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Low-temperature magnetoconductance transition to Mott’s conductance
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School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,

69978 Ramat Aviv, Israel
~Received 30 December 1996!

The conductivity of an amorphous sample at low temperatures in a strong magnetic field is calculated. While
Mott’s and Ono’s theories consider infinite samples, the proposed formalism treats finite ones. It turns out that
this is a crucial difference. The model shows a transition between two conductivity behaviors: ln(s)'T21/3 for
T,T̃ and ln(s)'2T21/2 for T.T̃ ~the transition temperatureT̃ depends on the magnetic field and on the
sample’s size!. The former one resembles the simple two-dimensional Mott conductivity behavior, while the
latter resembles Ono’s theory.@S0163-1829~97!00223-3#
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In 1969 Mott presented his variable-range hopping~VRH!
theory of an amorphous system.1 It predicted that for a
d-dimensional amorphous sample the electrical conducti
~s! has the following temperature dependence: ln@s(T)#'
2T21/(d11). This theory was found to be in good agreeme
with early experiments of three-dimensional2 ~3D! and
two-dimensional3 ~2D! systems, where Mott’s theory pre
dicts

s'exp@2~TM /T!1/3#. ~1!

The first experiments of the quantum Hall effect stim
lated the interest in the temperature dependence of the tr
verse conductivity (sxx). Since the magnetic field causes
Gaussian localization instead of an exponential one~i.e., the
electron’s wave function looks likew'e2(r /I )2/2, l is the
magnetic length!, VRH theory predicts an exponential de
pendence exp@2(T0 /T)

1/2#.
Ono took a percolation approach6 in order to calculate the

conductivity more rigorously. His theory predicts th
following:5

s'T21exp@2~T0 /T!1/2#. ~2!

The experimental results of Ref. 4 show excellent agreem
with this prediction.

In this paper we present a rigorous calculation of
transverse conductivity in the resonant tunneling regime,
in the regime where the coherence length is longer than
sample’s size. It should be emphasized that Mott’s a
Ono’s theories assume infinite sample. This paper shows
the finite sizes of the sample cause an important effect on
conductivity. It is found that there is a transition temperatu
T̃ where the temperature dependence behaves like Eq~2!
whenT.T̃ and like Eq.~1! whenT,T̃.

Take a system where electrons are scattered over a
number of impurities~Fig. 1!, which are uniformly placed in
an opaque potential barrier in a strong magnetic field. T
stationary-state Schro¨dinger equation can then be written a

@~ p̂y1Ay!
21p̂x

2#c2~E2U !c5(
i
D~ ur i2r u!c. ~3!

Hereafter, we use the unitsh52m52e5c51 ~Planck con-
stant, the electron’s mass and charge, and the velocit
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light, respectively!. p̂x,y are the momentum operators,E is
the incoming electrons’ energy, andU is the potential:

U[ HV for 2L,x,L
0 otherwise,

and theD ’s are the impurities’ potentials, which are shor
range ones~see Ref. 7!. V is a positive potential, and thus th
electrons with energy 0,E,V tunnel through the barrier
The exact form of the impurities’ potentials (D) is unimpor-
tant as long as they are short-range ones, i.e., on ato
scales. Mathematically, they can be represented by the
purity D function ~IDF, see Ref. 7!, which is infinitely shal-
lower than the two-dimensionald function ~2DDF!, but un-
like the 2DDF, it has an eigenvalue~sayẼi0!. Because of its
infinitely small dimensions, the short-range potential can
fully determined by this single parameter~the eigenvalue!.
Thus, each impurity creates a resonance levelEi[V2Ẽi0 ,
to which the particles can tunnel. If the electrons’ ener
equals the resonance energy of the impurity, the impurit
presence will be felt in the conductance, since many e
trons will tunnel through it. But if their energy does no
match, the influence of the specific impurity will be neg
gible. In the following, the Landau gauge is chosen asAy
5Bx ~B is the magnetic field!.

