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Generalizedgeneralized gradient approximation:
An improved density-functional theory for accurate orbital eigenvalues

Xinlei Hua, Xiaojie Chen, and W. A. Goddard III*
Materials and Process Simulation Center, Beckman Institute (139-74), Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California 91125
~Received 13 January 1997!

The generalized gradient approximation~GGA! for the exchange functional in conjunction with accurate
expressions for the correlation functional have led to numerous applications in which density-functional theory
~DFT! provides structures, bond energies, and reaction activation energies in excellent agreement with the most
accurateab initio calculations and with the experiment. However, the orbital energies that arise from the
Kohn-Sham auxiliary equations of DFT may differ by a factor of 2 from the ionization potentials, indicating
that excitation energies and properties involving sums over excited states~nonlinear-optical properties, van der
Waals attraction! may be in serious error. We propose herein a generalization of the GGA in which the
changes in the functionals due to virtual changes in the orbitals are allowed to differ from the functional used
to map the exact density onto the exact energy. Using the simplest version of this generalized GGA we show
that orbital energies are within;5% of the correct values and the long-range behavior has the correct form.
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I. INTRODUCTION

The generalized gradient approximation1,2 ~GGA! for the
exchange functional in density-functional theory3 ~DFT! in
conjunction with accurate expressions for the correlat
functional @e.g., Lee, Yang, and Paar4 ~LYP! or Perdew-
Zunger5 ~PZ!# have led to numerous applications6 in which
DFT compares quite well with experiment and with the m
accurateab initio calculations for properties such as stru
ture, bond energy, and reaction activation energies. Co
quently, DFT is now in routine use for a number of fund
mental properties of chemical and physical systems. Des
these successes there remain problems. The orbital ene
from the Kohn-Sham auxiliary equations used with DFT d
fer from the ionization potentials by a factor of about 2. Th
suggests that electronic excitation energies, and prope
depending on a sum over excited electron states~such as
nonlinear-optical properties, chemical shielding, and Lond
dispersion!, may also be significantly in error.

In this paper we consider a generalization of the GGA
which the functional relationship between density and ene
for the virtual changes in the orbitals are allowed to dif
from the relationship between the exact density and the e
energy. Using the simplest such generalization of GGA~de-
noted GGGA!, we find that the orbital energies are with
;5% of the exact values and that the long-range poten
of the Kohn-Sham equations have the correct form.

In Sec. II we develop the GGGA function and in Sec.
we apply it to several systems. Section IV discusses var
aspects of the GGGA.

II. THE FUNCTIONAL OF DFT

A. DFT review

Hohenberg and Kohn3 showed that there is a one-to-on
mapping between the ground-state densityr0 and the
550163-1829/97/55~24!/16103~7!/$10.00
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ground-state energyE0 of any system. We shall denote a
O0 this mapping~1! of the exact ground state density of an
system onto the exact ground-state energy,

r0→
O0

E0 . ~1!

In order to calculate the correct densityr0 of a system, one
uses the variational principle to consider all changes in
densityr0→r allowed by the Pauli principle and select th
one leading to the lowest energy. Thus it is useful to defi
the mappingO ~2! that converts any arbitrary densityr with
the corresponding energy

r→
O
E. ~2!

This density need not correspond to any physical system
it must be allowed by the Pauli principle. In current DF
calculations the functionalO plays the double role of deriv
ing the Euler-Lagrangian equation for calculating the orbit
that lead tor0 and calculatingE0 from r0 oncer0 is known.

Using the mappingOx for the exchange energy of a un
form electron gas, Kohn and co-worker Sham3 provided a
prescription for including the Pauli principle~N is the repre-
sentability of the density! in calculating the ground-stat
properties. Namely, the density is derived from one-parti
orbitals that are solutions of a set of Euler-Lagrangian o
particle equations derived from the variational principle. F
lowing convention, we shall use the word energy function
to denote both the mappingO and the energyE. In all pre-
vious forms of DFT, from Thomas and Fermi7 to Becke2 and
Perdewet al.,1 it has been assumed thatO[O0 .

