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Electron-diffraction effects on scanning tunneling spectroscopy

Fredy R. Zypman
University of Puerto Rico, Department of Physics and Electronics, Humacao, Puerto Rico 00791-4300

Luis F. Fonseca
Department of Physics,University of Puerto Rico, Rio Piedras, Puerto Rico 00931-3343

~Received 1 December 1995; revised manuscript received 3 September 1996!

This paper provides further evidence for the relationship between density of states or local density of states
~LDOS!, and current-voltage (I -V) curves as obtained from scanning tunneling spectroscopy. A model that
takes into account voltage-dependent wave functions is proposed. This model calculates both quantities and
compares them. Current-carrying electrons are considered to come from the bulk of the tip and towards the
tunneling region. From there, the electrons are diffracted back to the tip and forward into the sample. This
scattering process is set within the framework of tight binding by providing boundary conditions. The method
allows one to solve the steady-state problem, thus permitting the extraction of information even when the
tip-sample distance is small (,1 Å). This is particularly important since it can probe regimes beyond the
applicability of Bardeen approximation. For a tungsten tip and a silicon sample, theI -V curves closely follow
the LDOS. On the other hand, the conductance-voltage curves present jumps that coincide with the Van Hove
singularities of the semiconductor.@S0163-1829~97!07620-0#
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I. INTRODUCTION

The high-spatial resolution of scanning tunneling micro
copy ~STM!, combined with its intrinsic bias-depende
characteristics, makes it one of the most popular tools
surface physics.1 The main open problem in scanning tunne
ing spectroscopy~STS! has been the inability to create clea
cut, general rules, between sought physical quantities
those that can be measured. All the efforts have concentr
in trying to find relationships between the density of sta
~DOS! or the local density of states~LDOS!, and current-
voltage (I -V) or conductance-voltage (s-V) curves.2–10Ex-
periments have been carried out on semiconductors,11–13

superconductors,14 and metals.15 Arguments have been
given16,17 that support a correlation between DOS ands-V
curves for semiconductor samples. In the early times
STM, the Tersoff and Haman theory was able to expl
some experimental results.2 Concretely, STM images ob
tained at low bias and in the constant-current mode, re
sent constant-sample LDOS contours, LDOS being evalu
at the Fermi energy and at the center of the curvature of
tip. But, it is necessary to stress that this simple interpre
tion is no longer valid for high bias. Lang,18 Selloniet al.,19

