by whic
the Hubbard model can be mapped onto the SIAM and
troduce some basic notations.

The Hubbard model reads

H5(
i j s

~Ti j2md i j !cis
† cjs1

1

2
U(

is
nisni2s . ~2!

We consider ad-dimensional lattice with hopping betwee
nearest neighbors. Provided that the hopping integrals
,
-
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scaled appropriately,T^ i j &5t5t* /(2Ad) (t*5const), a non-
trivial model is obtained in the limitd°`.5 The ~noninter-
acting! Bloch density of states for thed5` simple cubic
lattice is a Gaussian;5 a semielliptic Bloch density of states i
obtained for the Bethe lattice with infinite coordinatio
number.35

The basic quantity to be calculated within the model is
one-electron Green function

Gi j s~E!5^^cis ;cjs
† &&E . ~3!

Its diagonal elements can be written in the form

Gs~E![Gii s~E!5E
2`

` \r~B!~z!

E2~z2m!2Ss~E!
dz. ~4!

For d°` the self-energy of the Hubbard model,Ss(E),
becomesk independent or site-diagonal.5,28,36

The Anderson model for a single impurity~SIAM! is
given by

HSIAM5(
ks

~ek2m!cks
† cks1(

s
~ed2m!cds

† cds

1Undsnd2s1(
ks

Vkd~cds
† cks1cks

† cds!. ~5!

In all practical calculations the hybridization strength b
tween the conduction band and the localizedd level, Vkd ,
enters via the the hybridization function which is defined

D~E!5(
k

Vkd
2

E2ek
. ~6!

Let us also introduce the impurity Green function:

Gds~E!5^^cds ;cds
† &&E . ~7!

From its equation of motion we immediately have

Gds~E!5
\

E2~ed2m!2D~E1m!2Sds~E!
, ~8!

whereSds(E) is thed-level self-energy.
While in thed5` limit of the Hubbard model all spatia

degrees of freedom are frozen, the local~temporal! fluctua-
tions still constitute a nontrivial problem. This, however,
equivalent to the SIAM. The Hubbard model and the SIA
can be connected by the following self-consisten
condition:8–10

Ds~E1m!5E2~ed2m!2Ss~E!2\„Gs~E!…21. ~9!

D has to be interpreted as an effective hybridization funct
that provides a coupling of thed level to the external bath o
conduction electrons that simulates all temporal degree
freedom in the Hubbard model. In the case of a ferrom
netic phase, the hybridization function must be spin dep
dent. Provided that the condition~9! is fulfilled, the self-
energy of the Hubbard model is identical with thed-level
self-energy of the impurity problem,Ss(E)5Sds(E). This
also implies the corresponding identity between the resp
tive Green functions:Gs(E)5Gds(E).

If one is able to solve the SIAM for arbitrary hybridiza
tion functionsDs(E), the following two-step procedure fo
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solving thed5` Hubbard model is suggested:8–10 Given a
hybridization function, we calculate~by solving the SIAM!
the self-energySds(E) in the first step. In the second ste
using Eqs.~4! and ~9!, a new hybridization function is gen
erated. Both steps are iterated until self-consistency
achieved.

In the following we concentrate on the first step, whi
represents the actual problem. We intend to derive an a
lytical expression for the self-energy of the SIAM that r
spects various exactly solvable limiting cases and other
orous facts available.

III. SPECTRAL MOMENTS

The overall shape of the one-electron spectral density

Ads~E!52
1

p
ImGds~E1 i0!, ~10!

is fixed by their low-order spectral moments to a large
tent. The definition of the moments is given in Eq.~1!. A
completely equivalent but independent representation is
ily derived using the Heisenberg equation of motion for t
time-dependent operators in the definition of the spec
density. We obtain

Mds
~m!5^@Lmcds ,cds

† #1&, ~11!

whereLO5@O,HSIAM#2 denotes the commutator of an o
eratorO with the Hamiltonian, and@ ,#1 is the anticommu-
tator. The straightforward calculation up tom53 yields

Mds
~0!51,

Mds
~1!5 ẽ d1U^nd2s&,

~12!

Mds
~2!5 ẽ d

212 ẽ dU^nd2s&1U2^nd2s&1(
k
Vkd
2 ,

Mds
~3!5 ẽ d

313 ẽ d
2U^nd2s&1 ẽ dU

2^nd2s&~21^nd2s&!

1U3^nd2s&1(
k
Vkd
2 ~ ẽ k12 ẽ d12U^nd2s&!

1U2^nd2s&~12^nd2s&!B̃d2s .

Here we have definedẽ d,k5ed,k2m, B̃ds5Bds2m, and

B̃ds5 ẽ d1
1

^nds&~12^nds&!(k Vkd^cks
† cds~2nd2s21!&.

~13!

We notice that them53 moment includes higher-order co
relation functions.

We can use these explicit results for the moments to
the high-energy behavior of the self-energy. For this purp
we consider the following representation of thed Green
function:

Gds~E!5E
2`

` Ads~E8!

E2E8
dE8. ~14!
is

a-

-

-

s-

al

x
e

Expanding the denominator in powers of 1/E, we get

Gds~E!5 (
m50

`
\

Em11Mds
~m! . ~15!

