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Determination of interfacial strain distribution in quantum-wire structures
by synchrotron x-ray scattering

Qun Shen and Stefan Kycia
Cornell High Energy Synchrotron Source (CHESS) and School of Applied and Engineering Physics,

Wilson Laboratory, Cornell University, Ithaca, New York 14853
~Received 20 February 1997!

High-resolution grating x-ray diffraction from a periodic quantum-wire structure is shown to be highly
sensitive to strain-field variations near a surface or an interface. Information on two types of strain gradients
can be obtained: alongitudinalgradient, which can produce asymmetric diffraction profiles, and atransverse
gradient, which can generate additional diffuse intensity streaks in reciprocal space. These effects are demon-
strated in a synchrotron x-ray experiment on an In0.2Ga0.8As/GaAs quantum-wire array. Kinematical diffraction
theory is used to describe the diffraction patterns and is found to agree very well with the experimental results.
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I. INTRODUCTION

Elastic strain field, due to lattice mismatch and surfa
relaxation, plays an important role in the physics
mesoscopic-scale crystalline materials of several to 100
in size. Although its effect on electronic band structures
bulk and two-dimensional thin-film materials has be
known for quite a long time,1 systematic studies of the stra
effects in lateral low-dimensional nanostructures, such
quantum wires~QWR’s! and quantum dots~QD’s!, have be-
come available only recently.2–5 Recent experimental an
theoretical developments on self-organized surf
corrugations4,6,7have further enhanced the scientific intere
in studying strain and strain distributions near an interface
dissimilar materials during heteroepitaxial growths. In
these cases it is important to experimentally determine
strain fields in the corrugated surface structures or quant
confinement structures and to correlate the measured s
with other physical properties such as optical luminesce
and epitaxial growth modes.

In recent years high-resolution x-ray diffraction has be
used as a convenient, nondestructive technique to chara
ize the geometric shape and the lattice strain in perio
nanostructures.5,8–13The effect of coherent grating x-ray dif
fraction, i.e., the constructive interference among the p
odic structures within the x-ray beam coherence width,14 can
enhance the scattering signal from individual features,
thus significantly improve the strain detectability by x-r
diffraction. Based on this technique, average lattice rel
ations have been studied for free-standing multiple-la
quantum wires,11,13and more recently, in a synchrotron x-ra
experiment, a lateral-size-dependent lattice distortion
been observed on a single-layer of 10-nm-thick quant
wires of In0.2Ga0.8As buried in a GaAs substrate.5

There have been very few attempts, however, to st
possible lattice constantvariations in quantum-wire and
quantum-dot structures using x-ray diffraction, primarily d
to the diffuse weak signal from any strain-varying region
a few nanometers in size. In this paper, we show that
using an intense synchrotron x-ray beam and by taking
vantage of the coherent-grating nature of a quantum wire
dot array, diffraction profile from a strain-varying region
the quantum wire or dots can indeed be observed in an
550163-1829/97/55~23!/15791~7!/$10.00
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periment. From such measurements, both the longitud
and the transverse strain gradients can be determined a
with the average strain. We demonstrate this capability
high-resolution x-ray diffraction with an experiment on th
In 0.2Ga0.8As quantum-wire array. Our results indicate tha
lattice parameter gradient as small as 1025 Å/Å can be
readily detected using the new x-ray analysis. Given its c
venience and nondestructive nature, we believe that
x-ray technique should be a powerful alternative to elect
diffraction methods such as high-resolution transmiss
electron microscopy.