Tsukadaet al.,20 Feenstra and Lutz,21 and Zypman, Fonseca
and Goldstein22 have extended the range of the theory
account for high bias voltages. Parallel to it, there have b
models that specifically describe the behavior of the sc
ning tunneling microscope on metals.23–25Another problem
with the theory of Tersoff and Hamman is the fact that
assumes a tip wave function with no angular depende
The most common tips are made of tungsten or platinu
iridium. Those materials have, respectively, 85% and 98%
their electrons ind states. Therefore, it is reasonable to thi
thatd states will contribute the most to the tunneling curre
However, it has also been argued that atomicd states decay
550163-1829/97/55~23!/15912~7!/$10.00
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faster thats states and thus would not have as much an ef
as otherwise expected. To resolve the matter, Chen has
lished a series of articles that provide a framework in wh
experimental results can be analyzed.26–28A common feature
of most of these approaches is the use of Bard
approximation,29,30 a perturbative treatment of tunne
ing, to evaluate the electron transition probability betwe
tip and sample. Basically, Bardeen’s formula provides
interaction Hamiltonian between two, somewhat distant, s
tems. From that Hamiltonian, one can calculate the tim
dependent tunneling transition rate between the systems.
popularity of this approximation lays in its simplicity and i
consistency with experimental observations at large~albeit
unspecified! tip-sample distances. However, the range of v
lidity of the approximation remains undefined mainly b
cause its applicability relies on thequalitative assumption
that tip and sample interact weakly. There is no simple qu
titative manner in which to calculate the strength of the
teraction. A Green-function formalism based on Keldysh
theory of nonequilibrium processes31 can be used to obtain
nonperturbative expression for the tunneling current. T
approach has been useful to assess the accuracy o
Bardeen approximation.32–35 Alternative approaches are re
quired for dealing with ranges where the Bardeen appro
mation fails, and to define the ranges themselves. Since
typical tip-sample distances are of a few angstroms, it is
unreasonable to expect the formation of states with w
functions extending to both tip and sample, which will ma
the electron transfer from tip to sample a steady-state o
Under these conditions one can still talk of tunneling beca
the tip and the sample are two clearly defined and chemic
distinct systems; this does not guarantee the applicability
the Bardeen formalism. In fact, the issue of resonant tun
ing versus sequential tunneling to explain the mechanism
tunneling through quantum wells has been a subject
15 912 © 1997 The American Physical Society
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55 15 913ELECTRON-DIFFRACTION EFFECTS ON SCANNING . . .
debate.36 In this paper we introduce a theoretical framewo
that makes no use of the Bardeen approximation and wi
which it is possible to calculate and compare steady-s
characteristic curves (I -V, s-V) and densities of state
~DOS, LDOS; see Appendix B for definitions! even at high
bias voltages. Also, the angular dependence of the w
function does not work against our results: first, because
are dealing here with spectroscopy, and the corrugation
sues raised by the angular dependence have to do with
pography; and second, because we use parameters so a
experimental energy bands without inquiring into the nat
of the wave functions. Following our previous work,22 in
typical STM and STS conditions, that is, tip-sample volta
of few volts and tip-sample distance of 1–5 Å, it is expect
that global tip-sample effects are of importance, and the
havior of the electron wave function between tip and sam
does not have to be that of an evanescent exponential
could have some richer structure. We model the tip a
sampleas a whole system. It consists of two cubes, one fo
the tip and one for the sample, linked by an atom~c atom, for
channel atom! of the same chemical nature as the tip. Micr
scopically we assume that the cubes have simple cubic
structure with different lattice constants. This assumpt
helps to simplify the computations, and we do not believ
will adversely affect our results. On the one hand, most
the tunneling current is determined by the position of thec
atom, the remainder of the atoms serving basically as a
ervoir of electrons. On the other hand, we want to check
resemblance between characteristic curves and densitie
states on aconcretemodel sample.

We find the energies and wave function in the tig
binding ~TB! approach. We consider, far away from the tu
neling region, Bloch waves that are appropriate for this pr
lem: an incoming wave towards the tunneling region, an
diffracted wave that consists of three parts, one purely
flected into the bulk, another spherically scattered into
bulk and, finally, a third one spherically diffracted forwa
into the sample. By choosing appropriate TB parameters
account for a metallic tip and a semiconductor sample. In
next section we present the general theory for this model
in the following section, we present concrete results fo
case model.

These results show thatI -V follows closely the LDOS of
the sample at the Fermi energy evaluated at the positio
the c atom. Thes-V curve presents a number of discon
nuities at voltages that correspond to the Van Hove sin
larities of the DOS of the sample.

II. THEORY

Consider the tip-sample system~Fig. 1! to be the union of
three regions. A semiconductor with simple cubic struct
with NS Wigner-Seitz cells on a side, a metal with simp
cubic structure andNT Wigner-Seitz cells on a side, and
inlaid between them, ac atom that serves as the channel f
current between metal and semiconductor. The energy s
are obtained in the near-neighbor TB approach37 with an
s-type basis function~cubium model38!. This type of ap-
proach has been used in the past to study chemisorptio
surfaces38–40and DOS of surface states.41 Within this frame-
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work, the global wave function has the following expressi
in the tip and sample:42

Ck
T5 (

m5tip sites
Cm,kFm , ~1!

