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Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere
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We present a framework for analytic calculations of the hierarchical wave functions and the composite
fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates.
Then we calculate the overlaps between these two wave functions at various fillings and small numbers of
electrons. We find that the overlaps are almost equal to 1. This gives further evidence that two theories of the
fractional quantum Hall effect, the hierarchical theory and the composite fermion theory, are physically equiva-
lent. [S0163-182697)02303-3

I. INTRODUCTION to the lowest Landau levelLLL ), the wave functions are
only dependent on holomorphic coordinatpslynomials of
The fractional quantum Hall effec{FQHE at the the holomorphic coordinatg®n the sphere. Therefore it is
Landau-levelLL) filling fraction »=1/m with m an old in-  possible to use only holomorphic coordinates to do all cal-
teger is very well described by Laughlin’s thedr§. The  culations. Comparing the two types of hierarchical wave
Laughlin wave function is a very good approximation of the functions is the same as comparing the two polynomials of
exact ground state of the quantum Hall effédQHE) at holomorphic coordinates on the sphere. We note that our
v=1/m. However for the FQHE at+ 1/m, there existwo ultimate goal is to expand those wave functions in polyno-
well-known theorieg(notice that we will only consider the Mials, and calculate the overlaps of two wave functions or
case that the electron spins are polarized in this pagere  Physical quantitiesfor example, the density-density correla-
is the hierarchical theory. The statesiat 1/m are formed tions) at anarbitrary numberof electrons by the method
due to the condensation of the anyonic quasiparticles ofJack polynomials methodused in studying the Calogero
Laughlin state~1° The trial wave functions constructed Model:* We do not know how to do this at the moment, and
from this theory are called hierarchical wave functions. An-further progress on it will enhance our understanding of the
other theory is based on the composite fermi@p) ap- theories of the FQHE.
proach proposed by Jath,where the FQHE is due to the We organize the paper as follows: first we review the
integer QHE of the composite fermion€F’s) (electrons Landau-level problem on the sphere. A self-contained deri-
bounded with an even magnetic flux quantehe trial wave  Vvation of eigenstates of an electron on a sphere with a mono-
functions constructed from the CF theory are called CF wavéole field, performed by using a simple geometric argument
functions (or Jain’s wave functions The overlaps of the and projective coordinates, is given in the Appendix. Then
exact states with the hierarchical wave functions and the Cfve show how to classify the many-body eigenstates of the
wave functions are both excellent. It has also been showAngular momentum in the LLL. We then construct wave
that two theories predict the same topological excitations afunctions based on the theory of the hierarchical states and
the sames .72 The two theories must be physically equiva- the theory ba_sed on the CF picture. The wave functlo.ns con-
lent if they both describe correctly the physics of the FQHE Structed in this paper are easy to handle in the practical cal-
Thus it would be very interesting to study the difference angeulation. Finally we calculate the overlaps of the hierarchical
equivalence of the two theories. wave functions and the CF wave functions at various fillings
In this paper, we present a framework for analytic calcu-¥ and some small numbers of electrons.
lations of the two wave functions on the sphere by using
projective (or stereographic coordinates on the sphere. Il. QUANTUM MECHANICS ON THE SPHERE
There are several advantages of using spherical geometry. As
it is a compact surface, there will be no edge state if we are The electrons are constrained to move on the surface of a
only interested in the bulk state. Also, the system has rotasphere of radiu® having a magnetic monopole in its center.
tional invariance symmetries. On the torus, though the sysThe total magnetic flux #R?B must be an integer multiple
tem has translational invariance and no boundaries, the hiers=2S of the magnetic flux quantunp,= 2% 7rc/e accord-
archical wave functions are very difficult to calculate anding to the Dirac quantization condition. Therefore, the sphere
quite complicated due to its nontrivial topologfand we do  radiusR is equal toS*4 o, wherel .= (%c/eB)Y? is the mag-
not even know how to construct CF wave functions with thenetic length. The eigenstates of an electron are given by
correct center coordinate degeneracy on a torus. monopole spherical harmoniés® First, we briefly review
Because the states considered in the FQHE are restrictébde old method to derive the wave functions of the Landau
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levels (LL's), then rederive them by using algebraic geom-where =0, ... ). At any Landau levels, the eigenstates
etry. (unnormalized are given by(from the Appendix
For simplicity, we take unitg andc equal to 1 in the

following formulas. The Hamiltonian of a single electron of B B
massm, is given byH = (1/2m.)(P+ eA)?. However, since Pni=| 2+ §+1)&Zlng Izt §+2)&Zlng "'[‘92
the electron is confined on the spherical surface, one shows

1 + E-H’]—l)&zmg o, @)

P, 22 2z ® ? |
H 2meR2[rX(P+eA)] LR
where
where A=rXx(P+eA), o is the cyclotron frequency,
P=-iV, VXA=BQ, andQ=r/R. _ 1 8a
The components ofA obey the commutation relations 9 (1+222

[Ai, Aj]=l€j(A—SQy). The angular momentum opera-
tors L=A+SQ, and their commutation relations are iﬂ(of:gB/zE(of, (8b)
[Li,Lj]=i¢jkLk. SinceA is normal to the surface, we have m :
OQ-A=A-Q=0, and L-Q=Q-L=S. Using these equa- B=¢/2, (80)
tions, the relatiofA|?=|L|?>—S? can be obtained. Thus the
eigenvalues of A|? can be deduced from the usual angular ’J/(O)le Z Zb+2n (8d)
momentum algebrg A|?=|L|2—S?=L(L+1)-S?, L=S bt '
+n, n=0,12..., and theeigenstates of the Hamiltonian Under any finite rotations, thecoordinate is transformed as

are the eigenstates ¢E|? and L, and they are given by z'=(az+b)/(cz+d). The rotation matrixR=(25) is gen-
monopole spherical harmonics. We choose a gauge fielgrated by the rotations along the three Cartesian axes
A=—(SeR[(1+cos)/sinfle, of which the singularity

lies on the north poléwe choose a different gauge from the 1 [(1+cosx)Y? i(1—cosw)*?
i i i R Er— . 1
g;e used in Ref.)3 The wave functions at the LLL are given " 7 (1= cosr) 12 (1+cosy)2 (93
uS*tmySTm, 2 1 (1+cop)? (1-cop)'? ) o
VR~ T 1/2 121
wherem=-S,—-S+1,... S, and \/E (1~cos3) (1+cosp)
u=cog16)e'®, v=sin}0). () _

(90

z

exp(iy/2) 0 )
) . ) 0 expq—iyl2)]’
All wave functions of the LL’s can be derived by this wi,
and we will not repeat the derivation here. In the following, The rotational invariance of the Hamiltonian is shown by the
all eigenstates will be obtained by using projectiveidentity

coordinates®!’ and the method developed in Ref. 18.