FIG. 1. The substantial contribution to the current through
barrier comes from the resonant impurities, i.e., from the impuri
whose energy is equal to the incoming electrons’ energy.
15 828 © 1997 The American Physical Society
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In the case of a very strong magnetic field (BL2@1), the
solutionc~r ! can be written as a summation over the con
butions from each of the impuritiesc i(r ), i.e.,

c~r !5(
i

c i~r ,r i !. ~4!

Notice that the strong magnetic field allows us to neglect
coherent multicenter scattering. Moreover, for a specific p
ticle energy, only the resonance impurities give a consid
able contribution toc, the rest can be ignored.

The absolute value of each one of these contribution
the end of the barrier~for a very strong magnetic fieldB
@AV/L! is

uc i~x5L !u'
ce2B~L21xi

2
!/2e2B~y2yi !

2/4

~E2Ei !/D1 ie2B~L21xi
2
!/21BLuxi u

, ~5!

wherexi , yi , andEi are thex and y locations of thei th
impurity, and its resonance energy, respectively;c and D
change slowly with the energy and the magnetic field. W
assumed in Eq.~5! that the magnetic field is so strong, i.e
B@AV/L, that one can neglect the dependence ofc on the
barrier strength; that is whyV is absent in Eq.~5! ~actually,
we can find it indirectly inEi[V2Ẽi0!. According to Ref.
8,

GL54i(
l

] f

]« E dyS ]cl*

]x
cl2c.c.D , ~6!

wheref («l2z) is the Fermi distribution function~«l are the
energy levels andz is the electrochemical potential!, the
summation overl denotes summation over the quantu
numbers~i.e., the energy levelsE and the generalized mo
mentumy componentk!, the integration overy is over the
width of the sample, and the asterisk stands for a comp
conjugate~c.c.!.

In Eq. ~6! only few impurities are at resonance and all t
rest are out of resonance. Therefore, only these few make
major contribution to the conductivity~a resonant tunneling
current!. Now suppose that the energies of the impurities
uniformly distributed. Then, instead of integrating over t
energy, one may sum over the contributions~5! from all the
impurities.

For a very low temperature (T), one can also use th
approximation

] f /]«l ——→
E2z@T

T21e2uE2zu/T. ~7!

Then by substituting Eqs.~5! and ~7! in Eq. ~6!,

GL~x5L !'T21E dy g~y!, ~8!

where

g~y!5(
i
e2uEi2zu/T22BLuxi u2B~y2yi !

2/2, ~88!

where the sum was taken only for the resonance contr
tion; i.e., only resonance energies contribute to the s
Hence, in ~88! we have substituted only thec i with
-
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E2Ei50, and the summation was taken over all the imp
rities, which is equivalent to a summation over all the res
nance energies~which is approximately equal to the integra
tion over all the energies!.

When T50, the main contribution to the conductivit
comes from the impurities, whose energy is equal to
Fermi energy and their position is at the center of the bar
@as Eq.~5! suggests#. However, forT.0 most of the contri-
butions toGL come from other impurities. Because of th
uniform distribution of the impurities’ resonance energy,
obeys the relationE2z'R22, where R2[xi

21(yi2y)2.
That is, inside a circle with a radiusR, which is centered at
the center of the barrier (xi50,yi2y50), the number of
impurities with a resonance energyE is proportional toR2.

Next, since the summation is taken over all the impuriti
and since they are distributed randomly over the barrier,
can replace the indexi with two indexes: one for thex co-
ordinate and the other for they coordinate. This means tha
now every impurity will be identified by two indexes~its
coordinates! instead of one~in both cases we sum over a
the impurities so the order of summation is not importan!.
We can also assume that since the number of impuritie
huge, the fluctuations ofg as a function ofy are very small,
and thusg(y)'const. So, it is enough to calculateg(y) at
a specific positiony.

