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Generalizedgeneralized gradient approximation:
An improved density-functional theory for accurate orbital eigenvalues
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The generalized gradient approximati@®GA) for the exchange functional in conjunction with accurate
expressions for the correlation functional have led to numerous applications in which density-functional theory
(DFT) provides structures, bond energies, and reaction activation energies in excellent agreement with the most
accurateab initio calculations and with the experiment. However, the orbital energies that arise from the
Kohn-Sham auxiliary equations of DFT may differ by a factor of 2 from the ionization potentials, indicating
that excitation energies and properties involving sums over excited gtaiglinear-optical properties, van der
Waals attractionmay be in serious error. We propose herein a generalization of the GGA in which the
changes in the functionals due to virtual changes in the orbitals are allowed to differ from the functional used
to map the exact density onto the exact energy. Using the simplest version of this generalized GGA we show
that orbital energies are within 5% of the correct values and the long-range behavior has the correct form.
[S0163-18297)04120-9

I. INTRODUCTION ground-state energf, of any system. We shall denote as
O, this mapping(1) of the exact ground state density of any
The generalized gradient approximafiSiGGA) for the  system onto the exact ground-state energy,
exchange functional in density-functional thebfpFT) in
conjunction with accurate expressions for the correlation
functional [e.g., Lee, Yang, and P&afLYP) or Perdew- po— Eo- @
ZungerP (P2)] have led to numerous applicatiéris which

Op

; . . . In order to calculate the correct densjiy of a system, one
DFT compares quite well with experiment and with the mOStuses the variational principle to consider all changes in the

accurateab initio calculations for properties such as struc- . S
. S . densitypy— p allowed by the Pauli principle and select the
ture, bond energy, and reaction activation energies. Conse- ; o :
) : ) one leading to the lowest energy. Thus it is useful to define
quently, DFT is now in routine use for a number of funda-

mental properties of chemical and physical systems. Despitgg ?oifgslgﬁéi?;rﬁecrggvens any arbitrary densigywith

these successes there remain problems. The orbital energies
from the Kohn-Sham auxiliary equations used with DFT dif- o
fer from the ionization potentials by a factor of about 2. This p—E. 2
suggests that electronic excitation energies, and properties
depending on a sum over excited electron stésesh as This density need not correspond to any physical system but
nonlinear-optical properties, chemical shielding, and Londorit must be allowed by the Pauli principle. In current DFT
dispersion, may also be significantly in error. calculations the functiona plays the double role of deriv-
In this paper we consider a generalization of the GGA ining the Euler-Lagrangian equation for calculating the orbitals
which the functional relationship between density and energyhat lead top, and calculatings, from pg oncepy is known.
for the virtual changes in the orbitals are allowed to differ ~Using the mapping, for the exchange energy of a uni-
from the relationship between the exact density and the exaé@rm electron gas, Kohn and co-worker Shaprovided a
energy. Using the simplest such generalization of G@&  prescription for including the Pauli principl& is the repre-
noted GGGA, we find that the orbital energies are within sentability of the densilyin calculating the ground-state
~5% of the exact values and that the long-range potentialgroperties. Namely, the density is derived from one-particle
of the Kohn-Sham equations have the correct form. orbitals that are solutions of a set of Euler-Lagrangian one-
In Sec. Il we develop the GGGA function and in Sec. Il particle equations derived from the variational principle. Fol-
we apply it to several systems. Section IV discusses variou9wing convention, we shall use the word energy functional
aspects of the GGGA. to denote both the mapping and the energ¥. In all pre-
vious forms of DFT, from Thomas and Fernd Becké and
Perdewet al.! it has been assumed thaE=0,.

Il. THE FUNCTIONAL OF DFT The GGA(Refs. 1 and Rextends the description of ex-
change to include the effect of inhomogeneity in the density
gradient,y=|V |. This new mapping for the exchange term

Hohenberg and Kohinshowed that there is a one-to-one O, involves first getting the gradieng and then mapping
mapping between the ground-state density and the (p,7) to E. By modeling the ground-state electron density of

A. DFT review
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atoms, Perdevet al? and Becké found an exchange energy  LDA predicts fairly accurately the structure for molecules
functional Ej[ p] that is reasonably accurate for a variety of and crystals, but leads to cohesive energies much too large.
systems

