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Quantized thermal transport in the fractional quantum Hall effect
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We analyze thermal transport in the fractional quantum Hall effect~FQHE!, employing a Luttinger liquid
model of edge states. Impurity mediated interchannel scattering events are incorporated in a hydrodynamic
description of heat and charge transport. The thermal Hall conductanceKH is shown to provide universal
characterization of the FQHE state, and reveals nontrivial information about the edge structure. The Lorenz
ratio between thermal and electrical Hall conductancesviolatesthe free-electron Wiedemann-Franz law, and
for some fractional states is predicted to benegative. We argue that thermal transport may provide a unique
way to detect the presence of the elusive upstream propagating modes, predicted for fractions such as
n52/3 andn53/5. @S0163-1829~96!07548-0#
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I. INTRODUCTION

The connection between quantized electrical transport
the microscopic structure of edge states is of fundame
importance to the quantum Hall effect.1 The Hall conduc-
tance is related to the additional edge currentJ, which flows
when the chemical potentialm of the edge is raised,

GH5e
]J

]m
. ~1.1!

In the integer quantum Hall effect, the edge states consis
a single noninteracting electron mode for each full Land
level. Due to the cancellation between velocity and o
dimensional~1D! density of states, the contribution of eac
mode to the Hall conductance has the quantized va
e2/h.

In addition to charge, energy is also transported by qu
tum Hall edge states. At temperatures well below the qu
tum Hall gap, the energy moving along the edge cannot e
ily escape, since there are no bulk current carrying electro
excitations. When the top and bottom edges of a Hall bar
at different temperatures a thermal transport current will th
flow. This gives rise to the thermal analogue of the H
effect, known as the Leduc-Righi effect.2 One can define a
thermal Hall conductance, analogous to~1.1!,

KH5
]JQ
]T

, ~1.2!

whereJQ is the thermal current carried by the edge mod
For the free-electron edge modes in the integer quantum
effect, the edge velocity also cancels for the thermal curre3

and each mode contributes a quantized amount toKH , of
magnitude

KH5
p2

3

kB
2

h
T. ~1.3!
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The thermalKH and electricalGH Hall conductances are
thus simply related by the Wiedemann-Franz law for fr
electrons. A similar quantization of the thermal conductan
occurs for a quantum point contact.

In the fractional quantum Hall effect~FQHE! the edge
modes are no longer free-electron-like, but rather are ch
Luttinger liquids.4 The charge carried by these modes co
tributes to the electrical Hall conductance, giving an app
priately quantized fractional value. But as in the integ
quantum Hall effect~IQHE!, one anticipates that the edg
modes will also dominate the transport of heat at low te
peratures. In this paper we study thermal transport in
fractional quantum Hall effect. By employing a chiral Lu
tinger liquid model of the edge states, we find that the FQ
edge modes also contribute a quantized thermal Hall cond
tance. But in contrast to the IQHE,KH is no longer related to
the Hall conductanceGH , via the Wiedemann-Franz law
Rather,KH provides an independent quantized character
tion of the FQHE state. In fact, the quantized thermal H
conductance is a universal property of the quantum H
state, in some ways as fundamental as the electrical
conductance, although of course much more difficult to m
sure. But if measured,KH would provide a nontrivial test of
microscopic edge state theories, as we elucidate below
similar violation of the Wiedemann-Franz law occurs in
nonchiral Luttinger liquid.5

