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Quantized thermal transport in the fractional quantum Hall effect
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We analyze thermal transport in the fractional quantum Hall effe@HE), employing a Luttinger liquid
model of edge states. Impurity mediated interchannel scattering events are incorporated in a hydrodynamic
description of heat and charge transport. The thermal Hall conductégds shown to provide universal
characterization of the FQHE state, and reveals nontrivial information about the edge structure. The Lorenz
ratio between thermal and electrical Hall conductangektesthe free-electron Wiedemann-Franz law, and
for some fractional states is predicted to megative We argue that thermal transport may provide a unique
way to detect the presence of the elusive upstream propagating modes, predicted for fractions such as
v=2/3 andv=3/5.[S0163-18206)07548-0

I. INTRODUCTION The thermalKy and electricalGy Hall conductances are
thus simply related by the Wiedemann-Franz law for free
The connection between quantized electrical transport andlectrons. A similar quantization of the thermal conductance
the microscopic structure of edge states is of fundamentalccurs for a quantum point contact.

importance to the quantum Hall effécfThe Hall conduc- In the fractional quantum Hall effedFQHE) the edge
tance is related to the additional edge curgnwvhich flows  modes are no longer free-electron-like, but rather are chiral
when the chemical potential of the edge is raised, Luttinger liquids® The charge carried by these modes con-
tributes to the electrical Hall conductance, giving an appro-
EX| priately quantized fractional value. But as in the integer
GH:eﬂ- (1.1 quantum Hall effectIQHE), one anticipates that the edge

modes will also dominate the transport of heat at low tem-

In the integer quantum Hall effect, the edge states consist dieratures. In this paper we study thermal transport in the
a single noninteracting electron mode for each full Landadractional quantum Hall effect. By employing a chiral Lut-
level. Due to the cancellation between velocity and onefinger liquid model of the edge states, we find that the FQHE
dimensional(1D) density of states, the contribution of each €dge modes also contribute a quantized thermal Hall conduc-
mode to the Hall conductance has the quantized valu&nce. Butin contrast to the IQHK,, is no longer related to
e2/h. the Hall conductancé&,,, via the Wiedemann-Franz law.

In addition to charge, energy is also transported by quanRather,Ky; provides an independent quantized characteriza-
tum Hall edge states. At temperatures well below the quantion of the FQHE state. In fact, the quantized thermal Hall
tum Hall gap, the energy moving along the edge cannot eagonductance is a universal property of the quantum Hall
ily escape, since there are no bulk current carrying electronigtate, in some ways as fundamental as the electrical Hall
excitations. When the top and bottom edges of a Hall bar areonductance, although of course much more difficult to mea-
at different temperatures a thermal transport current will therpure. But if measured,, would provide a nontrivial test of
flow. This gives rise to the thermal analogue of the HallMicroscopic edge state theories, as we elucidate below. A
effect, known as the Leduc-Righi effécOne can define a similar violation of the Wiedemann-Franz law occurs in a

thermal Hall conductance, analogous(101), nonchiral Luttinger liquic? _ _
For hierarchical FQHE states, multiple propagating

9] modes on a given edge are predictéBut even more intri-
KH:a_TQ' (1.2  guing is the prediction that for certain filling fractions, such

as v=2/3 and v=3/5, some of the chiral edge channels
. . te in the “wrong” direction — opposite to that of
whereJo, is the thermal current carried by the edge modesh oPada S : e .