C. Generalized gradient approximation

F
Eolpol:(po,v0)—Ep- 3 To account for inhomogeneities, the GGA considers the

Indeed the use of Eq3) leads to significant improvements €Xchange-energy functional to have the form
in the total energy calculations. For the variations used to

ot;tam_th(i Euler-Lagrangian equations i@r, GGA assumes ESCA p]=— fo PP (s)dr, (12)
EX[p]=Eg[po], as usual. While improvinds,,, the GGA
doesnot improve the eigenvalues. where
B. Kohn-Sham equations [Vl
In Kohn-Sham(KS) theory, the energy functional is de- = 2kep (12

fined as

Ewd p1=Tolp]+Ecoul 1+ Exlp]l+Ec[p]+Eed pl, (4)

which is assumed to hold for arbitrapy T¢[ p] is the kinetic
energy for the antisymmetrized product wave funcijimle-

pendent electronsEcq. i p] is the classical Coulomb energy
term,Eq,{ p] is potential energy between electrons and ions,

E,[ p] is the exchange energy, akq[ p] includes all correc-
tions in these quantities due to electron correlation.

The local-density approximatiofLDA) uses the expres-

sion for a free-electron gas

is the measure of inhomogeneity. Hete=(372) Y33 is
the Fermi wave vector for a homogeneous electron gas with
density p. For the homogeneous electron systess; 0,
F(0)=1, andEL*Y p]=E;""[p].

This GGA energy functional leads to

b= - 2Cpl 1) FTS(1)]

os(r’)
_ 4/3 1 f
CXJP F'(s) —5p(l’) dr’.

To determineF(s) we calculatedF (r) =e""(r)/e-PA(r)
as a function ofs(r) for several atoms and ions. Figure 1

(13

Exlp]l=— fo p4/3dr, 5
constant.
Applying the variational principle to Eq4),
SE[p] _
5, ’

Po

shows the (%) (Ref. 2 isoelectronic series, where thg,
only involves the self-interaction energy. We see that the
factor F(s) falls nearly onto a single curve. However
F(s)—0.8 ass—0, whereas GGA assumes tHafs) — 1.0
ass—0. This discrepancy arises because tere0 corre-
sponds ta—0 where high densities and near constant gra-

leads to the Kohn-Sham Euler-Lagrange equation for the opgients lead to small. However, the volume of this region is

timum orbitals of the ground-state density

{_%V2+UCoul(r)+Ux(r)+Uc(r)+vext(r)}¢i(r):Ei(l’i(r),
(6)

where
VZUCouI(r):_47TP(r)v (7)
p(r>=2 fil i(r)|?, 8
and
_ SEp]
Ux(r)_ 5p(r) ) (93)
5EC[P]
UC(r):—ép(r) . (9b)

Neglecting electron correlationE[p]=0 leads to the
exchange-only theory, which for LDA is

OEfp] 4 s

vy(r)=

small, contributing little toE, .

Figure Xb) shows theF(s) for H, where we see two
major branches near=0. One corresponds to the bond mid-
point whereVp=0 (F—1) and the other is from regions
near the nucleusq— 0.85).

Figure Xc) shows that carbon atom leads to increased
scatter inF(s), but theF(s) fall more or less on one curve.

Figure Xd) collects together the data for various atoms
[including Figs. 1a), 1(b), and 1c)] and compares with the
analytical form(14) proposed as a universal functi¢i(s)
by Becké

X2

b
2'%C, [1+6bx In(x+ V1+x2)]

F(s)=1+ (14

with

_ Vel
X= ?g— = (4877

2)1/35.

Here p,=0.5 is the density of spin componemst and b
=0.0042 a.u. comes from fitting to various atoms and ions.
Despite the scatter we see that the Becke forniidt cap-
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FIG. 1. The scale factd¥ (s)=e"(r)/e-PA(r) for ES®A[p] as a function of(r). The Becke analytical fit14) is shown with dashed
lines. (a) 1s? configurations H, He, Li*, BE", etc.(b) H, molecule.(c) Carbon atom.

tures the overall form of the exact results and provides a 1
good description in the region &=0.5 to 2.0 wherep is Ux— 7 17
significant.

Equation(14) reproduces the asymptotic behavior for en-

ergy densitye,(r), However, using Eq(14) in Eqg. (13) with an expontially

decaying density, Eq(16) does not lead to Eq(17) for

1 (1 r—>oo..That is,in GGA v, dges not satjsfy the asymptotic
E, (r—o)=—= f dr p_' (15)  behavior for atomsin fact using Eq(16) in Egs.(14), (11),

2 r and (9) and examining the asymptotic behavior, we find
vy— — 2.89/ar? at larger.

