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Electron-diffraction effects on scanning tunneling spectroscopy
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This paper provides further evidence for the relationship between density of states or local density of states
(LDOS), and current-voltagel V) curves as obtained from scanning tunneling spectroscopy. A model that
takes into account voltage-dependent wave functions is proposed. This model calculates both quantities and
compares them. Current-carrying electrons are considered to come from the bulk of the tip and towards the
tunneling region. From there, the electrons are diffracted back to the tip and forward into the sample. This
scattering process is set within the framework of tight binding by providing boundary conditions. The method
allows one to solve the steady-state problem, thus permitting the extraction of information even when the
tip-sample distance is smalk(l A). This is particularly important since it can probe regimes beyond the
applicability of Bardeen approximation. For a tungsten tip and a silicon samplé;\theurves closely follow
the LDOS. On the other hand, the conductance-voltage curves present jumps that coincide with the Van Hove
singularities of the semiconductdS0163-1827)07620-(

[. INTRODUCTION faster that states and thus would not have as much an effect
as otherwise expected. To resolve the matter, Chen has pub-
The high-spatial resolution of scanning tunneling micros-lished a series of articles that provide a framework in which
copy (STM), combined with its intrinsic bias-dependent experimental results can be analyZ&€?®A common feature
characteristics, makes it one of the most popular tools irof most of these approaches is the use of Bardeen
surface physics.The main open problem in scanning tunnel- approximatiorf>®® a perturbative treatment of tunnel-
ing spectroscopySTS has been the inability to create clear- ing, to evaluate the electron transition probability between
cut, general rules, between sought physical quantities angpb and sample. Basically, Bardeen’s formula provides the
those that can be measured. All the efforts have concentratddteraction Hamiltonian between two, somewhat distant, sys-
in trying to find relationships between the density of stategems. From that Hamiltonian, one can calculate the time-
(DOYS) or the local density of stated DOS), and current- dependent tunneling transition rate between the systems. The
voltage (-V) or conductance-voltagertV) curves’ 20 Ex- popularity of this approximation lays in its simplicity and its
periments have been carried out on semiconduc¢tord, consistency with experimental observations at latgjeeit
superconductor¥, and metal$® Arguments have been unspecified tip-sample distances. However, the range of va-
givert®!’ that support a correlation between DOS and/  lidity of the approximation remains undefined mainly be-
curves for semiconductor samples. In the early times otause its applicability relies on thgualitative assumption
STM, the Tersoff and Haman theory was able to explainthat tip and sample interact weakly. There is no simple quan-
some experimental resuftsConcretely, STM images ob- titative manner in which to calculate the strength of the in-
tained at low bias and in the constant-current mode, repreteraction. A Green-function formalism based on Keldysh's
sent constant-sample LDOS contours, LDOS being evaluatettheory of nonequilibrium processgsan be used to obtain a
at the Fermi energy and at the center of the curvature of thaonperturbative expression for the tunneling current. This
tip. But, it is necessary to stress that this simple interpretaapproach has been useful to assess the accuracy of the
tion is no longer valid for high bias. Lari§,Selloniet al,”®  Bardeen approximatioff > Alternative approaches are re-
Tsukadeet al,?° Feenstra and LutZ, and Zypman, Fonseca, quired for dealing with ranges where the Bardeen approxi-
and Goldsteiff have extended the range of the theory tomation fails, and to define the ranges themselves. Since the
account for high bias voltages. Parallel to it, there have beetypical tip-sample distances are of a few angstroms, it is not
models that specifically describe the behavior of the scanunreasonable to expect the formation of states with wave
ning tunneling microscope on metafs:> Another problem  functions extending to both tip and sample, which will make
with the theory of Tersoff and Hamman is the fact that itthe electron transfer from tip to sample a steady-state one.
assumes a tip wave function with no angular dependencéJnder these conditions one can still talk of tunneling because
The most common tips are made of tungsten or platinumthe tip and the sample are two clearly defined and chemically
iridium. Those materials have, respectively, 85% and 98% oflistinct systems; this does not guarantee the applicability of
their electrons ird states. Therefore, it is reasonable to thinkthe Bardeen formalism. In fact, the issue of resonant tunnel-
thatd states will contribute the most to the tunneling current.ing versus sequential tunneling to explain the mechanism of
However, it has also been argued that atothtates decay tunneling through quantum wells has been a subject of
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debate®® In this paper we introduce a theoretical framework

that makes no use of the Bardeen approximation and within J \)\)“L)\{‘
which it is possible to calculate and compare steady-state v v
characteristic curvesl{V, o-V) and densities of states N £