The GGA ~Refs. 1 and 2! extends the description of ex
change to include the effect of inhomogeneity in the dens
gradient,g5u,ru. This new mapping for the exchange ter
Ox involves first getting the gradientg and then mapping
~r,g! to E. By modeling the ground-state electron density
16 103 © 1997 The American Physical Society
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atoms, Perdewet al.2 and Becke2 found an exchange energ
functionalE0

x@r# that is reasonably accurate for a variety
systems

E0
x@r0#:~r0 ,g0!→

F
E0
x . ~3!

Indeed the use of Eq.~3! leads to significant improvement
in the total energy calculations. For the variations used
obtain the Euler-Lagrangian equations forr0 , GGA assumes
Ex@r#[E0

x@r0#, as usual. While improvingEtot , the GGA
doesnot improve the eigenvalues.

B. Kohn-Sham equations

In Kohn-Sham~KS! theory, the energy functional is de
fined as

Etot@r#5T0@r#1ECoul@r#1Ex@r#1Ec@r#1Eext@r#, ~4!

which is assumed to hold for arbitraryr. T0@r# is the kinetic
energy for the antisymmetrized product wave function~inde-
pendent electrons!, ECoul@r# is the classical Coulomb energ
term,Eext@r# is potential energy between electrons and io
Ex@r# is the exchange energy, andEc@r# includes all correc-
tions in these quantities due to electron correlation.

The local-density approximation~LDA ! uses the expres
sion for a free-electron gas

Ex@r#52CxE r4/3dr , ~5!

and assumes Eq.~5! to be valid even when the density is n
constant.

Applying the variational principle to Eq.~4!,

dE@r#

dr
U

r0

50,

leads to the Kohn-Sham Euler-Lagrange equation for the
timum orbitals of the ground-state densityr0

$2 1
2¹21vCoul~r !1vx~r !1vc~r !1vext~r !%f i~r !5e if i~r !,

~6!

where

¹2vCoul~r !524pr~r !, ~7!

r~r !5(
i
f i uf i~r !u2, ~8!

and

vx~r !5
dEx@r#

dr~r !
, ~9a!

vc~r !5
dEc@r#

dr~r !
. ~9b!

Neglecting electron correlation,Ec@r#50 leads to the
exchange-only theory, which for LDA is

vx~r !5
dEx@r#

dr~r !
52

4

3
Cxr

1/3. ~10!
o

,

p-

LDA predicts fairly accurately the structure for molecul
and crystals, but leads to cohesive energies much too la

C. Generalized gradient approximation

To account for inhomogeneities, the GGA considers
exchange-energy functional to have the form

Ex
GGA@r#52CxE r4/3F~s!dr , ~11!

where

s5
u¹ru
2kFr

~12!

is the measure of inhomogeneity. HerekF5(3p2)1/3r1/3 is
the Fermi wave vector for a homogeneous electron gas w
density r. For the homogeneous electron system,s50,
F(0)51, andEx

GGA@r#5Ex
LDA@r#.

This GGA energy functional leads to

vx
GGA~r !52

4

3
Cxr~r !1/3F@s~r !#

2CxE r4/3F8~s!
ds~r 8!

dr~r !
dr 8. ~13!

To determineF(s) we calculatedF(r )5eHF(r )/eLDA(r )
as a function ofs(r ) for several atoms and ions. Figure
compares these results to theF(s) from Becke.2 Figure 1~a!
shows the (1s) ~Ref. 2! isoelectronic series, where theEx
only involves the self-interaction energy. We see that
factor F(s) falls nearly onto a single curve. Howeve
F(s)→0.8 ass→0, whereas GGA assumes thatF(s)→1.0
as s→0. This discrepancy arises because heres→0 corre-
sponds tor→0 where high densities and near constant g
dients lead to smalls. However, the volume of this region i
small, contributing little toEx .

Figure 1~b! shows theF(s) for H2 where we see two
major branches nears50. One corresponds to the bond mi
point where¹r50 (F→1) and the other is from region
near the nucleus (F→0.85).