The coefficients in the 1/E expansion of the self-energy,

Sds~E!5 (
m50

`
1

EmCds
~m! , ~16!

can be obtained by inserting Eqs.~15! and ~16! and the
analogous expansion to the hybridization function into E
~8!:

Cds
~0!5U^nd2s&,

Cds
~1!5U2^nd2s&~12^nd2s&!, ~17!

Cds
~2!5U2^nd2s&~12^nd2s&!@B̃d2s1U~12^nd2s&!#.

An approximate expression for the self-energy of the SIA
should be consistent with this rigorously derived high-ene
behavior.

The Hartree-Fock approximation for the self-energy,

Sds
~0!~E!5U^nd2s&, ~18!

only respects the zeroth-order coefficient in the high-ene
expansion. The zeroth and the first coefficient are reprodu
by the self-energy

Sds
~1!~E!5U^nd2s&1

U2^nd2s&~12^nd2s&!

E1m2ed2U~12^nd2s&!
,

~19!

which is obtained when applying the Hartree-Fock dec
pling scheme not at the first but at the second level in
hierarchy of equations of motion for the Green function. Th
is analogous to the ‘‘Hubbard-I’’ approximation1 within the
context of the Hubbard model. The simplest form of a se
energy that implies the correct expansion coefficients up
order 1/E2 is given by

Sds
~2!~E!5U^nd2s&1

U2^nd2s&~12^nd2s&!

E1m2Bd2s2U~12^nd2s&!
.

~20!

The higher-order correlation functions included inBds have
to be determined self-consistently as well as the mean o
pation numberŝnds&. BothS (1) andS (2) are correct in the
atomic limit. Bds reduces toed in this case, andS (1) just
coincides with the self-energy of the atomic limit.

The self-energy~20! is the result found within the
SDA.31–34 Actually, the SDA is a standard strong-couplin
approach to the Hubbard model. Its main idea is to start fr
a two-pole ansatz for the spectral density and to fix all
rameters in the ansatz such that the moments~up tom53)
are correct. Recent investigations of thed52 Hubbard
model37,38point out that the results of the SDA are identic
to those of the Roth approach39 and the Mori-Zwanzig pro-
jection technique.40,41All methods yield a two-pole structure
for the interacting Green function. Neglecting quasiparti
damping ~for damping effects cf. Ref. 42!, this two-pole
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structure can be made plausible for the strong-coupling
gime: an analysis of Harris and Lange43 rigorously shows
that additional structures merely have a spectral weigh
the order (t/U)4 or less. It is remarkable that such a simp
form ~20! of the self-energy is able to reproduce at le
qualitatively the correct dispersion of the Hubbard ban
This has been proven for thed52 case by comparisons37,38

with QMC ~Refs. 44 and 45! and with ED calculations46 on
small square Hubbard arrays. We thus believe that the
going from the Hubbard-I solution@Eq. ~19!# to a solution
@Eq. ~20!# that respects them53 moment additionally is
quite important, at least forU°`. It is even decisive if
spontaneous magnetism is considered as it is known
Hubbard’s original solution predicts magnetic order only u
der extreme circumstances.1 Within the SDA the spin depen
dence ofBs induces a spin-dependent shift of the bands t
favors magnetism. Indeed, the results for the ferromagn
and antiferromagnetic Hubbard models seem to be qua
tively correct.47 On the other hand, the SDA completely fai
to reproduce Fermi-liquid behavior for smallU. At half-
filling it predicts an insulator for eachU.0 and thereby is
not able to describe the Mott transition as well. Apart fro
the neglection of quasiparticle damping, however, the S
yields plausible results forU°`.

The conclusion from the preceding discussion should
that it may be quite important to account for them53 mo-
ment, especially what concerns spontaneous magne
This will guide our search for an approximate self-energy
the case of the SIAM, which can be identified with the se
energy of thed5` Hubbard model via the self-consiste
mapping.

IV. MODIFICATION OF IPT

Our approach is a modification of the IPT.10 Within the
usual IPT the SIAM is solved by means of perturbati
theory up to second order in the couplingU. The self-energy
is given by

Sds
~ IPT!~E!5U^nd2s&1Sds

~SOC!~E!. ~21!

The first-order term is the Hartree-Fock~HF! self-energy; the
second-order contribution~SOC! reads

Sds
~SOC!~E!5

U2

\3E E E Ads
~HF!~x!Ad2s

~HF! ~y!Ad2s
~HF! ~z!

E2x1y2z

3@ f ~x! f ~2y! f ~z!1 f ~2x! f ~y! f ~2z!#

3dxdydz. ~22!

Here f (x)51/@exp(bx)11# is the Fermi function, and
b51/kBT. The Hartree-Fock spectral density

Ads
~HF!~E!52

1

p
ImGds

~HF!~E1 i0! ~23!

is obtained from

Gds
~HF!~E!5

\

E2~ed2m̃s!2Ds~E1m!2U^nd2s&
.

~24!
e-
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The parameterm̃s has been introduced for later purpose
Within IPT we havem̃s5m.

Following Kajueter and Kotliar,23 we consider an ansat
for the self-energy:

Sds~E!5U^nd2s&1
asSds

~SOC!~E!