The projective coordinates are given byz OH(z')0™*=H(2), (10
=2Rcot(Al2)e'¢ and its complex conjugate We will take
R=3 for simplicity. The measure on the sphere is
f[dxdy/(142z2)?]. The Hamiltonian of Eq(1) in projective

where

&2
coordinates is now written by the following formuta: 0= Cz+g _ (11)
cz+d
2
H= H(1+Z?)2(Pz+ eA,)(Pzt+ehy), (4)  The wave function is transformed under rotations as
e
where . az+b
o V=0V c5p) (12)
J J . . - .
P,=—i—, Py;=—i—, eA=i ¢ _z — (50  We list some useful relations when we do a finite rotation on
9z z 21+zz a many-body wave function.
and ¢ is the flux(in the unit of the fundamental flug,) out —
of the surface. Note that the Hamiltonian given by E5). d(z,z)= L B (13)
(we call this HamiltoniarH' in the Appendix is different V1+2zzi\1+2z

from the one given by Eq.1) by a constant.
The ground states can be determined from the solutions df ~ %
the equation P7+eA;) =0, and they arédunnormalized as

and 1+ zz; are transformed under the finite rotation

/ dz .2) cz+d vz cz+d 1/2d( ) (143
- _ 2 7)) =| — puie X z.,2),
V=arz ® ' \ez+d) \cz+d v
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-z (14b andPy is equal to
zi’—zj’: : _ , 14
(cz+d)cz+d) (p+ D11+ (d+]—1—i)1 2 19
S e TNl GH+DI  (A+2D7
U (cz+d)(cztd) On the sphere, if the interactions between electrons are rota-

tionally invariant, the eigenstates of the many-body Hamil-
tonian should also be the eigenstates of rotational operators
N J2 andJ,. The FQH ground states on the sphere are rota-
=> 3,() tionally invariant and nondegenerated. In order to find the
ground states, we can thus use the rotational invariant states
to diagonalize the Hamiltonian. As the number of all pos-
sible rotational invariant states is much less than the number
of all possible states, it is thus much easier to find the ground
states by using the rotational invariant states to diagonalize
(15a the Hamiltonian than by using all possible states. It could be
N also interesting to find the eigenstatesJéf-0 (which are
J :E 3.(i) not rotat@onally i_nvari_ar)t The excite_d_sta_\tes_ in the FQH are
Y& not rotationally invariant. For Fermi-liquid-like systems in a
N half-filled Landau level, one can have ground states which
are not rotationally invariarf®
' Now we are going to find the many-body wave functions
on the LLL which are the eigenstates & andJ,. In the
LLL, the many-body wave function® have the form

=.§ J(0)= 2( 55 70 ?) (150 wol] — -

N
iFra
<1 (1+z z,)"”2

Finally, the angular momentum operators fbelectrons are

=

N
32

=1

Jd
(1-z))—-—(1-2 >— ¢<z+z>

J 29
22y |+ + (T 5@ 2)

0z

—F(21,25, ... ,Zy), (20

Ill. PROJECTIONS AND ANGULAR MOMENTUMS where F(z,2,, .. .,zy) is an antisymmetric holomorphic
IN THE LLL function. WhenJ, =J,+iJ,,J_=J,—iJ,,J, act on¥, we

. . . . have
The FQH state is restricted to the LLL. In this section, we

will discuss briefly how to project states to the LLL on the N N a
sphere(see Ref. 16, and for the detailed discussions in the v=[] _ E _ (213
case of a plane or a disk, see Ref),18nd how to find the =1 (1+2zz)%4=1 97
eigenstates of angular momentums when the particles are
restricted to the LLL. Note that the construction of the CF N 1 N P
wave functions involves higher LL’s, we need to project the o= ——=> ( ~ZZ—+¢z|F, (21b
wave functions to the LLL(see Sec. ¥ =1 (1+zz)%4=1 9z,
The normalized states with flug in the LLL are
(p+1)! V2 7 J, ﬁ ! {(% y4 (9) NﬂF (210
V=\2aie-101] @rzo (16) ©oELrzz)??\ = an) 2

and1=0,1,2 ... ,4. The projection operator to the LLL is Thus the projected operators are
P=3,[1){l|, and it can be written also in the following form:

N
=2 - (223
Py(z2,2)= f—G(z w)p(w,w), (173 =1 s
N
_ , , 9
b+1 (1+zw)? J,=> —Z—+ ¢z, (220
G(z,w)= — ——. (17D =1 Zi
27 (1+22)*%(1+ww)*”?
N
For the many- body wave function® (or G) is equal to > 91 No (220
1P (orH —,G;) whereP; is the projection operator of z \& Tz 2’

thelth particle andN is the number of particles.
If the state is not in the LLL, the antiholomorphic coor- Where they act only orF. The angular momentum eigen-
dinatez will appear. Typically, it appears as states of the many-body wave functions restricted to the LLL
| can be obtained by solving
Z ZI +

V= e (18) J_F(=3)=0, (233



J,F(=3)=—-JF(-J), (23b

where F(—J) is the lowest weight eigenstate with weight
—J. Other states can be obtained by applyitigrepeatedly
on F(—J)'. Equation (23) leads to

N Né

> .52|F< )= 7—J)F<—J>, (249
N
Za— -J)=0. (24b

The first equation in Eq.24) means thafF(—J) is a homo-
geneous polynomial with degre®&¢/2)—J. As F(—J) is

an antisymmetric function of holomorphic coordinates, it can

be factorized asF(—J)= H,<](zi
check that

—Zz)F'(—J). One can

N

J’_F(—J)ziE[j (z—2z)J F'(=J), (259
N(N—1) N
J;F(—J):TF(—JHE{ (zi—2)I,F' (—J).
<]
(25h)
Thus F'(—=J) is a symmetric function with degree

L=(N¢/2)—J—[N(N—1)/2], and the power of every coor-
dinate in F'(—J) shall be less or equal thap’ where
¢'=¢—(N—1). By using Eqs(24) and(25), one finds that
F’(—J) satisfies the conditions

J.F'(=J)=0, (269
Ng'
JF'(=J)= T—J)F’(—J). (26b
Define symmetric polynomials; :
N N
Pz)=1l (z-2)=2, (-D'ei2"™, @7
where
N N
=2z =11 (28)
i=1 =1
F’ can be expanded as
N
;i C(si)H o, (29)

wheres; is a non-negative integer. By using E@6), we

obtain equations whicl2(s;) ands; must obey. One of them
is
N !
> is,=L:i—J. (30)
=1 2

The condition
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N

D si<¢ (31)

i=1

must be satisfied in order that the wave function is normal-
izable.C(s;) shall also satisfy the equation

