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Low-temperature magnetoconductance transition to Mott’s conductance
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The conductivity of an amorphous sample at low temperatures in a strong magnetic field is calculated. While
Mott’'s and Ono’s theories consider infinite samples, the proposed formalism treats finite ones. It turns out that
this is a crucial difference. The model shows a transition between two conductivity behaviojs: Th¢® for
T<T and Ing)~—-T Y2 for T>T (the transition temperaturé depends on the magnetic field and on the
sample’s size The former one resembles the simple two-dimensional Mott conductivity behavior, while the
latter resembles Ono’s theoy50163-18207)00223-3

In 1969 Mott presented his variable-range hopB&H) light, respectively. p,, are the momentum operatoi, is
theory of an amorphous systémit predicted that for a the incoming electrons’ energy, atlis the potential:
d-dimensional amorphous sample the electrical conductivity

(o) has the following temperature dependencéo(il)]~

—T- Y@+ Thijs theory was found to be in good agreement V for —L<x<L
with early experiments of three-dimensiohal3D) and U= 0 otherwise,
two-dimensional (2D) systems, where Mott's theory pre-

dicts

and theD'’s are the impurities’ potentials, which are short-
o~exg —(Ty/T)*7]. (1) range onegsee Ref. Y.V is a positive potential, and thus the
i ] ] electrons with energy € E<V tunnel through the barrier.
The first experiments of the quantum Hall effect stimu-The exact form of the impurities’ potential®] is unimpor-
lated the interest in the temperature dependence of the trangiyt as long as they are short-range ones, i.e., on atomic
verse conductivity ). Since the magnetic field causes a gcales. Mathematically, they can be represented by the im-
Gaussian localization instead of an exponengial 6me, the  pyrity D function (IDF, see Ref. ¥, which is infinitely shal-
electron’s wave function looks like~e™("D72 | is the  lower than the two-dimensiona function (2DDF), but un-
magnetic length VRH theory predicts an exponential de- jike the 2DDF, it has an eigenvalsayE;,). Because of its
pendence exp-(To/T)"]. infinitely small dimensions, the short-range potential can be
Ono took a percolation approddin order to calculate the fylly determined by this single parametéthe eigenvalue
condu_ctivéty more rigorously. His theory predicts the 1,5 each impurity creates a resonance |G4€¥V—Eio,
following: to which the particles can tunnel. If the electrons’ energy
_ equals the resonance energy of the impurity, the impurity’s
o=T texi —(To/T)"2]. 2) presence will be felt in the conductance, since many elec-
The experimental results of Ref. 4 show excellent agreemeritons will tunnel through it. But if their energy does not
with this prediction. match, the influence of the specific impurity will be negli-
In this paper we present a rigorous calculation of thegible. In the following, the Landau gauge is chosenAgs
transverse conductivity in the resonant tunneling regime, i.e =BX (B is the magnetic field
in the regime where the coherence length is longer than the
sample’s size. It should be emphasized that Mott's and
Ono’s theories assume infinite sample. This paper shows that
the finite sizes of the sample cause an important effect on the
conductivity. It is found that there is a transition temperature incident beam
T where the temperature dependence behaves like(Zq.
whenT>T and like Eq.(1) whenT<T.
Take a system where electrons are scattered over a large
number of impuritiegFig. 1), which are uniformly placed in
an opaque potential barrier in a strong magnetic field. The
stationary-state Schadinger equation can then be written as

U=0

outgoing current

Resonant Impurities

[(By+ A+ By~ (E-W)y=2 D(ri—rhy. (3
FIG. 1. The substantial contribution to the current through the

Hereafter, we use the units=2m= —e=c=1 (Planck con-  barrier comes from the resonant impurities, i.e., from the impurities
stant, the electron’s mass and charge, and the velocity afhose energy is equal to the incoming electrons’ energy.
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In the case of a very strong magnetic fieBL?>1), the =~ E—E;=0, and the summation was taken over all the impu-
solution ¢(r) can be written as a summation over the contri-rities, which is equivalent to a summation over all the reso-
butions from each of the impuritieg;(r), i.e., nance energiegvhich is approximately equal to the integra-

tion over all the energies
_ When T=0, the main contribution to the conductivity

¢(r)—zi gilr.r). “ comes from the impurities, whose energy is equal to the
) L Fermi energy and their position is at the center of the barrier
Notice that the strong magnetic field allows us to neglect th‘Eas Eq.(5) suggests However, forT>0 most of the contri-
coherent multicenter scattering. Moreover, for a specific parg tions t0G, come from oth'er impurities. Because of the
t'glle energg, only the Lesonance |r€pgr|t|es glve a consideryniform distribution of the impurities’ resonance energy, it
able contribution tay, the rest can be ignored. obeys the relatiorE—¢~R~2, where R2=x2+ (y;—y)2.

The absolute Vall.Je of each one of these con_tr|b_ut|ons a'f‘hat is, inside a circle with a radiug, which is centered at
the end of the barrieffor a very strong magnetic fiel® the center of the barrierx(=0y,—y=0), the number of

> ViL) is impurities with a resonance energyis proportional toR?.
CB(L2+xD) 24— B(y—yi) 24 Next, since the summation is taken over all the impurities,
li(x=L)|~ e ' (5) and since they are distributed randomly over the barrier, we
]

(E—Ei)/A+ie—B<L2+X?>/2+BL\Xi\’ can replace the indeixwith two indexes: one for th& co-

] ) ordinate and the other for the coordinate. This means that
wherex;, y;, andE; are thex andy locations of theith  now every impurity will be identified by two indexefits
impurity, and its resonance energy, respectlv@!yar}d A coordinatesinstead of one(in both cases we sum over all
change slowly with the energy and the magnetic field. Wahe impurities so the order of summation is not impontant
assumed in Eq(5) that the magnetic field is so strong, i.e., we can also assume that since the number of impurities is
B> \V/L, that one can neglect the dependenceyain the  hyge, the fluctuations af as a function ofy are very smal,
barrier strength; that is why is absent in Eq(5) (actually,  and thusg(y)~const. So, it is enough to calculagéy) at
we can find it indirectly inE;=V—E;q). According to Ref.  a specific positiory.

