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Size and shape effects of quantum dots on two-electron spectra
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The exact spectra of two electrons confined by two-dimensional and three-dimensional quantum dots~2D
and 3D QD’s! with parabolic potentials are obtained. Using the present results, the size and shape effects of
QD’s on the spectra are revealed. It is found that the spectra are dramatically changed with the variation of the
dot size, and then the crossover of two levels can appear. The variation of spectra with size and the positions
of crossover points are quite different between 2D and 3D QD’s. It is well explained based on the study of
electron-electron interaction energies in 2D and 3D QD’s. The size and shape effects predict a possibility to
observe phenomena related to electron-electron interactions in QD’s.@S0163-1829~97!06120-1#
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I. INTRODUCTION

Various designs, manufacturings, and studies of lo
dimensional structures and materials have proliferated a
explosive rate because of interests in physics and in tec
logical applications. Recently, advances in nanofabrica
technology have made it possible to manufacture quan
dots ~QD’s! containing one, two, and more electrons, whi
are intensively investigated experimentally and theoretica
The experimental study of semiconductor QD’s is expand
rapidly,1–6 and electron-electron interaction and correlati
effects are shown to be of great importance7–9 in such sys-
tems. In the meantime, a large number of theoretical inv
tigations of electronic structures and related magnetic
optical properties in QD’s have been performed to expl
the experimental observations.

Semiconductor QD’s are quite idealistic quasi-ze
dimensional structures to be studied since the effective-m
theory can be applied in a proper regime of quantum size
is well known, the study of electronic structures in quantu
well structures with and without strong magnetic fields is
important problem in semiconductor physics. Quant
wells, in fact, under strong magnetic fields can form so
kinds of QD’s. Therefore, the studies of electronic structu
in QD’s containing more than one electron are of inter
both in their own right and to understand the role of stro
magnetic fields in quantum-well structures.

It is very important to have reliable methods to solve t
many-electron problem and show characteristics of e
tronic structures in QD’s. Previous approaches to the pr
lem mainly include the ‘‘exact’’ numerical diago
nalization,7,8 numerical simulations based on quantum Mon
Carlo techniques,10 and Hartree-Fock calculations.7,11–13

For two electrons in spherical and circular QD’s with pa
bolic potentials, the exact solutions can be obtained. To
knowledge, however, there has been no such systemati
vestigation related to the exact solutions of two electrons
such two-dimensional~2D! and three-dimensional~3D!
QD’s.
550163-1829/97/55~23!/15819~5!/$10.00
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For the single-electron spectra of QD’s, the size and sh
effects have been studied and shown in detail.14 In order to
exactly show the size and shape effects of QD’s on the t
electron spectra and to better understand the character
of electron-electron interaction and correlation in confin
systems, the energy levels of two electrons in 2D and
QD’s are calculated by using the series expansion metho
this paper. Based on the exact results, the interesting
nomenon is clearly revealed.

In Sec. II of this paper, the Hamiltonian and energy-lev
structures of two electrons in 2D and 3D QD’s are presen
In Sec. III, the exact solutions are shown for two electrons
QD’s with parabolic potentials. Main results are given a
discussed in Sec. IV, followed by a summary in Sec. V.

II. HAMILTONIAN AND ENERGY LEVELS

Typically, the confinement potential seen by electrons i
QD is created by spatially extended charge distributions.
most QD’s, a parabolic potential is a very good approxim
tion to describe the confinement of the electrons.1,11 Hence,
the forms of the Hamiltonian of two electrons in such pa
bolic 3D and 2D QD’s are, respectively, as follows:

H3D52¹1
22¹2

21
1

4
g2r 1

21
1

4
g2r 2

21
2

ur12r2u
, ~1!

and

H2D52¹1
22¹2

21
1

4
g2r1

21
1

4
g2r2

21
2

ur12r2u
, ~2!

where the effective atomic units are used. The effect
Rydberg Ry* and the effective Bohr radiusa* are taken to
be the energy and length units, respectively. It is easy to
thatg21/2 is related to the confinement region of electrons
QD’s.