For hierarchical FQHE states, multiple propagati
modes on a given edge are predicted.4 But even more intri-
guing is the prediction that for certain filling fractions, suc
as n52/3 and n53/5, some of the chiral edge channe
propagate in the ‘‘wrong’’ direction — opposite to that o
the classical skipping orbits specified by the sign of the m
netic field.4,6 For a clean edge, the ‘‘upstream’’ modes car
electrical charge, and contribute negatively to the Hall co
ductance. Thenetelectrical Hall conductance is neverthele
positive ~and quantized!, since the contribution from the
‘‘downstream’’ modes is larger in magnitude. Unfortunate
the ‘‘upstream’’ modes have not yet been detec
experimentally,7 presumably due to effects of edge sta
15 832 © 1997 The American Physical Society
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equilibration. In this paper we show that these upstre
modes can have a profound effect on the thermal transp
Specifically, for the fractionn53/5 the thermal Hall conduc
tanceKH is predicted to benegative— of opposite sign to
the electrical Hall conductance,GH . The upstream mode
actually dominate in the thermal transport, so that the
thermal current along the edge is in the opposite direction
the net charge transport current. Forn52/3, on the other
hand, we predict that the thermal Hall conductance vanis
due to a cancellation between upstream and downstr
modes. Rather than being carried ballistically, the heat tra
port along the edge is predicted to be diffusive, leading t
nonvanishing thermal Hallconductivity. These predictions
are robust, being valid in the presence of equilibration p
cesses, due say to edge impurity scattering. Thus, the
transport measurements may provide a unique way to es
lish the existence of the elusive upstream moving chann

The outline of our paper is as follows. In Sec. II we co
sider thermal transport for an ideal, impurity free, edge.
Sec. III we generalize the theory to include disorder me
ated interchannel scattering events. Specifically, we form
late a hydrodynamic theory that is valid on time scales lo
compared to the equilibration times. In this regime, th
remains only a single hydrodynamic charge mode, an
single heat mode, even for a multichannel edge. Section
is devoted to a brief discussion of experimental implicatio
Specific geometries are considered, which should allow
measurement of edge heat transport.

II. CLEAN EDGE

Consider the edge of a clean fractional quantum Hall
fect state at fillingn, in equilibrium at chemical potentia
m and temperatureT. In this section we compute both th
electrical and thermal Hall conductances, using the Luttin
liquid model. At the nth level of the Haldane-Halperin
hierarchy,8 n chiral Luttinger liquid edge modes ar
expected,4 described by the Hamiltonian

H05p(
i j

NiVi jNj . ~2.1!

HereNi are one-dimensional densities in then channels, and
theVi j are nonuniversal interactions, determined by the e
confining potential and interchannel Coulomb forces. T
densitiesNi obey the Kac-Moody commutation algebra

@Ni~x!,Nj~x8!#5
i

2p
Ki j

21]xd~x2x8!, ~2.2!

where then by n universal matrixK characterizes the topo
logical order in the bulk quantum Hall fluid.9,10 The electri-
cal charge carried by each mode is specified by a ve
Ti , so that the total edge charge density isnr5( iTiNi . The
filling factor is related toKi j and Ti via n5( i j TiKi j

21Tj .
Specific representations of the matrixK can be found in Ref.
9.

The electrical Hall conductance that follows from th
model is appropriately quantized. To see this, first note
the operator equations of motion imply a continuity equati
] tnr1]xJr , with a conserved charge current given
Jr5( iTi(K

21V) i j Nj . Now, add a constant potentialF,
m
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which couples to the total charge in the Hamiltonia
HF52nrF. Upon minimization of the Hamiltonian, this
results in a transport currentJr5GHF with

GH5n
e2

h
. ~2.3!

Before analyzing the transport of heat, it is convenient
first recast~2.1! and~2.2! into a diagonal form, with a trans
formation Ni5( jL i j nj . As shown in Ref. 11,L can be
chosen so that both matricesK andV are brought into diag-
onal form: (LTKL) i j5h id i j and (LTVL) i j5v id i j . In this
new basis, the transformed Hamiltonian becomes

H05p(
i
v ini

2 , ~2.4!

with the new densities satisfying

@ni~x!,nj~x8!#5
i

2p
h id i j ]xd~x2x8!. ~2.5!