N
IF()=S csHl of=0, @2
4 i=1

whereC'(s/) is a linear combinations dE(s;), and it shall
be equal to 0. Becaugd,,J_]=-J_, s/ shall satisfy

N
> is/= (33)
i=1
ApparentIyEiN: 1S shall be also less then or equalgté. The
number of linear independent solutions fofs;) is equal to
the number of solutions of Eq30) minus the number of
solutions of Eq.(33), and it is also equal tdv(J,N,¢"),
which is the number of states with spin

The generation function for the number of solutions of
Eqg. (30) or (33) is

N
G(t,Q)Iiﬂl g
The number of solutions of Eq30) is equal to the sum of
the coefficient of termt!q- with 0<j<¢' in G(t,q). Thus
M(J,N, ") is equal to

(34

TABLE I. In this table, we list the number of rotational invari-
ant states at various and a small number of electrons; is the
dimension of the total Hilbert spadén the LLL) and N, is the
number of the rotational invariant states.

v N N, N, ¢ (formula) b N¢
2
£ 4 5 1 N—-4 6 12
6 58 3 1 33
8 910 8 16 64
2 4 43 2 IN-2 12 24
6 1.242 10 19 57
8 46.029 80 26 104
g 4 43 2 IN-6 12 24
6 2.137 13 21 63
8  139.143 164 30 120
2z 4 150 3 UN-4 18 36
6 11.963 29 29 87
8  1.229.093 702 40 160
Z 4 150 3 UN-8 18 36
6 17.002 34 31 93
8 2502617 1.137 44 176
3 9 910 8 IN-5 16 27
£ 6 2.137 13 IN-1 21 63
9  610.358 506 32 144
< 6 17.002 34 IN-3 31 93
2 4 33 2 IN-2 1 22
9  184.717 217 28 126
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N
dt dg 1 21 o ) . .
§ $ oo (q(q )Er 35 A8 =TT (Bui-av) (quasinole, (413

We can also use a generation function of one variéble, N
—d

' (a,B)= ——a— uasielectro
Y (1-t% -A) H (Bz?ul &vi) “ n

G(t)= ; . 36
" I (19T (119 (30 (41b

wherea=cos(@2)e'?, and 8=sin(4/2) are the quasiparticle
coordinates. In the projective coordinates, the operators of
the quasihole excitation and the quasielectron excitation are
1—t given in the following form:

M(J.N,¢")= fﬁz pyerdtlU iy 37

The number of solutions of Eq30) is then given by the
coefficient oft" of function G(t). Thus

The asymptotic behavior d¥l(J,N,#’) can be obtained by AT(w,m‘I’m(Zi)I_Hl d(z,0)¥n(z), (429
using the steepest-descent methodVhen L and ¢’ are .
both large M (J,N,¢") is equal to ex(S(J,N, ¢')) approxi-

mately, and ex(5(J,N, ¢')) is determined by the following N 1
equations: Alw,0)V(z) (1+w—5N/ H 1 (1+7z7)¢m D2
Lee exp(—p) +1 fm(/, +pr
1- expl— p) 2 0 0 Xi];[l [(1+Zim&zi_¢ma_“:m!
¢'p uexp(— pu) (42b)
] o6

where w,w are the projective coordinates of the gquasiparti-
(N+o')p cle, andFm(zi)=HiN<]-(zi—z]-)m. The flux ¢ in the presence
f of a quasielectroriquasihole is ¢, —1 (P +1).
The slightly entangled appearanceA{fw) hides, indeed,
Np b'p a form which is analogous tA'(w). To unveil the similari-
—f f )duln[l exp 1

S(J,N,(;b’):Lp+ln(1—exp(—p))+%

ties, one can show that

(38b

We list the number of rotational invariance states at various P(¢m_1’zi)£[l d(z,@)¥m (43
fillings in Table 1.

gives the wave function of the Laughlin state in the presence
IV. HIERARCHICAL WAVE FUNCTIONS of a quasihole such as that in E¢42). P(¢,z) (here
¢=¢dn—1) projects the wave function to the LLL with flux
In this section, weé:h?cuss the construction of the h|erar¢ with respect to coordinates . Thus the construction of
qh|cal wave functions:™ The qua§|part|cles Sa“sfy frac' the hierarchical wave functions due to the condensation of
t|_onal statistics, and the_condensatlon of quasiparticles glVe&uasielectrons wilhaturally involve higher Landau levels as
rise to the FQH state witlr# 1/m.

in the case of the CF wave functiofsee Sec. Y.

Define Instead usingA(w,w)¥,(z), we can also create a
quasielectron excitation using ¥,_,ADS°%
v =TT (U —uw)™ (39 where D=[V¥,(z)]2. AD is here equal to

m i

P(¢,— 1)1 ,d(z,0)D. We call ¥;)™ 2AD a wave
function by the hard-core construction.

whererr_]_is a positive integer. For=1/m, With m being an In the case of many quasiparticle excitations, the opera-
old positive integer, the FQH wave function will b, (the g5 of excitations are

Laughlin wave function The flux ¢ is equal to

én=m(N—1)2 Or, in projective coordinates, it is Ng
N Aquj_]:[l Al(w), @), (443
\Ifm=i];[j d(z,z)™ (40)
Ng
The Laughlin wave function in the presence of quasiparticle Ay =11 A(wj,)). (44b)
excitations is given by the quasiparticle excitation operators 9 j=1

acting on the original Laughlin wave function. The quasipar-
ticle excitation operator is given by WhenANq acts on¥,, one can show
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q - ﬁ —
Ay V=
Moo m P51 (14 wj0) V=1 (14 z;7) ¢m~ N2

AL Fr(z), (453

where

Nq N N
AL=IT A =11 [(A+z0y )9, — (dn=Ng+ Doy 111 [(1+z0y 1),
a j=1 i=1 a =1 q

N N
~(n=Na+ oy, 1] 1 [(1+20)0, = (dn=i+ Dol 1] [(1+201)0, ~ por]. (469

One should be careful about the orderingAf(j) in Eq.