Figure 1~c! shows that carbon atom leads to increas
scatter inF(s), but theF(s) fall more or less on one curve

Figure 1~d! collects together the data for various atom
@including Figs. 1~a!, 1~b!, and 1~c!# and compares with the
analytical form~14! proposed as a universal functionF(s)
by Becke2

F~s!511
b

21/3Cx

x2

@116bx ln~x1A11x2!#
~14!

with

x[
u¹rsu
rs
4/3 5~48p2!1/3s.

Here rs50.5r is the density of spin components and b
50.0042 a.u. comes from fitting to various atoms and io
Despite the scatter we see that the Becke formula~14! cap-
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FIG. 1. The scale factorF(s)5eHF(r )/eLDA(r ) for Ex
GGA@r# as a function ofs(r ). The Becke analytical fit~14! is shown with dashed

lines. ~a! 1s2 configurations H2, He, Li1, Be21, etc. ~b! H2 molecule.~c! Carbon atom.
s
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by
tures the overall form of the exact results and provide
good description in the region ofs50.5 to 2.0 wherer is
significant.

Equation~14! reproduces the asymptotic behavior for e
ergy densityex(r ),

Ex~r→`!52
1

2 E dr
r~r !

r
, ~15!

for atoms,2 as can be checked by substituting Eq.~16! into
Eq. ~14!,

r5r0e
2ar . ~16!

On the other hand, for an atom the potentialvx(r ) should
satisfy the asymptotic behavior8
a

-

vx→2
1

r
. ~17!

However, using Eq.~14! in Eq. ~13! with an expontially
decaying density, Eq.~16! does not lead to Eq.~17! for
r→`. That is, in GGA vx does not satisfy the asymptot
behavior for atoms. In fact using Eq.~16! in Eqs.~14!, ~11!,
and ~9! and examining the asymptotic behavior, we fin
vx→22.89/ar 2 at larger .

GGA improves upon LDA significantly for total energ
calculations of atoms and molecules.7 However, Table I
shows that the orbital energies~Koopman theorem IP! are
low by about 50%. To eliminate any ambiguity caused
possible flaws in the analytical fit~14!, we also used directly
theF@s(r )# anddF/ds from Hartree-Fock~HF! in Eq. ~13!,
again finding that the eigenvalues9 are not improved. This
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TABLE I. Total energies~Hartrees! and HOMO orbital energies~Hartrees! calculated with GGA~ex-
change only! and HF. The 6-31G* basis set is used.

Total energies HOMO energy
GGA
% errorGGA HF GGA HF

He 22.853 999 22.855 160 20.539 726 20.9149 41.0
Be 214.560 105 214.566 76 20.170 738 20.3013 43.3
C 237.588 045 237.585 673 20.138 214 20.3420 59.6
O 274.672 631 274.656 607 20.251 667 20.5758 56.3
Ne 2128.496 452 2128.474 402 20.396 733 20.8306 52.2
Ar 2526.745 126 2526.773 735 20.330 767 20.5900 43.9
Ave. 49.4
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demonstrates that the failure to reproduce the correct ei
values is an intrinsic flaw of the exchange functional~11!
used with GGA. Since the orbital energies are the basis
describing electronic properties, it is important to corre
these errors in calculated eigenvalues.

D. The new functional

The foundation of DFT is Eq.~1!; there exists a universa
functional that maps the exact densityr0 of any system onto
the exact energyE@r0#. However, to derive the one-particl
equation~6!, we need to considerall possible changes in the
orbitals for the wave function, Eq. ~2!, that may involve non-
physical changes inr0 . Thus it is not necessarily the cas
thatO5O0 .

We propose to generalize the GGA approach by choos
theO in such a way thatO→OO asr→r0 and the correct
asymptotic behavior is obtained asr→` for both the energy
densityex(r ) and the one-particle potentialvx(r ).

As a simple form for this generalized GGA~GGGA! for
the exchange-energy functional, we propose

Ex
GGGA@r#52CxE r4/3F~s0!e

b~r2r0!/r0dr . ~18!

As r→r0 , Eq. ~18! leads to

Ex
GGGA@r0#52CxE r0

4/3F~s0!dr5Ex
GGA@r0# ~19!

and

vx
GGGA@r0#52Cxr0

1/3F~s0!~
4
31b!5~ 4

31b!ex , ~20!

where

ex52Cxr0
1/3F~s0!.