12bsSds
~SOC!~E!

. ~25!

as , bs , andm̃s are treated as free parameters, which will
fixed such that the approximation becomes exact in a num
of limiting cases. It is assumed that Eq.~25! provides a rea-
sonable interpolation between the different limits.

In Ref. 23 Kajueter and Kotliar determined the parame
as to get the correctm52 moment of the resulting spectra
density and the parameterbs to get the correct result for the
atomic limit. Here, in contrastas andbs will be fitted to the
m52 and to them53 moments.

This can be performed straightforwardly: We start by e
panding the denominator in Eq.~22! in powers of 1/E to
obtain the high-energy behavior ofSds

(SOC):

Sds
~SOC!~E!5 (

m51

`
1

EmDds
~m! , ~26!

where the coefficients are given by

Dds
~1!5U2^nd2s&~HF!~12^nd2s&~HF!!

Dds
~2!5U2^nd2s&~HF!~12^nd2s&~HF!!~Bd2s

~HF!2m̃s

1U^nd2s&!. ~27!

Here

^nds&~HF!5
1

\E2`

`

f ~E!Ads
~HF!~E!dE ~28!

is a fictive ~Hartree-Fock! particle number, and

Bds
~HF!5ed1

1

^nds&~HF!~12^nds&~HF!!(k Vkd^cks
† cds&~HF!

3~2^nd2s&~HF!21! ~29!

is the Hartree-Fock value of the higher-order correlat
functions defined in Eq.~13!. Comparing with the exact co
efficients given in Eq.~17!, we notice that the IPT self-
energySds

(IPT) does not have the correct high-energy behav
away from half-filling.

From the equation of motion for the Green functio
^^cds ;cks

† && (HF) it can be seen that the hybridization-induc
correlation functions in the definition ofBds

(HF) can be ex-
pressed in terms of the localized HF Green function:

(
k
Vkd^cks

† cds&~HF!52
1

p\
ImE

2`

`

f ~E!Ds~E1 i01m!

3Gds
~HF!~E1 i0!dE. ~30!

The high-energy behavior of the interpolating self-ener
can be derived from the expansion~26! and from Eq.~25!.
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Comparing with the exact coefficients of the 1/E expansion
in Eq. ~17! again, we have to choose

as5
^nd2s&~12^nd2s&!

^nd2s&~HF!~12^nd2s&~HF!!
~31!

and

bs5
Bd2s2m2Bd2s

~HF!1m̃s1U~122^nd2s&!

U2^nd2s&~HF!~12^nd2s&~HF!!
~32!

to ensure the correct high-energy behavior of the self-ene
Sds and thereby the correct moments of the resulting sp
tral density up tom53. The result~31! and ~32! reduces to
the approach of Ref. 23 ifBds and Bds

(HF) are replaced by
ed .

It is easily verified that our approach is correct in t
atomic limit. SettingVkd50, the Hartree-Fock spectral den
sity ~23! reduces to ad function, which allows one to calcu
late the second-order contribution~22! and thus the self-
energy~25! immediately. It turns out to coincide with th
self-energy of the atomic limit~19!.

Next, we have to check the weak-coupling limit: provid
that the parameterm̃s is chosen such thatm̃s°m0[muU50
for U°0 ~see below!, we have^nds&°^nds& for U°0.
Furthermore, sinceBds°Bds

(HF) as U°0, we have
bs;1/U. Therefore, expanding the self-energy~25! in pow-
ers ofU, we see that it is correct up to orderU2 indeed. In
particular, this implies that all Fermi-liquid properties as d
scribed in Ref. 28 will be recovered for smallU at least.

Finally, the parameterm̃s has to be fixed. The most natu
ral choice is the following:

m̃s5m. ~33!

Another possibility is due to an approach of Martin-Rode
et al.24,25wherem̃s is determined from the condition

^nds&~HF!5^nds&. ~34!

In Ref. 23 Kajueter and Kotliar imposed the Friedel su
rule26 as a condition to fixm̃s . Via the self-consistency con
dition ~9! this is equivalent to the Luttinger theorem,27 which
in the case of thed5` Hubbard model reads28

m5m01Ss~0!. ~35!

Let us briefly discuss the implications of the differe
choices. First we notice that in all cases we havem̃s°m0 for
U°0 as it must be to ensure the correct weak-coupling
havior of the self-energy. Furthermore, the validity of t
approach within all other limiting cases that have been c
sidered is not affected by the condition chosen.

Inspecting the original derivation in Ref. 27, we rec
that the validity of the Luttinger theorem depends on a nu
ber of presuppositions. For example, the theorem hold
perturbation theory applies. Obviously, for smallU all con-
ditions ~33!–~35! yield a theory that is compatible with th
Luttinger theorem up to orderU2 at least. Here, another sup
position is more important, namely, ImSs(E)50 at E50.
In particular, this impliesT50.50 Therefore, applying the
third condition ~35! does not allow one to consider finit
y
c-

-

-

-

-
if

temperatures. On the other hand, the conditions~33! and~34!
do not suffer from this difficulty.