N
(46). A'(j) in Eq. (46) is defined as Y (m,—p)= P(q‘),zi)f ljl (1d+w—w)2\lfm(zi)

w,do,

a a

N
A (=11 [(A+z0)o, = (gm-]+ Dol @7 .
d(Zi, 0)¥p,(©,),

—

<11

As in the case of a single quasihole excitation, the wave i=1 a=1
function in the presence ®f, quasiholes can be also written (513
as
N Ng o \Pe,ham(mv_p):\ymfz(zi)
P()I] 11 dz o)V, (48) N _
=1 a=1 i do,do,
XP(¢2—Ng,z) I— 5
wherep=®,—N,. a=1 (14 w,0,)
To construct the hierarchical wave functions, we Ng
shall normalize the' La}ughlln wave functions in X‘I’z(Zi)H H d(?lw_a)\l,pz(wa)'
the presence of quasiparticles. One can show that, i=1 a=1
=[Wi(@)]"MAN W and Weq=[Vi(0)]" Ay ¥, (51D

or, for the hard-core-constructed wave function,
[¥1(0,)]""¥m_,AD, are normalized” The hierarchical e also require the wave functions above to be rotationally
states are obtained if the quasiparticles are also condensedifRariant. This requirement leads to

the Laughlin states. The wave function of the quasiholes is
V,=[V;(w,]P2" ¥ the wave function of the quasielec-
trons is ¥,=[¥,(w,)]P2 ", andp is a positive even
integer. Quasiparticles satisfy fractional statisficmnd the
wave functions here are in a singular gauge which shows Po(Ng—1)=N. (52b)
fractional statistics explicitly. The hierarchical wave function
for the electrons is then given by the following formula:

M(N—1)+ &Ng= ¢, (529

,=*1 in the case of the condensation of quasiholes and

N quasielectrons, respectively. The Landau-level filling frac-

¢ do,do,

—= = Ve q¥,, 49 tion v is equal to
f a=1 (1+waw_a)2 q q ( )
or, explicitly, 1 53
Y9 d,do, m+ ——
‘I’e(m,p)=f [l ——=v¥uz) £2P2
a=1 (1+wawa)

N Form=1 and¢,=1, the filling v=1[m+(1/p,)] is equal
, 2/m — to the filling of the charge conjugate state;-11/(p,+1)].
% 1 d@ 0ol ¥a(w,) Vp,(@a) Actually, the wave functionl ;(m,p) is also the charge con-
(50) jugate of the Laughlin wave function at filling
v=1/(p,+1), and this shows that the construction of the
is the hierarchical wave function due to the condensation ofvave function is consistent with the physical picture. When
quasiholes, and the hierarchical wave functions due to then#1, we notice that, in the formula foW(m,p), we
condensation of quasielectrons by the non-hard-core corcannot perform the integration exactly due to the term
struction and the hard-core construction are given in the foll¥;(w,)|?™. We can approximate the trial wave function
lowing formulas: W (m,p) by omitting |¥;(w,)|?™, and it becomes

i=1 a=1
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Nq do,do, N2 Ng doldol
m,p)~ z V.=P(¢,z
wamp)= [ I 2w s [ LT s
N Ng 2,2
do%dw
) o B~"B 1 2
><|];[l a];[l (Zlawa)\ppz(wa)' (54) (:L_'_w—zaz)zq’m(zi)q’pz(wa)q’ps(wa)
l 2 2
The wave function written in Eq(54) is still rotationally XH H d(z ,_t)H H d(w,05). (56)

invariant®'” and we are able to integrate it. When=1, the

formula for ¥¢(m,p) in Eq. (50) is integrable. When The wave function in Eq(56) is quite similar to the wave
m=1, we find that the overlap between the wave functiongunction constructed in Ref. 7,

given in Egqs(50) and(54) is excellent for a small number of

electrons. In Ref. 9, it was also found that the overlapping of N2 T dwldw
the wave functions given by E@54) with the exact ground P(¢.z) }_Il 31_[1 (1+ wiat)?
state of the FQH is almost equal to 1 for a small number of
electrons. We note that the wave functions calculated in Sec. dwzdﬁ
VI are based on the formulas written in E4S2) and (54). > (Zl)‘l’pz(w )W, (0 )
In the formula for¥ (m, —p) or ¥¢ pard M, — P), We note (1+ )
that one can perform the integration first, and then the pro- Ny N2 1 Ny  Ng 1
jection, or vice versa. In Sec. VI, the overlap between these <[ Il ——=I1 Il ———=. &7
two wave functions will be calculated for a small number of 101 d(z,0))a=1 p=1 d(wg,05) wg)

electrons and it is found that the overlap is almost equal to 14owever, it is difficult to handle Eq(57) in the practical
We will call the above hierarchical states second-levelcalculation due to the singularities.

hierarchical states, and the Laughlin states first-level hierar- Finally by requiring the rotational invariance of the wave
chical states. The higher-level hierarchical states can be buiftinction Egs.(56) or (57), one obtains
in a similar way’®1"°We denote thé’th-level hierarchical

states by P1,£P2,€3P3, - - - £kPK), Where p; is an old P1(N;—1)—N>=¢,
positive integer,p;,i#1 are even positive integers, and
&=~ indicate the quasihole condensation and quasielectron N;—p2(N2—1)+N3z=0, (58)
condensation from parent states.
For higher-level hierarchical wave functions involving the N2—ps(Ns—1)=0,

condensation of quasielectrons, we can makerther sim-  and E.(58) implies that the filling of the FQH state is equal
plification. We take p,,—p,,—p3) as an example. The tq

wave function for this state is

i 1 (59
P1
Ny dwldai p2+i
V.=P(¢,z) H m‘l’m(zi) D3
We point out that the wave function proposed in Ref. 7 had
N1 Na been also constructed on the tofdst would be very inter-
x[] H d(z;,0L)P(Ny, k) esting if we could generalize the construction of the wave

i=1 a=1

function (56) to the torus.
N3 dwlde’

% H a” "« \I’pz(wi) V. COMPOSITE FERMION WAVE FUNCTIONS
o

- 2—2\2
(1t ogey) The CF theory of the FQHE has significantly advanced

N, N the understanding of the FQHE recentlyThe FQHE is due
> d(ot a2)¥ 2y 55 to the integer QHE of the CF’s, where a CF i§ the bounq
al_=[l ,(I—[ (@ @) p3(w ) ©9 state of an electron and an even number of vortices. We will

discuss in this section how to calculate the CF wave func-

tions in our framework.
whereN; is the number of electronsy, is the number of Jain proposed that all trial wave functions of the FQHE
quasielectrons of the Laughlin statp,§, N3 is the number (note again in this paper the spin is polarig@an be ob-
Of quasielectrons of the hierarchical state; (—p,), and tained by using two operationB, andC, the composite fer-
o> and w? are the coordinates of quaS|part|cIes of the twomionization and charge conjugation, respectively, on the
types, respectlvely We can prove thafN;,w>) can be wave functions of the integer QHE of the CF’s. For example,
droppedinside the formula. Thus the wave function can bethe trial wave function of electrons at=n/(2n+1) can be
written as written asP Dy, , wherey,, is the wave function of the CF’s
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which fill completely the firstn Landau levels with flux v=1-[n/(2n+1)]=(n+1)/(2n+1). The trial'wave func-
¢* (P is the projection operator to the LLL as in the previ- tion at other fillings can be obtained by acting repeatedly
ous sections The flux of the statePDy, is equal to D andConPDy, (¥1P(¢—N+1)¥,y,) (each state can
2(N—1)+¢*, where ¢*=(N/n)—n. We can also use be obtained only in a unique way in this picture except the