GGA improves upon LDA significantly for total energy
calculations of atoms and moleculesdowever, Table |
shows that the orbital energiéKkoopman theorem [Pare

p=poe . (16) low by about 50%. To eliminate any ambiguity caused by
possible flaws in the analytical fi14), we also used directly

On the other hand, for an atom the potentiglr) should theF[s(r)] anddF/ds from Hartree-FockHF) in Eq. (13),
satisfy the asymptotic behavfor again finding that the eigenvaldeare not improved. This

for atoms? as can be checked by substituting E4g) into
Eq. (14),
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TABLE I. Total energiesHartree3 and HOMO orbital energiefHartreeg calculated with GGA(ex-
change only and HF. The 6-31& basis set is used.

Total energies

HOMO energy

GGA
GGA HF GGA HF % error
He —2.853 999 —2.855 160 —0.539 726 —0.9149 41.0
Be —14.560 105 —14.566 76 —-0.170738 —0.3013 43.3
C —37.588 045 —37.585 673 —0.138 214 —0.3420 59.6
(@] —74.672 631 —74.656 607 —0.251 667 —0.5758 56.3
Ne —128.496 452 —128.474 402 —0.396 733 —0.8306 52.2
Ar —526.745 126 —526.773 735 —0.330 767 —0.5900 43.9
Ave. 49.4

demonstrates that the failure to reproduce the correct eigemmnd to solve the resulting partial differential equatio®),

values is an intrinsic flaw of the exchange functioal)

self-consistently. This is similar to the procedure for finding

used with GGA. Since the orbital energies are the basis athe minimum of a function in ordinary calculus; the energy
describing electronic properties, it is important to correctfunctional is to the KS equation as the functifx) is to the

these errors in calculated eigenvalues.

D. The new functional

The foundation of DFT is Eq.1); there exists a universal
functional that maps the exact density of any system onto
the exact energ¥[ pg]. However, to derive the one-particle
equation(6), we need to considall possible changes in the
orbitals for the wave functigriEg. (2), that may involve non-

physical changes ipgy. Thus it is not necessarily the case

that O= OO .

algebraic equatiorf’(xp)=0. Thus the KS equation is an
“algebraic equation” in density space.

From the asymptotic behavior of in Eq. (16) ande, in
Eq. (15), we want to have

Uy=2€, asr—x (21
for atoms. From Eq(20) this requires that
B—35 asr—wx. (22)

For simplicity, we will in this paper assume thatis a con-

We propose to generalize the GGA approach by choosingtant,

the O in such a way tha©— Og asp— pq and the correct
asymptotic behavior is obtained ms> for both the energy
densitye,(r) andthe one-particle potential,(r).

As a simple form for this generalized GG&GGA) for
the exchange-energy functional, we propose

Exp]=—Cx f pSF (so)etProllbodr. (18

As p—pg, EQ.(18) leads to

£S5 pol=—Cy | piF (500 =ESpo] (19

and

v pol=—Cxpg F(s)(3+B)=(5+B)e, (20
where

Cpg F(So).

Thus far we have not specified the spatial dependengeiof
could depend omg(r), Vpo(r), etc.

Since the GGGA functional requires as a generalized p
rameter the ground-state densjty, which is unknown, the

evaluation of theE,[ p] is done iteratively. Our procedure is p

to setp=p, after taking the variation

SEZSp]

v po(N=—5 5
Po

a_

B=3, (23
independent of density, or the gradien¥ p,.
The proposed GGGA functional for the exchange energy

then becomes

Efp]=-C, f PR (sg)e? P 0 odr.  (24)
Other definitions, e.g.,
Exp]=—Cx J po F(sq)efP—rolbedr  (25)

would lead to the same Euler-Lagrangian equation but with
different definitions ofg. Variation on theE,[ p] in Eq. (24)
or (25) leads to the relationship

Uy(r)=2¢€,(r). (26)

Thus in GGGA botlw, and e, satisfy the asymptotic rela-
tionships(15) and(16).

The key feature of the GGGA functional is thie gra-
dient term s does not participate in the variatidi, / 5p.
This is analogous toEcq,=SSfdrdr p(r)p(r')/|r—r’']
where the 1f —r’| term does not participate in variations of

In the case of a homogeneous electron gas, we have
F(sg) =1, leading to

— 1/3
€x=—Cyxp

and
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TABLE II. Total energiegHartree$ and HOMO orbital energyHartree$ using GGGA(exchange only
and HF. The 6-316 basis set is used.