In this basis, the model describesn independent modes tha
propagate with a speedv i in a direction specified by
h i561. The number of upstream and downstream mode
a universal property of the matrixK. The charge associate
with each modeni is t i5( jL i j

TTj .
Thermal currents can now be readily extracted. Ea

channel describes independent chiral density modes
propagate at speedv i in the h i direction, and have energy
momentum dispersionEi(q)5\v iq. At temperatureT, each
mode is thermally populated with a Bose distribution fun
tion, b(E/kBT). The resulting thermal current is simply

JQ5(
i

h iv inQi , ~2.6!

wherenQi denotes the energy density in channeli . For an
edge in local equilibrium at temperatureT, this can be ex-
pressed as a sum over all the modes:

nQi5E dq

2p
Ei~q!bSEi~q!

kBT
D5

1

v i

p2

6

kB
2

h
T2. ~2.7!

Upon insertion of~2.7! into ~2.6!, the nonuniversal velocities
v i are seen to cancel, giving a thermal Hall conductance

KH5
]JQ
]T

5nQ
p2

3

kB
2

h
T. ~2.8!

The coefficientnQ5( ih i is the difference between the num
ber of upstream and downstream channels.

Upon combining with~2.3!, the Lorenz ratio can be ex
pressed as

L5
KH

TGH
5S nQ

n DL0 , ~2.9!

whereL05(p2/3)(kB /e)
2 is the free-electron value. Notic

that each mode contributes the same amount to the the
conductance, whereas the ‘‘charges’’t i implicitly enter the
electrical conductance, sincen5( ih i t i

2 . This leads to a Lo-
renz ratio for the FQHE which violates the Wiedeman
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15 834 55C. L. KANE AND MATTHEW P. A. FISHER
Franz law. Like the Hall conductancen, the thermal coeffi-
cient nQ is a robust and universal topological quantit
characterizing the Hall state.

When all of the edge channels move in the same dir
tion, as shown forn52 in Fig. 1~a!, KH is simply a measure
of the total number of channels. But when channels mov
both directions, there is an exact cancellation between
contribution of the upstream and downstream modes to
thermal Hall conductance. This leads to some striking p
dictions. Forn53/5 the form of theK matrix indicates that
there are three modes, two of which move upstream,
sketched in Fig. 1~b!. This implies a thermal Hall conduc
tance that isnegative— opposite in sign to the electrica
Hall effect. For n52/3 @Fig. 1~c!# there is one upstream
channel and one downstream channel. Thus,KH50: in equi-
librium there is no net heat flow along the edge. In the n
section we argue that these results are robust, and will
vive the presence of edge impurity scattering, which ser
to equilibrate the various edge modes.

III. HYDRODYNAMIC THEORY

A central feature of the Luttinger liquid theory of FQH
edges is the existence of upstream charge carrying mo
Unfortunately, these upstream modes havenot been detected
experimentally, despite experiments by Ashooriet al.7 de-
signed explicitly to observe them. We believe the resolut
of this problem lies in the assumption of a clean edge.13,12

The clean edge model analyzed in the previous section
tains an artificially high symmetry. In particular, the char
in each of then different channels is independently co
served. The existence ofn conserved charges impliesn hy-
drodynamic modes — those described by~2.4! — some of
which propagate upstream.

Impurities that are inevitably present near the edges
any real sample will destroy this symmetry. One expects
the only remaining conserved charge is the total electr

FIG. 1. Schematic representation of edge states for severa
ferent quantum Hall fluids at filling factorn. The integernQ , which
specifies the difference between the number of downstream
upstream propagating modes, determines the sign and magnitu
the thermal Hall conductance.
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charge density on the edge. This would imply the presenc
only a single long-lived mode, analogous to zero sound i
Fermi liquid. Actually, the situation is somewhat more com
plicated. As shown in detail in Refs. 11 and 13, even w
impurity scattering present there aren21 other conserved
‘‘charges’’ at zero temperature, arising from symmetries
sociated with channel interchange. In most cases, these o
‘‘charges’’ are neutral with respect to electric charge, and
do not contribute directly to electrical transport. The
n21 neutral modes are analogous to quasiparticle exc
tions in a Fermi liquid. At nonzero temperatures, t
‘‘charge’’ associated with these othern21 modes is no
longer conserved, and they decay away by scattering. T
at finite temperature, the only remaining conserved charg
indeed total electric charge.