The second condition~34! implies ~for a constant hybrid-
ization functionDs) that m̃s5m01U^nd2s&. This exactly
compensates the energetic shift of the Hartree-Fock Gr
function ~24! by U^nd2s&. Gds

(HF) thereby becomes indepen
dent ofU, andSds

(SOC) reduces to the second-order contrib
tion from a weak-coupling theory in which thefree (U50)
instead of the HFd Green function is used in the calculatio
of the proper irreducible self-energy. This, however, m
not be confused with the plain~or conventional! weak-
coupling theory, where the free chemical potentialm0 would
have to be replaced bym additionally and which artificially
breaks particle-hole symmetry.48 The second-order contribu
tion within SOPT-HF is recovered only when using the fi
condition ~33!. Arguments in favor or against a particula
weak-coupling approach have previously been developed
demanding the correct high-energy behavior~up to order
1/E).10,19Such reasoning, however, is not meaningful in t
present context since the correct high-energy behavior~up to
order 1/E2) is reproduced in each case.

Let us mention that choosingm̃s5m ~first condition! in-
troduces a slight complication: Because of the shift
Gds
(HF) by the HF contributionU^nd2s&, it may happen that

^nds& (HF)50 ~or ^nds& (HF)51) for strong U and T50,
which means that the parametersas and bs are no longer
well defined. However, within the limit̂nd2s& (HF)°0 ~or
°1) we have

Sds
~SOC!~E!

^nd2s&~HF!~12^nd2s&~HF!!

°
U2

\3E E E Ads
~HF!~x!Ad2s

~HF! ~y!Ad2s
~HF! ~z!

E2x1y2z
dxdydz.

~36!

Therefore, althoughas and bs diverge, the interpolating
self-energy remains finite.

So far it can be concluded that there are no differen
between the three possibilities considered that arecrucial.
However, we notice that the third condition implies a restr
tion of the theory to zero temperature. We defer further d
cussion to Secs. VII and VIII.

V. SELF-CONSISTENT DETERMINATION
OF HIGHER CORRELATION FUNCTIONS

The definition of the parameterbs involves the band fill-
ing ^nds& and the higher-order correlation functions includ
in Bds , which are still unknown. A satisfactory theory ca
not be constructed unless it is possible to determine th
correlation functions without further approximations. N
problems are introduced for the band filling that may
expressed in terms of the spectral density:

^nds&5
1

\E2`

`

f ~E!Ads~E!dE. ~37!
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In the following we demonstrate that alsoBds can be
reduced to the spectral density or the Green function, res
tively. According to its definition,Bds partly consists of a
sum of one-particle correlation functions. Applying the ge
eral spectral theorem51 and exploiting the equation of motio
for the Green function̂^cds ;cks

† &&, we have

(
k
Vkd^cks

† cds&52
1

p\
ImE

2`1 i0

`1 i0

f ~E!

3Ds~E1m!Gds~E!dE. ~38!

Now we are left with the higher-order correlation functio
only. Using the commutator

@cds ,H#25 ẽ dcds1Ucdsnd2s1(
p
Vpdcps , ~39!

the remaining terms inBds can be written in the form

(
k
Vkd^cks

† cdsnd2s&52
ẽ d

U (
k
Vkd^cks

† cds&

2
1

U(
kp

VkdVpd^cks
† cps&

1
1

U(
k
Vkd^cks

† @cds ,H#2&.

~40!

The first term on the right-hand side has just been trea
above. Using the spectral theorem and the equation of
tion, one gets for the second one:

(
kp

VkdVpd^cks
† cps&52

1

p\
ImE

2`1 i0

`1 i0

f ~E!Ds~E1m!

3@Ds~E1m!Gds~E!1\#dE. ~41!

Applying once more the general spectral theorem, perfo
ing a Fourier transformation to the time representation,
using the Heisenberg equation of motion, the third term
be written as

(
k
Vkd^cks

† @cds ,H#2&

5(
k
VkdS 2

1

p\ D ImE
2`

` E
2`

`

f ~E!eiE~ t2t8!/\S i\ ]

]t D
3^^cds~ t !;cks

† ~ t8!&&d~ t2t8!dE. ~42!

Integration by part and back transformation to energy rep
sentation finally yields

(
k
Vkd^cks

† @cds ,H#2&52
1

p\
ImE

2`1 i0

`1 i0

f ~E!

3EDs~E1m!Gds~E!dE.

~43!

Combining all results, we obtain
c-

-

d
o-

-
d
n

-

^nds&~12^nds&!B̃ds

5^nds&~12^nds&! ẽ d2
1

p\
ImE

2`1 i0

`1 i0

f ~E!Ds~E1m!

3S 2U Sds~E!21DGds~E!dE, ~44!

where once more we exploited the equation of motion
Gds . This completes the theory since^ns& andBds can be
determined self-consistently from thed Green function.

VI. STRONG-COUPLING LIMIT

So far we have shown that the appropriate choice of
parametersas andbs in the ansatz~25! yields a self-energy
that is exact in a number of limiting cases, namely, trivia
for U50, for ^nds&50 and^nds&51 and furthermore in the
atomic limit and for smallU up to orderU2. The high-
energy expansion yields the correct coefficients up to or
(1/E)2. Thereby the first moments of the spectral density
tom53 are reproduced exactly, which is one additional m
ment compared with the approach of Kajueter and Kotlia23

It is easily shown that the general particle-hole symme
requiresBds to be zero at half-filling in the paramagnet
phase~and for a symmetric Bloch density of states!. Since in
this caseBds

(HF)50 andm5m̃s5U/2, it follows thatbs50.
Consequently, the theory reduces to the conventional IPT
^nds&5^nd2s&50.5.