Thus, by replacing the summation in~88! by the summa-
tion over the impurities’ componentsh[xi andj[yi2y, it
follows that

GL'(
h,j

e2 f ~h,j!, ~9!

where

f ~h,j![
1

~h21j2!NT
12BLuhu1Bj2/2 ~10!

andN is the density of states at the Fermi energy.
In general,f (h,j) has four minima of two kinds. How-

ever, when

T.Tc[
1/8

BNL4
~11!

~in ordinary physical dimensionskBTc5\c/8eNBL4! only
two minima exist ath50, j56(2/BNT)1/4, and thus the
conductivity can be evaluated:

GL'T21e2~2B/NT!1/2. ~12!

HereT052B/N, and in ordinary physical dimensionskBTc
52Be/N\c. This expression resembles Ono’s result. Wh

T,Tc ~13!

two additional minima emerge atj50, h56(BLNT)21/3

~see Fig. 2!, however, the contribution from these points
negligible as long as

T.T̃[
~2/9!3

BL4N
~14!

~in ordinary physical dimensionskBT̃'0.01\c/eNBL4

50.09kBTc! since in the temperature rangeTc.T.T̃ the
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two dominant minima remain ath50, j56(2/BNT)1/4.
But when

T,T̃, ~15!

the two dominant minima are atj50, h56(BLNT)21/3,
and then

GL'T21e23~B2L2/NT!1/3. ~16!

This last result exhibits the properties of a 2D Mott condu
tivity in the absence of a magnetic field. HereTM
527(BL)2/N, and in ordinary physical dimensionskBTM
527(eBL)2/N(\c)2.

At the transition curve, i.e.,T5Tc(B), the conductivity
behaves like~see Fig. 3!

GL'T21e2n/~NTL2!, ~17!

where n54/27. The exponent in Eq.~17! looks the same
with ordinary physical dimensions.

In order to measure this transition the transition tempe
ture T̃ should be within the measurable range. Thus, beca
we need at leastBL2.10, and a sample lengthL,1mm,
the magnetic field should beB'1 T, and in order to getT̃
.0.1 K the density of state should beN
,107 meV21 cm22 ~it can be achieved between the Land
levels, where the measurement is taken!.

Even though the sample’s length should be of mesosc
cal size, its width should be much larger, and can be e
macroscopic. This comes directly from the demand that
temperature should be larger than the interresonance en
~otherwise, there will not be a monotonic dependence on
Fermi energy!, i.e., from

FIG. 2. The surface graph of the functionF(h,j)5e2 f (h,j).

The maxima ath50 determine thes'T21e2(T0 /T)
1/2

behavior,

while the maxima atj50 determine thes'T21e2(TM /T)1/3 behav-
ior.
-

-
se

i-
n
e
rgy
e

T̃.DE'1/LaN, ~18!

wherea is the sample’s width. It comes out directly that

a/L.103. ~19!

So, the width should bea.1 mm.
To summarize, a model based on resonant tunneling

presented in order to calculate the conductivity at low te
perature of an amorphous sample in the presence of a st
magnetic field. Unlike in Mott’s and Ono’s theories, the co
ductivity was calculated for a finite-sized sample, and it w
found to have a crucial impact on the conductivity. Th
model demonstrates a temperature transition: forT.T̃ the
conductivity behaves like Ono’s theory,

sh'T21exp@2~T0 /T!1/2#,

but whenT,T̃ it looks like the usual 2D Mott conductivity

s l'T21exp@2~TM /T!1/3#.

The transition temperatureT̃ depends on the magnetic fiel
B. Thus, the model also shows that when moving on
transition curveT5T̃(B),

s t'T21exp@2Tt /T#

~the subscriptsh, l , andt stand for high, low, and transition
temperature, respectively!.

I would like to thank Professor M. Azbel for numerou
valuable and stimulating discussions.

FIG. 3. The conductivity behavior lns'2Tg divides theB-T
~magnetic-field–temperature! diagram into two parts: above the
transition curve~high T andB! with g521/2 and below the tran-
sition curve~low T andB! with g521/3. At the transition curve
g521.
.
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