In this paper we focus exclusively on the hydrodynam
regime — at frequency scales below these relevant de
rates. In this regime, we expect only a single propagat
hydrodynamic mode, associated with total charge conse
tion, which propagates downstream. All upstream cha
motion is associated with nonconserved charges, and de
away. Observation of upstream charge transport require
‘‘mesoscopic’’ experiment in which the sample is small
than the edge equilibration length.

In the absence of electron-phonon coupling, the electro
energy is also conserved at the edge. Thus, there shoul
an additional hydrodynamic mode associated with therm
transport. Provided the coupling to the phonons is su
ciently weak, this can be a long-lived mode. In this sect
we develop a simple hydrodynamic theory of charge a
heat transport, based on a Boltzmann transport equation
addition to the hydrodynamic charge mode~zero sound!, we
identify the single hydrodynamic mode describing the flo
of ~conserved! energy. This hydrodynamic heat mode lea
to a quantized thermal conductance, as in the previous
tion. Moreover, whennQ,0, this hydrodynamic mode will
be shown to propagate upstream — in the opposite direc
to the hydrodynamic charge mode.

Consider first a hydrodynamic description of char
propagation. To formulate a Boltzmann transport theory,
first consider the ‘‘collisionless’’ regime for a clean edg
described by the decoupled Hamiltonian~2.4!. The response
of the system to a spatially and temporally varying poten
F, which couples to the total charge density,nr5( i t ini ,
may be obtained from the operator equations of motion a12

~] t1h iv i]x!ni5h i t i]xF. ~3.1!

The transport equation~3.1! conserves the charge in eac
mode. It is the analogue of the collisionless Boltzmann eq
tion for a Fermi liquid. Impurity scattering will destroy thi
conservation and lead to a flow of charge and energy
tween the channels. This may be modeled microscopic
by adding random scatterng terms to the Hamiltonian~2.1!,
which transfer electrons between the modes.11,12 However,
provided successive scattering events are incoherent, a
nomenological Boltzmann description is valid.~As discussed
above, this implies that the system is in the hydrodynam
regime, at scales longer than equilibration lengths a
times.! As in conventional Boltzmann transport theory, im
purity scattering is replaced by a ‘‘collision’’ term on th

if-
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right side of~3.1!, which relaxes the currents.11,12The appro-
priate linearized transport equation then takes the form

~] t1h iv i]x!ni1(
j
M i j nj5h i t i]xdF. ~3.2!

The matrixMi j is in general complicated and depends on
detailed nature of the interchannel scattering. However,M
must obey two constraints imposed by conservation laws~i!
In equilibrium there must be no net steady-state flow
charge between the channels. The equilibrium densities
be extracted by taking a constant potential,F5m, the
chemical potential. Thenni5v i

21t idm. This implies the con-
dition

(
j
M i jv j

21t j50. ~3.3!

~ii ! The total charge on the edge must be conserved, even
of equilibrium. Since the charge flowing out of channeli is
( j t iM i j nj , this implies

(
i
t iM i j50. ~3.4!

Since the transport equation~3.2! is linear, it may be
solved by Fourier transforming, to obtain an eigenva
problem, with eigenvaluesv(q). Most of the eigenvalues
will correspond to solutions that decay exponentially in tim
However, the two constraints,~i! and ~ii ! above, guarantee
that there is one low-frequency mode, withv}q asq→0.
Specifically, consider a solution to~3.2! of the form

ni~x,t !5nr

t iv i
21

( i t i
2v i

21e
i ~qx2vt !. ~3.5!