. ) ordering of operatoP).
V,P(¢—N+1)¥,x, as the trial wave function and we call Xn iS given by the determinant,= del(y (z)), where

this wave function the wave function by the hard-core cons_g1 =~ n—1’ k=g* +25+1, i=12 ... N,

struction.  The charge conjugation ofPDy, (or  N=ng¢*+n? delys,(z)) can be simplified and it is given
Y P(¢p—N+1)¥,x,) is then the trial wave function at by the formula

1 1 1
Zl Z2 “ e ZN
21 ZZ PP ZN
’_ ' _ fF_
lev 1 Z12\/ 1 . z% 1
7 % Ty
2121 222, T INZN lN_[ 1
Xn= : : s : X > 1 60
: : : i=1 (1+zjzj)¢ /2 +n~1 ( )
= N'-1 = N'-1 - N'-
213y 2229 e ININ
Z—n—l Zg-l Z_Inv—l
- -1
21 4 2 122 Iy N
_ r_ _ -1 -1, N"—-1
L 1 Iy aw
|
where N'=N/n=¢* +n. We divide N electrons inton n-1 , N
.. . _ N'qs 2
groups. The set of the original coordinagsan be mapped ¥ =AN Psﬂo el WS*ZE (zi—2)

to zs with s=0,1,...n—1,k=1,2,... N'. The determi-

nant is proportional to N 1
n—1 , N 1 Xil;ll(l—l—ziz_i)‘z’/z*”*l’ (633)
Xn:ANsHo [ed ]S‘I’s;il:[l Atz 02 (61) ’ N
a Whar= V1 SYP(¢—N+ D] [el ]Sws,zg (z
where \
[ —— —. (63D
N 4 (1+Zizi)[<¢ N+1)/2]+n—1
els\ll :kll Z_S*k’ (62a whereSY is the symmetrizing operator on the electron coor-
dinates, and
N’ N’
V1= klE[kz d(Zg i, = Zs k), (62) Vo= klljkz (Zok,~ Zsk,)- (64)

Before performing the antisymmetrizing or symmetrizing in
and AN is the antisymmetrizing operator on all coordinatesthe formulas above, it appears that there aralifferent
Zsx. The wave functions W=P(4)Dyx, and V¥.,q groups of electrons, and there are correlations between dif-
=¥,P(¢—N+1)¥,x, can be written in the following ferent groups. The generic terms before doing the projection,
form: for example, in the formula o¥, are
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TABLE II. The overlaps between the hierarchical wave functions and the CF wave functions at some fillings for a small number of
electrons.

v N overlap
(PDxo|EVs) (U1PW1x,|EVs) (PDxz|W1EWE) | (WiPWix | ¥,EV)
6 0.999 3234149 0.999 361597 1 0.999833152 8 0.999945645 7
4 1 1 1 1
v N overlap v N overlap
5 (EWg[W,EVY) (PDX2[W1PY 1x2) : (HW5/DCW3)
6 0.999 647900 1 0.999 928 898 7 6 0.999 376 257 4
4 1 1 4 1
v N overlap
5 (EWs|DPDx>) (EWs|PD?x,) (DPDx,|PD?x,)
4 0.999 961 486 9 0.999 961 486 9 1
v N overlap v N overlap
1% (EHW3|DCPDy,) 131 <H‘I’5|D2C‘I’3>
6 0.999 652 238 3 4 1
v N overlap v N overlap
& (EW,|DPD?%y,) & (HHW4;|DCDCWV3)
4 0.999921 8859 4 0.999 999 999 7
M JEN—
Eg_,kzls,k dZN+idZN+i
< \(¢2)+n-1" (65) V.= H . =
(1+2Zs4Zs k) (14 Zn4izne)
This will be projected to XW(znti - Znem)Wa(Zy - - Zhem) (69
_ whereM is the number of particles in the stale, N is the
(b+ DI (p+n—1—1)! 2 T orp -~
| | | A . (66 number of electrons inP., N+M=¢+1, and¥ is the
(M=) (=1+9)! (142425102 complex conjugate o¥ . Note again, If we us€Dy, as the

_ ) trial wave function, the projection operatoP can be

s andl, we can discard it in the process of the projection.—\ p(4—M+1)¥,y, in Eq. (69), then the operatoP
Thus P will act in the following way [discarding constant cannotbe dropped in Eq(69).

(p+ 1) (p+n) ] One can also adb on ¥, and obtain another trial wave
function of the FQH state at filling 1/(2 v), wherewv is the
?ng(zS,k) 1 1 filling of the state ¥. Repeatedly actingd and C on
PDx,, we can obtain the trial wave functions at all observ-

(1425, 20?2070 (L4 2g2a0?? ($7 2okl s,

xXd; (¢p+n—1
VI. OVERLAPS BETWEEN HIERARCHICAL WAVE

T Zs 0z, ) F(Zs ) (67) FUNCTIONS AND CF WAVE FUNCTIONS
For example, by applying this formula t& =PDys,, the We perform calculations of the wave functions symboli-
wave function is then given by cally by usingmAPLE. The overlaps between the hierarchical
wave function and the CF wave functions are calculated,
N N/2 Some overlaps between the wave functions with or without
V=ANP[] ——]1 (¢+1-2543, )9, the hard-core construction are also calculated. The formula
i=1 (1+zz)?%=1 Tk Lk of the trial wave functions for the FQHE in the previous
1 N2 N2 sections need to be normalized before we calculate the over-
laps. Table Il lists some overlaps at some fillings for a small
X 3 - 2,
Sl;[o (¥s2) kgl kgl (Zo'kl Zl'kz) (68) number of electronsE¥ means a state formed by the con-

densation of quasielectrons of a parent stiteand H¥Y
The trial wave function¥';, for filling 1 — v is related to the means a state formed by the condensation of quasiholes of
trial wave functionV at filling v by charge conjugation, parent statél. In all cases listed in the table; is equal to
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2 fori>1 in the constructions of the hierarchical states. Thdevels (LL's) can be obtained by using a very simple geo-
wave functions which involv®, P, andC operations are the metric argument® A self-contained presentation of an idea
CF wave functions. based on Ref. 18 will be found in this appendix, and some

WhenN=3 or 4, and¢=6, there is only one rotational €xamples will be included. _
invariant state, which must also be the ground state. This In the case when the surface is a plane, a sphere, or a

explains why some of the overlaps in the table are exactljorus. the spectrum and eigenfunctions of the LL’s can be
equal to 1. solved exactly?® For example, LL’s on a sphere with a Dirac