For the ?ree—electron edge modes in the ir)1lteger qugantum Ha“1e classical skipping orbits specified by the sign of the mag-

PR ) « ”
effect, the edge velocity also cancels for the thermal lefrentnetlc field."” For a clean edge, the "upstream” modes carry

and each mode contributes a quantized amour.do of electrical charge, and contribute negatively to the Hall con-
magnitude q Ho ductance. Thaetelectrical Hall conductance is nevertheless

positive (and quantized since the contribution from the

5 12 “downstream” modes is larger in magnitude. Unfortunately,
K.o= E 1.3 the “upstream” modes have not yet been detected
H"3 h ' experimentally, presumably due to effects of edge state
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equilibration. In this paper we show that these upstreamwhich couples to the total charge in the Hamiltonian:

modes can have a profound effect on the thermal transport{y,= —n,®. Upon minimization of the Hamiltonian, this

Specifically, for the fraction’= 3/5 the thermal Hall conduc- results in a transport curredf,=Gy® with

tanceKy is predicted to banegative— of opposite sign to

the electrical Hall conductanc&,. The upstream modes

actually dominate in the thermal transport, so that the net

thermal current along the edge is in the opposite direction to

the net Charge transport current. Foe 2/3, on the other Before analyzing the transport of heat, it is convenient to

hand, we predict that the thermal Hall conductance vanished/st recast2.1) and(2.2) into a diagonal form, with a trans-

due to a cancellation between upstream and downstreafarmation Nj==;A;;n;. As shown in Ref. 11A can be

modes. Rather than being carried ballistically, the heat trangzhosen so that both matricésandV are brought into diag-

port along the edge is predicted to be diffusive, leading to @nal form: (ATKA);;=7;8; and (ATVA);j=v;8; . In this

nonvanishing thermal Haltonductivity These predictions new basis, the transformed Hamiltonian becomes

are robust, being valid in the presence of equilibration pro-

cesses, due say to edge impurity_ scatteri_ng. Thus, thermal HOZWZ viniz, (2.4

transport measurements may provide a unique way to estab- i

lish the existence of the elusive upstream moving channels. . . L
The outline of our paper is as follows. In Sec. Il we con- with the new densities satisfying

sider thermal transport for an ideal, impurity free, edge. In i

Sec. lll we generalize the theory to include disorder medi- [ni(x),nj(x")]= S 8ij0xS(x—x"). (2.5

ated interchannel scattering events. Specifically, we formu- 77

late a hydrodynamic theory that is valid on time scales longn this basis, the model describasndependent modes that

compared to the equilibration times. In this regime, thergpropagate with a speed; in a direction specified by

remains only a single hydrodynamic charge mode, and §,—= + 1. The number of upstream and downstream modes is

single heat mode, even for a multichannel edge. Section Iy ynjversal property of the matrix. The charge associated
is devoted to a brief discussion of experimental implications,yith each moden, is t; =E]-AIT]-
ijlj-

Specific geometries are considered, which should allow for
measurement of edge heat transport.

e2
Gu=v-. (2.3

Thermal currents can now be readily extracted. Each
channel describes independent chiral density modes that
propagate at speeg| in the #; direction, and have energy-

Il. CLEAN EDGE momentum dispersioE;(q) =%v;q. At temperaturel, each

Consider the edge of a clean fractional quantum Hall efnode is thermally populated with a Bose distribution func-
fect state at fillingw, in equilibrium at chemical potential 10N, P(E/kgT). The resulting thermal current is simply

p and temperaturd. In this section we compute both the
electrical and thermal Hall conductances, using the Luttinger JQ:E 7iviNgi (2.6
liquid model. At the nth level of the Haldane-Halperin ‘

hierarché/ff n chiral Luttinger liquid edge modes aré whereny, denotes the energy density in chanieFor an
expected, described by the Hamiltonian edge in local equilibrium at temperatufe this can be ex-
pressed as a sum over all the modes:
Ho=1 N;ViiN: . 2.1
o= NV 22 Ei@) 177K,
== 2T @)

dq
. . L nQi:fz_Ei(Q)b T 7o
HereN; are one-dimensional densities in thehannels, and ™ B Uj

theVj; are nonuniversal interactions, determined by the edggypon insertion 0f2.7) into (2.6), the nonuniversal velocities

conﬁn@ng potential and interchannel Coulqmb forces. Thevi are seen to cancel, giving a thermal Hall conductance,
densitiesN; obey the Kac-Moody commutation algebra

o Kn=—"=voo5 —
[Ni().Nj(x) =5 K 'ud(x=x"), (2.2 gT "%3 h
) i . The coefficientvo =2 #; is the difference between the num-
where then by n universal matrixk characterizes the topo- par of upstream and downstream channels.