We now turn to the strong-coupling caseU°` in order
to check whether the theory can be regarded as a reason
interpolation between the weak- and the strong-coupling
gime. In the following we exclusively focus on the SIAM
any approach that uses the self-consistent mapping of
Hubbard model onto the SIAM can only be as reliable as
approximation employed for the solution of the latter. Hen
for the present purposes the hybridization functionD can be
assumed to be independent ofU.

Let us consider the first condition~33! for determining the
fictive chemical potential, i.e.,m̃s5m. As mentioned above
for small U all Fermi-liquid properties are recovered. F
large U the spectral densityAds is expected to consis
roughly of two dominant features separated byU at about
ed anded1U. Assuminĝ nds&5^nd2s&,0.5 for simplicity,
the chemical potential will be located within the lower pa
m;ed . Looking at the HF Green function~24!, we notice
that ^nd2s& (HF)50 for T50 and forU larger than a certain
critical valueUc1, and thus the relation~36! applies. In par-
ticular, at the Fermi edgeE50,

2
1

p
Im

Sds
~SOC!~ i0!

^nd2s&~HF!~12^nd2s&~HF!!

5
U2

\3E E Ads
~HF!~x!Ad2s

~HF! ~y!Ad2s
~HF! ~y2x!dxdy. ~45!

A simple analysis shows this twofold convolution integral
be nonzero for interactionsU smaller than another critica
valueUc2 (.Uc1). Via Eq.~25! this implies a nonzero value
of the imaginary part of the interpolating self-energy
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E50. ForU.Uc2 we have ImSds(E)[0 in the vicinity of
E50. Therefore, non-Fermi-liquid behavior is implied fo
all U.Uc1.

On the contrary, atT50 the second condition~34! yields
ImSds(E);E2 for E°0 irrespective of the value forU.

Some more statements can be made ifU°`. For this
purpose we first determine the total weight and the cente
gravity of the imaginary part of the second-order contrib
tion Sds

(SOC). Let us consider the integral

E
2`

`

EmS 2
1

p D ImSds
~SOC!~E1 i0!dE, ~46!

for m50,1. SinceSds
(SOC) is analytical in the upper half of the

complex E plane, the contour along the real axis can
deformed into a contourC where each point ofC has a
distance from 0 that is larger thanR and R°`. On the
contourC one is allowed to replaceSds

(SOC) by its asymptotic
form ~26!. After thatC can be redeformed into an integratio
along the real axis and the evaluation of the integral beco
trivial. The total weight and the center of gravity turn out
beDds

(1) andDds
(2)/Dds

(1) , respectively, whereDds
(m) are the co-
a

r-

r
r
t
is
tin
of
-

e

es

efficients from the expansion~26!. Analogously, the total
weight and the center of gravity of2ImSds(E)/p are given
in terms of its 1/E expansion coefficients asCds

(1) and
Cds
(2)/Cds

(1) .
At energies withuE2Dds

(2)/Dds
(1)u°`, the imaginary part

of the second-order contribution vanishes, and the real
approaches:

ReSds
~SOC!~E!°

Dds
~1!

E2Dds
~2!/Dds

~1! . ~47!

Now let usassumethat there is a zeroE5Es
(0) of the de-

nominator in Eq.~25!,

12bsSds
~SOC!~Es

~0!!50, ~48!

at a sufficiently high energy; i.e., we assume that

uEs
~0!2Dds

~2!/Dds
~1!u°` ~49!

for U°`. This implies that the imaginary part of the inte
polating self-energy
2
1

p
ImSds~E1 i0!5

as

pubsu
2ubsuImSds

~SOC!~E!

@12bsReSds
~SOC!~E!#21@2ubsuImSds

~SOC!~E!#2
~50!
or
d
is

.

e

has ad singularity atE5Es
(0) . Using Eq.~47! we can derive

the asymptotic position

Es
~0!°Bd2s2m1U~12^nd2s&! ~51!

and the asymptotic weight of thed function:

2
1

p
ImSds~E1 i0!°U2^nd2s&~12^nd2s&!d~E2Es

~0!!.

~52!

The weight turns out to be equal to thefull weightCds
(1) of

2ImSds(E)/p. Subject to the assumption~49!, Eq. ~52!
tells us that the weight of thed peak atEs

(0) will dominate
ImSds(E) eventually. The real part can be obtained from
Kramers-Kronig-type relation

ReSds~E!5U^nd2s&2
1

p
PE

2`

` ImSds~E81 i0!

E2E8
dE8.

~53!