H3D and H2D can be separated into center-of-mass a
relative-motion terms. First, for the sake of convenien
H3D is written as
15 819 © 1997 The American Physical Society
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H3D5H3DR1H3Dr , ~3!

with

H3DR52
¹R
2

2
1
1

2
g2R2, ~4!

and

H3Dr522¹ r
21

1

8
g2r 21

2

r
, ~5!

where R5(r11r2)/2, ¹R5¹11¹2, r5r12r2, and
¹ r5(¹12¹2)/2. This separability and the spherical sym
metry of the problem allow us to write the two-particle wa
functions in spherical coordinates in the for
F(R)c(r )Y lm(q,w). The spatial part of the total wave func
tion is symmetric~antisymmetric! with respect to particle
permutation for even~odd! l . Since the Pauli exclusion prin
ciple requires the total wave function to be antisymmet
we have spin singlet (s50) and triplet (s51) states for even
and oddl , respectively. The energy eigenvalues of Eq.~4!
are given by

E~N,L !5~2N1L1 3
2 !g, ~6!

with radial (N50,1,2, . . . ) and angular-momentum
(L50,1,2, . . . ) quantum numbers. The eigenvalues of t
relative motion excluding the electron-electron interact
are also given by

E0~n,l !5~2n1 l1 3
2 !g ~7!

with the corresponding radial and angular-momentum qu
tum numbersn50,1,2, . . . andl50,1,2, . . . . However, we
should solve the Schro¨dinger-like equation

H3Dr@c~r !Y lm~q,w!#5E~ l !@c~r !Y lm~q,w!# ~8!

to obtain the energy of the relative motion including t
electron-electron interaction. Assuming thatc(r )5Arf(r ),
we find the equation satisfied by the functionf(r ):

d2f

dr2
1
1

r

df

dr
1SE~ l !

2
2
1

r
2

~ l11/2!2

r 2
2

1

16
g2r 2Df50,

~9!

which will be solved by using the series expansion meth
shown in the next section.

It is similar for H2D of Eq. ~2!, which can also be sepa
rated into center-of-mass and relative-motion terms. T
separability and the cylindrical symmetry allow us to expre
the wave functions in plane polar coordinates in the fo
F(R)f(r )exp(imw). We therefore have spin singlet (s50)
and triplet (s51) states for even and oddm, respectively.
The eigenvalues of the center-of-mass term are as follow

E~N,M !5~2N1uM u11!g ~10!

with radial (N50,1,2, . . . ) and azimuthal (M50,61,
62, . . . ) quantum numbers. The eigenvalues of the relat
motion excluding the electron-electron interaction are ea
obtained by

E0~n,m!5~2n1umu11!g ~11!
,

n-

d

is
s

:

e
ly

with the corresponding radial and azimuthal numb
n50,1,2, . . . andm50,61,62, . . . .

To obtain the eigenenergies of the relative motion inclu
ing the electron-electron interaction, we should solve
Schrödinger-like equation

H2Dr@f~r !exp~ imw!#5E~m!@f~r !exp~ imw!#. ~12!

It is easy to find the equation satisfied by the functi
f(r ):

d2f

dr2
1
1

r

df

dr
1SE~m!

2
2
1

r
2
m2

r 2
2

1

16
g2r 2Df50, ~13!

which is similar to Eq.~9! and can be solved by the sam
method.

The values ofE(n,l ) andE(n,m) can be obtained afte
Eqs.~9! and~13! are solved. For the sake of convenience,
define the electron-electron interaction energiesEr(n,l )
@Er(n,m)# as the difference betweenE(n,l ) @E(n,m)# and
E0(n,l ) @E0(n,m)#, i.e.,

Er~n,l !5E~n,l !2E0~n,l !, ~14!

and

Er~n,m!5E~n,m!2E0~n,m!. ~15!

Then, the energy eigenvalues ofH3D (H2D) are the sum of
the center-of-mass energy and the energy of the relative
tion as follows:

E~n,l ;N,L !5E~n,l !1E~N,L !

5@2~N1n!1L1 l13#g1Er~n,l ! ~16!

and

E~n,m;N,M !5E~n,m!1E~N,M !