logical order in the bulk quantum Hall fluiti® The electri- Upon combining with(2.3), the Lorenz ratio can be ex-
cal charge carried by each mode is specified by a Vecmﬁressed as '

T, so that the total edge charge densityjs=>;T;N;. The

T. 2.9

filling factor is related toK;; and T; via v=2ijTiKileJ. Ky 126
Specific representations of the matkxcan be found in Ref. L= TGy 3 Lo, 2.9
9

The electrical Hall conductance that follows from this WhereLo=(7?/3)(kg/€)? is the free-electron value. Notice
model is appropriately quantized. To see this, first note thathat each mode contributes the same amount to the thermal
the operator equations of motion imply a continuity equationconductance, whereas the “chargeg”implicitly enter the
an,+d.J,, with a conserved charge current given by electrical conductance, sinee= Emitiz. This leads to a Lo-

Jp=2iTi(K‘1V)iij. Now, add a constant potentigb, renz ratio for the FQHE which violates the Wiedemann-
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charge density on the edge. This would imply the presence of
only a single long-lived mode, analogous to zero sound in a
Fermi liquid. Actually, the situation is somewhat more com-

G

v=2 v. =2 plicated. As shown in detail in Refs. 11 and 13, even with
Q impurity scattering present there ame-1 other conserved
(@) “charges” at zero temperature, arising from symmetries as-
7 .. sociated with channel interchange. In most cases, these other

“charges” are neutral with respect to electric charge, and so

do not contribute directly to electrical transport. These
v=2/3 v, =0 n—1 neutral modes are analogous to quasiparticle excita-

(b) tions in a Fermi liquid. At nonzero temperatures, the

“charge” associated with these otheér—1 modes is no
longer conserved, and they decay away by scattering. Thus,
at finite temperature, the only remaining conserved charge is
indeed total electric charge.
v=3/5 Vo=-1 In this paper we focus exclusively on the hydrodynamic
(©) regime — at frequency scales below these relevant decay
rates. In this regime, we expect only a single propagating
FIG. 1. Schematic representation of edge states for several difitydrodynamic mode, associated with total charge conserva-
ferent quantum Hall fluids at filling factar. The integernq, which  tion, which propagates downstream. All upstream charge
specifies the difference between the number of downstream anghotion is associated with nonconserved charges, and decays
upstream propagating modes, determines the sign and magnitude @fvay. Observation of upstream charge transport requires a

7 ... === === = @

the thermal Hall conductance. “mesoscopic” experiment in which the sample is smaller
than the edge equilibration length.

Franz law. Like the Hall conductanae the thermal coeffi- In the absence of electron-phonon coupling, the electronic

cient vo is a robust and universal topological quantity, energy is also conserved at the edge. Thus, there should be

characterizing the Hall state. an additional hydrodynamic mode associated with thermal