Total energy HOMO energy
GGGA HF GGGA HF % error

He —2.8491 —2.85516 —0.8897 —0.9149 7.8

Be —14.5570 —14.566 76 -0.3238 -0.3013 7.5

C —37.5594 —37.585 67 —0.3589 —0.3420 4.9

Ne —128.440 6 —128.474 40 -0.8221 —0.8306 1.0

H,O —76.011 392 —76.049 40 —0.489 160 —0.497 470 1.6

C,Hg —79.194 130 —79.208 62 —0.520 626 —0.483 115 7.8

glysine —282.819 449 —282.844 442 —0.414 989 —0.397 651 4.4

Ave. 4.3

3(3\13 A. Orbital energies
v.=—2C pl/3: _ = 1/3 (27) ) ) } .
X X 2\ ' Table 11 lists the energies of the highest-occupied molecu-

lar orbitals(HOMO), along with the total energy for several

Equation(27) is exactly the exchange potential of a ho- atoms and molecules. With GGGA we see that the average
mogeneous electron gas averaged duethe orbital quan- ©rror in the orbital energy is about 5% whereas with GGA
tum number for the uniform gagsee the Appendixob- and LDA it is about 50%. All orbital eigenvalues are im-
tained originally by Slate¥1° Kohn and Sharhshowed that Proved significantly as shown in Table Ill. The GGGA func-
applying the variational principle to Eq4) using Eg.(5) tional (24) leads to the same accuracy and sometime better
leads to Eq(6) with Eq. (10) rather than with Eq(27). That tha_m the more elaborate procedure based on orb_ltal represen-
is, KS obtained an exchange function tha the Slater ~tation of exchange operators, e.g., that of S&bniTalman
value,v¥S= av S wherea= 2. This led to thex,, version ~and Shadwick:
of the LDA in which a was considered as a varialile= 3
for KS, a=1 for Slatej. Both approaches employ the uni-
form electron-gas expression but in different wéigtal en- To estimate the energy gafe., the lowest excitation
ergy versus the potentjalThe GGGA functional unifies energy we usedEy= € yvo—€nomo Where e denotes the
these two approaches and resolves this paradox by showirgbital energy and LUMO denotes the lowest unoccupied
that o= Jis correct for the total energfas shown by Kohn  MO. In Table IV, we compare the results calculated with HF,
and Shamwhile =1 is correct in the one-particle equation GGGA without correlation, BLYP, and GGGA with correla-
(as shown by Slatgr For a nonhomogeneous electron sys-tion. For GGGA with correlation, we used the prescription,
tem, the gradient factoF(s,) in GGGA plays the role of y_=2¢., similar to the case of(r). However, the results

B. Excitation energy

setting the scale. are not sensitive to this choice. We found that betlyuo
and € ymo shift down, leading to gaps similar to that by
ll. RESULTS BLYP.
We have tested the simplest GGGA functional on several IV. DISCUSSION

atoms and molecules. The results are listed in Tables II, III,
and IV. All structures were fixed at the equilibrium geometry
calculated from DFT using the Becke LYBBLYP) ex- BecauseE [ p] in Eq. (4) is the energy for the density

change and correlation functiorfa. interacting with itself, it includes the energy of each electron

A. Self-interaction corrections

TABLE Ill. Eigenvalues(Hartree$ calculated with the LDA, GGA, GGGA, and HF methods. All cal-
culations used the 6-3ICbasis set with spherical averaging.

LDA GGA GGGA
€ % error € % error € % error HF
C 1s —9.8685 13.0 —10.0190 11.7 —11.0990 22 —11.3461
2s —0.4298 39.5 —0.4415 37.8 —0.6969 1.8 —0.7099
2p —0.1415 58.6 —0.1382 59.6 —0.3590 5.0 —0.3422
Ne 1s —30.1933 7.8 —30.4461 7.1 —32.1177 20 —32.7628
2s —1.2105 36.7 -1.2319 35.6 —1.6708 12.6 -1.9120
2p —0.3827 53.9 —0.3891 53.2 —-0.8221 1.0 —0.8306

Ave. 34.9 33.3 4.1
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TABLE IV. Energy gaps calculated usirg yyo— €nomo - The

structure is for the GGA-LYP minimum energy structure. The basis

set is 6-31G.

HF GGA-LYP GGGA-LYP
N, 21.8 8.6 8.7
CH, 14.9 5.8 5.7
Benzene 12.8 5.1 5.0

interacting with itselffi.e., the self-interactioriSIl) energy.
Thus for the hydrogen atom we have

| do(r)[?| do(r2)|?

