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Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere
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We present a framework for analytic calculations of the hierarchical wave functions and the composite
fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates.
Then we calculate the overlaps between these two wave functions at various fillings and small numbers of
electrons. We find that the overlaps are almost equal to 1. This gives further evidence that two theories of the
fractional quantum Hall effect, the hierarchical theory and the composite fermion theory, are physically equiva-
lent. @S0163-1829~97!02303-5#
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I. INTRODUCTION

The fractional quantum Hall effect~FQHE! at the
Landau-level~LL ! filling fraction n51/m with m an old in-
teger is very well described by Laughlin’s theory.1,2 The
Laughlin wave function is a very good approximation of t
exact ground state of the quantum Hall effect~QHE! at
n51/m. However for the FQHE atnÞ1/m, there existtwo
well-known theories~notice that we will only consider the
case that the electron spins are polarized in this paper!. One
is the hierarchical theory. The states atnÞ1/m are formed
due to the condensation of the anyonic quasiparticles
Laughlin states.3–10 The trial wave functions constructe
from this theory are called hierarchical wave functions. A
other theory is based on the composite fermion~CF! ap-
proach proposed by Jain,11 where the FQHE is due to th
integer QHE of the composite fermions~CF’s! ~electrons
bounded with an even magnetic flux quanta!. The trial wave
functions constructed from the CF theory are called CF w
functions ~or Jain’s wave functions!. The overlaps of the
exact states with the hierarchical wave functions and the
wave functions are both excellent. It has also been sho
that two theories predict the same topological excitations
the samen .7,8,12The two theories must be physically equiv
lent if they both describe correctly the physics of the FQH
Thus it would be very interesting to study the difference a
equivalence of the two theories.

In this paper, we present a framework for analytic calc
lations of the two wave functions on the sphere by us
projective ~or stereographic! coordinates on the sphere
There are several advantages of using spherical geometr
it is a compact surface, there will be no edge state if we
only interested in the bulk state. Also, the system has r
tional invariance symmetries. On the torus, though the s
tem has translational invariance and no boundaries, the
archical wave functions are very difficult to calculate a
quite complicated due to its nontrivial topology,13 and we do
not even know how to construct CF wave functions with t
correct center coordinate degeneracy on a torus.

Because the states considered in the FQHE are restr
550163-1829/97/55~3!/1582~14!/$10.00
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to the lowest Landau level~LLL !, the wave functions are
only dependent on holomorphic coordinates~polynomials of
the holomorphic coordinates! on the sphere. Therefore it i
possible to use only holomorphic coordinates to do all c
culations. Comparing the two types of hierarchical wa
functions is the same as comparing the two polynomials
holomorphic coordinates on the sphere. We note that
ultimate goal is to expand those wave functions in polyn
mials, and calculate the overlaps of two wave functions
physical quantities~for example, the density-density correla
tions! at an arbitrary numberof electrons by the method
~Jack polynomials method! used in studying the Caloger
model.14 We do not know how to do this at the moment, a
further progress on it will enhance our understanding of
theories of the FQHE.

We organize the paper as follows: first we review t
Landau-level problem on the sphere. A self-contained d
vation of eigenstates of an electron on a sphere with a mo
pole field, performed by using a simple geometric argum
and projective coordinates, is given in the Appendix. Th
we show how to classify the many-body eigenstates of
angular momentum in the LLL. We then construct wa
functions based on the theory of the hierarchical states
the theory based on the CF picture. The wave functions c
structed in this paper are easy to handle in the practical
culation. Finally we calculate the overlaps of the hierarchi
wave functions and the CF wave functions at various fillin
n and some small numbers of electrons.

II. QUANTUM MECHANICS ON THE SPHERE

The electrons are constrained to move on the surface
sphere of radiusR having a magnetic monopole in its cente
The total magnetic flux 4pR2B must be an integer multiple
f52S of the magnetic flux quantumf052\pc/e accord-
ing to the Dirac quantization condition. Therefore, the sph
radiusR is equal toS1/2l 0, wherel 05(\c/eB)1/2 is the mag-
netic length. The eigenstates of an electron are given
monopole spherical harmonics.3,15 First, we briefly review
the old method to derive the wave functions of the Land
1582 © 1997 The American Physical Society
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55 1583ANALYTIC CALCULATIONS OF TRIAL WAVE . . .
levels ~LL’s !, then rederive them by using algebraic geo
etry.

For simplicity, we take units\ and c equal to 1 in the
following formulas. The Hamiltonian of a single electron
massme is given byH5(1/2me)(P1eA)2. However, since
the electron is confined on the spherical surface, one sh

H5
1

2meR
2 @r3~P1eA!#25

vc

2S
L2, ~1!

where L5r3(P1eA), vc is the cyclotron frequency
P52 i“, ¹3A5BV̂, andV̂5r /R.

The components ofL obey the commutation relation
@L i ,L j #5 i e i jk(Lk2SVk). The angular momentum opera
tors L5L1SV, and their commutation relations ar
@Li ,L j #5 i e i jkLk . SinceL is normal to the surface, we hav
V̂•L5L•V̂50, and L•V̂5V̂•L5S. Using these equa
tions, the relationuLu25uL u22S2 can be obtained. Thus th
eigenvalues ofuLu2 can be deduced from the usual angu
momentum algebrauLu25uL u22S25L(L11)2S2, L5S
1n, n50,1,2 . . . , and theeigenstates of the Hamiltonia
are the eigenstates ofuL u2 and L3, and they are given by
monopole spherical harmonics. We choose a gauge
A52(S/eR)@(11cosu)/sinu#ŵ, of which the singularity
lies on the north pole~we choose a different gauge from th
one used in Ref. 3!. The wave functions at the LLL are give
by

uS1mvS2m, ~2!

wherem52S,2S11, . . . ,S, and

u5cos~ 1
2u!eiw, v5sin~ 1

2u!. ~3!

All wave functions of the LL’s can be derived by this way,15

and we will not repeat the derivation here. In the followin
all eigenstates will be obtained by using projecti
coordinates,16,17 and the method developed in Ref. 18.

The projective coordinates are given byz
52Rcot(u/2)eiw and its complex conjugatez̄. We will take
R5 1

2 for simplicity. The measure on the sphere
*@dxdy/(11zz̄)2#. The Hamiltonian of Eq.~1! in projective
coordinates is now written by the following formula:17

H5
2

me
~11zz̄!2~Pz1eAz!~Pz̄1eAz̄ !, ~4!

where

Pz52 i
]

]z
, Pz̄52 i

]

] z̄
, eAz5 i

f

2

z̄

11zz̄
~5!

andf is the flux~in the unit of the fundamental fluxf0) out
of the surface. Note that the Hamiltonian given by Eq.~5!
~we call this HamiltonianH8 in the Appendix! is different
from the one given by Eq.~1! by a constant.

The ground states can be determined from the solution
the equation (Pz̄1eAz̄)c50, and they are~unnormalized!

c5
zl

~11zz̄!f/2 , ~6!
-

s

r

ld

,

of

where l50, . . . ,f. At any Landau levels, the eigenstat
~unnormalized! are given by~from the Appendix!

cn,l5F]z1SB2 11D ]zlngGF]z1SB2 12D ]zlngG•••F]z
1SB2 1n21D ]zlngGcn,l

~0! , ~7!

where

g5
1

~11zz̄!2
, ~8a!

cn,l
~0!5gB/2c̃n,l

~0! , ~8b!