CK
s 5 (

m5sample sites
Cm,KFm ~2!

wherek is the tip electron-crystal momentum,K the sample
crystal momentum,Fm are s-type atomic orbitals, and
Ck,m and CK,m are the expansion coefficients. The vect
indexm tags both tip and sample atomic sites, and can t
NT
31NS

311 different values. We impose, as the first boun
ary condition, that the wave function, far away from thec
atom, be a Bloch wave:

Cu,m}e6 im•u for um2mc atomu>m0 , ~3!

wherem0 is a number that gives an idea of the extent of t
tunneling region. One expects it to be a single-digit numb
because bulk properties are recovered a few atoms a
from a perturbation to the perfect-crystal structure. In E
~3!, u is defined in the tip ask times the tip lattice constant
and in the sample asK times the sample-lattice constan
Concretely, in that far-away region, we take the sum of th
terms for the tip wave function: an electron wave functi
with unit amplitude that comes from far away in the bulk;
specularly reflected electron wave function with amplitu
uBu2 that moves into the bulk, away from the tunneling r
gion; and finally, a wave scattered from thec atom:

FIG. 1. Tip-sample system. The light gray spheres repres
tungsten atoms and the dark gray spheres represent silicon a
Notice that the protrudingc atom ‘‘belongs’’ to the tip.
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CT5ei ~mxux
T

1myuy
T

!~eimzuz
T
1Be2 imzuz

T
!1

eimu

ma
f ~Vm!.

~4!

Here,m5(mx
21my

21mz
2)1/2 is the distance to the origin in

units of the appropriate lattice constant, andVm is the solid
angle in the direction ofm.

For the sample, we consider a spherically scattered e
tron that moves away from the tunneling region, towards
sample bulk region,

Cs5
einu8

nas
f ~Vm!. ~5!

It is important to stress that we do not assume anya priori
form for the wave function in the region near thec atom.
There are two ingredients that give rise to the form of E
~4! and~5!: starting backwards, the second ingredient is t
the total wave function is a sum of an incident and a sc
tered wave. For the tip-sample system that we consider,
geometry is given by an atom~c atom! that separates a plan
surface~the sample! from a very-large-radius-of-curvatur
tip. The tunneling is basically a localized phenomenon,
bulk of the tip and sample serving just as reservoirs of e
trons. Thus, an electron approaching the tunneling reg
from the tip side will have two scattering components in t
tip: one specularly reflected wave from the tip surface, a
another decaying as the inverse of the distance from thc
atom @Eq. ~4!#. By the same token, the wave function in th
sample of the same electron will consist only of a wa
decaying as the inverse of the distance from thec atom@Eq.
~5!#.

The first ingredient is that in bulk~i.e., far away from any
defect as impurities, surfaces, vacancies, etc.! the electron
wave functions can be expanded in terms of Bloch wa
@Eqs. ~1!–~3!#. Notice that as we said in the previous par
graph, the coefficientsCmk in the tunneling region are no
assumed to have any particular form. But, far away, the
efficients have a Bloch form@Eq. ~3!#.

As we mentioned above, these two ingredients allow u
write Eqs.~4! and~5!. The last ingredient provides the glob
behavior of the wave function. The first one gives the lo
behavior~locally, in the far-away region, the decaying wa
becomes a Bloch wave, the decaying, 1/ma, term being
sorbed in the amplitude!. In fact, Eqs.~4! and~5! are a subse
of those of the form given by Eq.~3!. By choosing these
particular forms we are actually imposing the boundary c
ditions needed to solve the Schro¨dinger equation.

In the tunneling region, the TB coefficients will be foun
solving the appropriate TB equations as shown below. T
energy of the whole system is parametrized like in bulk a

E5aT12bT~cosux
T1cosuy

T1cosuz
T!

5eV1as12bs~cosux
s1cosuy

s cosuz
s!, ~6!

where V is the voltage applied between the tip and t
sample ande is the charge of the electron.a is the Coulomb
integral andb the resonance integral.