(DOS, LDOS; see Appendix B for definitionsven at high DORASAD

bias voltages. Also, the angular dependence of the wave

function does not work against our results: first, because we WO))

are dealing here with spectroscopy, and the corrugation is-
sues raised by the angular dependence have to do with to- :)
pography; and second, because we use parameters so as to

experimental energy bands without inquiring into the nature

of the wave functions. Following our previous wdrkjn

typical STM and STS conditions, that is, tip-sample voltage

of few volts and tip-sample distance of 1-5 A, it is expected .

that global tip-sample effects are of importance, and the be-

havior of the electron wave function between tip and sample

does not have to be that of an evanescent exponential, bu . '
could have some richer structure. We model the tip and ' ‘

sampleas a whole systenit consists of two cubes, one for . .
channel atormof the same chemical nature as the tip. Micro- .

the tip and one for the sample, linked by an at@atom, for ..
scopically we assume that the cubes have simple cubic cell . . .

structure with different lattice constants. This assumption
helps to simplify the computations, and we do not believe it
will adversely affect our results. On the one hand, most of
the tunneling current is determined by the position of ¢he "
- . - tungsten atoms and the dark gray spheres represent silicon atoms.
atom, the remainder of the atoms serving basically as a "'®Rjotice that the protruding atom “belongs” to the tip.
ervoir of electrons. On the other hand, we want to check the
resemblance between characteristic curves and densities of . . .
work, the global wave function has the following expression
states on a&oncretemodel sample. in the tip and sampl&
We find the energies and wave function in the tight- '
binding (TB) approach. We consider, far away from the tun-
neling region, Bloch waves that are appropriate for this prob- ‘PI: Co k@ rms 1)
lem: an incoming wave towards the tunneling region, and a m=tp sites
diffracted wave that consists of three parts, one purely re-
flected into the bulk, another spherically scattered into the
bulk and, finally, a third one spherically diffracted forward V= > - Crk@nm 2
into the sample. By choosing appropriate TB parameters we m=sample sites
account for a metallic tip and a semiconductor sample. In the

next section we present the general theory for this model an‘ﬁ’herek is the tip electron-crystal moment_um,thg sample
crystal momentum,®,,, are s-type atomic orbitals, and

in the following section, we present concrete results for ) -
9 P aCkm and Cy ,, are the expansion coefficients. The vector
case model. ks : . o
indexm tags both tip and sample atomic sites, and can take

These results show thatV follows closely the LDOS of 577 5 . ; !
the sample at the Fermi energy evaluated at the position J¥7*Ns*1 different values. We impose, as the first bound-
ary condition, that the wave function, far away from the

the ¢ atom. Theo-V curve presents a number of disconti- _
nuities at voltages that correspond to the Van Hove singu@om. be a Bloch wave:
larities of the DOS of the sample.

FIG. 1. Tip-sample system. The light gray spheres represent

C(),moceiim.a for |m_mc atonJZmOv (3)

II. THEORY wheremg is a number that gives an idea of the extent of the
tunneling region. One expects it to be a single-digit number,
Consider the tip-sample systdifig. 1) to be the union of because bulk properties are recovered a few atoms away
three regions. A semiconductor with simple cubic structurefrom a perturbation to the perfect-crystal structure. In Eq.
with Ng Wigner-Seitz cells on a side, a metal with simple (3), ¢ is defined in the tip ak times the tip lattice constant,
cubic structure andN; Wigner-Seitz cells on a side, and, and in the sample aK times the sample-lattice constant.
inlaid between them, a atom that serves as the channel for Concretely, in that far-away region, we take the sum of three
current between metal and semiconductor. The energy statésrms for the tip wave function: an electron wave function
are obtained in the near-neighbor TB apprddchith an  with unit amplitude that comes from far away in the bulk; a
s-type basis functioncubium modet®). This type of ap- specularly reflected electron wave function with amplitude
proach has been used in the past to study chemisorption dB|? that moves into the bulk, away from the tunneling re-
surface®-*°and DOS of surface statésWithin this frame-  gion; and finally, a wave scattered from theatom:
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imé
CT:ei(mx0;|<—+my0;/r)(eimzaI+ Be—im202)+ p— f(Qm)

(4)

Here, m= (m;+mj+mZ)*? is the distance to the origin in
units of the appropriate lattice constant, dng is the solid
angle in the direction of.