B5f/2, ~8c!

c̃n,l
~0!51,z, . . . ,zl , . . . ,zf12n. ~8d!

Under any finite rotations, thez coordinate is transformed a
z85(az1b)/(cz1d). The rotation matrixR5(c d

a b) is gen-
erated by the rotations along the three Cartesian axes

Rx5
1

A2
S ~11cosa!1/2 i ~12cosa!1/2

i ~12cosa!1/2 ~11cosa!1/2
D , ~9a!

Ry5
1

A2
S ~11cosb!1/2 ~12cosb!1/2

2~12cosb!1/2 ~11cosb!1/2
D , ~9b!

Rz5S exp~ ig/2! 0

0 exp~2 ig/2!
D . ~9c!

The rotational invariance of the Hamiltonian is shown by t
identity

OH~z8!O215H~z!, ~10!

where

O5S cz1d

c̄ z̄1d̄
D f/2

. ~11!

The wave function is transformed under rotations as

c85OcS az1b

cz1bD . ~12!

We list some useful relations when we do a finite rotation
a many-body wave function.

d~zi ,zj !5
zi2zj

A11zi z̄iA11zj z̄j
. ~13!

zi2zj , and 11zi z̄i are transformed under the finite rotatio
as

d~zi8 ,zj8!5S czi1d

c̄ z̄i1d̄
D 1/2S czj1d

c̄ z̄j1d̄
D 1/2d~zi ,zj !, ~14a!
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zi82zj85
zi2zj

~czi1d!~czj1d!
, ~14b!

11 z̄ i8z̄ i85
11zi z̄i

~czi1d!~ c̄ z̄1d̄!
. ~14c!

Finally, the angular momentum operators forN electrons are

Jx5(
i51

N

Jx~ i !

5 1
2(
i51

N F ~12zi
2!

]

]zi
2~12 z̄ i

2!
]

] z̄
1

f

2
~zi1 z̄i !G ,

~15a!

Jy5(
i51

N

Jy~ i !

5
i

2(i51

N F ~11zi
2!

]

]zi
1~11 z̄ i

2!
]

] z̄
1

f

2
~ z̄i2zi !G ,

~15b!

Jz5(
i51

N

Jz~ i !5(
i51

N S zi ]

]z
2 z̄i

]

] z̄
2

f

2 D . ~15c!

III. PROJECTIONS AND ANGULAR MOMENTUMS
IN THE LLL

The FQH state is restricted to the LLL. In this section, w
will discuss briefly how to project states to the LLL on th
sphere~see Ref. 16, and for the detailed discussions in
case of a plane or a disk, see Ref. 19!, and how to find the
eigenstates of angular momentums when the particles
restricted to the LLL. Note that the construction of the C
wave functions involves higher LL’s, we need to project t
wave functions to the LLL~see Sec. V!.

The normalized states with fluxf in the LLL are

u l &5F ~f11!!

2p l ! ~f2 l !! G
1/2 zl

~11zz̄!f/2 , ~16!

and l50,1,2, . . . ,f. The projection operator to the LLL is
P5( l u l &^ l u, and it can be written also in the following form

Pc~z,z̄!5E dwdw̄

~11ww̄!2
G~z,w!c~w,w!, ~17a!

G~z,w!5
f11

2p

~11zw̄!f

~11zz̄!f/2~11ww̄!f/2
. ~17b!

For the many-body wave functions,P ~or G) is equal to
) i51
N Pi ~or ) i51

N Gi) wherePi is the projection operator o
the i th particle andN is the number of particles.

If the state is not in the LLL, the antiholomorphic coo
dinatez̄ will appear. Typically, it appears as

c5
z̄izi1 l

~11zz̄!~f/2!1 j , ~18!
e

re

andPc is equal to

~f11!! ~ l1 i !! ~f1 j2 l2 i !!

l ! ~f2 l !! ~f1 j11!!

zl

~11zz̄!f/2 . ~19!

On the sphere, if the interactions between electrons are r
tionally invariant, the eigenstates of the many-body Ham
tonian should also be the eigenstates of rotational opera
J2 and Jz . The FQH ground states on the sphere are ro
tionally invariant and nondegenerated. In order to find
ground states, we can thus use the rotational invariant st
to diagonalize the Hamiltonian. As the number of all po
sible rotational invariant states is much less than the num
of all possible states, it is thus much easier to find the gro
states by using the rotational invariant states to diagona
the Hamiltonian than by using all possible states. It could
also interesting to find the eigenstates ofJ2Þ0 ~which are
not rotationally invariant!. The excited states in the FQH ar
not rotationally invariant. For Fermi-liquid-like systems in
half-filled Landau level, one can have ground states wh
are not rotationally invariant.20

Now we are going to find the many-body wave functio
on the LLL which are the eigenstates ofJ2 and Jz . In the
LLL, the many-body wave functionsC have the form

C5)
i51

N
1

~11zi z̄i !
f/2

F~z1 ,z2 , . . . ,zN!, ~20!

where F(z1 ,z2 , . . . ,zN) is an antisymmetric holomorphic
function. WhenJ15Jx1 iJy ,J25Jx2 iJy ,Jz act onC, we
have

J2C5)
i51

N
1

~11zi z̄i !
f/2(i51

N
]

]zi
F, ~21a!

J1C5)
i51

N
1

~11zi z̄i !
f/2(i51

N S 2zi
2 ]

]zi
1fzi DF, ~21b!

JzC5)
i51

N
1

~11zi z̄i !
f/2F S (i51

N

zi
]

]zi
D 2

Nf

2 GF. ~21c!

Thus the projectedJ operators are

J28 5(
i51

N
]

]zi
, ~22a!

J18 5(
i51

N

2zi
2 ]

]zi
1fzi , ~22b!

Jz85S (
i51

N

zi
]

]zi
D 2

Nf

2
, ~22c!

where they act only onF. The angular momentum eigen
states of the many-body wave functions restricted to the L
can be obtained by solving

J28 F~2J!50, ~23a!
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Jz8F~2J!52JF~2J!, ~23b!

whereF(2J) is the lowest weight eigenstate with weig
2J. Other states can be obtained by applyingJ18 repeatedly
on F(2J)8. Equation ~23! leads to

(
i51

N

zi
]

]zi
F~2J!5SNf

2
2JDF~2J!, ~24a!

(
i51

N
]

]zi
F~2J!50. ~24b!

The first equation in Eq.~24! means thatF(2J) is a homo-
geneous polynomial with degree (Nf/2)2J. As F(2J) is
an antisymmetric function of holomorphic coordinates, it c
be factorized asF(2J)5) i, j

N (zi2zj )F8(2J). One can
check that

J28 F~2J!5)
i, j

N

~zi2zj !J28 F8~2J!, ~25a!

Jz8F~2J!5
N~N21!

2
F~2J!1)

i, j

N

~zi2zj !Jz8F8~2J!.

~25b!

Thus F8(2J) is a symmetric function with degre
L5(Nf/2)2J2@N(N21)/2#, and the power of every coor
dinate in F8(2J) shall be less or equal thanf8 where
f85f2(N21). By using Eqs.~24! and~25!, one finds that
F8(2J) satisfies the conditions

J28 F8~2J!50, ~26a!

Jz8F8~2J!5SNf8

2
2JDF8~2J!. ~26b!

Define symmetric polynomialss i :

P~zi !5)
i51

N

~z2zi !5(
i50

N

~21! is iz
N2 i , ~27!

where

s051, s15(
i51

N

zi , . . . ,sN5)
i51

N

zi . ~28!