II. UNIFORMLY STRAINED QWR’s

A periodic lateral QWR array epitaxially fabricated on
crystalline substrate~Fig. 1! can be viewed as a cohere
grating with a submicron periodL. An x-ray diffraction pat-
tern from such a grating structure consists of a set of su
lattice peaks around each Bragg reflection,G, of the internal
QWR crystal lattice. The diffracted x-ray intensities of th
superlattice peaks are given by12

I ~q!5u f p~q!u2Fsin~NqxL/2!

sin~qxL/2! G2, ~1!

wheref p(q) is the scattering amplitude from a single perio
NL the coherence length of the x-ray beam, andq is the
momentum transfer measured fromG. The grating super-
lattice diffraction peaks occur at intervalsDqx52p/L and
their intensities are determined by the geometric profile a
the internal crystalline structure within a single period.

For a box-car-like QWR structure@Fig. 1~a!#, the enve-
lope functionu f p(q)u2 gives rise to a single-slit Fraunhofe
diffraction pattern in both theqx and theqz directions. If the
wire is strained with respect to the substrate, thenu f p(q)u2
would be centered around the reciprocal lattice pointG8 of
the wire crystal structure rather thanG of the substrate.
However, as illustrated in Fig. 1~b!, the grating superlattice
peaks are still positioned commensurately with respect to
substrateG, as pointed out by Holyet al.,13 because the grat
ing period L is determined by an integral number of th
lateral lattice parameterax of the substrate instead of that o
the QWR lattice.
15 791 © 1997 The American Physical Society



a

le

o
ic

a

tio
na
ts
llo

.

ysi-
res
ra-
may
is-
a-

el-

d to
r-
l
ry
in
ing
ied
his

f an
the

s
nd
of
al

a-

t
u-
as
al
or

e

x-
e

er

een
a

rray

2
ntle

-
nd
an

15 792 55QUN SHEN AND STEFAN KYCIA
To show the above point more explicitly, we consider
row of atoms in the QWR@Fig. 1~b!# with a lateral lattice
constant ofa2 , a width of w5Wa2 , and a period ofL
5Ma1 . The scattering amplitude from such a row of atom
is given by

F~qx!5 (
n150

N21

eiqxa1Mn1 (
n252W/2

W/2

eiqxa2n2, ~2!

which leads to a scattering intensity

uF~qx!u25Fsin~qxa1NM/2!

sin~qxa1M /2! G2Fsin~qxa2W/2!

sin~qxa2/2! G2. ~3!

Equation~3! clearly indicates that while the intensity profi
of the grating peaks has maxima at multiples of 2p/a2 ,the
positions of the grating peaks remain locked at multiples
2p/(Ma1), which is commensurate with the substrate latt
a1 .

In terms of strain-tensor components, the lateral str
described above represents«xx . Similarly, a shift inqz of the

envelope functionu f p(q)u2 is related to component«zz. The
off-diagonal components«xz and «zx may also exist, but
these components represent an overall rigid-body rota
and can be set to zero by a proper choice of the coordi
system. A general description of strain-stress componen
free-standing QWR heterostructures in relation to crysta
graphic axes has been given by De Caro and Tapfer15 and the
readers are referred to their paper for further information

FIG. 1. Illustrations of grating x-ray diffraction profiles from
quantum-wire arrays~a! without lateral strain relative to the sub
strate,~b! with uniform lateral strain relative to the substrate, a
~c! with a lateral strain gradient toward the side walls of each qu
tum wire.
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III. EFFECT OF STRAIN GRADIENT

Because of their large surface-to-volume ratios, the ph
cal properties of quantum wire and quantum dot structu
can be significantly affected by the existence of a strain g
dient near the surfaces or the interfaces. The gradient
result from a natural lattice relaxation, or from a lattice m
match between the QWR or the QD and its surrounding m
terials.

A dynamical theory of x-ray diffraction involving lattice
distortions in perfect semi-infinite bulk crystals was dev
oped in the 1960~s! by Takagi16 and Taupin.17 Their theory
takes into account multiple scattering and has been applie
relatively perfect multilayer system in which lattice prope
ties may change as a function of depth.18 However, a genera
solution to the Takagi-Taupin equations for an arbitra
strain gradient is rather difficult. Since we are interested
nanostructures of only 1–100 nm in size, multiple scatter
is negligible and the kinematic approximation can be appl
instead, which is the approach that we will be using in t
paper.