5@2~N1n!1uM u1umu12#g1Er~n,m!.

~17!

III. SERIES SOLUTIONS

Now, we are prevented from analytical exact solutions
the eigenvalue problem introduced in Sec. II because E
~9! and ~13! with suitable boundary conditions are beyon
the analytical problem of confluent hypergeometric eq
tions. However, we can use the method of series expansi15

to obtain exact series forms in different regions for Eqs.~9!
and ~13! and the exact values ofE(n,l ) andE(n,m) and,
then, the exact solutions of two electrons in 3D and
QD’s. Here we show the formulas only to solve Eq.~9! since
they are very similar to those to solve Eq.~13!.

It should be noted that zero and infinity are regular a
irregular singular points of Eq.~9!, respectively. In the re-
gion 0,r we have a series solution, which has a finite va
at r50 as follows:

f~r !5Arl (
n50

`

anr
n, ~18!
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whereA is a constant anda0 is equal to 1. Noting thatan is
equal to zero asn is equal to a negative integer, the oth
an can be determined by the following recurrence relatio

an5@2an212E~ l !an221
1
8 g2an24#/~4l12n12!n

for n51,2,3, . . . . ~19!

In the regionr,` we can obtain a normal solution. It ap
proaches zero atr5` and is found in the form

f~r !5Bexp~2 1
8 gr 2!r s(

n50

N

bnr
2n, ~20!

where

s5E~ l !/g21, ~21!

b05b151,

bn52bn212@~s2n12!22~ l11/2!2#bn22

for n52,3,4,. . . , ~22!

andB is a constant. We should point out that Eq.~18! and
Eq. ~20! are suitable for numerical calculations in regions
small r and larger , respectively.

In order to match the solution of Eq.~18! with that of Eq.
~20!, we giveT solutions aroundR1 ,R2 , . . . andRT , which
are the proper points for solving Eq.~9! exactly. The solution
of uniformly convergent Taylor series aroundRi
( i51,2, . . .T) is written as follows:

f~r !5Ci (
n50

`

cin~r2Ri !
n1Di (

n50

`

din~r2Ri !
n, ~23!

whereCi andDi are constants,ci0 anddi1 are equal to 1, and
ci1 anddi0 are equal to 0. Thecin anddin can be determined
by recurrence relations.

Using the matching conditions atr5Ri ( i51,2, . . .T),
and the 232 transfer matrices, we can deduce the equa
for eigenenergiesE(n,l ) easily. The values ofE(n,l ) and
cnl(r )@Arfnl(r )# are obtained numerically.

To close this section, it is interesting to point out that t
method mentioned above is powerful compared with the p
turbation theory, the WKB approximation, and so on beca
it allows us to obtain the exact eigenvalues in the wh
region ofg.

IV. RESULTS AND DISCUSSION

Before the present results are shown and discussed,
useful to specify labeling of quantum levels of two electro
in 3D and 2D QD’s. As shown in Eqs.~17! and ~16!, the
levelsE(n,m;N,M ) andE(n,l ;N,L) can be labeled by fou
symbolsn,m,N,M andn,l ;N,L, respectively. The even an
oddm ( l ) correspond to the spin singlet (s50) and triplet
(s51) states because of the Pauli exclusion principle.
have states 1s,2p,2s,3d,3p and 1S,2P,2S,3D,3P and so
on if the principal quantum numbersn1 umu11(n1 l11)
andN1uM u11(N1L11) are used instead ofn andN and
the notationss,p,d, . . . and S,P,D, . . . are used for
umu( l ) and uM u(L)50,1,2, . . . .
f

n

r-
e
e

is
s

e

We have performed numerical calculations for ener
levels of two electrons in 2D and 3D QD’s withg between
0.05 and 10. As shown in Table I, the two-electron spectra
2D QD’s vary not only in the values but also in the lev
ordering asg changes from 0.05 to 1. In order to better sho
the quantum-size effects and compare with others, we h
plotted most of them normalized byg as functions ofg21/2

in Fig. 1. It is readily seen that the four low levels are
good agreement with those in Refs. 7 and 9, which we
find to compare our results with, and that the energy-le
structure is dramatically changed as theg21/2 changes from
0 to 4. As illustrated in the figure and Table I, an importa
aspect of the quantum-size effects is the changes of the l
ordering and the level differences and then the crossove
two levels with the same or different spins can appear
g21/2 (g) is larger~less! than 1. The crossover between si
glet and triplet levels is related to the magnetic properties
confinement systems such as metal clusters, which will
discussed below.

