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Size and shape effects of quantum dots on two-electron spectra
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The exact spectra of two electrons confined by two-dimensional and three-dimensional quant&Ddots
and 3D QD’s with parabolic potentials are obtained. Using the present results, the size and shape effects of
QD'’s on the spectra are revealed. It is found that the spectra are dramatically changed with the variation of the
dot size, and then the crossover of two levels can appear. The variation of spectra with size and the positions
of crossover points are quite different between 2D and 3D QD’s. It is well explained based on the study of
electron-electron interaction energies in 2D and 3D QD’s. The size and shape effects predict a possibility to
observe phenomena related to electron-electron interactions in (Z0$63-18207)06120-1

I. INTRODUCTION For the single-electron spectra of QD’s, the size and shape
effects have been studied and shown in défaiih order to
Various designs, manufacturings, and studies of low-exactly show the size and shape effects of QD’s on the two-
dimensional structures and materials have proliferated at aglectron spectra and to better understand the characteristics
explosive rate because of interests in physics and in techn@f electron-electron interaction and correlation in confined
logical applications. Recently, advances in nanofabricatiorystems, the energy levels of two electrons in 2D and 3D
technology have made it possible to manufacture quanturQ_D'S are calculated by using the series expansion m_ethod in
dots (QD’s) containing one, two, and more electrons, whichthis paper. Based on the exact results, the interesting phe-
are intensively investigated experimentally and theoreticallynomenon is clearly revealed. o
The experimental study of semiconductor QD’s is expanding !N Sec. Il of this paper, the Hamiltonian and energy-level
rapidly,"® and electron-electron interaction and correlationStructures of two electrons in 2D and 3D QD's are presented.
effects are shown to be of great importafidén such sys- In Sec. I, the exact solutlo_ns are shown for two ele_ctrons in
tems. In the meantime, a large number of theoretical invesQD’S with parabolic potentials. Main results are given and
tigations of electronic structures and related magnetic anéiscussed in Sec. IV, followed by a summary in Sec. V.
optical properties in QD’s have been performed to explain
the experimental observations. Il. HAMILTONIAN AND ENERGY LEVELS
Semiconductor QD’s are quite idealistic quasi-zero-

dimensional structures to be studied since the effective-ma D is created by spatially extended charae distributions. For
theory can be applied in a proper regime of quantum size. A Y Sp y 9 :

is well known, the study of electronic structures in quantum-mOSt QD’s, a parabolic potential is a very good approxima-

well structures with and without strong magnetic fields is antlon to describe the cpnflnement of the electrb_ﬁjsHence,
the forms of the Hamiltonian of two electrons in such para-

important problem in semiconductor physics. Quantu . , . )
wells, in fact, under strong magnetic fields can form somrr(]ebOIIC 3D and 2D QD’s are, respectively, as follows:

kinds of QD’s. Therefore, the studies of electronic structures 1 1 2
in QD’s containing more than one electron are of interest Hap=—V2-V3+ —92ri4+ —y2r3+ ———
both in their own right and to understand the role of strong 4 4 [ri=rel
magnetic fields in quantum-well structures. and

It is very important to have reliable methods to solve the
many-electron problem and show characteristics of elec- y oo 1 1 2

. . . — _ 2 2 2 2

tronic structures in QD’s. Previous approaches to the prob- Hap=—Vi-V5+ 27 p1t 27 pyt ﬁ
lem mainly include the “exact” numerical diago- pimpe
nalization’® numerical simulations based on quantum Montewhere the effective atomic units are used. The effective
Carlo technique®’® and Hartree-Fock calculatiods!™*®  Rydberg Ry and the effective Bohr radius* are taken to
For two electrons in spherical and circular QD’s with para-be the energy and length units, respectively. It is easy to see
bolic potentials, the exact solutions can be obtained. To outhat y~*2is related to the confinement region of electrons in
knowledge, however, there has been no such systematic iQD’s.
vestigation related to the exact solutions of two electrons in Hsp and H,p can be separated into center-of-mass and
such two-dimensional(2D) and three-dimensional3D) relative-motion terms. First, for the sake of convenience,
QD’s. Hsp is written as