Thus far we have not specified the spatial dependence ofb; it
could depend onr0(r ), ¹r0(r ), etc.

Since the GGGA functional requires as a generalized
rameter the ground-state densityr0 , which is unknown, the
evaluation of theEx@r# is done iteratively. Our procedure i
to setr5r0 after taking the variation

vx
GGGA@r0~r !#5

dEx
GGGA@r#

dr~r !
U

r0

,

n-

of
t

g

a-

and to solve the resulting partial differential equation,~6!,
self-consistently. This is similar to the procedure for findi
the minimum of a function in ordinary calculus; the ener
functional is to the KS equation as the functionf (x) is to the
algebraic equationf 8(x0)50. Thus the KS equation is a
‘‘algebraic equation’’ in density space.

From the asymptotic behavior ofvx in Eq. ~16! andex in
Eq. ~15!, we want to have

vx52ex as r→` ~21!

for atoms. From Eq.~20! this requires that

b→ 2
3 as r→`. ~22!

For simplicity, we will in this paper assume thatb is a con-
stant,

b5 2
3 , ~23!

independent of densityr0 or the gradient¹r0.
The proposed GGGA functional for the exchange ene

then becomes

Ex@r#52CxE r4/3F~s0!e
2~r2r0!/3r0dr . ~24!

Other definitions, e.g.,

Ex@r#52CxE r0
4/3F~s0!e

b~r2r0!/r0dr ~25!

would lead to the same Euler-Lagrangian equation but w
different definitions ofb. Variation on theEx@r# in Eq. ~24!
or ~25! leads to the relationship

vx~r !52ex~r !. ~26!

Thus in GGGA bothvx and ex satisfy the asymptotic rela
tionships~15! and ~16!.

The key feature of the GGGA functional is thatthe gra-
dient term s does not participate in the variationdEx /dr.
This is analogous toECoul5**drdr 8r(r )r(r 8)/ur2r 8u
where the 1/ur2r 8u term does not participate in variations o
r.

In the case of a homogeneous electron gas, we h
F(s0)51, leading to

ex52Cxr
1/3

and
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TABLE II. Total energies~Hartrees! and HOMO orbital energy~Hartrees! using GGGA~exchange only!
and HF. The 6-31G* basis set is used.

Total energy HOMO energy

% errorGGGA HF GGGA HF

He 22.849 1 22.855 16 20.889 7 20.914 9 7.8
Be 214.557 0 214.566 76 20.323 8 20.301 3 7.5
C 237.559 4 237.585 67 20.358 9 20.342 0 4.9
Ne 2128.440 6 2128.474 40 20.822 1 20.830 6 1.0
H2O 276.011 392 276.049 40 20.489 160 20.497 470 1.6
C2H6 279.194 130 279.208 62 20.520 626 20.483 115 7.8
glysine 2282.819 449 2282.844 442 20.414 989 20.397 651 4.4
Ave. 4.3
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vx522Cxr
1/352

3

2 S 3p D 1/3r1/3. ~27!

Equation~27! is exactly the exchange potential of a h
mogeneous electron gas averaged overk, the orbital quan-
tum number for the uniform gas,~see the Appendix! ob-
tained originally by Slater.9,10 Kohn and Sham3 showed that
applying the variational principle to Eq.~4! using Eq.~5!
leads to Eq.~6! with Eq. ~10! rather than with Eq.~27!. That
is, KS obtained an exchange function that is2

3of the Slater
value,vx

KS5avx
Slaterwherea5 2

3. This led to theXa version
of the LDA in whicha was considered as a variable~a5 2

3

for KS, a51 for Slater!. Both approaches employ the un
form electron-gas expression but in different ways~total en-
ergy versus the potential!. The GGGA functional unifies
these two approaches and resolves this paradox by sho
that a5 2

3is correct for the total energy~as shown by Kohn
and Sham! while a51 is correct in the one-particle equatio
~as shown by Slater!. For a nonhomogeneous electron sy
tem, the gradient factorF(s0) in GGGA plays the role of
setting the scale.