In order to compare the spectra of two electrons in
QD’s with those in 2D QD’s shown in Fig. 1, we have plo
ted the corresponding levels (l5umu,L5uM u) normalized by
g as functions ofg21/2 in Fig. 2. The figure also shows tha
the level ordering and the level differences vary with the s
g21/2, and the level crossover appears asg21/2@1. It is ob-
vious, however, that the changes of energy levels w
g21/2 are smaller for 3D QD’s than for 2D QD’s, and the
the crossover points of two levels correspond to much lar
values ofg21/2 for 3D QD’s than those for 2D QD’s. It
means that the spectra and related properties depend not
on the dot sizes but also on the dot shapes.

For a better understanding of the size and shape effec
is interesting to study the electron-electron interaction en
giesEr(n,m) andEr(n,l ) defined by Eqs.~15! and ~14!. In

TABLE I. Exact quantum levels of two electrons in 2D
QD’s with differentg(g21/2). The level sequences are in order
increasing magnitude. For the sake of convenience, the short n
tion, i.e., a, b, c, etc., is used to indicate the quantum numb
(n,m;N,M ;s) and to show the changes of the level order. T
energy unit is Ry* .

g(g21/2) 1.0~1.0! 0.05~4.4721!

a: ~0,0;0,0;0! ~a! 3.3196 ~a! 0.2962
b: ~0,1;0,0;1! ~b! 3.8278 ~b! 0.3062
c: ~0,0;0,1;0! ~c! 4.3196 ~d! 0.3310
d: ~0,2;0,0;0! ~d! 4.6436 ~c! 0.3462
e: ~0,1;0,1;1! ~e! 4.8278 ~h! 0.3476
f: ~1,0;0,0;0! ~f! 5.1472 ~e! 0.3562
g: ~0,0;1,0;0! ~g! 5.3196 ~i! 0.3810
h: ~0,3;0,0;1! ~h! 5.5174 ~f! 0.3854
i: ~0,2;0,1;0! ~i! 5.6436 ~g! 0.3962
j: ~1,1;0,0;1! ~j! 5.7438 ~j! 0.3968
k: ~0,1;1,0;1! ~k! 5.8278 ~k! 0.4062
l: ~1,0;0,1;0! ~l! 6.1472 ~n! 0.4066
m: ~0,0;1,1;0! ~m! 6.3196 ~o! 0.4240
n: ~0,4;0,0;0! ~n! 6.4693 ~p! 0.4310
o: ~1,2;0,0;0! ~o! 6.5956 ~l! 0.4354
p: ~0,2;1,0;0! ~p! 6.6436 ~m! 0.4462
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Fig. 3, theEr(n,m) andEr(n,l ) are plotted as functions o
g. As shown in the figure, theEr(n,m) increases withg and
the ordering is as follows:Er(0,0).Er(1,0).Er(2,0)
.Er(0,1).Er(1,1).Er(0,2).Er(1,2) . . . . Theorder is the
same forEr(n,l ) of 3D QD’s but the value of the 1s state
and those of 2p and 3d states are, respectively, much le
and less than the corresponding ones of 2D QD’s show
the figure.

FIG. 1. E(n,m;N,M ) normalized byg vs g21/2 for a, b, c, d, e,
f, g, h, i, l, m, n, o, and p states with the quantum numbers labe
in Table I. The solid and dashed lines represent, respectively,
glet and triplet states, and the solid circles those obtained by u
the ‘‘exact’’ diagonalization method.