Typically, the confinement potential seen by electrons in a

@

2
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H3p=H3pr+ H3pr » ®) with the corresponding radial and azimuthal numbers
n=0,1,2... andm=0,=1,+2,....

with To obtain the eigenenergies of the relative motion includ-
v2 1 ing the electron-electron interaction, we should solve the
2 o X .
H3pr= _74_ §y2R2, (4) Schralinger-like equation
and Hoprl[ ¢(r)explime) ]=E(m)[ 4(r)explime)]. (12)
1 2 It is easy to find the equation satisfied by the function
Hapr=—2Vi+ g7+ =, B $(r):

where R=(r;+r,)/2, Vg=V,+V,, r=r;—r, and d’¢ 1d¢ (Em 1 m* 1 .\
V,=(V,—V,)/2. This separability and the spherical sym- ar2 " rdr \ 2 r 12 167" |¢70 (13
metry of the problem allow us to write the two-particle wave
functions in spherical coordinates in the form Which is similar to Eq.(9) and can be solved by the same
O (R)(r)Ym(9,¢). The spatial part of the total wave func- method.
tion is symmetric(antisymmetri¢ with respect to particle The values ofg(n,l) and E(n,m) can be obtained after
permutation for everfodd |. Since the Pauli exclusion prin- Egs.(9) and(13) are solved. For the sake of convenience, we
ciple requires the total wave function to be antisymmetric,define the electron-electron interaction energiegn,l)
we have spin singlets= 0) and triplet 6= 1) states for even [E;(n,m)] as the difference betweea(n,l) [E(n,m)] and
and oddl, respectively. The energy eigenvalues of B4).  Eo(n,!) [Eo(n,m)], i.e.,
are given by

E,(n,1)=E(n,l)—Eq(n,l), 14

E(N,L)=(2N+L+ 2), ©®  ang

with radial (N=0,1,2...) and angular-momentum
(L=0,1,2...) quantum numbers. The eigenvalues of the E(n,m)=E(n,m)—Ey(n,m). (15
relative motion excluding the electron-electron interaction

are also given by Then, the energy eigenvalues ld§, (H,p) are the sum of

the center-of-mass energy and the energy of the relative mo-
Eo(n,D)=(2n+1+ 3)y @) tion as follows:

with the corresponding radial and angular-momentum quan- E(n,I;N,L)=E(n,l)+E(N,L)

tum numbers1=0,1,2 ... andl=0,1,2 ... . However, we B

should solve the Schdinger-like equation =[2(N+n)+L+1+3]y+E(nl) (16

Haol[4(N)Yim(3, @) [=E(D[4(r)Yim(F, )]

to obtain the energy of the relative motion including the E(n,m;N,M)=E(n,m)+E(N,M)
electron-electron interaction. Assuming thitr) = \r ¢(r),
we find the equation satisfied by the functigir):

) and

=[2(N+n)+|M|+[m|+2]y+E(n,m).
17

d’¢ 1d¢ (E() 1 (1+1/2? 1
arr Trar b T—F—r—2—1—672r2)¢:o,
)

which will be solved by using the series expansion methoc{h
shown in the next section.