III. RESULTS

We have tested the simplest GGGA functional on seve
atoms and molecules. The results are listed in Tables II,
and IV. All structures were fixed at the equilibrium geome
calculated from DFT using the Becke LYP~BLYP! ex-
change and correlation functional.2,4
ing

-

al
I,

A. Orbital energies

Table II lists the energies of the highest-occupied mole
lar orbitals~HOMO!, along with the total energy for severa
atoms and molecules. With GGGA we see that the aver
error in the orbital energy is about 5% whereas with GG
and LDA it is about 50%. All orbital eigenvalues are im
proved significantly as shown in Table III. The GGGA fun
tional ~24! leads to the same accuracy and sometime be
than the more elaborate procedure based on orbital repre
tation of exchange operators, e.g., that of Sahni8 or Talman
and Shadwick.11

B. Excitation energy

To estimate the energy gap~i.e., the lowest excitation
energy! we usedEg5eLUMO2eHOMO where e denotes the
orbital energy and LUMO denotes the lowest unoccup
MO. In Table IV, we compare the results calculated with H
GGGA without correlation, BLYP, and GGGA with correla
tion. For GGGA with correlation, we used the prescriptio
vc52ec , similar to the case ofvx(r ). However, the results
are not sensitive to this choice. We found that botheHOMO
and eLUMO shift down, leading to gaps similar to that b
BLYP.

IV. DISCUSSION

A. Self-interaction corrections

BecauseECoul@r# in Eq. ~4! is the energy for the density
interacting with itself, it includes the energy of each electr
l-
TABLE III. Eigenvalues~Hartrees! calculated with the LDA, GGA, GGGA, and HF methods. All ca
culations used the 6-31G* basis set with spherical averaging.

LDA GGA GGGA

HFe i % error e i % error e i % error

C 1s 29.8685 13.0 210.0190 11.7 211.0990 2.2 211.3461
2s 20.4298 39.5 20.4415 37.8 20.6969 1.8 20.7099
2p 20.1415 58.6 20.1382 59.6 20.3590 5.0 20.3422

Ne 1s 230.1933 7.8 230.4461 7.1 232.1177 2.0 232.7628
2s 21.2105 36.7 21.2319 35.6 21.6708 12.6 21.9120
2p 20.3827 53.9 20.3891 53.2 20.8221 1.0 20.8306

Ave. 34.9 33.3 4.1
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interacting with itself@i.e., the self-interaction~SI! energy#.
Thus for the hydrogen atom we have

ECoul5
1

2 E dr1dr2
uf0~r 1!u2uf0~r 2!u2

r 12
, ~28!

even though there is only one electron. Conseque
Ex@r# must be such as to include the SI in order to exac
cancel the SI from the Coulomb term. This requireme
while satisfied by HF, is not met by most DFT functiona
We can see why by comparing the total energy expres
for HF and DFT,

Etot
HF5(

i

occ

f ie i
HF2

1

2 (
i j

occ S K f if jU 1r 12Uf if j L
2 K f if jU 1r 12Uf jf i L D , ~29!

Etot
DFT5(

i

occ

f ie i
DFT2

1

2 E r~r1!r~r2!

r 12
dr1dr21Exc@r#

2E vxc~r !r~r !dr , ~30!

wheref i is the occupation number for each spin orbital. Co
sider the He atom where all ofEx@r# corresponds to self
interaction~since the orbitals have opposite spin!. Ignoring
electron correlation we want to haveEx

DFT5Ex
HF. Thus re-

quiring e i
DFT5e i

HF leads to

Ex
DFT@r0#2E dr vx~r !r~r !52Ex

HF@r0#,

which leads to

E dr vx~r !r0~r !52Ex
DFT@r#. ~31!

But for LDA we always have

E dr vx~r !r0~r !5 4
3Ex

LDA@r#Þ2Ex
LDA@r#. ~32!

Thus LDA does not satisfy the requirement. Similar arg
ments show that GGA also fails to satisfy Eq.~31!. On the
other hand, by Eq.~26! the GGGA functional does satisf
Eq. ~31!.