Because of the limited CPU time we were allowed to useMonopole at the origin, were solved by Dirac a long time
go. The problem in the case when the surface is an open

we were only able to calculate some hierarchical wave func® . X X
pper-half hyperbolic plane with a constant negative curva-

tions up to six electrons, and some CF wave functions up t ure was solved completely. In this case there exists a dis-
ten electrons. The detailed calculations can be found in Ref, comp Y- .
crete spectrun(this is the spectrum of the LLjsn the low-

25. In the future, we will calculate wave functions with energggsector, and a continuous spectrum in the high-energy

greater numbers of electrons. From the calculations, we CONsacto

clude that the hierarchical wave functions and the CF wave Reference 18 studied the problem of LL's on compact

functions are almost the same in the case of a small numbg§,seq Riemann surfaces with Poincarnetric, and obtained
of electrons. discrete low-energy eigenvaluésr LL’s), their multiplicity
and wave functions. Prior to Ref. 18, a similar problem also
VII. CONCLUSIONS was studied, and discrete low-energy eigenvalues and their
) . ) i multiplicity were obtained by using results from the math-
In this paper, we presented a detailed discussion of thgaical iterature, for example, by using the Selberg trace
calculation of trial wave functions on the sphere. The projecformula (see the references quoted in Ref).18
tive coordinates are used in performing the calculations. A why can the problem of LL’s in all the surfaces men-
self-contained derivation of the LL's on the sphéce any  tioned above be solved completely? By closely following the
surfaces with a constant curvatyresing a geometrical observation in Ref. 18, it is quite clear that the method de-
method was also given. The many-body wave function in theseloped in Ref. 18 can be easily generalized to the case of
LLL are studied and classified on angular momentum basegny constantcurvature surface with @nstantmagnetic field
We also simplify the formulas for the hierarchical wave applied on the surfacé&he surface can be a compact and
functions and the CF wave functions. closed surface, or an open surface; for example, an open
There are many interesting things we want to study in theup-half hyperbolic plang and thus the problem of the LL's
future. We shall use theories of polynomials to study thosé&an be solved exactly in such cases.
wave function€®?” It would be very interesting if we could We will show that, if the curvature and magnetic field are

obtain the polynomials explicitly for the wave functions at anconstant, we can obtain much information about the spec-
arbitrary number of electrons. trum and the degeneracy of the LL's without solving the

There is a mapping between a trial wave function in theVave functions of the LL’s explicitly by using a simple geo-

; 8
FQHE and a wave function in one-dimensional sp&dge- metric argument; even though'the surface can be a very
cause of the existence of the mapping, one may apply th%omp_llcated one. If the magnetic field is constant, the wave
method used to study the Calogero model to study the tria\lunctlons of the ground states turn out to be a holomorphic

wave functions in the FQHE, and then it may be possible tO|ne bundle defined on the surface. If the curvature of the

calculate some physical quantities from the trial wave func-Surfaces Is also constant, for the high LL’s, the wave func-
phy q tions of the LL's are obtained by repeatedly applying cova-

tions at an arbitrary number of electrons. riant derivatives on some holomorphic line bundi@ich
will be specified later The spectrum is obtained without
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anti-holomorphig¢ differential equation, and the ground
APPENDIX: LANDAU LEVELS states belong to sections of a holomorphic line bundle. We
ON COMPACT CLOSED SURFACES consider a particle on a surface interacting with a magnetic

. . , , field. In complex coordinates, the metric ds’=g,;dzdz
In this appendix, we will study LL's on general compact and the volume form islv =[ig,372]dz/\dz=g,7dx/\dy.
closed surfaces, and work out the LL's on the sphere as & patyral definition of the constant magnetic field to the

example. high genus Riemann surface is
If the magnetic field and the curvature are constant, the gh g

spectrum, the wave functions and the degeneracy of Landau F=Bdv=(d,A;— d7A,)dz/\dz, (A1)
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where B is a constant. Thus we havé,A;—dzA;  g2Zj4ing;;=C, a Liouville-like integrable equation. For the

=ig,7B/2. If the surface is closed, the magnetic field is thenfiat surface,C=0, as in the case of a plan or a torus, the
called a “monopole” field, and subjected to the Dirac quan-spectrum and the wave functions of the LL's can be com-
tization condition. The flux¢ (¢ must be an integeris  pletely solved. When the surface is flat, higher LL’s are ob-
given by 2r¢=[F =BV, whereV is the area of the surface, tained by successively applying a first-order differential op-
and here we assuni>0 (¢>0) for simplicity. The Hamil-  erator to the states in the LLL. Now we shall generalize such
tonian of a particle on a surface is given by the following 5 construction of LL’s in the case of a flat surface to the case

equation: of a curved surface.
Here we consider alosedand curvedsurface with con-
H= 1 (P,—A)g*"Jg(P,—A,) stant(nonzerg curvatures. It is easy to generalize to the case
mJg “ “ v of an open surface with a constant curvature, and we will

_ demonstrate it in an example in the end of the Appendix.

g** WhenC is not equal to zero, one hgs;= (1/C)ddIng, 7 As
= [Pz A)(Pz= A7) +(Pz=AZ) (P A))] the magnetic field is constant, we can fix the gauge field as
o 5 A,=—iB’d(Ing,z/2, and the magnetic fiel& is equal to

- B dv, whereB=2B’C. For example, in the case of the Poin-

m Pz AJ(Pz—Am)+ 5, A2 care metric, ds’=y~?(dx?*+dy?), g,5=y 2, and C=%;
5 _ _ . thusB=B'. For a closed surface, by Gauss theorem, the flux
whereg**=1/9,7, P,=—1d;, Pz=—1d7, 9,;=(9x=19))] 4 o4t of the surface is equal top=B(h—1)/c
2, and d;=(dc+idy)/2. We define the inner product be- =2B’(h—1). B' must be a rational number asis an in-
tween two wave functions s |i2) = [ dv i1 X ;. teger. For the negative curvature closed surface, according to

Define H' = (2g**/m)(P,—A,)(Pz—Az). H' is a posi-  the Gauss theorem, we should have2. On the other hand,
tive definite Hermitian operator becaugg|H'|)=0 for  for the positive constant curvature surfabemust be equal
any ¢. If H' =0, ¢ must satisfy P;—A7)¢=0. The so-  to zero, and thus the surface is topologically equivalent to a
lutions of this equation are the ground states of the Ham"sphere_ Without losing any generalities, we assume in the
tonianH or H'. In the case of a closed compact surface, theollowing discussions thaB is a positive number. For a
existence of solutions of this equation is guaranteed by th@egativeB, the wave functions are the complex conjugate of
Riemann-Roch theorel:** The solutions belong to the sec- the wave functions in the case of a positBe
tions of the holomorphic line bundle, with the connection  Any eigenfunctions of the Hamiltonian satisfy
given by the gauge field. The Riemann-Roch theorem tells us
that Hy=Euy. (A4)

ho(L)—h*(L)=degL)—h+1, (A3) If the domain ofZ intersects the domain af nontrivially,