In order to obtain the current we need to evalu
f (Vm) for the sample~along the way, we will get all the
c-
e

.
t
t-
he

e
-
n

d

s
-

-

to

l

b-

-

e

e

coefficientsCm!. The basic TB problem is to solve th
Schrödinger equation as an eigenvalue problem,

T•C5EC, ~7!

whereC is the vector of the TB coefficients at sitesm, T is
the TB matrix that has, as matrix elements (m,m8), the ap-
propriate Coulomb and resonance integrals between sitem
andm8. In the case we are considering here, the energ
E5E(u) are given in Eq.~6! since the solutions to Eq.~7!
are those of bulk far from the interfaces. In order to separ
the tunneling region from the far region, we considered
sphere with large radii as compared with the lattice const
The points inside the sphere belong, by definition, to
tunneling region. Those that lie outside belong to the
region.

The coefficients@Eqs. ~1! and ~2!# of the wave functions
are defined not in a continuum, but in a discrete space. T
space is spanned by the lattice sites. The tetris is the
approximation of the sphere in the discrete space. The
ners of the tetris are properly assigned wave-function coe
cients. In this way the tetris represents the discrete surfac
which we impose our boundary conditions.

Figure 2 provides visual insight into the nature of t
approximation. Figure 3 helps to better understand the ge
etry of the different regions, that is, tunneling, far, a
boundary. In the inset there are four atoms that can be s
to belong roughly to the same solid angle. Figure 4 sho
that three of them are on the surface of the tetris, and
bona fide points of our problem~because in our problem w
only explicitly deal with points inside and on the tetris!. The
fourth one on the top right is not. In order to keep our u
knowns from proliferating we resorted to the trick describ
in Appendix A. To findC, we construct a tetris surface a
described above. We take the radius of the tetris to be la
thanm0 from Eq. ~3!. That guarantees that, on the tetris a
outside it, theCm are given by Eq.~4! or ~5!, with B and
f (Vm) still unknown. Next, consider those sites just outsi
the tetris, that are near neighbors to the atoms on the te
The corresponding coefficients also are bulk type, and ca
written back in terms of the coefficients on the tetris by us
Eq. ~4! or ~5!. This means that we are able to add new eq
tions ~which are actually boundary conditions! without add-
ing new variables. It is important to notice that among tho
equations, there are some that are inhomoge-

FIG. 2. View of the top side of the tetris~light gray! and the e
bedded sphere~dark gray! that it approximates.
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FIG. 3. Cross section of Fig. 2.
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5$vm% be the vector of inhomogeneous terms, which h
nonzero components form belonging on the tetris on the ti
side. Equation~7! can now be written~see Appendix A!

~T2Eu!•Cu5vu ~8!

or

Cu5
1

T2Eu
•vu , ~9!

which provides the TB coefficients. In particular, Eq.~9!
provides the coefficients of the sample on the tetris and, fr
Eq. ~5!,

f ~Vm!5mase
2 imusCm,uT , ~10!

whereus is a function ofuT according to Eq.~6!.
To evaluateI -V, we start by writing the current densit

as43

JuT5JuTer5
e\us

asmer
2 u f uTu2er , ~11!

and the current for a stateuT is

FIG. 4. Zoom of the inset in Fig. 3. We consider the tigh
binding wave function in the tetris surface to be that of a diffrac
electron. All the atom sites in this figure are located in almost
same solid angle measured from thec atom.
s

m

I uT5
e\us

asme
E
tetris

1

r 2
u f uTu2r 2dV

5
e\us

asme
(

mP~ tetris samples!
u f uTu2DVm . ~12!

Finally, the total current is the sum of all the contribution
from statesuT with energies below the Fermi energy:

I5 (
uT :E~uT!,EF

I uT
. ~13!