For q,v→0 this corresponds to ‘‘local equilibrium’’ with a
slowly varying charge densitynre

i (qx2vt). Since there is
only a single conservation law — total electric charge—
expect this to be the only low-frequency solution. Inserti
~3.5! into ~3.2!, multiplying by t i and summing oni , allows
the total electric chargenr to be related toF. The current-
charge response function, defined byJr5Pr(q,v)F,
readily follows,

Pr~q,v!5GH

vrq

vrq2v2 ih
, ~3.6!

with

vr5nS (
i
t i
2v i

21D 21

, ~3.7!

and GH given in Eq. ~2.3!. The response function has
single pole, describing a single hydrodynamic charge mo
which propagates downstream at velocityvr . This is in con-
trast to the clean edge, which hasn propagating modes
e

f
an

ut

e

.

e,

which may also move upstream. As expected, the quant
Hall conductance is given by theq→0,v50 limit of the
response function.

Consider now a similar analysis for the thermal transpo
The transport equation for the energy density in each ch
nel, given a spatially and temporally varying temperatu
takes the form

~] t1h iv i]x!niQ1(
j
M i j

QnjQ5h i

p2

3
T]xdT. ~3.8!

Here we have included a collision term that describes
flow of heat between the channels. Conservation of ene
demands that the matrixMQ must satisfy

(
i
M i j

Q5(
j
M i j

Qv j
2150, ~3.9!

the thermal analogues of conditions~i! and ~ii ! above. The
appropriate generalization of Eq.~3.5!, which describes a
low-frequency thermal mode corresponding to local therm
equilibrium, is

nQi~x,t !5nQ
v i

21

( iv i
21e

i ~qx2vt !. ~3.10!

The thermal response function can then be obtained, as
fore, employing the thermal Boltzmann equation~3.8!. This
gives

PQ~q,v!5KH

vQq
vQq2v2 ih

, ~3.11!

whereKH is the quantized thermal Hall conductance given
Eq. ~2.8!, and the velocity of the heat mode is

vQ5nQS (
i
v i

21D 21

. ~3.12!

Notice that this velocity can be of either sign, depending
nQ . Thus for n53/5, the hydrodynamic heat mode flow
upstream in the opposite direction of the charge.

For n52/3 the thermal Hall conductance vanishes, an
more detailed analysis of Eq.~3.8! is required. This reveals
that the thermal transport is diffusive, rather than ballis
with a response function given by

PQ~q,v!5C
vqDQ

DQq
22 iv

, ~3.13!

where C5(p2/3)T( iv i
21 is the edge heat capacity. Al

though the thermal conductance vanishes, there is a fi
thermalconductivityk5CDQ . The value of the thermal dif-
fusion constantDQ depends on the details of the scatteri
matrixMi j

Q .

IV. EXPERIMENTAL IMPLICATIONS

As shown above, the thermal Hall conductanceKH con-
tains important information about the structure of the ed
excitations in the FQHE. In particular, the sign ofKH is
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15 836 55C. L. KANE AND MATTHEW P. A. FISHER
sensitive to the presence of edge modes that propagate
stream.’’ In this section we briefly discuss the feasibility
measuring the Hall thermal conductance. We suggest a
ticular geometry that should at least enable a measureme
the sign ofKH .

To extractKH requires measuring the thermal current c
ried by the edge excitations. Although this is clearly mu
more challenging than measuring charge transport, a re
experiment by Molenkampet al.14 has demonstrated the fea
sibility of measuring thermal transport in mesoscopic str
tures. Specifically, in this experiment the thermal cond
tance of a quantum point contact~in zero magnetic field! was
extracted. The trick was usingadditional point contacts as
‘‘thermometers,’’ to measure the local temperature of
electron gas on either side of the point contact. The ad
tional point contacts were biased on the edge of a step
tween two plateaus, so that they would have a lar
temperature-independent thermopower of order 40mV/K.15

Then, by measuring the voltage across these additional p
contact thermometers the local temperature change was
tracted. In Molenkamp’s experiment, the thermal current w
estimated from the change in temperature by estimating
heat capacity of the electron gas. This allowed for a de
mination of the thermal conductance and Peltier coeffici
of the point contact, which agreed favorably with theoreti
expectations.