. ) ) ) ~dz dzis invariant under coordinate changes, or
whereh is the genus of the surfack®(L) is the dimension 9z g

of the sections of the holomorphic line bundle or the degen- 0,50z dz=g35dzqdz (AB)

eracy of the ground states of the Hamiltontaph(L) is the ) ) ) _ ]

dimension of the h0|om0rphic differential_(lx K), where on the intersection of the domains nfandz. Define

K is the canonical bundle; and dég(is the degree of the — —

line bundle, which is equal to the first Chern number of the D=0—(B'/2)dIng,7; D=d+(B'/2)dIng, 5. (AB)

gauge field, or the magnetic flux out of the surfage\When

deglL)>2h—2, h%L) is equal to zerd® thus

hO(L):¢_h+ 1. One finds tha1hO(L) indeed giveS the - BZ(dZ/dE)U_lDU, Sz(dgdi)u—lD—U, (A?)

right degeneracy of the ground states in the case of a particle

on a sphere or a torus interacting with a magnetic-monopolghereU(z,7) = (dz/d‘z)*B’/Z(dgdi)B’/Z_

field. We takem=2 in Eq. (A2) for simplicity. The Hamil-
In the case of noncompact surfaces, for example, an infiignian can be written in the form

nite plane or an upper-half hyperbolic plane, the flux out of o

the surfaces are infinite, and the degeneracy is infinite too. H= —gZTDD+(B/4). (A8)

The degeneracy of the LL's turns out be infinite. Thus Eg. S o

(A3) also correctly gives the degeneracy, as when the flux ig hus the Hamiltonian in the domainis transformed to the

infinite, the equation implies that®(L) becomes infinite. Hamiltonian in the domaiaz as

When the surface has a boundary, for example a disc, one ~ 71

would expect that Eq(A3) is replaced by an index relation H=U""HU, (A9)

given by the boundary index theory. Note that, when the ﬂuxand the wave function is transformed as

is much larger than 1, the degeneracy of the ground states is

D and D_are transformed as

approximately equal to the flu¥ out of the surface. E: Uty (A10)
2. Higher Landau levels Therefore y(d2)®'/3(dz) B2 is invariant under the trans-
We study higher LL's in the case when the curvature offorMation, and it implies thay is a differential form of

the surface is constant. When the curvature is constantype TS,ZZ where we use the following notation: if
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F(z,2)(d2)*(d2)" is invariant under the transformation, then If B’ <1, there is only the zeroth “Landau level” or the LLL
F(z2) is a differential form of typeT;Y (there exists a continuous spectrum in the high-energy sector,

The ground states are given by the solutions of the equzfnd the states in the continuous spectrum are not the states in

. . . , he LL’s).

tion D¢=0. When the curvature is negativg, ¢, andB We can generalize the above discussion to higher LL's.

are positive numbers: b>2h—-2, orB }1, then the NUM-  The wave function of thé'th LL is given by

ber of the solutions isp—h+1 according to the previous

discussions. For smalle¥, some discussions can be found in #«= (V,)*® (k)= (9—(B'/2—1)dIng)(d— (B'/2—2)dIng)

Ref. 18. In the case of compact and closed Riemann surfaces ,

with the Poincaremetric, the wave functions in the LLL X+ (9= (B'12=k)dIng) P (k),

were constructed by calculating the determinant of holomor- _ _ _ (A7)

phic sections of some bundig. with @ (k) =g~ B8"2d(k) andd d(k)=0. d(k) is a differen-
When the curvature is positiv&; and B’ are negative tial form of the typeTg _. Notice that this construction

numbers, anch=0, as shown in the previous discussions.generalizes the standard construction of the harmonic oscil-

Now ¢ is equal to¢p=—2B’. The LLL states are again lator. The difference between the constructions of the high

given by the solutions of the equatioDy¢=0. As LL’'s among the case of the flat surfaces and the case of the

|¢p|>2h—2=—2 (h=0 in this casg the number of the curved surfaces is clear now. In the case of the surface being

solutions is equal tdp|—h+1=|¢|+1. a plan or a torus, high LL's are obtained by successively
To obtain the spectrum and wave functions of the highepplying a first-order differential operator to the ground

LL’s, we introduce the covariant derivatiteV,, and its states. However, the situation is different when the surface is

Hermitian conjugateY,) "= —V?, curved.® (k) for k+0 is notthe ground state of the Hamil-
tonianH.
V, =T, V=949 %, (Alla) Using Eq.(A13), we calculate the eigenvalue of the cor-
- | ) i responding wave functiogh,, and it is equal to
V)ITi—= T 1. (V)T=—g ' 1ag', (Allb
(V)" T—=T1,(V2) g g ( ) , ) K(k+1)C
and we callg=g,; for short. Note thaD is the covariant Ex=CB'(k+z)———— (A18)
. B'/2 ~_ z 2
og?ratorvz acting onTg,; andD =gV*, whereV* acts on The degeneracy of the'th LL is given by the dimension of
Tg,g The Hamiltonian can be written by using the covariantthe sections of the holomorphic bundle of the type _,
operators which is equal to (B’'—2k—1)(h—1) whenB’'—k>1.
Because the dimension @f, is zero whem is negative k
H-B/4=-V,V* (A12)  must not be greater thaB’. Hence there is only dinite

number of “Landau levels.”

When B’ is an integerk can take value from O t&’.
[VZV, ]T)'=—(m+n)C. (A13)  Whenk=B’, the correspondind(k) is the differential form
of the typeT,. T, is a constant function on the surface, and
the degeneracy of this LL is equal to 1. For the twisted
boundary conditions, which would physically correspond to
the presence of some magnetic flux through the handles,
there does not exist a nonzero constant function which satis-

One can verify the commutation relation

Assume thaty, is a state in the higher LL's and an eigen-
function of H with eigenvalue E;, then ¢,
=—(1/e,)V,V*4,, where e,=E;,—B/4>0. Therefore one
can writey;=V,® (1), where®(1) is a differential form of

type Tgfg_l. More explicitly, we have fies the twisted boundary condition; thus the dimension of
) Ty is zero, and the degeneracy of this LL is equal to zero or
$1=(0—(B'/2=1)dIng)®(1). (Al4)  there does not existB'th LL. Whenk=B’—1, the degen-

eracy of this LL is the dimension of the canonical bundle
T4, which is equal tch for the nontwisted boundary condi-
—V, V2 =(B'—1)Cyy +V,[—V,VZD(1)]. (A15) tion, and toh—1 for the twisted boundary conditiofthis
result can be obtained by the Riemann-Roch the@rddn