F8 can be expanded as

(
si

C~si !)
i51

N

s i
si , ~29!

wheresi is a non-negative integer. By using Eq.~26!, we
obtain equations whichC(si) andsi must obey. One of them
is

(
i51

N

isi5L5
Nf8

2
2J. ~30!

The condition
n

(
i51

N

si<f8 ~31!

must be satisfied in order that the wave function is norm
izable.C(si) shall also satisfy the equation

J28 F8~2J!5(
si8

C8~si8!)
i51

N

s
i

si850, ~32!

whereC8(si8) is a linear combinations ofC(si), and it shall
be equal to 0. Because@Jz ,J2#52J2 , si8 shall satisfy

(
i51

N

isi85L21. ~33!

Apparently( i51
N si8 shall be also less then or equal tof8. The

number of linear independent solutions forC(si) is equal to
the number of solutions of Eq.~30! minus the number of
solutions of Eq.~33!, and it is also equal toM (J,N,f8),
which is the number of states with spinJ.

The generation function for the number of solutions
Eq. ~30! or ~33! is

G~ t,q!5)
i51

N
1

12tqi
. ~34!

The number of solutions of Eq.~30! is equal to the sum of
the coefficient of termt jqL with 0< j<f8 in G(t,q). Thus
M (J,N,f8) is equal to

TABLE I. In this table, we list the number of rotational invar
ant states at variousn and a small number of electrons.Nt is the
dimension of the total Hilbert space~in the LLL! and Nr is the
number of the rotational invariant states.

n N Nt Nr f ~formula! f Nf

2
2
5 4 5 1 5

2N24 6 12
6 58 3 11 33
8 910 8 16 64

2
7 4 43 2 7

2N22 12 24
6 1.242 10 19 57
8 46.029 80 26 104

2
9 4 43 2 9

2N26 12 24
6 2.137 13 21 63
8 139.143 164 30 120

2
11 4 150 3 11

2N24 18 36
6 11.963 29 29 87
8 1.229.093 702 40 160

2
13 4 150 3 13

2N28 18 36
6 17.002 34 31 93
8 2.502.617 1.137 44 176

3
7 9 910 8 7

3N25 16 27
3
11 6 2.137 13 11

3N21 21 63
9 610.358 506 32 144

3
17 6 17.002 34 17

3N23 31 93
5
17 4 33 2 17

5N2
13
5 11 22

9 184.717 217 28 126
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R R dt

2p i t

dq

2p iq
G~ t,q!S 1qL 2

1

qL21D(
i50

f8 1

t i
. ~35!

We can also use a generation function of one variable,21

G~ t !5
Pk51

N1f8~12tk!

Pk51
N ~12tk!Pk51

f8 ~12tk!
. ~36!

The number of solutions of Eq.~30! is then given by the
coefficient oftL of functionG(t). Thus

M ~J,N,f8!5 R dt

2p i t
G~ t !

12t

tL
. ~37!

The asymptotic behavior ofM (J,N,f8) can be obtained by
using the steepest-descent method.22 When L and f8 are
both large,M (J,N,f8) is equal to exp„S(J,N,f8)… approxi-
mately, and exp„S(J,N,f8)… is determined by the following
equations:

L52
exp~2r!

12exp~2r!
1
1

r2 S 2E
0

~N1f8!r
1E

0

Nr

1E
0

f8r D du uexp~2ru!

12exp~2ru!
, ~38a!

S~J,N,f8!5Lr1 ln„12exp~2r!…1
1

r S E
0

~N1f8!r

2E
0

Nr

1E
0

f8r D duln@12exp~2u!#.

~38b!

We list the number of rotational invariance states at vari
fillings in Table I.

IV. HIERARCHICAL WAVE FUNCTIONS

In this section, we discuss the construction of the hier
chical wave functions.2–4 The quasiparticles satisfy frac
tional statistics, and the condensation of quasiparticles g
rise to the FQH state withnÞ1/m.

Define

Cm5)
i, j

N

~uiv j2ujv i !
m, ~39!

wherem is a positive integer. Forn51/m, with m being an
old positive integer, the FQH wave function will beCm ~the
Laughlin wave function!. The flux f is equal to
fm5m(N21).3 Or, in projective coordinates, it is

Cm5)
i, j

N

d~zi ,zj !
m. ~40!

The Laughlin wave function in the presence of quasipart
excitations is given by the quasiparticle excitation operat
acting on the original Laughlin wave function. The quasip
ticle excitation operator is given by
s

r-

es

e
rs
-

A†~a,b!5)
i51

N

~bui2av i ! ~quasihole!, ~41a!

A~a,b!5)
i51

N S b̄
]

]ui
2ā

]

]v i
D ~quasielectron!,

~41b!

wherea5cos(u/2)eiw, andb5sin(u/2) are the quasiparticle
coordinates. In the projective coordinates, the operators
the quasihole excitation and the quasielectron excitation
given in the following form:

A†~v,v̄ !Cm~zi !5)
i51

N

d~zi ,v!Cm~zi !, ~42a!

A~v,v̄ !Cm~zi !5
1

~11vv̄!N/2
)
i51

N
1

~11zi z̄i !
~fm21!/2

3)
i51

N

@~11ziv̄ !]zi2fmv̄#Fm ,

~42b!

wherev,v̄ are the projective coordinates of the quasipa
cle, andFm(zi)5) i, j

N (zi2zj )
m. The fluxf in the presence

of a quasielectron~quasihole! is fm21 (fm11).
The slightly entangled appearance ofA(v) hides, indeed,

a form which is analogous toA†(v). To unveil the similari-
ties, one can show that

P~fm21,zi !)
i51

N

d~ z̄i ,v̄ !Cm ~43!

gives the wave function of the Laughlin state in the prese
of a quasihole such as that in Eq.~42!. P(f,zi) ~here
f5fm21) projects the wave function to the LLL with flux
f with respect to coordinateszi . Thus the construction o
the hierarchical wave functions due to the condensation
quasielectrons willnaturally involve higher Landau levels a
in the case of the CF wave functions~see Sec. V!.

Instead usingA(v,v̄)Cm(zi), we can also create a
quasielectron excitation using Cm22AD,

9,23

where D5@C1(zi)#
2. AD is here equal to

P(f221)) i51
N d( z̄i ,v̄)D. We call (C1)

m22AD a wave
function by the hard-core construction.

In the case of many quasiparticle excitations, the ope
tors of excitations are

ANq
† 5)

j51

Nq

A†~v j ,v̄ j !, ~44a!

ANq
5)

j51

Nq

A~v j ,v̄ j !. ~44b!

WhenANq
acts onCm , one can show
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ANq
Cm5)

j51

Nq 1

~11v j v̄ j !
N/2)i51

N
1

~11zi z̄i !
~fm2Nq!/2

ANq
8 Fm~zi !, ~45a!

where

ANq
8 5)

j51

Nq

A8~ j !5)
i51

N

@~11ziv̄Nq
!]zi2~fm2Nq11!v̄Nq

#)
i51

N

@~11ziv̄Nq21!]zi

2~fm2Nq12!v̄Nq21#•••)
i51

N

@~11ziv̄ j !]zi2~fm2 j11!v̄ j #•••)
i51

N

@~11zj v̄1!]zj2fmv̄1#. ~46a!
v
n

e
in

n

ed
s
-

w
n

th
o
fo

ally

and
c-

-

he
en

rm
n

One should be careful about the ordering ofA8( j ) in Eq.
~46!. A8( j ) in Eq. ~46! is defined as

A8~ j !5)
i51

N

@~11ziv̄ j !]zi2~fm2 j11!v̄ j #. ~47!