It should be possible to adapt this technique to meas
the thermal transport of quantum Hall edge states. As a c
crete example, consider the geometry sketched in Fig. 2
in the experiment by Molenkampet al., the sample can be
heated locally by driving a small electric current through t
electron gas. Specifically, a current between contacts 2 a
~see Fig. 2! would locally heat the edge of the quantum H
fluid. Alternatively, it might be possible to heat the ed
directly by coupling in a local rf probe.16 This local heating
will be carried away by the edge states, either raising
temperature of the downstream or upstream edge, depen
on the sign ofKH . This temperature change can then
detected by measuring the voltages across the point co
thermometers.

While this measurement might not be suitable to extr
the magnitude ofKH , it should be adequate to determine t
direction of heat propagation — and hence thesign of KH .
For this, one need only detect anasymmetryin the tempera-

FIG. 2. Proposed geometry for measurement of the thermal
conductance. The heat generated by passing a current between
tacts 2 and 3 is detected by two additional point contacts, upstr
~1-6! and downstream~4-5! along the edge.
p-

ar-
of

-

nt

-
-

e
i-
e-
,

int
ex-
s
e
r-
t
l

re
n-
s

3

e
ing

act

t

ture change of the upstream and downstream edges. Fo
teger quantum Hall states, and fractional states at filling f
tors such asn51/3,2/5, the heat should flow downstream
resulting in a temperature increase at the downstream t
mometer only. On the other hand, for fillingn53/5, since
KH is negative, heat flows ‘‘upstream,’’ so the temperatu
increase should be detectable at the upstream thermom
For n52/3, the heat is predicted to diffuse along the ed
The temperature increases should then be the same a
upstream and downstream thermometers, but smaller in m
nitude.

On sufficiently long length scales, the edge states w
thermally equilibrate with the phonons in the substrate. I
thus crucial that the heater and thermometer are closer
gether than the electron-phonon thermal equilibration leng
While this equilibration length has not been measured,
expect it to be quite long. Energy relaxation rates have b
measured for two-dimensional electron gases in GaAs17,18 in
zero magnetic field. At 1 K relaxation times of order 20
are found, which suggests an equilibration length of upwa
of 100 mm. At low temperatures, the interaction betwe
electrons and the lattice in GaAs is dominated by the pie
electric coupling to acoustic phonons and the relaxation
decreases as the temperature is lowered.18,19 Thus, we sus-
pect that lattice thermalization will not be a problem in t
proposed edge state experiment.

V. CONCLUSION

We have shown that the thermal conductance of a qu
tum Hall edge state is universal and quantized:KH5nQK0

with K05(p2/3)(kB
2/h)T. The integernQ specifies the dif-

ference between the number of downstream and upstr
edge modes. Moreover, the quantization ofKH was shown to
be robust, valid in the presence of interactions and impu
scattering at the edge. We also expect the quantizatio
hold for an edge with a slowly varying confinement pote
tial, which may have channels in addition to those requi
by the Luttinger liquid theory.20 Since the additional edge
channels come in pairs — one upstream and one downstr
— they do not changenQ . On sufficiently long length scales
so that all edge modes are equilibrated, we predict onl
single hydrodynamic charge mode and a single heat mo
These two hydrodynamic modes carry the charge and t
mal currents, leading to the quantized conductances.

In the FQHE, the thermal Hall conductanceKH contains
additional information about the microscopic edge structu
not present in the electrical conductance. Forn53/5, we
predict thatKH is negative, due to the presence of ‘‘up
stream’’ propagating edge modes. A measurement of
sign ofKH would thus provide a critical and nontrivial test o
current edge state theories.
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