1
Ecou=y | dradr, 8

BV

even though there is only one electron. Consequentl
E,[ p] must be such as to include the Sl in order to exactly
cancel the Sl from the Coulomb term. This requirement,
while satisfied by HF, is not met by most DFT functionals.
We can see why by comparing the total energy expressio
for HF and DFT,

( < i P

o))
r—12¢j¢i ,

1 [ p(ra)p(ra)
2 fieiDFT—Ef o, drdretEdpl

occ

Elgi=2> fiel"

occ

1
-5

]

1
— ¢i¢j>

12

(29

_<¢i¢j

DFT
Etot

—f vx(M)p(r)dr, (30

wheref, is the occupation number for each spin orbital. Con-
sider the He atom where all d,[p] corresponds to self-
interaction(since the orbitals have opposite spiignoring
electron correlation we want to hae&, '=E!". Thus re-
quiring e’ "= €/'" leads to

£ Tpol [ dr v,(1)p(1)=~E}Tpol.

which leads to

| dr vutr1potn =262, 3D

But for LDA we always have

| dr ounpon =B 1 # 281 (32

Thus LDA does not satisfy the requirement. Similar argu-

ments show that GGA also fails to satisfy E§1). On the
other hand, by Eq(26) the GGGA functional does satisfy
Eq. (31).

AND W. A. GODDARD Il

FIG. 2. lllustration of the basis for GGGA. Each dashed curve
shows howE,[ p] depends omp for a fixed box containing a homo-
geneous electron gas with fix& This corresponds to the mapping
0 in Eq.(2), leading to the Slater resu27). For a particula¥, say
V,, the optimum wave function leads to a ground-state dengjty
and energ)E, corresponding to a pointo(),EE) on the solid curve.
The solid curve associates with the optimyg for each physical
box V of the exact energy. This corresponds to the map@pdn
Eq. (1), leading to the Kohn-Slater resdft.

B. Energy functional

For the GGGA functionals, the mappir@ is totally dif-
ferent fromOg. The former is~ p*3e#? while the latter is
p*3F(s) with s~|Vp|/p*3 No foundation has been given
for assuming the constrai@®=O4. Thus, contrary to com-
mon assumptions, there neett be a universalE[p]
uniquely givingO (though Levy? has given one definition
of such anO).

This is illustrated in Fig. 2 where E@24) is applied to a
box containing a uniform electron gas. The ground-state den-
sity po at eachV leads to a unique enerdgg[V]. These
EglV] for variousV lead to the solid curve for hovig
depends parametrically goy=N/V. While this parametric
dependance opg is the popular one used by LD[called
Oy in Eq. (1)], it is the bundles of energies as a function of
density[calledO in Eq. (2)] that should be used in deriving
the Euler-Lagrangian equations for various external con-
straintsV. This leads to a different mapping pfto E, as
indicated by dashed lines.

The exact dynamical equation to give the corrpgtis
still elusive. By relaxing the constraint =0, we have
proposed a class of GGGA functionals and illustrated it with
the simplest version. This gives additional degrees of free-
dom in searching for the right dynamical equatidor pg)
and the best total energy functiondbr E,). For example,
we can improve the potential by studying the one-electron
properties and at the same time improve the total energy



55 GENERALIZEDGENERALIZED GRADIENT . .. 16 109
functional by studying the total energy-related propertiesof these calculations were carried out on the JPL Cray and
This should help the search for the exact density functionalhe San Diego Supercomputer.

that simultaneously leads to the proper dynamical equations

for solving for py and the total energy functional fd&. APPENDIX: A DERIVATION OF THE SLATER
Such an energy functional would provide the best single- EXCHANGE POTENTIAL (REF. 10)
electron representation of a many-electron problem. For a free-electron gas
Summarizing, based on a reexamination of the foundation
for DFT we have proposed the generalized GGA functional. _ k2 1 D 4
Even in its simplest form the GGGA functional leads to a “eTom O 5 9% Ntg,0- (A1)

significant improvement in the single-particle eigenvalues. It ) ,
has several attractive featurestl) it leads to the correct SUMmMing ovem gives
asymptotip beh_av_iomx(r)=2¢sx(r)—>— 1k asr—o for at- K2 ke kﬁ—kz K+ ke
oms, (2) it satisfies the global constraints for the self- v, = T|n

F

K ke [ K
“2m 27 ke

interaction correction, an() it resolves the discrepancy on 2m 2w k—ke
whether the uniform electron gas expression should model K2
the potentialSlatey or the total energyKohn-Sham. We = 2——vx(k). (A2)
anticipate that this GGGA type of functional can be further m
improved to provide more accurate results for DFT. Averaging over all occupied states, i.e., the Fermi sphere,
leads to Eq(27),
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