When all of the edge channels move in the same directransport. Provided the coupling to the phonons is suffi-
tion, as shown fow=2 in Fig. 1(a), K, is simply a measure ciently weak, this can be a long-lived mode. In this section
of the total number of channels. But when channels move ine develop a simple hydrodynamic theory of charge and
both directions, there is an exact cancellation between thbeat transport, based on a Boltzmann transport equation. In
contribution of the upstream and downstream modes to theddition to the hydrodynamic charge modero soungl we
thermal Hall conductance. This leads to some striking preidentify the single hydrodynamic mode describing the flow
dictions. Forv=23/5 the form of theK matrix indicates that of (conservegienergy. This hydrodynamic heat mode leads
there are three modes, two of which move upstream, at® a quantized thermal conductance, as in the previous sec-
sketched in Fig. (). This implies a thermal Hall conduc- tion. Moreover, whervg<0, this hydrodynamic mode will
tance that isnegative— opposite in sign to the electrical be shown to propagate upstream — in the opposite direction
Hall effect. For v=2/3 [Fig. 1(c)] there is one upstream to the hydrodynamic charge mode.
channel and one downstream channel. TKys=0: in equi- Consider first a hydrodynamic description of charge
librium there is no net heat flow along the edge. In the nexpropagation. To formulate a Boltzmann transport theory, we
section we argue that these results are robust, and will sufirst consider the “collisionless” regime for a clean edge,
vive the presence of edge impurity scattering, which servegescribed by the decoupled Hamiltonigh4). The response
to equilibrate the various edge modes. of the system to a spatially and temporally varying potential

®, which couples to the total charge density,=Z;t;n;,

may be obtained from the operator equations of motidA as
. HYDRODYNAMIC THEORY

A central feature of the Luttinger liquid theory of FQHE (9 + nividy)ni= 7it; 9, P. 3.1
edges is the existence of upstream charge carrying modes.
Unfortunately, these upstream modes hawgébeen detected The transport equatiof8.1) conserves the charge in each
experimentally, despite experiments by Ashoerial” de-  mode. It is the analogue of the collisionless Boltzmann equa-
signed explicitly to observe them. We believe the resolutiortion for a Fermi liquid. Impurity scattering will destroy this
of this problem lies in the assumption of a clean etffé. conservation and lead to a flow of charge and energy be-
The clean edge model analyzed in the previous section corween the channels. This may be modeled microscopically
tains an artificially high symmetry. In particular, the chargeby adding random scatterng terms to the Hamiltor(ian),
in each of then different channels is independently con- which transfer electrons between the motle. However,
served. The existence of conserved charges implieshy-  provided successive scattering events are incoherent, a phe-
drodynamic modes — those described (By4d) — some of nomenological Boltzmann description is validhs discussed
which propagate upstream. above, this implies that the system is in the hydrodynamic

Impurities that are inevitably present near the edges ofegime, at scales longer than equilibration lengths and
any real sample will destroy this symmetry. One expects thatimes) As in conventional Boltzmann transport theory, im-
the only remaining conserved charge is the total electricapurity scattering is replaced by a “collision” term on the
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right side of(3.1), which relaxes the current§}2The appro-  which may also move upstream. As expected, the quantized
priate linearized transport equation then takes the form Hall conductance is given by thg—0,0=0 limit of the
response function.
Consider now a similar analysis for the thermal transport.
(GF mvid )M+ X Mijn;= 7t 05, (3.2 The transport equation for the energy density in each chan-
! nel, given a spatially and temporally varying temperature,

i is i i kes the f
The matrixM;; is in general complicated and depends on theta es the form

detailed nature of the interchannel scattering. Howebr, 2
must obey two constraints imposed by conservation 1&iys. (d+ mividy)Nig+ Z ij?an= i ?TaxéT. (3.8
In equilibrium there must be no net steady-state flow of )

charge between the channels. The equilibrium densities “Aere we have included a collision term that describes the

bﬁ extre}cteg t;y It?rl:]mg _a 9c1>tn ztanfrhpot_entllidll; tﬁ the flow of heat between the channels. Conservation of energy
gitg:]"ca potential. Then;=uv; "tjou. ThiS IMPlIES the con-  yemands that the matrdd @ must satisfy