III. APPLICATION T O A W TIP AND Si SAMPLE

In this section we apply the general results obtained
Sec. II to the particular and common case in which a tun
sten tip is used to investigate a silicon sample. It is import
to notice that these materials are considered within the c
straints of the model we are using and, therefore, the
parameters used serve to fit the energy of the middle of
band and its width for silicon, and the bottom of the ba
and its curvature for tungsten. It does not provide the f
band structure. This is enough for our purposes though,
cause we want to compare currents and densities of st

d
e FIG. 5. Energy-level diagram for the tip-sample system at z
bias voltage. As the voltage is raised, the tip levels move up.
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15 916 55FREDY R. ZYPMAN AND LUIS F. FONSECA
self-consistently,within the same model. In order to obtain
the proper conduction band for Si~the band gap of 1 eV is
artificially obtained by locating the Fermi energy 0.5 eV be
low the bottom of the conduction band!, and the Fermi en-
ergy for W, we takeas529 eV, bs50.67 eV, EF5
213.5 eV, the minimum energy of the tip is located a
219.5 eV. Figure 5 shows the energy-level diagram assig
ing EF50 eV. In the tunneling region, we assume that th
c atom interacts with tip, and sample through the prop
resonance integrals asbc2T53.5 eV, bc2s541 537.63
d4e25.358d whered is the separation between thec atom and
the sample surface, andb is in eV andd in Å ~Refs. 44–46!
~the decay lengths of tip and sample are 0.4 and 0.35
respectively!. With these parameters we investigated vario
features of the system. First, we want to know to what exte
doesI (V) follow the sample LDOS. Figure 6 showsI -V and
LDOS for tip-sample separations of 1, 3, and 5 Å. We ca
see that the two curves have a closer resemblance and th
fore, the STMI -V curve is a good measure of the LDOS
roughly for separations of 1–5 Å. This result is in agreeme
with work on metals,13,47 at low voltages in general,2 and
with similar works.48,49

FIG. 6. Normalized tunneling currentI ~continuous curve! and
LDOS ~dashed! as a function of voltage or energy, respectively, fo
the following tip-sample separations:~a! 5 Å, ~b! 3 Å, and~c! 1 Å.
The zero of the energy is located at the middle of the band gap
the sample.
-

t
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r

,
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n
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A second question we address here is what are the sta
that contribute most to the current. For that purpose, we c
culated~for d51, 3, and 5 Å!, the I -V due to all states, and
the I -V produced by a narrow band~less than 0.1 eV! below
EF . We found that both results agree within 1% and ther
fore, the current is coming mostly from states with energie
close toEF .

Finally, we use our model to study the relationship be
tween density of states anddI/dV. This is important since it
has been argued that it is this quantity, and notI -V that is
relevant.17 Figure 7 showsdI/dV curves for tip-sample sepa-
rations of 1, 3, and 5 Å. The most interesting feature is th
it presents nondifferentiable points that correspond to t
Van Hove singularities of the DOS of the sample. Con
cretely, we see a jump ofdI/dV at 3.5 V, which comes from
the Van Hove singularity of Si. The jump is not extremely
sharp because as the voltage varies, a few tip states clos
EF contribute to the current.

of
FIG. 7. dI/dV vs voltage for various tip-sample separations

Breaks in the function can be seen at about 3.5 and 6.0 eV, wh
correspond to the Van Hove singularities of the sample;~b! 5 Å, ~c!
3 Å, and~d! 1 Å. For comparison,~a! gives the DOS of the sample
showing the Van Hove singularities.
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IV. CONCLUSIONS

We have presented a method for calculating steady-s
tunneling current in STM by using running Bloch function
We have used the method to study the common experime
situation of a tungsten tip and a silicon sample. Results sh
that I -V curves follow the sample LDOS. Our model pr
vides a good tool to investigate resonant tunneling tha
more important in the small distances regime.

Our results also prove that most of the tunneling curr
comes from states with energies close to the Fermi ener

In agreement with previous work,22 we found that
dI/dV present nondifferentiable points that come from t
Van Hove singularities of the sample.