FIG. 2. Same as in Fig. 1 except forE(n,l ;N,L) of 3D QD’s.
in

It is accurate enough to calculate theEr(n,m) and
Er(n,l ) with the use of the first-order perturbation asg is
sufficiently large compared with electron-electron intera
tion. Then,Er(n,m) andEr(n,l ) are, respectively, given by

Er~n,m!5 K fnm~r !U2r Ufnm~r !L ~24!

and

Er~n,l !5 K cnl~r !U2r Ucnl~r !L , ~25!

wherefnm(r ) andcnl(r ) are normalized radial wave func
tions of Eqs.~13! and~9! without the electron-electron inter
action terms. Using Eqs.~24! and~25!, we can easily find the
ordering mentioned above. The values are proporti
al to g1/2. However, both E(N,M )„E(N,L)… and
E0(n,m)„E0(n,l )… are proportional tog. As g21/2 (g) is less
~larger! than 1, the level ordering is mainly determined b
the sum ofE0(n,m)„E0(n,l )… andE(N,M )„E(N,L)…. It can
be strongly changed byEr(n,m)„Er(n,l )… if g21/2 (g) is
much larger~less! than 1. This is the reason the quantum-s
effects appear. Furthermore, for fixedg21/2 and l5umu, the
Er(n,l ) is less thanEr(n,m) and larger thanEr(n,umu11)
as shown in Fig. 3. The same picture can be shown by u
Eqs. ~24! and ~25!. It is easily understood if the differenc
between Eqs.~9! and ~13! and then the extension of wav
functionsfnm(r ) andcnl(r ) are noted. This is the reason fo
the spectrum difference between 2D and 3D QD’s shown
Figs. 1 and 2.

It is interesting to note that the crossover point and se
ration of singlet and triplet levels are related to the differen
of electron-electron interaction energies between the e
and oddl (m) levels and strongly dependent on the sizes a

d
in-
ng

FIG. 3. Er(n,m) andEr(n,l ) vs g for 1s, 2s, 3s, 2p, 3p, 3d,
4d, 4f , and 5g states~solid lines! of 2D QD’s and for 1s, 2p, and
3d states~dashed lines! of 3D QD’s.
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shapes of QD’s. In Ref. 14, it has been shown that the sh
and size effects of QD’s and the role of an ion in the QD
are very important for the single-electron spectra. It is r
sonable that the ion-electron interaction can also influe
the two-electron spectra in QD’s because the exchange in
action in the QD’s is changed in the presence of the elect
ion interaction . For example, the energy difference betw
the single and tripletP states (1s2P and 2p1S notations
used here! in 2D QD’s without a positive ion center obtaine
here is 0.0748, 0.4916, 1.0620, 1.4793, and 2.2679 Ry* and
that with the ion center 0.0048, 0.2324, 0.7828, 1.2333,
2.0472 Ry* ~Ref. 16! for g50.1, 1, 3, 5, and 10, respec
tively. It is obviously shown that the ion-electron interactio
changes the exchange energy. What are mentioned abov
useful for understanding why the magnetic moment per a
of metal clusters is very sensitive to the size and symm
of the clusters17,18 and doping. It will be studied further an
reported elsewhere.

V. SUMMARY

We have used different series solutions in different
gions for the radial equation of the relative motion of tw
electrons in 2D and 3D QD’s with parabolic potentials
obtain the exact solutions. Numerical results of 2D QD’s
in good agreement with those obtained by using the ‘‘exa
diagonalization method.7,9 The quantum-size effects of 2D
and 3D QD’s on the spectra are clearly shown. The imp
ev
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tant aspect of the effects is the crossover of two levels w
the same or different spins. It is found that the variation
energy levels with dot size is smaller for 3D QD’s than th
for 2D QD’s, and the positions of crossover points of tw
levels with the same or different spins are also different
tween 2D and 3D QD’s. It is explained on the basis of an
lyzing the characteristics of electron-electron interaction
ergies in 2D and 3D QD’s.

The present results are useful to understand the op
and magnetic properties of quantum-dot materials since
shape of realistic QD’s is usually between spherical and
cular ones. The size and shape effects predict a possibilit
observe phenomena related to electron-electron interact
in QD’s. Finally, it can be expected that the proper electro
structures of QD’s and then the related properties will
obtained if the sizes and shapes of QD’s including dop
are better controlled.
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