It turns out that it is given bySds
(2)(E), which is just the

self-energy of the SDA@cf. Eq. ~20!#.
Equation~50! shows that the imaginary part of the inte

polating self-energy is nonvanishing atE5Es
(0) as well as at

those energiesE where ImSds
(SOC)(E)Þ0, i.e., within a cer-

tain energy interval aroundDds
(2)/Dds

(1) . We can thus conside
Sds(E) to consist of two additive parts. The dominating pa
of the self-energy has been identified as being equal to
self-energy of the SDA. The remaining part does not van
asU°` as can be seen when expanding the interpola
t
he
h
g

self-energy~25! in powers of 1/U directly. However, com-
pared with the SDA part, its weight is smaller by a fact
U2. In fact, for strongU the remaining part can be neglecte
completely, provided that its energetic position, which
well approximated by the center of gravityDds

(2)/Dds
(1) of

Sds
(SOC), is well apart fromed and thereby insignificant with

respect to the states that form the lower Hubbard band~again
we assume that̂nds&5^nd2s&,0.5, for simplicity!.

It can be concluded that forU°` the interpolating self-
energySds(E) reduces to the SDA self-energySds

(2)(E), if
two conditions are fulfilled: the first is given by Eq.~49! and
the second one reads

uDds
~2!/Dds

~1!2edu°` ~54!

for U°`. Inserting Eq.~51! and the coefficients from Eq
~26! into ~49!, the first condition can be rewritten:

U2^nd2s&~HF!~12^nd2s&~HF!!ubsu

[uBd2s2m2Bd2s
~HF!1m̃s1U~122^nd2s&!u°`.

~55!

As U°` the correlation functionsBds andBds
(HF) stay finite.

Restricting ourselves to the case^nds&5^nd2s&,0.5, we
havem°const. Thus we can write the two conditions in th
form:

um̃s1U~122^nd2s&!u°`, ~56!
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um̃s2U^nd2s&u°`. ~57!

In the following let us discuss the implications for th
three choices that are considered for the determination o
parameterm̃s according to Eqs.~33!–~35!. We start with the
casem̃s5m. Obviously, both conditions~56! and ~57! are
fulfilled. Therefore, the first choice yields the SDA se
energy in the limitU°`.

The second choice,^nds& (HF)5^nds&, implies m̃s

;U^nd2s&. While this fulfills the first condition, it is at
variance with the second one. AsU°` the overall energy
dependence of the self-energy is given by the SDA; th
are, however, non-negligible modifications for energ
aroundE5Dds

(2)/Dds
(1) , i.e., within the lower Hubbard band

Compared with the SDA, the upper Hubbard band is co
pletely unaffected, especially what concerns its spec
weight and its center of gravity. This implies that also t
weight and the center of gravity of the lower Hubbard ba
agree with the predictions of the SDA, since the~zeroth and
the! first moment of the total spectral density is reproduc
exactly. In contrast to the SDA, however, the nonzero ima
nary part of the self-energy leads to quasiparticle damp
within the lower band. Via the Kramers-Kronig-type relatio
~53! the quasiparticle energies will be modified too.

The determination ofm̃s according to the Friedel sum
rule ~or equivalently the Luttinger theorem! is more implicit.
Nevertheless, the following indirect argument can be giv

We takeT50; furthermore we again restrict ourselves
the casê nds&5^nd2s&,0.5. Let us first mention that fo
the general proof26 of the Friedel sum rule for the SIAM on
has to resort to various identities that apply to Fermi liqui
In particular, one needs26

ImSds~E1 i0!;E2 for E°0. ~58!

Secondly, we show that the SDA is at variance with t
sum rule.52 For ^nds&,0.5 the pole of the SDA self-energ
at E5Bd2s2m2U(12^nd2s&).0 lies outside the range
of integration. ThusSds

(2)(E) is real and

]Sds
~2!~E!

]E
5

2U2^nd2s&~12^nd2s&!

@E1m2Bd2s2U~12^nd2s&!#2
,0 ~59!

for all energies2`,E,0. Since ImGds(E1 i0)<0 for all
E and ImGds(E1 i0),0 for a certain energy range withi
2`,E,0, it follows that

ImE
2`1 i0

i0

Gds~E!
]Sds

~2!~E!

]E
dE.0, ~60!

which according to Ref. 26 implies that the Friedel sum r
is not obeyed.

Thirdly, sincem̃s is fixed by imposing the validity of the
Friedel sum rule and since the SDA implies~60!, we can
conclude that the interpolating self-energy must be differ
from the SDA self-energy in all cases, especially f
U°`. Consequently, one of the two conditions~56! or ~57!
must be violated. If it is assumed that the first one holds
follows that ^nd2s& (HF)50 for U larger than a certain criti-
cal value. Analogously to the above discussion of the c
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m̃s5m, this would imply ImSds(0)Þ0, a consequence tha
is not compatible with the Friedel sum rule. Hence, we m
have^nd2s& (HF)Þ0 implying that forU°` the second con-
dition does not hold. Similar to the case^nds& (HF)5^nds&, it
can thus be concluded that apart from quasiparticle damp
the overall shape of the spectral density follows the pred
tions of the SDA, in particular, what concerns the energe
positions and the spectral weights of both Hubbard band

Summing up, it has turned out that all three choices
determinem̃s more or less make contact with a standa
strong-coupling approach~SDA! for U°`. This fact pro-
vides additional justification for the interpolating self-ener
since the SDA is known to yield rather satisfactory results
least on the qualitative level. Therefore, we believe that
theory is able to yield reliable results well beyond the wea
coupling regime. Let us also mention that within this conte
it is important that the theory correctly accounts for t
m53 moment. Otherwise, we would have ended up
U°` with the ‘‘Hubbard-I’’ self-energySds

(1)(E) only.