Finally, from an experimental point of view, we provide
framework within which more experimental results can
interpreted. The method introduced here can be applied
wide variety of materials and situations.
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APPENDIX A

Here we present an example on how the TB equations
built. In particular, we show how the inhomogeneous te
appears. Let us, for example, consider the equation co
sponding to the site located in the center of the top plane
the tetris. For the tip sites, far from thec atom, we have

Cn5ei ~nxux1nyuy!~einzuz1Be2 inzuz!1
einu

na
f ~V!. ~A1!

Let us say that the site we are considering is located
n5n0 . Its near neighbors are, one on top~n5n↑ , a bulk
site!, one below~n5n↓ , a tunneling region site!, and four on
the top plane, in front (nF), back (nB), right (nR) and left
(nL) boundary sites.

The basic TB equation for the siten0 is

@a2E#Cn0
1b@Cn↑

1Cn↑
1CnF

1CnB
1CnR

1CnL
#50.

~A2!

All the C’s area priori, unknown, but to avoid proliferation
of unknowns~and be able to solve the Schro¨dinger system!
we ‘‘fold back’’ all the external coefficients~in this equation
onlyCn↑

! into the ‘‘internal’’ ones. To do that, we notice tha

the siten0 , and the siten↑ are both at the same angul
location~measured from thec atom! and then, the scatterin
amplitudef (V) ~which only depends on the angle, not di
tance! is the same for both. So,

Cn0
5ei ~n0xux1n0yuy!~ein0zuz1Be2 in0zuz!1

ein0u

n0a
f ~V!,

~A3!

Cn↑
5ei ~n↑xux1n↑yuy!~ein↑zuz1Be2 in↑zuz!1

ein↑u

n↑a
f ~V!.

~A4!
te

tal
w

is

t
.

a

-

re

e-
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at

By eliminating f (V) from both equations, we can writ
Cn↑

in terms ofCn0
as:

Cn↑
5ei ~n↑xux1n↑yuy!~ein↑zuzBe2in↑zez!

1
ein↑u

n↑
@Cn0

2ei ~n0xux1n0yuy!

3~ein0zuz1Be2in0zuz!#e2in0un0 . ~A5!

Substituting in Eq.~A2!

S a2E1b
n0
n↑

ei ~n↑2n0!DCn0
1bFei ~n↑xux1n↑yuy2n↑zuz!

2
n0e

i ~n↑2n0!

n↑
ei ~n0xux1n0yuy2n0zuz!GB1bCn↓

1bCnF

1bCnB
1bCnR

1bCnL

5bFn0n↑ ei ~n↑2n0!uein0•u2ein↑uG . ~A6!

So we can see how this equation on theCS andB is inho-
mogeneous. Also from the process we can see why equa
for sitesinside the tetris are homogeneous.

APPENDIX B

In this appendix we present definitions for DOS a
LDOS as used in this paper.

The LDOS of a system at a given location and for a giv
energy is defined as the number of states per unit ene
times the probability that the electron be at the given lo
tion. While the local density of states is

D~E0!5A (
u:E~u!5E0

1, ~B1!

the LDOS is

L~E0!5A (
u:E~u!5E0

uCusample at tip’s position
2 , ~B2!

whereA is a constant.
From Eq.~2! in the paper,

L~E0!5 (
u,E~u!5E0

U(
m

Cm,uFmU2 ~B3!

and, with the same approximations used in Ref. 22,

L5const (
u1,u2 ,u3

(
u28 ,u28 ,u38

uCSHu2e22r /as~V!, ~B4!

where const is a normalization constant,CSH is the TB co-
efficient of the sample at the ‘‘host’’ atom, that is, the close
to thec atom. Finally, the decay rate of the sample amplitu
as a function of applied voltage is

as~V!5
0.35 Å

A11~0.35 Å!2~2me/\2!V
. ~B5!
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