As in the case of a single quasihole excitation, the wa
function in the presence ofNq quasiholes can be also writte
as

P~f!)
i51

N

)
a51

Nq

d~ z̄i ,v̄a!Cm , ~48!

wheref5Fm2Nq .
To construct the hierarchical wave functions, w

shall normalize the Laughlin wave functions
the presence of quasiparticles. One can show thatCe,q

5@C1(va)#
1/mANq

† Cm and Ce,q5@C1(va)#
1/mANq

Cm,

or, for the hard-core-constructed wave functio
@C1(va)#

1/mCm22AD, are normalized.24 The hierarchical
states are obtained if the quasiparticles are also condens
the Laughlin states. The wave function of the quasihole
Cq5@C1(v̄a#p21(1/m), the wave function of the quasielec
trons isCq5@C1(va)#

p22(1/m), and p is a positive even
integer. Quasiparticles satisfy fractional statistics,5 and the
wave functions here are in a singular gauge which sho
fractional statistics explicitly. The hierarchical wave functio
for the electrons is then given by the following formula:

E )
a51

Nq dvadv̄a

~11vav̄a!2
Ce,qCq , ~49!

or, explicitly,

Ce~m,p!5E )
a51

Nq dvadv̄a

~11vav̄a!2
Cm~zi !

3)
i51

N

)
a51

Nq

d~zi ,va!uC1~va!u2/mCp2
~v̄a!

~50!

is the hierarchical wave function due to the condensation
quasiholes, and the hierarchical wave functions due to
condensation of quasielectrons by the non-hard-core c
struction and the hard-core construction are given in the
lowing formulas:
e

,

to
is

s

of
e
n-
l-

Ce~m,2p!5P~f,zi !E )
a51

Nq dvadv̄a

~11vav̄a!2
Cm~zi !

3)
i51

N

)
a51

Nq

d~ z̄i ,v̄a!Cp2
~va!,

~51a!

Ce,hard~m,2p!5Cm22~zi !

3P~f22Nq ,zi !E )
a51

Nq dvadv̄a

~11vav̄a!2

3C2~zi !)
i51

N

)
a51

Nq

d~ z̄i ,v̄a!Cp2
~va!.

~51b!

We also require the wave functions above to be rotation
invariant. This requirement leads to

m~N21!1j2Nq5f, ~52a!

p2~Nq21!5N. ~52b!

j2561 in the case of the condensation of quasiholes
quasielectrons, respectively. The Landau-level filling fra
tion n is equal to

1

m1
1

j2p2

. ~53!

For m51 andj251, the filling n51/@m1(1/p2)# is equal
to the filling of the charge conjugate state, 12@1/(p211)#.
Actually, the wave functionCe(m,p) is also the charge con
jugate of the Laughlin wave function at filling
n51/(p211), and this shows that the construction of t
wave function is consistent with the physical picture. Wh
mÞ1, we notice that, in the formula forCe(m,p), we
cannot perform the integration exactly due to the te
uC1(va)u2/m. We can approximate the trial wave functio
Ce(m,p) by omitting uC1(va)u2/m, and it becomes
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Ce~m,p!'E )
a51

Nq dvadv̄a

~11vav̄a!2
Cm~zi !

3)
i51

N

)
a51

Nq

d~zi ,va!Cp2
~v̄a!. ~54!

The wave function written in Eq.~54! is still rotationally
invariant,9,17 and we are able to integrate it. Whenm51, the
formula for Ce(m,p) in Eq. ~50! is integrable. When
m51, we find that the overlap between the wave functio
given in Eqs.~50! and~54! is excellent for a small number o
electrons. In Ref. 9, it was also found that the overlapping
the wave functions given by Eq.~54! with the exact ground
state of the FQH is almost equal to 1 for a small number
electrons. We note that the wave functions calculated in S
VI are based on the formulas written in Eqs.~52! and ~54!.

In the formula forCe(m,2p) orCe,hard(m,2p), we note
that one can perform the integration first, and then the p
jection, or vice versa. In Sec. VI, the overlap between th
two wave functions will be calculated for a small number
electrons and it is found that the overlap is almost equal t

We will call the above hierarchical states second-le
hierarchical states, and the Laughlin states first-level hie
chical states. The higher-level hierarchical states can be
in a similar way.7,8,17,9We denote thek8th-level hierarchical
states by (p1 ,j2p2 ,j3p3 , . . . ,jkpk), where p1 is an old
positive integer,pi ,iÞ1 are even positive integers, an
j i56 indicate the quasihole condensation and quasielec
condensation from parent states.

For higher-level hierarchical wave functions involving th
condensation of quasielectrons, we can make afurther sim-
plification. We take (p1 ,2p2 ,2p3) as an example. The
wave function for this state is

Ce5P~f,zi !E )
a51

N2 dva
1dv̄a

1

~11va
1v̄a

1 !2
Cm~zi !

3)
i51

N1

)
a51

N2

d~ z̄i ,v̄a
1 !P~N1 ,va

1 !

3E )
a51

N3 dva
2dv̄a

2

~11va
2v̄a

2 !2
Cp2

~va
1 !

3 )
a51

N2

)
b51

N3

d~v̄a
1 ,v̄b

2 !Cp3
~va

2 !, ~55!

whereN1 is the number of electrons,N2 is the number of
quasielectrons of the Laughlin state (p1), N3 is the number
of quasielectrons of the hierarchical state (p1 ,2p2), and
va
1 andva

2 are the coordinates of quasiparticles of the t
types, respectively. We can prove thatP(N1 ,va

1) can be
droppedinside the formula. Thus the wave function can
written as
s

f

f
c.

-
e
f
1.
l
r-
ilt

n

Ce5P~f,zi !E )
a51

N2

)
b51

N3 dva
1dv̄a

1

~11va
1v̄a

1 !2

3
dvb

2dv̄b
2

~11vb
2v̄b

2 !2
Cm~zi !Cp2

~va
1 !Cp3

~va
2 !

3)
i51

N1

)
a51

N2

d~ z̄i ,v̄a
1 ! )

a51

N2

)
b51

N3

d~v̄a
1 ,v̄b

2 !. ~56!

The wave function in Eq.~56! is quite similar to the wave
function constructed in Ref. 7,

Ce5P~f,zi !E )
a51

N2

)
b51

N3 dva
1dv̄a

1

~11va
1v̄a

1 !2

3
dvb

2dv̄b
2

~11vb
2v̄b

2 !2
Cm~zi !Cp2

~va
1 !Cp3

~va
2 !

3)
i51

N1

)
a51

N2 1

d~zi ,va
1 ! )a51

N2

)
b51

N3 1

d~va
1 ,vb

2 !
. ~57!

However, it is difficult to handle Eq.~57! in the practical
calculation due to the singularities.

Finally by requiring the rotational invariance of the wav
function Eqs.~56! or ~57!, one obtains

p1~N121!2N25f,

N12p2~N221!1N350, ~58!

N22p3~N321!50,

and Eq.~58! implies that the filling of the FQH state is equ
to

1

p11
1

p21
1

p3

. ~59!

We point out that the wave function proposed in Ref. 7 h
been also constructed on the torus.13 It would be very inter-
esting if we could generalize the construction of the wa
function ~56! to the torus.