It is similar for H,p of Eq. (2), which can also be sepa-
rated into center-of-mass and relative-motion terms. Thi ions. However we can use the method of series exoalision
separability and the cylindrical symmetry allow us to express,[0 oﬁtain exact,series forms in different regions for E@$
the wave functions in plane polar coordinates in the form 9 :
®(R) b(r)exp(me). We therefore have spin singles0) and (13) and the exact values d&(n,l) and E(n,m) and,

and triplet 6=1) states for even and odd, respectively. ggns ﬁgreeévaecghs:vl\%;?;?ororxgg oer:|ec;[(r)02§|v|2 E:-%@;) s;inr::de 2b
The eigenvalues of the center-of-mass term are as follows: j y )

‘they are very similar to those to solve H43).
E(N,M)=(2N+|M|+1)y (100 It 'should be noted that zero and infinity are regular and
irregular singular points of Eq9), respectively. In the re-
with radial (N=0,1,2...) and azimuthal M=0,=1,  gion O<r we have a series solution, which has a finite value
+2,...)quantum numbers. The eigenvalues of the relativest r =0 as follows:
motion excluding the electron-electron interaction are easily
obtained by

Ill. SERIES SOLUTIONS

Now, we are prevented from analytical exact solutions of
e eigenvalue problem introduced in Sec. Il because Egs.
(9) and (13) with suitable boundary conditions are beyond

he analytical problem of confluent hypergeometric equa-

=Ar n
Eo(n,m)=(2n+|m|+1)y (12) d(r)=Ar nZO a,r", (18)
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whereA is a constant and, is equal to 1. Noting thad,, is TABLE I. Exact quantum levels of two electrons in 2D
equal to zero as is equal to a negative integer, the other QD’s with different y(y~*?). The level sequences are in order of

a, can be determined by the following recurrence relation: increasing magnitude. For the sake of convenience, the short nota-
tion, i.e., a, b, c, etc., is used to indicate the quantum numbers

ap=[2a,_1—E(l)a,_»+3 y?a,_4]/(41+2n+2)n (n,m;N,M;s) and to show the changes of the level order. The
energy unit is Ry .

for n=1,23.... (19 /
-1 1.011.0 0.054.472
In the regionr <« we can obtain a normal solution. It ap- S L9 % "
proaches zero at=c and is found in the form a: (0,0;0,0;0 (a) 3.3196 (a) 0.2962
N b: (0,1;0,0;2 (b) 3.8278 (b) 0.3062
B 1 ovs . ¢:(0,0,0,1;0 (c) 4.3196 (d) 0.3310
$(r)=Bexp(— § yr2)r°2, byr ", 20 40,2000 (d) 4.6436 (c) 0.3462
e: (0,1,0,1;2 (e) 4.8278 (h) 0.3476
where f: (1,0;0,0,0 (f) 5.1472 () 0.3562
_ _ g: (0,0;1,0;0 (g) 5.3196 (i) 0.3810
s=E)/y=1, @D h: (0,3;0,0;2 (h) 5.5174 (f) 0.3854
be=b;=1, i (0,2;0,1;0 (i) 5.6436 (g) 0.3962
j: (1,1;0,0;2 (j) 5.7438 (j) 0.3968
by=2b,_1—[(s—n+2)°—(1+1/2)?]b,_, k: (0,1;1,0;2 (k) 5.8278 (k) 0.4062
I: (1,0;0,1;0 () 6.1472 (n) 0.4066
for n=2,34,..., (220 m:(0,0;1,1;0 (m) 6.3196 (0) 0.4240
:(0,4;0,0; 6.4693 0.4310
andB is a constant. We should point out that E&8) and 2_ El 2:0 o,g 8 6.5956 ((Ilo)) 0.4354

Eq. (20) are suitable for numerical calculations in regions of
smallr and larger, respectively.
In order to match the solution of E(¢L8) with that of Eq.

p: (0,2;1,0;0 (p) 6.6436 (m) 0.4462

(20), we giveT solutions aroundR;,R,, . .. andRy, which ] .

are the proper points for solving E@) exactly. The solution We have performed. numerical calculatlo.ns for energy
of uniform|y convergent Tay|0r series aroun(Ri levels of two electrons in 2D and 3D QD,S Wlt‘h between
(i=1,2, ...T) is written as follows: 0.05 and 10. As shown in Table I, the two-electron spectra of