For the sample, we consider a spherically scattered elec-
tron that moves away from the tunneling region, towards the
sample bulk region,

ing’

nas

Cs= f(Qp). )

It is important to stress that we do not assume ampyiori

form for the wave fupcuon In th? region near theatom. FIG. 2. View of the top side of the tetridight gray) and the em-
There are two mgredlents that give rise to 'the form of EdShedded spher@dark gray that it approximates.
(4) and(5): starting backwards, the second ingredient is that
the total wave function is a sum of an incident and a scatcoeffic!ents Cm)- The basic TB problem is to solve the
tered wave. For the tip-sample system that we consider, th&chralinger equation as an eigenvalue problem,
geometry is given by an atofe atom) that separates a plane _

i T-C=EC, )
surface (the samplg from a very-large-radius-of-curvature . o _ .
tip. The tunneling is basically a localized phenomenon, thevhereC is the vector of the TB coefficients at sites T is
bulk of the tip and sample serving just as reservoirs of electhe TB matrix that has, as matrix elements,(n’), the ap-
trons. Thus, an electron approaching the tunneling regioRropriate Coulomb and resonance integrals between isites
from the tip side will have two scattering components in the&nd m’. In the case we are considering here, the energies
tip: one specularly reflected wave from the tip surface, andE=E(6) are given in Eq(6) since the solutions to Ed7)
another decaying as the inverse of the distance fromcthe &€ those of bulk far from the interfaces. In order to separate

atom[Eq. (4)]. By the same token, the wave function in the 1€ tunneling region from the far region, we considered a
sample of the same electron will consist only of a WaVeSPhefe with large radii as compared with the lattice constant.

) . . The points inside the sphere belong, by definition, to the
?Seﬁaymg as the inverse of the distance fromdtaom[Eq. tunneling region. Those that lie outside belong to the far

The first ingredient is that in buli.e., f f region.
e first ingredient 1S that in bu ke, iar away from any The coefficient§ Egs. (1) and (2)] of the wave functions
defect as impurities, surfaces, vacancies,)dtte electron

: _ are defined not in a continuum, but in a discrete space. This
wave functions can be expanded in terms of Bloch wavegpace is spanned by the lattice sites. The tetris is the best
[Egs. (1)—(3)]. Notice that as we said in the previous para-apnroximation of the sphere in the discrete space. The cor-
graph, the coefficient€ in the tunneling region are not ners of the tetris are properly assigned wave-function coeffi-

assumed to have any particular form. But, far away, the cocients. In this way the tetris represents the discrete surface on
efficients have a Bloch forrfEq. (3)]. which we impose our boundary conditions.

As we mentioned above, these two ingredients allow us to Figure 2 provides visual insight into the nature of the
write Egs.(4) and(5). The last ingredient provides the global approximation. Figure 3 helps to better understand the geom-
behavior of the wave function. The first one gives the localetry of the different regions, that is, tunneling, far, and
behavior(locally, in the far-away region, the decaying wave boundary. In the inset there are four atoms that can be seen
becomes a Bloch wave, the decaying, 1/ma, term being atio belong roughly to the same solid angle. Figure 4 shows
sorbed in the amplitudeln fact, Eqs(4) and(5) are a subset that th'ree of' them are on the surface qf the tetris, and are
of those of the form given by Eq3). By choosing these bona fide points of our probleibecause in our problem we
particular forms we are actually imposing the boundary con®nly explicitly deal with points inside and on the tefrighe
ditions needed to solve the Schinger equation. fourth one on the top right is not. In order to keep our un-

In the tunneling region, the TB coefficients will be found knowns from proliferating we resorted to the trick described
solving the appropriate TB equations as shown below. Thi! Appendix A. To findC, we construct a tetris surface as
energy of the whole system is parametrized like in bulk as described above. We take the radius of the tetris to b(_a larger

thanm, from Eg. (3). That guarantees that, on the tetris and

E=aT+287(codT + cosd” + cossT outside |t theC,, are given by I_Eq(4) or (5),_ with B and _
a+2p( X y 2) f(Q,,) still unknown. Next, consider those sites just outside
=eV+ a®+ 2% cosd; + cos cossy), (6)  the tetris, that are near neighbors to the atoms on the tetris.