V. COMPOSITE FERMION WAVE FUNCTIONS

The CF theory of the FQHE has significantly advanc
the understanding of the FQHE recently.11 The FQHE is due
to the integer QHE of the CF’s, where a CF is the bou
state of an electron and an even number of vortices. We
discuss in this section how to calculate the CF wave fu
tions in our framework.

Jain proposed that all trial wave functions of the FQH
~note again in this paper the spin is polarized! can be ob-
tained by using two operations,D andC, the composite fer-
mionization and charge conjugation, respectively, on
wave functions of the integer QHE of the CF’s. For examp
the trial wave function of electrons atn5n/(2n11) can be
written asPDxn , wherexn is the wave function of the CF’s
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which fill completely the firstn Landau levels with flux
f* (P is the projection operator to the LLL as in the prev
ous sections!. The flux of the statePDxn is equal to
2(N21)1f* , where f*5(N/n)2n. We can also use
C1P(f2N11)C1xn as the trial wave function and we ca
this wave function the wave function by the hard-core co
struction. The charge conjugation ofPDxn ~or
C1P(f2N11)C1xn) is then the trial wave function a
es
-

n512@n/(2n11)#5(n11)/(2n11). The trial wave func-
tion at other fillings can be obtained by acting repeate
D andC on PDxn „C1P(f2N11)C1xn… ~each state can
be obtained only in a unique way in this picture except
ordering of operatorP).

xn is given by the determinantxn5det„cs,k(zi)…, where
s50,1, . . . ,n21, k5f*12s11, i51,2, . . . ,N,
N5nf*1n2. det„cs,k(zi)… can be simplified and it is given
by the formula
~60!
or-

in

dif-
ion,
where N85N/n5f*1n. We divide N electrons inton
groups. The set of the original coordinateszi can be mapped
to zs,k with s50,1, . . . ,n21, k51,2, . . . ,N8. The determi-
nant is proportional to

xn5AN)
s50

n21

@es
N8#sCs,1)

i51

N
1

~11zi z̄i !
~n21!/2

, ~61!

where

es
N85)

k51

N8

z̄s,k , ~62a!

Cs,15 )
k1,k2

N8

d~zs,k12zs,k2!, ~62b!

andAN is the antisymmetrizing operator on all coordinat
zs,k . The wave functions C5P(f)Dxn and Chard
5C1P(f2N11)C1xn can be written in the following
form:
C5ANP)
s50

n21

@es
N8#sCs,2)

i, j

N

~zi2zj !
2

3)
i51

N
1

~11zi z̄i !
f/2 1n21

, ~63a!

Chard5C1SYP~f2N11!)
s

@es
N8#sCs,2)

i, j

N

~zi

2zj !)
i51

N
1

~11zi z̄i !
[ ~f2N11!/2]1n21

, ~63b!

whereSY is the symmetrizing operator on the electron co
dinates, and

Cs,25 )
k1,k2

N8

~zs,k12zs,k2!. ~64!

Before performing the antisymmetrizing or symmetrizing
the formulas above, it appears that there aren different
groups of electrons, and there are correlations between
ferent groups. The generic terms before doing the project
for example, in the formula ofC, are
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TABLE II. The overlaps between the hierarchical wave functions and the CF wave functions at some fillings for a small num
electrons.

n N overlap

2
5 ^PDx2uEC3& ^C1PC1x2uEC3& ^PDx2uC1EC1

2& ^C1PC1x2uC1EC1
2&

6 0.999 323 414 9 0.999 361 597 1 0.999 833 152 3 0.999 945 645 7
4 1 1 1 1

n N overlap n N overlap

2
5 ^EC3uC1EC1

2& ^PDx2uC1PC1x2&
2
7 ^HC3uDCC3&

6 0.999 647 900 1 0.999 928 898 7 6 0.999 376 257 4
4 1 1 4 1

n N overlap

2
9 ^EC5uDPDx2& ^EC5uPD2x2& ^DPDx2uPD2x2&

4 0.999 961 486 9 0.999 961 486 9 1

n N overlap n N overlap

3
11 ^EHC3uDCPDx2&

2
11 ^HC5uD2CC3&

6 0.999 652 238 3 4 1

n N overlap n N overlap

2
13 ^EC7uDPD2x2&

5
17 ^HHC3uDCDCC3&

4 0.999 921 885 9 4 0.999 999 999 7
z̄s zl

on
n
t

M
dzN1 idz̄N1 i

v-

li-
al
ed,
out
ula
s
ver-
all
n-

s of
s,k s,k

~11zs,kz̄s,k!
~f/2!1n21

. ~65!

This will be projected to

~f11!! l ! ~f1n212 l !!

~f1n!! ~ l2s!! ~f2 l1s!!

zs,k
l2s

~11zs,kz̄s,k!
f/2

. ~66!

As (f11)!/(f1n)! is a constant and is not dependent
s and l , we can discard it in the process of the projectio
Thus P will act in the following way @discarding constan
(f11)!/(f1n)! #:

P
z̄s,k
s F~zs,k!

~11zs,kz̄s,k!
f/2 1n21

5
1

~11zs,kz̄s,k!
f/2

1

~f2zs,k]zs,k!!

3]zs,k
s ~f1n21

2zs,k]zs,k!!F~zs,k!. ~67!

For example, by applying this formula toC5PDx2, the
wave function is then given by

C5ANP)
i51

N
1

~11zi z̄i !
f/2)k51

N/2

~f112z0,k]z0,k!]z1,k

3)
s50

1

~Cs,2!
3 )
k151

N/2

)
k251

N/2

~z0,k12z1,k2!
2. ~68!

The trial wave functionCc for filling 12n is related to the
trial wave functionC at filling n by charge conjugation,
.

Cc5E )
i ~11zN1 i z̄N1 i !

2

3C̄~zN1 i . . . zN1M !C1~z1 . . . zN1M ! ~69!

whereM is the number of particles in the stateC, N is the
number of electrons inCc , N1M5f11, and C̄ is the
complex conjugate ofC. Note again, If we usePDxn as the
trial wave functionC, the projection operatorP can be
dropped in Eq. ~69!. However if one usesChard
5C1P(f2M11)C1xn in Eq. ~69!, then the operatorP
cannotbe dropped in Eq.~69!.

One can also actD on C, and obtain another trial wave
function of the FQH state at filling 1/(21n), wheren is the
filling of the state C. Repeatedly actingD and C on
PDxn , we can obtain the trial wave functions at all obser
able fillings.

VI. OVERLAPS BETWEEN HIERARCHICAL WAVE
FUNCTIONS AND CF WAVE FUNCTIONS

We perform calculations of the wave functions symbo
cally by usingMAPLE. The overlaps between the hierarchic
wave function and the CF wave functions are calculat
Some overlaps between the wave functions with or with
the hard-core construction are also calculated. The form
of the trial wave functions for the FQHE in the previou
sections need to be normalized before we calculate the o
laps. Table II lists some overlaps at some fillings for a sm
number of electrons.EC means a state formed by the co
densation of quasielectrons of a parent stateC, and HC
means a state formed by the condensation of quasihole
parent stateC. In all cases listed in the table,pi is equal to
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2 for i.1 in the constructions of the hierarchical states. T
wave functions which involveD, P, andC operations are the
CF wave functions.

WhenN53 or 4, andf56, there is only one rotationa
invariant state, which must also be the ground state. T
explains why some of the overlaps in the table are exa
equal to 1.