> M= MJu; =0, (3.9
> Mjju; 't =0. (3.3 i i
]
the thermal analogues of conditiofi$ and (ii) above. The
(i) The total charge on the edge must be conserved, even o@iPPropriate generalization of E¢3.5), which describes a
of equilibrium. Since the charge flowing out of channés  low-frequency thermal mode corresponding to local thermal
2;tiM;;n;, this implies equilibrium, is
U-_l
Noi(X,t)=Ng—=——p €@ b, 3.1
Z tiM;;=0. (3.9 ai(x.t) EThE (310
The thermal response function can then be obtained, as be-
Since the transport equatiof8.2) is linear, it may be fore, employing the thermal Boltzmann equati@®8). This
solved by Fourier transforming, to obtain an eigenvaluegives
problem, with eigenvalues(q). Most of the eigenvalues

will correspond to solutions that decay exponentially in time. _ voQ
However, the two constraintsi) and (i) above, guarantee HQ(q"")_KHU q—w—in’ (319
. . Q
that there is one low-frequency mode, withreq asq—0.
Specifically, consider a solution 18.2) of the form whereKy, is the quantized thermal Hall conductance given in
Eq. (2.8), and the velocity of the heat mode is
tivfl . -1
i(x,t)= —el(@xet), 3. _
ni(X,t) anitizvi 1€ (3.9 vo="vo EI vt . (3.12

For g,0—0 this corresponds to “local equilibrium” with a Notice that this velocity can be of either sign, depending on
slowly varying charge density,€'(~“". Since there is 4. Thus for »=3/5, the hydrodynamic heat mode flows
only a single conservation law — total electric charge—weypstream in the opposite direction of the charge.

expect this to be the only low-frequency solution. Inserting  For = 2/3 the thermal Hall conductance vanishes, and a
(3.9 into (3.2, multiplying by t; and summing on, allows  more detailed analysis of E¢3.8) is required. This reveals
the total electric charga,, to be related tob. The current-  that the thermal transport is diffusive, rather than ballistic,
charge response function, defined hby,=II,(q,0)®, with a response function given by
readily follows,

Dqu—iw’

IIo(q,w)=C (3.13

v,4

vaq—w—in'

I,(q,w)=G (3.6
where C=(772/3)T2ivi_1 is the edge heat capacity. Al-

with though the thermal conductance vanishes, there is a finite
thermalconductivityx=CDgq . The value of the thermal dif-

-1 fusion constanDq depends on the details of the scattering
v,= ,,( > tfvi—l) , 3.7 matrixM7.
I

. . . IV. EXPERIMENTAL IMPLICATIONS
and G, given in Eg.(2.3). The response function has a

single pole, describing a single hydrodynamic charge mode, As shown above, the thermal Hall conductahGe con-
which propagates downstream at velogify. This is in con-  tains important information about the structure of the edge
trast to the clean edge, which haspropagating modes, excitations in the FQHE. In particular, the sign Kf; is
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ture change of the upstream and downstream edges. For in-
teger quantum Hall states, and fractional states at filling fac-
tors such ay=1/3,2/5, the heat should flow downstream,
resulting in a temperature increase at the downstream ther-
T +AT ] T mometer only. On the other hand, for filling=3/5, since
ZZZ \ [ZZ K, is negative, heat flows “upstream,” so the temperature
T T +3T increase should be detectable at the upstream thermometer.
[] To For v=2/3, the heat is predicted to diffuse along the edge.
The temperature increases should then be the same at the
upstream and downstream thermometers, but smaller in mag-
nitude.

FIG. 2. Proposed geometry for measurement of the thermal Hall On sufficiently long length scales, the edge states will
conductance. The heat generated by passing a current between cdhermally equilibrate with the phonons in the substrate. It is
tacts 2 and 3 is detected by two additional point contacts, upstreatihus crucial that the heater and thermometer are closer to-
(1-6) and downstreanid-5) along the edge. gether than the electron-phonon thermal equilibration length.