The corresponding coefficients also are bulk type, and can be
where V is the voltage applied between the tip and thewritten back in terms of the coefficients on the tetris by using
sample ane is the charge of the electron.is the Coulomb  Eq. (4) or (5). This means that we are able to add new equa-
integral andB the resonance integral. tions (which are actually boundary conditionaithout add-

In order to obtain the current we need to evaluateing new variables. It is important to notice that among those
f(Q,,) for the sample(along the way, we will get all the equations, there are some that are inhomoge-
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neous, coming from the terr@™? on the tip side. Letv eh 6° 1 -
={vm} be the vector of inhomogeneous terms, which has gr= aMe Jietis 12 [ for|*rdQ2
nonzero components fan belonging on the tetris on the tip
side. Equatior(7) can now be writter(see Appendix A eh 6°
= ‘ |f 1| *PAQ . (12)
(T— Eo) . CH: Vg (8) . sllle me(te'tns samples . .
Finally, the total current is the sum of all the contributions
or from statesd; with energies below the Fermi energy:
Com ot ©) | | 13
= —— -Vy, = i
TT-E, 7 o Ela<ep T
which provides the TB coefficients. In particular, E®) .
provides the coefficients of the sample on the tetris and, from l. APPLICATION T O A W TIP AND Si SAMPLE
Eq. (5, . : o
In this section we apply the general results obtained in
f(Q,)=mae Mm°C, 4, (100  Sec. Il to the particular and common case in which a tung-
’ sten tip is used to investigate a silicon sample. It is important
where 6% is a function of#" according to Eq(6). to notice that these materials are considered within the con-
To evaluatel -V, we start by writing the current density straints of the model we are using and, therefore, the TB
ag® parameters used serve to fit the energy of the middle of the
band and its width for silicon, and the bottom of the band
Jr=Jre— e 6° IF 12 (11) and its curvature for tungsten. It does not provide the full
TG T g myr2 1o S band structure. This is enough for our purposes though, be-

- cause we want to compare currents and densities of states
and the current for a stat®' is

8.5eV

0.5eV

Ep=0 |
-0.5eV

-7.5eV

o

FIG. 4. Zoom of the inset in Fig. 3. We consider the tight- TIP SAMPLE
binding wave function in the tetris surface to be that of a diffracted
electron. All the atom sites in this figure are located in almost the FIG. 5. Energy-level diagram for the tip-sample system at zero
same solid angle measured from thatom. bias voltage. As the voltage is raised, the tip levels move up.
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LDOS (dasheglas a function of voltage or energy, respectively, for
the following tip-sample separation&) 5 A, (b) 3 A, and(c) 1 A, FIG. 7. dI/dV vs voltage for various tip-sample separations.

The zero of the energy is located at the middle of the band gap ofeais in the function can be seen at about 3.5 and 6.0 eV, which
the sample. correspond to the Van Hove singularities of the sam(ide5 A, (c)
3 A, and(d) 1 A. For comparison(a) gives the DOS of the sample

self-consistentlywithin the same modeln order to obtain  showing the Van Hove singularities.

the proper conduction band for 8he band gap of 1 eV is

artificially obtained by locating the Fermi energy 0.5 eV be- . .

low the bottom of the conduction bandand the Fermi en- A seco.nd guestion we address here is what are the states
ergy for W, we takea,=—9eV, B.=0.67 eV, Ep= that contribute most to the current. For that purpose, we cal-
—13.5 eV, the minimum energy of the tip is located at culated(for d=1, 3, and 5 A, thel-V due to all states, and
—19.5 eV. Figure 5 shows the energy-level diagram assignthe!-V produced by a narrow baritess than 0.1 e)/below

ing EF:0 eV. In the tunne"ng region, we assume that theEF . We found that both results agree within 1% and there-
c atom interacts with tip, and sample through the propefore, the current is coming mostly from states with energies
resonance integrals a@..r=3.5eV, B...=41537.63 close toEg.