VII. RESULTS

We have evaluated the theory numerically. The proced
is described briefly in Ref. 23. The additional computation
effort due to the inclusion of the higher-order correlati
functions viaBds is almost negligible, and thus the algorith
remains comparatively fast. The results being discusse
the following have been obtained for the Bethe lattice w
infinite coordination number. The semielliptic Bloch dens
of states has a finite widthW. All energies are given in units
of W. Furthermore, we chooseed50.

Within the SDA the correlation functionsBds lead to an
additional energetic shift of the lower and the upper Hubb
band. For strongU the effective shift of the lower2s Hub-
bard band is given bŷns&Bs .

53 Figure 1 shows the depen
dence of this ‘‘band shift’’ on the occupation numbern for
U52 as obtained from our modified IPT. Results for t
three different conditions~33!–~35! are shown. In all cases

FIG. 1. ‘‘Band shift’’ ^ns&Bs as a function of filling
n5^n↑&1^n↓& for U52 ~energies are given in units ofW; W:
width of the semielliptic Bloch-density of states!. Dotted line: cal-

culation for m̃s5m @first condition~33!#. Dashed line: calculation

with m̃s being determined bŷns& (HF)5^ns& @second condition
~34!#. Solid line:m5m01Ss(0) @third condition~35!#.
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we find a nonzero but small band shift. Except for the c
m̃s5m, the curves closely resemble the corresponding
sults of the SDA~Ref. 53! for a d53 bcc lattice. This re-
gards the absolute magnitude as well as the overall de
dence onn. The calculation form̃s5m yields a nonzero
value forBs as n°1, while it results inBs50 for n51.
Contrary, the second and the third condition predict a c
tinuous dependence onn at half filling. Another difficulty is
observed for the casem5m01Ss(0). Belown50.23 a self-
consistent solution could not be found. This also holds t
~at a slightly differentn) if we setBs50.

The effect ofBs on the spectral density can be seen
Fig. 2 where we compare the result for the complete the
with the result forBs50 ~the approach of Ref. 23!. In both
cases we have chosen the third condition~35! to determine
m̃s . The occupation number has been fixed atn50.6 where
according to Fig. 1 the band shift is at its maximum. Qua
tatively similar to the spectra expected for the SIAM, bo
curves clearly show up three features: the lower and the
per Hubbard band atE'20.5 andE'2.2 and a peak aroun
E50, which is reminiscent of the Kondo resonance be
strongly broadened away from half filling. We notice that t
difference between both spectra is rather small. While
low-energy features are completely unaffected, the up
Hubbard band slightly shifts to lower energies when tak
into account them53 moment. This is contrary to the SDA
which predicts an energetic shift of the upper Hubbard b
~with respect to the Fermi energy! to higher energies by an
amount (12n)Bs.0. The effect can be traced back to th
~implicit! U dependence of the hybridization function.

It has not yet been finally clarified what is the optimu
choice to determine the fictive chemical potentialm̃s . For
this purpose we compare with results from the exact dia
nalization method of Caffarel and Krauth.13,14 We take the
data from Kajueter and Kotliar23 for 8 sites,U52 and
n50.86. Because of the finite number of orbitals conside
in the calculation, the resulting spectral density is n
smooth. Rather than comparing the spectral densities
rectly, a comparison of the integrated spectral weight is m
appropriate. This is shown in Fig. 3. There is close agr

FIG. 2. Spectral density as a function of energy forU52 and
n50.6. Calculations assumingm5m01Ss(0). Solid line: com-
plete theory. Dashed line:Bs50.
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ment between the ED result and the modified IPT calculat
provided that condition~34! or ~35! is used@curves (b) and
(c)#. In both cases the residual discrepancies can be at
uted to the finite system size in the ED calculation. Sign
cant differences, however, are observed between the ED
sult and the calculation form̃s5m @curve (a)#. In particular,
spectral weight is missing aroundE520.5.

Figure 4 shows the corresponding spectral densities.
notice that there are only minor differences between the
sults for^ns& (HF)5^ns& andm5m01Ss(0). Apart from the
lower and the upper Hubbard bands the spectra exhib
sharp ~Kondo! resonance atE50. On the other hand, the
spectral density that is calculated form̃s5m looks com-
pletely different. One can no longer distinguish unambig
ously between the lower Hubbard band and the resona
At E520.6 a minimum can be found. The correspondi
nearly constant trend of the integrated weight in Fig. 3 at
same energy, however, is at variance with the ED res
which predicts a steep increase. Furthermore, the upper H
bard band is significantly shifted to higher energies co

FIG. 3. Integrated spectral weight as a function of energy

U52 and n50.86. Solid lines: result for~a! m̃s5m. ~b!
^ns& (HF)5^ns&, ~c! m5m01Ss(0). Dashed line@~a!–~c!#: exact
diagonalization~8 sites!, from Ref. 23, slightly smoothed.@The ver-
tical scale applies to (a). The curves (b) and (c) have been shifted
constantly.#

FIG. 4. Spectral density forU52 and n50.86. Dotted line:

m̃s5m. Dashed line:̂ ns& (HF)5^ns&. Solid line:m5m01Ss(0).
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pared with the results for the second and the third condit
which according to Fig. 3 reliably reproduce the peak po
tion.