Because of the limited CPU time we were allowed to u
we were only able to calculate some hierarchical wave fu
tions up to six electrons, and some CF wave functions u
ten electrons. The detailed calculations can be found in R
25. In the future, we will calculate wave functions wi
greater numbers of electrons. From the calculations, we c
clude that the hierarchical wave functions and the CF w
functions are almost the same in the case of a small num
of electrons.

VII. CONCLUSIONS

In this paper, we presented a detailed discussion of
calculation of trial wave functions on the sphere. The proj
tive coordinates are used in performing the calculations
self-contained derivation of the LL’s on the sphere~or any
surfaces with a constant curvature! using a geometrica
method was also given. The many-body wave function in
LLL are studied and classified on angular momentum ba
We also simplify the formulas for the hierarchical wa
functions and the CF wave functions.

There are many interesting things we want to study in
future. We shall use theories of polynomials to study tho
wave functions.26,27 It would be very interesting if we could
obtain the polynomials explicitly for the wave functions at
arbitrary number of electrons.

There is a mapping between a trial wave function in
FQHE and a wave function in one-dimensional space.28 Be-
cause of the existence of the mapping, one may apply
method used to study the Calogero model to study the
wave functions in the FQHE, and then it may be possible
calculate some physical quantities from the trial wave fu
tions at an arbitrary number of electrons.

ACKNOWLEDGMENTS

D.L. thanks Professor P. Sodano for the discussion
encouragement, and Professor R. Iengo for the discuss
concerning Landau levels on curved surfaces. The work
D.L. was supported by INFN of Italy, and C.L.B. was su
ported by the Conselho Nacional de Pesquisa e Desev
mento ~Brazil! ~CNPQ!. D.L. also thanks Professor J. He
layel for hospitality, and CNPQ of Brazil for financia
support during his staying at CBPF in Rio de Janeiro, wh
the work started. We also thank LNCC in Rio de Janeiro
allowing us to use the computer facilities.

APPENDIX: LANDAU LEVELS
ON COMPACT CLOSED SURFACES

In this appendix, we will study LL’s on general compa
closed surfaces, and work out the LL’s on the sphere as
example.

If the magnetic field and the curvature are constant,
spectrum, the wave functions and the degeneracy of Lan
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levels ~LL’s ! can be obtained by using a very simple ge
metric argument.18 A self-contained presentation of an ide
based on Ref. 18 will be found in this appendix, and so
examples will be included.

In the case when the surface is a plane, a sphere,
torus, the spectrum and eigenfunctions of the LL’s can
solved exactly.29 For example, LL’s on a sphere with a Dira
monopole at the origin, were solved by Dirac a long tim
ago. The problem in the case when the surface is an o
upper-half hyperbolic plane with a constant negative cur
ture was solved completely. In this case there exists a
crete spectrum~this is the spectrum of the LL’s! in the low-
energy sector, and a continuous spectrum in the high-en
sector.29

Reference 18 studied the problem of LL’s on compa
closed Riemann surfaces with Poincare´ metric, and obtained
discrete low-energy eigenvalues~or LL’s!, their multiplicity
and wave functions. Prior to Ref. 18, a similar problem a
was studied, and discrete low-energy eigenvalues and t
multiplicity were obtained by using results from the mat
ematical literature, for example, by using the Selberg tr
formula ~see the references quoted in Ref. 18!.

Why can the problem of LL’s in all the surfaces me
tioned above be solved completely? By closely following t
observation in Ref. 18, it is quite clear that the method
veloped in Ref. 18 can be easily generalized to the cas
anyconstantcurvature surface with aconstantmagnetic field
applied on the surface~the surface can be a compact a
closed surface, or an open surface; for example, an o
up-half hyperbolic plane!, and thus the problem of the LL’s
can be solved exactly in such cases.

We will show that, if the curvature and magnetic field a
constant, we can obtain much information about the sp
trum and the degeneracy of the LL’s without solving t
wave functions of the LL’s explicitly by using a simple geo
metric argument,18 even though the surface can be a ve
complicated one. If the magnetic field is constant, the wa
functions of the ground states turn out to be a holomorp
line bundle defined on the surface. If the curvature of
surfaces is also constant, for the high LL’s, the wave fu
tions of the LL’s are obtained by repeatedly applying cov
riant derivatives on some holomorphic line bundles~which
will be specified later!. The spectrum is obtained withou
solving the wave functions explicitly, and the degeneracy
the LL’s can be obtained by the Riemann-Roch theorem
the sections of some holomorphic line bundles can be
tained, the wave functions of the LL’s can be obtained e
plicitly.

We use two simple examples to demonstrate how to
this geometric approach to solve LL’s. Examples used
LL’s on the sphere and the open upper-half hyperbolic pla

1. Ground states

We will show here that, when the magnetic field is co
stant, the ground states satisfy a first-order holomorphic~or
anti-holomorphic! differential equation, and the groun
states belong to sections of a holomorphic line bundle.
consider a particle on a surface interacting with a magn
field. In complex coordinates, the metric isds25gz z̄dzdz̄
and the volume form isdv5@ igz z̄ /2#dz̀ dz̄5gz z̄dx`dy.
The natural definition of the constant magnetic field to t
high genus Riemann surface is

F5Bdv5~]zA z̄2] z̄Az!dz̀ dz̄, ~A1!
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where B is a constant. Thus we have]zA z̄2] z̄Az
5 igz z̄B/2. If the surface is closed, the magnetic field is th
called a ‘‘monopole’’ field, and subjected to the Dirac qua
tization condition. The fluxf (f must be an integer! is
given by 2pf5*F5BV, whereV is the area of the surface
and here we assumeB.0 (f.0) for simplicity. The Hamil-
tonian of a particle on a surface is given by the followi
equation:

H5
1

2mAg
~Pm2Am!gmnAg~Pn2An!

5
gz z̄

m
@~Pz2Az!~Pz̄2Az̄ !1~Pz̄2Az̄ !~Pz2Az!#

5
2gz z̄

m
~Pz2Az!~Pz̄2Az̄ !1

B

2m
, ~A2!

wheregz z̄51/gz z̄ , Pz52 i ]z , Pz̄52 i ] z̄ , ]z5(]x2 i ]y)/
2, and ] z̄5(]x1 i ]y)/2. We define the inner product be
tween two wave functions aŝc1uc2&5*dvc̄13c2.

DefineH85(2gz z̄/m)(Pz2Az)(Pz̄2Az̄). H8 is a posi-
tive definite Hermitian operator because^cuH8uc&>0 for
any c. If H8c50, c must satisfy (Pz̄2Az̄)c50. The so-
lutions of this equation are the ground states of the Ham
tonianH or H8. In the case of a closed compact surface,
existence of solutions of this equation is guaranteed by
Riemann-Roch theorem.30,31The solutions belong to the sec
tions of the holomorphic line bundle, with the connecti
given by the gauge field. The Riemann-Roch theorem tell
that

h0~L !2h1~L !5deg~L !2h11, ~A3!

whereh is the genus of the surface;h0(L) is the dimension
of the sections of the holomorphic line bundle or the deg
eracy of the ground states of the HamiltonianH; h1(L) is the
dimension of the holomorphic differential (L213K), where
K is the canonical bundle; and deg(L) is the degree of the
line bundle, which is equal to the first Chern number of t
gauge field, or the magnetic flux out of the surface,f. When
deg(L).2h22, h1(L) is equal to zero,30 thus
h0(L)5f2h11. One finds thath0(L) indeed gives the
right degeneracy of the ground states in the case of a par
on a sphere or a torus interacting with a magnetic-monop
field.