We first discuss the case of a negativeZ curvature surfaces. If) 14 be also a half-integer. Théncan take values from 0
B’>1, one can show that/,|V[ ~V,V*®(1)])=0. Thus =, g/ _1 \Whenk=B'—1, the degeneracy of this LL is the
one can co_nclude that §tates of the lowest e>Z<C|ted level argmension of the spin bundl&,,,. The dimension of the
obtained, if there exist® such that V,V*®(1)=0.  ps10morphic sections of the spin bundle generically is zero
V,V’®(1)=0 leads to D®(1)=0. The solution of for the even-spin structures and one for the odd dpesor
D®(1)=0 is <I>(1)=g*5”2<13(1), with 9®(1)=0, where twisted ones It is possible thaB’ is fractional assuming
®(1) is of the formTg, _,;. By the Riemann-Roch theorem, that 2B’ (h—1) is an integer, anll can take values from 0 to
there exist solutions of the equatienb(1)=0 for B'=1, [B’], where[B’] is the biggest integer smaller tha.
and the number of the solutions or the degeneracy of thi¥vhenk=[B’], the degeneracy of this LL is the dimension
Landau level is the dimension of the sections of the holomorof bundle Tg,_(g/y. B'—[B’] is a fractional number be-
phic bundleTg:_;, which is equal to (B'—3)(h—1) if tween 0 and 1, and the discussions of such a case can be
B’>2. The energy of this LL or the lowest excited states isfound in Ref. 18. Beyond those LL's, little is known about
the continuous spectrum in the case of the complicated nega-
E,=3B'C-C. (A16) tive curvature surfaces.

Using the reIatiomﬁngng, one can show that
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To normalize ¢, we calculate the inner product 3. Examples
(elgﬂazpt,i%nk.)y using Eq.(A13). It is given by the following a. Upper-half hyperbolic surface
' We consider that the surface is a upper-half hyperbolic
(i ) = (VXD (K) | VED (K)) surface(also see Comtet and Dunne in Ref).2B the pro-
jective coordinates. the metrig is written as 1/(+z2)?,
=(D(k)|(VTVED (k) where|z|<1, The other quantities a@=2, B=4B’, and

A,=—i[B"Z/(1-22)?]. The wave functions are given by

Eqg. (Al7). As the wave functions of the LL’s shall be nor-
k malizable(opposite to the wave function of a state inside the

XH (2B’ —k—i), (A19) continue spectruin (| ¢, shall be normalizable. A nor-
i=1

=(d(k)|D(k))Cx2 *k!

where the inner produci (k)| ®(k)) is defined as

malizable (/¢ is equivalent to a normalizable
(®(k)|®(k)). A normalizable(® (k)|P(k)) leads the con-
_ wherel is a non-negative integer. Thus the degeneracy is
<<1>(k)|<1>(k)>=f dvg“d (k) X D (k). (A20) infinite for every LL. This is consistent with the Riemann-
The definition of the inner product between the tigk)’s ~ Nally, the energy is given by E¢A18).
given in Eq.(A20) is quite natural, becausk(k) is a differ-
ential form of the typeT(B,,Z)fk
If ®(k) is normalized to 1, then Another example is that the surface is a sphere. In the
k 112 =[1/(1+z2?]. The other quantities areA,=i[B’z/
Ckk!2"‘H1 (2B’ —k—1i) (A21) (1+z2%, C=-2, andB=2B'C=—4B’. Thus the flux
iz
is also normalized to 1. quantization conditiorﬁnote we alwe}ys _assun‘ie>0 in this
Now we come to the case of a closed surface with £2P€J: The wave functions are again given by E417), the
/4. ; .
of a surface with a negative curvature. Now we have only®Y g?“zl. The normalizable condition leads td
h=0 according to the previous discussion. The wave func=91 - X+ ¢. Thus the degeneracy of theth LL is
. . . . B'/2 . ' .
tion ¢ is a differential form of typeTg,, with B be"lg & the Riemann-Roch theorem, and the result is consistent with
negative ~ number. In the formula —V,V%;  the result obtained by requiring the wave functions to be
(41| V,(—V,V*®))=0 for any negativeB’. By using the wave functions on the sphere. The wave functions at the
Riemann-Roch theorem, one finds that thatwaysexists  n’th Landau level =0 is the lowest Landau levelare
Therefore, for anyB’, there exists a higher LL. One can  From previous discussions, we can easily find the inner
repeat the argument to obtain the states in the higher LL'sproduct (¢, |¢,,) is equal to =[lI!(+2n—1)!/
The wave functions of the states in théth LL are again  defined, (y|¢,)=/dvi; X, where dv=[dxdy/
given by Eq.(A17), with P(k)=gB 2D (k) andd D(k)=0. (1+22)7.
eracy of thek’th LL is equal to the dimension of the product isdifferentfrom the definition in the Appendix. The
holomorphic line bundle Tg:_,, which is equal to inner productin the paper efinedas

dition B'—1>k=0. ®(k) is given by functiong™®'2Z,
Roch theorem, as the flux out of the surface is infinite. Fi-
B'/2 b. Sphere
projective coordinates. the metrig is written as g
l/’k/

¢=—2B' is a non-negative integer according to the Dirac
positive curvature, which is slightly different from the case €Nergies are given by Eq(A18), and ®(k) is given

equal to X+ ¢+ 1. The degeneracy can be also obtained by
=(B'=1)Cyyy +V,[—V,V'®(1)], one can show that pormalizable. In this way, we obtain the full spectrum and all
®(1) such thatV,V*®(1)=0, which leads toD®=0. given by Eq.(7).
and obtain thdull spectrum and wave functions. (¢+2n+1)(¢p+n)!]. The inner product is as previously
®(k) is a differential form of the typdg:_,. The degen- However, inside the paper, the definition of the inner
2(B'-k)(h—1)-h+1=-2(B'—-k)+1, ash is equal to

zero.
The energy is again given by E@A18). However, a dzdz —
higher LL has ahigher degeneracy, and the number of the <¢1|‘/’2>:f (1+22)72 P1X 9. (A22)

LL’s is infinite in such case. Instead, in the case of a surface

with a negative curvature, a higher LL hasmallerdegen-

eracy. and the number of LL’s fnite. From Eq.(A18), one  Asdz dz=2dx dy, thus( i #n,) is given by the following

notices that, in the case of a positive curvature surface, thigrmula:

energy gap in the neighboring LLiacreaseswvhen the level

increases, and, in the case of a negative curvature surface,

the energy gap in the neighboring LL&ecreasesvhen the [1(p+2n—1)!

level increases. <¢n,||¢n,|>=277(¢+2n+1)(¢+n)| . (AZ23)
It is easy to generalize the above discussions to noncom- '

pact surfaces, and we will work out an example in the fol-

lowing discussion. This formula is used in the paper.
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