TABLE IV. Energy gaps calculated usingeLUMO2eHOMO . The
structure is for the GGA-LYP minimum energy structure. The ba
set is 6-31G* .

HF GGA-LYP GGGA-LYP

N2 21.8 8.6 8.7
C2H4 14.9 5.8 5.7
Benzene 12.8 5.1 5.0
ly
y
t,
.
n

-

-

B. Energy functional

For the GGGA functionals, the mappingO is totally dif-
ferent fromOO. The former is;r4/3ebr while the latter is
r4/3F(s) with s;u¹ru/r4/3. No foundation has been given
for assuming the constraintO[OO. Thus, contrary to com-
mon assumptions, there neednot be a universalE@r#
uniquely givingO ~though Levy12 has given one definition
of such anO!.

This is illustrated in Fig. 2 where Eq.~24! is applied to a
box containing a uniform electron gas. The ground-state d
sity r0 at eachV leads to a unique energyE0

x@V#. These
E0
x@V# for various V lead to the solid curve for howE0

x

depends parametrically onr05N/V. While this parametric
dependance onr0 is the popular one used by LDA@called
O0 in Eq. ~1!#, it is the bundles of energies as a function
density@calledO in Eq. ~2!# that should be used in deriving
the Euler-Lagrangian equations for various external co
straintsV. This leads to a different mapping ofr to E, as
indicated by dashed lines.

The exact dynamical equation to give the correctr0 is
still elusive. By relaxing the constraint ofO[Oo we have
proposed a class of GGGA functionals and illustrated it w
the simplest version. This gives additional degrees of fre
dom in searching for the right dynamical equation~for r0!
and the best total energy functional~for E0!. For example,
we can improve the potential by studying the one-electr
properties and at the same time improve the total ene

FIG. 2. Illustration of the basis for GGGA. Each dashed cur
shows howEx@r# depends onr for a fixed box containing a homo-
geneous electron gas with fixedV. This corresponds to the mapping
O in Eq. ~2!, leading to the Slater result~27!. For a particularV, say
V1 , the optimum wave function leads to a ground-state densityr0

and energyE0 corresponding to a point (r0 ,E0
k) on the solid curve.

The solid curve associates with the optimumr0 for each physical
box V of the exact energy. This corresponds to the mappingOx in
Eq. ~1!, leading to the Kohn-Slater result.10
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55 16 109GENERALIZEDGENERALIZED GRADIENT . . .
functional by studying the total energy-related properti
This should help the search for the exact density functio
that simultaneously leads to the proper dynamical equat
for solving for r0 and the total energy functional forEtot .
Such an energy functional would provide the best sing
electron representation of a many-electron problem.

Summarizing, based on a reexamination of the founda
for DFT we have proposed the generalized GGA function
Even in its simplest form the GGGA functional leads to
significant improvement in the single-particle eigenvalues
has several attractive features:~1! it leads to the correc
asymptotic behavior,vx(r )52ex(r )→21/r as r→` for at-
oms, ~2! it satisfies the global constraints for the se
interaction correction, and~3! it resolves the discrepancy o
whether the uniform electron gas expression should mo
the potential~Slater! or the total energy~Kohn-Sham!. We
anticipate that this GGGA type of functional can be furth
improved to provide more accurate results for DFT.
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APPENDIX: A DERIVATION OF THE SLATER
EXCHANGE POTENTIAL „REF. 10…

For a free-electron gas

vks5
k2

2m
2

1

V (
q

4p

q2
nk1q,s . ~A1!

Summing overq gives

vks5
k2

2m
2

kF
2p S 21

kF
22k2

kkF
lnUk1kF
k2kF

U D 5
k2

2m
2

kF
2p

FS kkFD
5

k2

2m
2vx~k!. ~A2!

Averaging over all occupied states, i.e., the Fermi sph
leads to Eq.~27!,

vx52
kF
2p

FS kkFD52
3

2 S 3p D 1/3r1/3 ~A3!

where we used

FS kkFD5
3

4pkF
3 E

k,kF

dk FS kkFD53. ~A4!
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