2D QD’s vary not only in the values but also in the level
* * ordering asy changes from 0.05 to 1. In order to better show
(r)=C; 2 Cin(r—R)"+D; >, din(r—R)", (23)  the quantum-size effects and compare with others, we have
n=0 n=0 plotted most of them normalized by as functions ofy /2
whereC; andD; are constants;;, andd;, are equal to 1, and in Fig. 1. It is readily seen that the four low levels are in
ci; andd;, are equal to 0. The;, andd;, can be determined good agreement with those in Refs. 7 and 9, which we can
by recurrence relations. find to compare our results with, and that the energy-level
Using the matching conditions a=R; (i=1,2,...T), structure is dramatically changed as e changes from
and the 2 2 transfer matrices, we can deduce the equatio® to 4. As illustrated in the figure and Table I, an important
for eigenenergie€(n,l) easily. The values oE(n,l) and  aspect of the quantum-size effects is the changes of the level
l//m(f)[\/F(ﬁm(f)] are obtained numerically. ordering and.the level differenc'es and thgn the crossover of
To close this section, it is interesting to point out that thetwo levels with the same or different spins can appear as
method mentioned above is powerful compared with the pery” 2 (¥) is larger(les9 than 1. The crossover between sin-
turbation theory, the WKB approximation, and so on becaus@let and triplet levels is related to the magnetic properties of

it allows us to obtain the exact eigenvalues in the wholeconfinement systems such as metal clusters, which will be
region of y. discussed below.

In order to compare the spectra of two electrons in 3D
QD’s with those in 2D QD’s shown in Fig. 1, we have plot-
ted the corresponding levels=|m|,L=|M|) normalized by

Before the present results are shown and discussed, it ig as functions ofy Y2 in Fig. 2. The figure also shows that
useful to specify labeling of quantum levels of two electronsthe level ordering and the level differences vary with the size
in 3D and 2D QD's. As shown in Eq$17) and (16), the =2 and the level crossover appearsjas’>>1. It is ob-
levelsE(n,m;N,M) andE(n,I;N,L) can be labeled by four vious, however, that the changes of energy levels with
symbolsn,m,N,M andn,|;N,L, respectively. The even and y~ %2 are smaller for 3D QD’s than for 2D QD’s, and then
oddm () correspond to the spin singles€0) and triplet  the crossover points of two levels correspond to much larger
(s=1) states because of the Pauli exclusion principle. Wevalues of y~ %2 for 3D QD’s than those for 2D QD’s. It
have states 4,2p,2s,3d,3p and 1S,2P,2S,3D,3P and so means that the spectra and related properties depend not only
on if the principal quantum numbers+|m|+1(n+1+1)  on the dot sizes but also on the dot shapes.
andN+|M|+1(N+L+1) are used instead of andN and For a better understanding of the size and shape effects, it
the notationss,p,d, ... and S,P,D, ... are used for is interesting to study the electron-electron interaction ener-
|m|(I) and|M|(L)=0,1,2.... giesE,(n,m) andE,;(n,l) defined by Eqs(15) and(14). In

IV. RESULTS AND DISCUSSION
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FIG. 1. E(n,m;N,M) normalized byy vs y~*2for a, b, c, d, e, FIG. 3. E(n,m) andE(n,!) vs y for 1s, 2s, 3s, 2p, 3p, 3d,

f,g, h,i, 1, m, n, o, and p states with the quantum numbers labeledd, 4f, and § states(solid line of 2D QD’s and for %, 2p, and
in Table I. The solid and dashed lines represent, respectively, sir3d states(dashed lingsof 3D QD’s.
glet and triplet states, and the solid circles those obtained by using
the “exact” diagonalization method. It is accurate enough to calculate tHg(n,m) and
) ) E;(n,l) with the use of the first-order perturbation @sis
Fig. 3, theE,(n,m) andE,(n,l) are plotted as functions of gyfficiently large compared with electron-electron interac-

y. As shown in the figure, thE,(n,m) increases withy and  tjon. Then,E,(n,m) andE,(n,|) are, respectively, given by
the ordering is as follows:E,(0,0)>E,(1,0)>E,(2,0)