There is one unsatisfactory property of the modified I
when using the second condition̂ns& (HF)5^ns&, namely,
the drop of the spectral density just below the Fermi ed
E50 as can be seen in Fig. 4. This behavior, however
only found for very strong interaction. Figure 3 shows resu
for U51, which still means strong correlation. Here we n
tice an almost perfect agreement between the results fo
second and the third conditions. Although much clo
agreement between all three versions is obtained genera
the interaction is reduced fromU52 toU51, the result for
m̃s5m is still significantly different. Remarkably, all thre
curves in Fig. 5 almost coincide atE50. According to Ref.
28 this indicates that Luttinger’s theorem is fulfilled appro
mately when using the first~33! or second~34! condition.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have presented a modification of
recent approach of Kajueter and Kotliar.23 Using the self-
consistent mapping onto the SIAM, an approximate anal
cal expression for the self-energy of the infinite-dimensio
Hubbard model could be constructed that reproduces a n
ber of exactly solvable limits. The conceptual improveme
consists in the consideration of an additional, them53, mo-
ment of the spectral density. It has been shown that
higher-order correlation functions that are included in
extra termBs can be expressed without further approxim
tions by means of the spectral density. This allows fo
self-consistent~numerical! solution. The additional computa
tional effort needed is almost negligible. The Green funct
on the real axis atT50 can be computed fast compared w
QMC or ED techniques.

The theory contains a fictive chemical potentialm̃s that is
considered to be a free parameter that can be fixed b
rather arbitrary condition without losing rigor in all limiting
cases mentioned. In this paper we have taken into acc
three different possibilities to determinem̃s . The numerical
results prove that the different choices may imply consid
able differences between the shapes of the resulting spe

FIG. 5. The same as Fig. 4, butU51.
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densities, especially for very strong interactionU. Thus fur-
ther information was needed to get a conclusive theory.
have compared our results with the data of an ED stu
taken from Ref. 23. By the comparison the most sim

choicem̃s5m is excluded.
For both choices,m5m01Ss(0) and^ns& (HF)5^ns&, we

encountered a minor difficulty: self-consistent solutio
could not be found for fillings belown50.23 ~at U52)
when taking the first one; using the latter, we observed
implausible drop of the spectral density just below the Fe
edge which, however, is present in the case of very str
interaction only.

The conditionm5m01Ss(0) represents the Luttinge
theorem for thed5` Hubbard model. Imposing the Lut
tinger theorem as a condition to fixm̃s as has been suggeste
by Kajueter and Kotliar23 implies a considerable restrictio
of the theory: in this form the theorem is only meaningful f
a paramagnet atT50.50 This disadvantage is not prese
when using the condition̂ns& (HF)5^ns&, which was intro-
duced by Martin-Roderoet al.originally.24,25Finite tempera-
tures and ferromagnetism or antiferromagnetism can
treated without difficulty. Furthermore, the condition is mu
easier to handle numerically. On the other hand, the dif
ence found between the numerical results for the spec
density using eitherm5m01Ss(0) or ^ns& (HF)5^ns& are
rather small, and the agreement with the ED data is equ
good.

The usefulness of them53 moment is apparent in th
limit of strong correlationsU°`. This limit of the approach
has been investigated within the SIAM, i.e., for a fixed h
bridization functionD(E). The mean energetic positions an
the weights of the upper and the lower Hubbard bands ag
with the predictions of the SDA and with the exact results
Harris and Lange.43 Here them53 moment turns out to be
decisive. Otherwise, one would have ended up with
‘‘Hubbard-I’’ solution only.

The results for the paramagneticd5` Hubbard model on
the Bethe lattice atT50 have shown the effect ofBs on the
spectral density to be rather small. Previous studies, h
ever, strongly suggest that them53 moment is quite impor-
tant in the context of spontaneous magnetism. This is ob
ous, for instance, when comparing the SDA~correct
moments up tom53) with the Hubbard-I solution~correct
moments up tom52). While the Hubbard-I solution yields
magnetic order only under extreme circumstances, mag
tism is favored within the SDA: the termBs opens the pos-
sibility for a spin-dependent band shift. Consistent with t
results found here, the effect ofBs in the paramagnetic phas
is small within the SDA as well.53 Comparing the Hubbard
III alloy-analogy solution with a recently develope
modification42 where againBs is included additionally also
stresses the importance of them53 moment for spontaneou
magnetism.

The application of the presented method to magne
phases represents an interesting task for future studies. L
mention that ferromagnetism in thed5` Hubbard model for
an fcc-type lattice has been found recently in a QM
calculation.49 Particle-hole symmetry requiresBs50 at half
filling ~for a symmetric Bloch density of states! in the para-
magnetic phase. In this case the usual IPT is recove
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However,BsÞ0 is possible for an antiferromagnet at ha
filling. Future work may thus check whether the approa
can improve the IPT results for antiferromagnetic order
n51 which are not completely satisfactory.21
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