In the case of noncompact surfaces, for example, an
nite plane or an upper-half hyperbolic plane, the flux out
the surfaces are infinite, and the degeneracy is infinite
The degeneracy of the LL’s turns out be infinite. Thus E
~A3! also correctly gives the degeneracy, as when the flu
infinite, the equation implies thath0(L) becomes infinite.
When the surface has a boundary, for example a disc,
would expect that Eq.~A3! is replaced by an index relatio
given by the boundary index theory. Note that, when the fl
is much larger than 1, the degeneracy of the ground stat
approximately equal to the fluxf out of the surface.

2. Higher Landau levels

We study higher LL’s in the case when the curvature
the surface is constant. When the curvature is const
-

l-
e
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e

le
le

fi-
f
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.
is

ne

x
is

f
t,

gz z̄]]̄ lngz z̄5C, a Liouville-like integrable equation. For the
flat surface,C50, as in the case of a plan or a torus, the
spectrum and the wave functions of the LL’s can be com
pletely solved. When the surface is flat, higher LL’s are ob
tained by successively applying a first-order differential op
erator to the states in the LLL. Now we shall generalize suc
a construction of LL’s in the case of a flat surface to the cas
of a curved surface.

Here we consider aclosedandcurvedsurface with con-
stant~nonzero! curvatures. It is easy to generalize to the cas
of an open surface with a constant curvature, and we wi
demonstrate it in an example in the end of the Appendix
WhenC is not equal to zero, one hasgz z̄5(1/C)]]̄ lngz z̄ . As
the magnetic field is constant, we can fix the gauge field a
Az52 iB8](lngz z̄)/2, and the magnetic fieldF is equal to
B dv, whereB52B8C. For example, in the case of the Poin-
caré metric, ds25y22(dx21dy2), gz z̄5y22, and C5 1

2;
thusB5B8. For a closed surface, by Gauss theorem, the flu
f out of the surface is equal tof5B(h21)/c
52B8(h21). B8 must be a rational number asf is an in-
teger. For the negative curvature closed surface, according
the Gauss theorem, we should haveh>2. On the other hand,
for the positive constant curvature surface,h must be equal
to zero, and thus the surface is topologically equivalent to
sphere. Without losing any generalities, we assume in th
following discussions thatB is a positive number. For a
negativeB, the wave functions are the complex conjugate o
the wave functions in the case of a positiveB.

Any eigenfunctions of the Hamiltonian satisfy

Hc5Ec. ~A4!

If the domain of z̃ intersects the domain ofz nontrivially,
gz z̄dz dz̄ is invariant under coordinate changes, or

gz z̄dz dz̄5gz̃ z̄dz̃qdz! ~A5!

on the intersection of the domains ofz and z̃. Define

D5]2~B8/2!] lngz z̄ , D̄5 ]̄1~B8/2!]̄ lngz z̄ . ~A6!

D and D̄ are transformed as

D̃5~dz/dz̃!U21DU, D! 5~dz̄/dz! !U21D̄U, ~A7!

whereU(z,z̃)5(dz/dz̃)2B8/2(dz̄/dz! )B8/2.
We takem52 in Eq. ~A2! for simplicity. The Hamil-

tonian can be written in the form

H52gz z̄DD̄1~B/4!. ~A8!

Thus the Hamiltonian in the domainz is transformed to the
Hamiltonian in the domainz̃ as

H̃5U21HU, ~A9!

and the wave function is transformed as

c̃5U21c. ~A10!

Thereforec(dz)B8/2(dz̄)2B8/2 is invariant under the trans-
formation, and it implies thatc is a differential form of

type TB8/2
B̄8/2 where we use the following notation: if
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F(z,z̄)(dz)X(dz̄)Y is invariant under the transformation, the

F(z,z̄) is a differential form of typeTX
2 Ȳ

The ground states are given by the solutions of the eq
tion D̄c50. When the curvature is negative,C, f, andB8
are positive numbers. Iff.2h22, orB8.1, then the num-
ber of the solutions isf2h11 according to the previou
discussions. For smallerf, some discussions can be found
Ref. 18. In the case of compact and closed Riemann surf
with the Poincare´ metric, the wave functions in the LLL
were constructed by calculating the determinant of holom
phic sections of some bundle.18

When the curvature is positive,C and B8 are negative
numbers, andh50, as shown in the previous discussion
Now f is equal tof522B8. The LLL states are again
given by the solutions of the equationD̄c50. As
ufu.2h22522 (h50 in this case!, the number of the
solutions is equal toufu2h115ufu11.

To obtain the spectrum and wave functions of the hig
LL’s, we introduce the covariant derivative18 ¹z , and its
Hermitian conjugate (¹z)

†52¹z,

¹z :Tk
l→Tk11

l ,¹z5gk]g2k, ~A11a!

~¹z!
†:Tk

l→Tk21
l ,~¹z!

†52g2 l21]̄gl , ~A11b!

and we callg5gz z̄ for short. Note thatD is the covariant

operator¹z acting onTB8/2
B̄8/2 and D̄5g¹z, where¹z acts on

TB8/2
B̄8/2 The Hamiltonian can be written by using the covaria

operators

H2B/452¹z¹
z. ~A12!

One can verify the commutation relation

@¹z¹z#Tn
m52~m1n!C. ~A13!

Assume thatc1 is a state in the higher LL’s and an eige
function of H with eigenvalue E1, then c1
52(1/e1)¹z¹

zc1, where e15E12B/4.0. Therefore one
can writec15¹zF(1), whereF(1) is a differential form of

typeTB8/221
B̄8/2 . More explicitly, we have

c15„]2~B8/221!] lng…F~1!. ~A14!

Using the relation]]̄ lng5gC, one can show that

2¹z¹
zc15~B821!Cc11¹z@2¹z¹

zF~1!#. ~A15!

We first discuss the case of a negative curvature surface
B8>1, one can show that̂c1u¹z@2¹z¹

zF(1)#&>0. Thus
one can conclude that states of the lowest excited level
obtained, if there existF such that ¹z¹

zF(1)50.
¹z¹

zF(1)50 leads to D̄F(1)50. The solution of
D̄F(1)50 is F(1)5g2B8/2F̃(1), with ]̄F̃(1)50, where
F̃(1) is of the formTB821. By the Riemann-Roch theorem
there exist solutions of the equation]̄ F̃(1)50 for B8>1,
and the number of the solutions or the degeneracy of
Landau level is the dimension of the sections of the holom
phic bundleTB821, which is equal to (2B823)(h21) if
B8.2. The energy of this LL or the lowest excited states

E15
3
2B8C2C. ~A16!
a-

es

r-

.

r

t

. If

re

is
r-
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If B8,1, there is only the zeroth ‘‘Landau level’’ or the LLL
~there exists a continuous spectrum in the high-energy se
and the states in the continuous spectrum are not the stat
the LL’s!.

We can generalize the above discussion to higher LL
The wave function of thek8th LL is given by

ck5~¹z!
kF~k!5„]2~B8/221!] lng…„]2~B8/222!] lng…

3•••„]2~B8/22k!] lng…F~k!,
~A17!

with F(k)5g2B8/2F̃(k) and ]̄ F̃(k)50. F̃(k) is a differen-
tial form of the typeTB82k . Notice that this construction
generalizes the standard construction of the harmonic o
lator. The difference between the constructions of the h
LL’s among the case of the flat surfaces and the case of
curved surfaces is clear now. In the case of the surface b
a plan or a torus, high LL’s are obtained by successiv
applying a first-order differential operator to the grou
states. However, the situation is different when the surfac
curved.F(k) for kÞ0 is not the ground state of the Hamil
tonianH.