While this equilibration length has not been measured, we
expect it to be quite long. Energy relaxation rates have been
. measured for two-dimensional electron gases in Ga%sn
sensitive to the presence of edge modes that propagate “Uparo magnetic field. At 1 K relaxation times of order 20 ns

stream.” In this section we briefly discuss the feasibility of : e
measuring the Hall thermal conductance. We suggest a pag_re found, which suggests an equilibration length of upwards

ticular geometry that should at least enable a measurement 8f 100 #m. At low temperatures, the interaction between
the sign ofK,,. electrons and the lattice in GaAs is dominated by the piezo-

To extractK,, requires measuring the thermal current car-€lectric coupling to acoustic phqnons and the relaxation rate
ried by the edge excitations. Although this is clearly muchd€creases as the temperature is lowefédThus, we Sus-
more challenging than measuring charge transport, a receRECt that lattice thermahza’qon will not be a problem in the
experiment by Molenkampt al*# has demonstrated the fea- ProPosed edge state experiment.
sibility of measuring thermal transport in mesoscopic struc-

I
e
‘LT

AN

tures. Specifically, in this experiment the thermal conduc- V. CONCLUSION
tance of a quantum point contdat zero magnetic fieldwas
extracted. The trick was usingdditional point contacts as ~ We have shown that the thermal conductance of a quan-

“thermometers,” to measure the local temperature of thefum Hall edge state is universal and quantizig=vqK,
electron gas on either side of the point contact. The addiwith Ko=(7?/3)(ki/h)T. The integervq specifies the dif-
tional point contacts were biased on the edge of a step bderence between the number of downstream and upstream
tween two plateaus, so that they would have a largegdge modes. Moreover, the quantizatiorkef was shown to
temperature-independent thermopower of ordenA@K.®  be robust, valid in the presence of interactions and impurity
Then, by measuring the voltage across these additional poicattering at the edge. We also expect the quantization to
contact thermometers the local temperature change was eltold for an edge with a slowly varying confinement poten-
tracted. In Molenkamp’s experiment, the thermal current wadial, which may have channels in addition to those required
estimated from the change in temperature by estimating they the Luttinger liquid theory? Since the additional edge
heat capacity of the electron gas. This allowed for a deterchannels come in pairs — one upstream and one downstream
mination of the thermal conductance and Peltier coefficient— they do not changeg . On sufficiently long length scales,
of the point contact, which agreed favorably with theoreticalso that all edge modes are equilibrated, we predict only a
expectations. single hydrodynamic charge mode and a single heat mode.
It should be possible to adapt this technique to measuréhese two hydrodynamic modes carry the charge and ther-
the thermal transport of quantum Hall edge states. As a corinal currents, leading to the quantized conductances.
crete example, consider the geometry sketched in Fig. 2. As In the FQHE, the thermal Hall conductankg contains
in the experiment by Molenkamet al,, the sample can be additional information about the microscopic edge structure,
heated locally by driving a small electric current through thenot present in the electrical conductance. ket 3/5, we
electron gas. Specifically, a current between contacts 2 and@edict thatKy is negative due to the presence of “up-
(see Fig. 2would locally heat the edge of the quantum Hall stream” propagating edge modes. A measurement of the
fluid. Alternatively, it might be possible to heat the edgesign ofK would thus provide a critical and nontrivial test of
directly by coupling in a local rf prob¥ This local heating current edge state theories.
will be carried away by the edge states, either raising the
temperature of the downstream or upstream edge, depending
on the sign ofKy. This temperature change can then be
detected by measuring the voltages across the point contact It is a pleasure to thank T. Heinzel, A.T. Johnson, and L.
thermometers. Kouwenhoven for helpful discussions. We are grateful to the
While this measurement might not be suitable to extracNational Science Foundation for support. M.P.A.F has been
the magnitude oKy, it should be adequate to determine the supported by Grant No. PHY94-07194, No. DMR-9400142,
direction of heat propagation — and hence #iign of K. and No. DMR-9528578. C.L.K. has been supported by Grant
For this, one need only detect asymmetryn the tempera- No. DMR 95-05425.
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