d*e~53%% whered is the separation between thetom and Finally, we use our model to study the relationship be-
the sample surface, arglis in eV andd in A (Refs. 44—48  tween density of states amtl/dV. This is important since it
(the decay lengths of tip and sample are 0.4 and 0.35 Ahas been argued that it is this quantity, and haf that is
respectively. With these parameters we investigated variouselevant'’ Figure 7 showsl1/dV curves for tip-sample sepa-
features of the system. First, we want to know to what extentations of 1, 3, and 5 A. The most interesting feature is that
doesl (V) follow the sample LDOS. Figure 6 showsV and it presents nondifferentiable points that correspond to the
LDOS for tip-sample separations of 1, 3, and 5 A. We canvan Hove singularities of the DOS of the sample. Con-
see that the two curves have a closer resemblance and the@ete|y, we see a jump afl/dV at 3.5 V, which comes from
fore, the STMI-V curve is a good measure of the LDOS the van Hove singularity of Si. The jump is not extremely

roughly for separationgsA?f 1-5 A. This result is in agreemenipam pecause as the voltage varies, a few tip states close to
with work on metalg>4’ at low voltages in generdland E. contribute to the current,
with similar works?84°
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IV. CONCLUSIONS By eliminating f(€2) from both equations, we can write
C,, interms oanO as:
We have presented a method for calculating steady-state
tunneling current in STM by using running Bloch functions. CnT=ei(”Tx9x+”Tygy)(ei”TZ"ZBe‘i”TzeZ)
We have used the method to study the common experimental
situation of a tungsten tip and a silicon sample. Results show
that I-V curves follow the sample LDOS. Our model pro-
vides a good tool to investigate resonant tunneling that is _ . .
more important in the small distances regime. X (eMoz’z+ BeMozz) e~ Moy, (AS)
Our results also prove that. most of the tunneling Cu”emSubstituting in Eq(A2)
comes from states with energies close to the Fermi energy.
In agreement with previous wofk, we found that Ng .
dl/dV present nondifferentiable points that come from the (a—E+B - e'(nT_no))Cno_f_B
n
Van Hove singularities of the sample. f

einT‘g
+
n

[Cn _ ei(n0x9x+”0y0y)
0

ei(nTX0X+nTy0y—nTZBZ)

Finally, from an experimental point of view, we provide a nee' ("~ "o (6.4 10 6o 61
framework within which more experimental results can be T e o oyfy Tl B+ BCh + BCh,
interpreted. The method introduced here can be applied to a
wide variety of materials and situations. +BCn+BCh +BCh,
No i(N1—ng)Baing- 0_ Ain 6
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APPENDIX A
. APPENDIX B
Here we present an example on how the TB equations are

built. In particular, we show how the inhomogeneous term _In this appendix we present definitions for DOS and
appears. Let us, for example, consider the equation corrd-DOS as used in this paper. _ . .
sponding to the site located in the center of the top plane of The LDOS of a system at a given location and for a given

the tetris. For the tip sites, far from thieatom, we have energy is defined as the number of states per unit energy
times the probability that the electron be at the given loca-

no tion. While the local density of states is

Cp=e' (™t Nyh)(eNlz Be™Mf2) + — f(Q). (Al)
na

Let us say that the site we are considering is located at D(EO):Ao_E(%:E 1, (B1)
n=n,. Its near neighbors are, one on tap=n, , a bulk _ ' °
site), one below(n=n_, a tunneling region sijeand four on the LDOS is
the top plane, in frontrfg), back (g), right (ng) and left

(n.) boundary sites. L(Eg)=A > |¥|? R (B2)
The basic TB equation for the sitg is ° 0:E(0)=Eg sample at tip's position
[a—E]C, +B[C, +C, +C, +C, +C, +C, ]=0. whereA is a constant.

"o A (A2) From Eq.(2) in the paper,
All the C’s area priori, unknown, but to avoid proliferation 2
of unknowns(and be able to solve the Schlinger system L(E0)=0 E(;):EO % Crn,6Pm (B3)

we “fold back™ all the external coefficientén this equation _ _ . .
only Cy, ) into the “internal” ones. To do that, we notice that and, with the same approximations used in Ref. 22,

the siteny, and the siten; are both at the same angular
location(measured from the atom and then, the scattering L =const E E |Cspl?e 213V, (B4)
amplitudef (L) (which only depends on the angle, not dis- 01.02,93 g} 0} 04

tance is the same for both. So, . o .
where const is a normalization consta@t is the TB co-

efficient of the sample at the “host” atom, that is, the closest
Noa f(Q), to thec atom. Finally, the decay rate of the sample amplitude
(A3) as a function of applied voltage is

einoe

Cn0: ei(”0x0x+ ”0y9y)(ei”0202+ Be—inOZaz) +

inTG

= @l (Nyxfx+Nn1yby) aing 20, —ing,0; 0.35 A
C”T e vy (e +Be )+ na f(Q). ay(V)= (B5)

(A4) J1+(035 AZ(2mahrdV
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