Using Eq.~A13!, we calculate the eigenvalue of the co
responding wave functionck , and it is equal to

Ek5CB8~k1 1
2 !2

k~k11!C

2
. ~A18!

The degeneracy of thek8th LL is given by the dimension of
the sections of the holomorphic bundle of the typeTB82k ,
which is equal to (2B822k21)(h21) when B82k.1.
Because the dimension ofTn is zero whenn is negative,k
must not be greater thanB8. Hence there is only afinite
number of ‘‘Landau levels.’’

WhenB8 is an integer,k can take value from 0 toB8.
Whenk5B8, the correspondingF̃(k) is the differential form
of the typeT0. T0 is a constant function on the surface, a
the degeneracy of this LL is equal to 1. For the twist
boundary conditions, which would physically correspond
the presence of some magnetic flux through the hand
there does not exist a nonzero constant function which sa
fies the twisted boundary condition; thus the dimension
T0 is zero, and the degeneracy of this LL is equal to zero
there does not exist aB8th LL. Whenk5B821, the degen-
eracy of this LL is the dimension of the canonical bund
T1, which is equal toh for the nontwisted boundary cond
tion, and toh21 for the twisted boundary condition~this
result can be obtained by the Riemann-Roch theorem!. B
could be also a half-integer. Thenk can take values from 0
to B82 1

2. Whenk5B82 1
2, the degeneracy of this LL is the

dimension of the spin bundleT1/2. The dimension of the
holomorphic sections of the spin bundle generically is z
for the even-spin structures and one for the odd ones~or for
twisted ones!. It is possible thatB8 is fractional assuming
that 2B8(h21) is an integer, andk can take values from 0 to
@B8#, where @B8# is the biggest integer smaller thanB8.
Whenk5@B8#, the degeneracy of this LL is the dimensio
of bundle TB82[B8] . B82@B8# is a fractional number be
tween 0 and 1, and the discussions of such a case ca
found in Ref. 18. Beyond those LL’s, little is known abo
the continuous spectrum in the case of the complicated n
tive curvature surfaces.
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To normalize ck , we calculate the inner produc
^ckuck& by using Eq.~A13!. It is given by the following
equation:

^ckuck&5^¹z
kF~k!u¹z

kF~k!&

5^F~k!u~¹z
k!†¹z

kF~k!&

5^F~k!uF~k!&Ck22kk!

3)
i51

k

~2B82k2 i !, ~A19!

where the inner product̂F(k)uF(k)& is defined as

^F~k!uF~k!&5E dvgkF̄~k!3F~k!. ~A20!

The definition of the inner product between the twoF(k)’s
given in Eq.~A20! is quite natural, becauseF(k) is a differ-

ential form of the typeT(B8/2)2k
B̄8/2

If F(k) is normalized to 1, then

ckY FCkk!22k)
i51

k

~2B82k2 i !G1/2 ~A21!

is also normalized to 1.
Now we come to the case of a closed surface with

positive curvature, which is slightly different from the ca
of a surface with a negative curvature. Now we have o
h50 according to the previous discussion. The wave fu

tion c is a differential form of typeTB8/2
B̄8/2 with B8 being a

negative number. In the formula 2¹z¹
zc1

5(B821)Cc11¹z@2¹z¹
zF(1)#, one can show tha

^c1u¹z(2¹z¹
zF)&>0 for any negativeB8. By using the

Riemann-Roch theorem, one finds that therealwaysexists
F(1) such that¹z¹

zF(1)50, which leads toD̄F50.
Therefore, for anyB8, there exists a higher LL. One ca
repeat the argument to obtain the states in the higher L
and obtain thefull spectrum and wave functions.

The wave functions of the states in thek8th LL are again
given by Eq.~A17!, with F̃(k)5gB8/2F(k) and ]̄ F̃(k)50.
F̃(k) is a differential form of the typeTB82k . The degen-
eracy of thek8th LL is equal to the dimension of th
holomorphic line bundle TB82k , which is equal to
2(B82k)(h21)2h11522(B82k)11, ash is equal to
zero.

The energy is again given by Eq.~A18!. However, a
higher LL has ahigher degeneracy, and the number of th
LL’s is infinite in such case. Instead, in the case of a surf
with a negative curvature, a higher LL has asmallerdegen-
eracy. and the number of LL’s isfinite. From Eq.~A18!, one
notices that, in the case of a positive curvature surface,
energy gap in the neighboring LL’sincreaseswhen the level
increases, and, in the case of a negative curvature sur
the energy gap in the neighboring LL’sdecreaseswhen the
level increases.

It is easy to generalize the above discussions to nonc
pact surfaces, and we will work out an example in the f
lowing discussion.
a

y
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3. Examples

a. Upper-half hyperbolic surface

We consider that the surface is a upper-half hyperbo
surface~also see Comtet and Dunne in Ref. 29!. In the pro-
jective coordinates. the metricg is written as 1/(12zz̄)2,
whereuzu<1 , The other quantities areC52 , B54B8, and
Az52 i @B8z̄/(12zz̄)2#. The wave functions are given b
Eq. ~A17!. As the wave functions of the LL’s shall be no
malizable~opposite to the wave function of a state inside t
continue spectrum!, ^ckuck& shall be normalizable. A nor-
malizable ^ckuck& is equivalent to a normalizable
^F(k)uF(k)&. A normalizable^F(k)uF(k)& leads the con-
dition B82 1

2.k>0. F(k) is given by functiong2B8/2zl ,
where l is a non-negative integer. Thus the degeneracy
infinite for every LL. This is consistent with the Riemann
Roch theorem, as the flux out of the surface is infinite.
nally, the energy is given by Eq.~A18!.

b. Sphere

Another example is that the surface is a sphere. In
projective coordinates. the metricg is written as g
5@1/(11zz̄)2#. The other quantities areAz5 i @B8z̄/
(11zz̄)2], C522, andB52B8C524B8. Thus the flux
f522B8 is a non-negative integer according to the Dir
quantization condition~note we always assumeB.0 in this
paper!. The wave functions are again given by Eq.~A17!, the
energies are given by Eq.~A18!, and F(k) is given
by gf/4zl . The normalizable condition leads tol
50,1, . . . ,2k1f. Thus the degeneracy of thek8th LL is
equal to 2k1f11. The degeneracy can be also obtained
the Riemann-Roch theorem, and the result is consistent
the result obtained by requiring the wave functions to
normalizable. In this way, we obtain the full spectrum and
wave functions on the sphere. The wave functions at
n8th Landau level (n50 is the lowest Landau level! are
given by Eq.~7!.

From previous discussions, we can easily find the in
product ^cn,l ucn,l& is equal to p@ l !(f12n2 l )!/
(f12n11)(f1n)!]. The inner product is as previously
defined, ^c1uc2&5*dvc̄13c2, where dv5*@dxdy/
(11zz̄)2].

However, inside the paper, the definition of the inn
product isdifferentfrom the definition in the Appendix. The
inner product in the paper isdefinedas

^c1uc2&5E dz dz̄

~11zz̄!2
c̄13c2 . ~A22!

As dz dz̄52dx dy, thus^cn,l ucn,l& is given by the following
formula:

^cn,l ucn,l&52p
l ! ~f12n2 l !!

~f12n11!~f1n!!
. ~A23!

This formula is used in the paper.
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