8, Thus, by replacing the summation (8’) by the summa-
. . tion over the impurities’ componentg=x; andé=y;—y, it
o d " follows that
GL—4|2 — f dy( - " c.c.), (6)
~ —f(,
wheref (g, — ) is the Fermi distribution functiofe, are the GL”% e 79, ©)

energy levels and is the electrochemical potentjalthe
summation overn denotes summation over the quantumwhere
numbers(i.e., the energy levelg and the generalized mo-
mentumy componenik), the integration ovey is over the
width of the sample, and the asterisk stands for a complex
conjugate(c.c).

In Eq. (6) only few impurities are at resonance and all the
rest are out of resonance. Therefore, only these few make tnﬁ/
major contribution to the conductivitia resonant tunneling

1
f(n,6)= musu 7| +BE&2 (10)

andN is the density of states at the Fermi energy.
In general,f(#,£&) has four minima of two kinds. How-
er, when

curren). Now suppose that the energies of the impurities are 1/8
uniformly distributed. Then, instead of integrating over the T>T= BNL? (13)
energy, one may sum over the contributidBsfrom all the
impurities. (in ordinary physical dimensionkgT.=%c/8eNBL*) only
For a very low temperatureT(, one can also use the two minima exist atyp=0, ¢é&==+(2/BNT)Y4 and thus the
approximation conductivity can be evaluated:
gflge) — T le [E-dIT, (7) G ~T le (2BINT™ (12)
E-(>T
o ] Here To=2B/N, and in ordinary physical dimensiohkgT,
Then by substituting Eqs5) and(7) in Eq. (6), =2Be/N7c. This expression resembles Ono’s result. When
_ T<T 13
G =0~T [ ay ), ®) c 13
two additional minima emerge at=0, ==(BLNT) 3
where (see Fig. 2, however, the contribution from these points is
negligible as long as
g(y)zz e_‘Ei_(l/T_zBleil_B(y_yi)Z/Z’ (8’) (2/9)3
[ T2
T>T= BL°N (14

where the sum was taken only for the resonance contribu- . . _ _ -
tion; i.e., only resonance energies contribute to the sum(in ordinary physical dimensionskgT~0.0%c/eNBL*
Hence, in (8') we have substituted only the); with =0.0%gT,) since in the temperature rande>T>T the
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FIG. 2. The surface graph of the functiah(z,&)=e~ (79, B
The maxima atp=0 determine theo~T~ e~ (To/M™ pehavior,
. . . _ _ 1/3
while the maxima ag=0 determine ther~T te~ (/M pehav- FIG. 3. The conductivity behavior la~—T” divides theB-T
Ior. (magnetic-field—temperaturediagram into two parts: above the

_ o _ U4 transition curvethigh T andB) with y=—1/2 and below the tran-
two dominant minima remain ap=0, {==*(2/BNT)™™  sition curve(low T andB) with y=—1/3. At the transition curve
But when y=—1.

T<T, (15) T>AE~1/LaN, (18)

the two dominant minima are at=0, »=*+(BLNT) 3 wherea is the sample’s width. It comes out directly that
and then

Yo a/lL>10%. (19
~T-1a—3(B2L2INT)
G~T e : (16) 50, the width should ba>1 mm.
This last result exhibits the properties of a 2D Mott conduc- To summarize, a model based on resonant tunneling was
tivity in the absence of a magnetic field. Hergy, presented in order to calculate the conductivity at low tem-
=27(BL)?%/N, and in ordinary physical dimensiongTy, perature of an amorphous sample in the presence of a strong

=27(eBL)?/N(%c)>. magnetic field. Unlike in Mott's and Ono’s theories, the con-
At the transition curve, i.eJ=T,(B), the conductivity ductivity was calculated for a finite-sized sample, and it was
behaves likgsee Fig. 3 found to have a crucial impact on the conductivity. The
) model demonstrates a temperature transition:TiorT the
G ~T te INTLY, (17 conductivity behaves like Ono's theory,
where v=4/27. The exponent in Eq17) looks the same on~T Yexd — (To/T)¥2],

with ordinary physical dimensions. -

In order to measure this transition the transition temperabut whenT<T it looks like the usual 2D Mott conductivity
ture T should be within the measurable range. Thus, because -1 _ 1
we need at leasBL?>10, and a sample length<<1 pum, =T exE: (Tw /).
the magnetic field should bB~1 T, and in order to geT  The transition temperaturé depends on the magnetic field
>0.1K the density of state should beN B. Thus, the model also shows that when moving on the
<10" meV~tcm 2 (it can be achieved between the Landautransition curveT=T(B),
levels, where the measurement is taken

Even though the sample’s length should be of mesoscopi- o=T lexd —T/T]
cal size, its width should be much larger, and can be evepyhe supscripts, |, andt stand for high, low, and transition
macroscopic. This comes directly from the demand that th?emperature, respectively
temperature should be larger than the interresonance energy
(otherwise, there will not be a monotonic dependence on the | would like to thank Professor M. Azbel for numerous

Fermi energy, i.e., from valuable and stimulating discussions.
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