>E,(0,1)>E,(1,1)>E(0,2>E,(1,2). ... Theorder is the 2
same forE,(n,l) of 3D QD’s but the value of theslstate Er(nrm):<¢nm(r) T ¢nm(r)> (24
and those of p and 3 states are, respectively, much less
and less than the corresponding ones of 2D QD’s shown iand
the figure. )
o Er<n,l>=< (1) ;‘wm<r>>, (25
3DQD 1 where ¢,(r) and ¢,,(r) are normalized radial wave func-
tions of Egs.(13) and(9) without the electron-electron inter-
action terms. Using Eq$24) and(25), we can easily find the
ordering mentioned above. The values are proportion-
al to yY2 However, both E(N,M)(E(N,L)) and
> Eo(n,m)(Eo(n,l)) are proportional tay. As y~ 2 (1) is less
3 (largep than 1, the level ordering is mainly determined by
2 the sum ofEq(n,m) (Eo(n,1)) andE(N,M)(E(N,L)). It can
T be strongly changed bg,(n,m)(E,(n,1)) if y Y2 () is

much largerlesg than 1. This is the reason the quantum-size
effects appear. Furthermore, for fixed *2 and|=|m|, the
E.(n,l) is less tharE,(n,m) and larger thark,(n,|m|+1)

as shown in Fig. 3. The same picture can be shown by using
Egs.(24) and (25). It is easily understood if the difference
between Eqgs(9) and (13) and then the extension of wave
functions¢,,(r) andy,,(r) are noted. This is the reason for
the spectrum difference between 2D and 3D QD’s shown in

- Figs. 1 and 2.
0 1 2 3 4 T . .
a2 It is interesting to note that the crossover point and sepa-
v ration of singlet and triplet levels are related to the difference

of electron-electron interaction energies between the even
FIG. 2. Same as in Fig. 1 except f&(n,I;N,L) of 3D QD’s. and odd (m) levels and strongly dependent on the sizes and
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shapes of QD’s. In Ref. 14, it has been shown that the shap@ant aspect of the effects is the crossover of two levels with
and size effects of QD’s and the role of an ion in the QD’sthe same or different spins. It is found that the variation of
are very important for the single-electron spectra. It is reaenergy levels with dot size is smaller for 3D QD’s than that
sonable that the ion-electron interaction can also influencéor 2D QD’s, and the positions of crossover points of two
the two-electron spectra in QD’s because the exchange intelevels with the same or different spins are also different be-
action in the QD'’s is changed in the presence of the electrontween 2D and 3D QD’s. It is explained on the basis of ana-
ion interaction . For example, the energy difference betweetyzing the characteristics of electron-electron interaction en-
the single and tripleP states ($2P and 201S notations ergies in 2D and 3D QD'’s.

used hergin 2D QD’s without a positive ion center obtained  The present results are useful to understand the optical
here is 0.0748, 0.4916, 1.0620, 1.4793, and 2.2679 &yd and magnetic properties of quantum-dot materials since the
that with the ion center 0.0048, 0.2324, 0.7828, 1.2333, andhape of realistic QD’s is usually between spherical and cir-
2.0472 Ry* (Ref. 16 for y=0.1, 1, 3, 5, and 10, respec- cular ones. The size and shape effects predict a possibility to
tively. It is obviously shown that the ion-electron interaction observe phenomena related to electron-electron interactions
changes the exchange energy. What are mentioned above aneQD’s. Finally, it can be expected that the proper electronic
useful for understanding why the magnetic moment per atonstructures of QD’s and then the related properties will be
of metal clusters is very sensitive to the size and symmetrpbtained if the sizes and shapes of QD’s including doping
of the clusterY*®and doping. It will be studied further and are better controlled.

reported elsewhere.
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