To describe a general strain gradient, we make use o
analogy to acoustic waves or phonons and categorize
strain gradients in crystal in to two types:longitudinal gra-
dients, e.g.,]az /]z and]ax /]x, involving a lattice constant
and its variation along the same direction, andtransverse
gradients, e.g.,]az /]x, involving a lattice constant and it
variation along two orthogonal directions. For QWR’s a
QD’s with well-defined geometric shapes, these two types
strain gradients can introduce distinctly different addition
features in an x-ray grating diffraction pattern.

Although studies of longitudinal strain gradient or vari
tion exist for multilayer structures18,19 and for surface relax-
ation of flat silicon wafers,20 to our knowledge the presen
study is the first of its kind to apply the concept of longit
dinal strain variations to lateral quantum structures such
QWR’s and QD’s. We show that in general, a longitudin
strain variation, which itself can be along either lateral
vertical direction, gives rise to anasymmetricintensity pat-
tern @Fig. 1~c!# of the grating diffraction peaks along th
corresponding reciprocal space direction.

To illustrate this point, we consider a free-standing, bo
car-shaped QWR array with a lateral lattice relaxation. W
assume that within each QWR of widthw, the lattice con-
stantax varies from the center outward according to a pow
law:

ax~x!5a0F11«x
0S 2uxu

w D pG , ~4!

wherea0 is the lattice constant at the center anda0(11«x
0)

is that at the edge. A similar quadratic dependence has b
used by Steinfortet al. in the study of Ge hut clusters on
Si~001! surface.21 Following the derivation similar to Eq.~2!,
we can calculate the scattering intensity from such an a
and the result for the envelope functionu f p(qx)u2 is shown in
Fig. 2~a! for a lattice constant change of«x

050.002 and sev-
eral values ofp.

It is worth noting how the diffraction patterns in Fig.
change as the lattice distortion increases from more ge
(p.1) to more abrupt (p,1). First of all, the position of
the central peak is essentially determined by theaverage

-
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55 15 793DETERMINATION OF INTERFACIAL STRAIN . . .
lattice parameter within the QWR:āx5*ax(x)dx/w
5a

0
«x
0/(11p). Second, the intensity asymmetry in the se

ondary modulations is very sensitive to the actualstrain dis-
tribution in the QWR, especially the lattice variation near t
side walls. For example, the casep55 has the smallest shif
due to āx , yet it gives rise to the largest asymmetry in t
secondary peaks because of the strong variation near the
walls @Fig. 2~a! inset#. On the other hand, the casep50.1
gives a more uniform lattice constant across the QWR
thus yields more symmetric secondary modulations, e
though it has a larger shift in the central-peak position due
a largerāx .

For comparison, we also calculate the diffraction profi
for a constantaverage lateral strain,«̄x50.001, but with
different maximum«x

0 and exponentp. The results are
shown in Fig. 2~b!. In this case, the asymmetry in the se
ondary diffraction lobes is even more pronounced forp55
since the maximum strain is now much larger than that
Fig. 2~a!.

A transverse strain gradient, e.g.,]az /]x, can produce a

FIG. 2. Calculated grating peak intensity envelope profiles
quantum wires with a lateral strain variation according to
power-law model Eq.~4!. ~a! Maximum strain variation is kep
constant,«max50.002. ~b! Average strain is kept constant,«ave

50.001. In both cases, a stronger strain variation (p55) near the
side walls gives rise to a more asymmetric envelope profile
-
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very different diffraction pattern that usually involves add
tional diffraction streaksin reciprocal space, as illustrate
schematically in Fig. 3. Once again we demonstrate this p
nomenon quantitatively with a box-car-shaped QWR arr
We assume that the wire array, of a lattice parametera2 , is
buried in a semi-infinite substrate of lattice constanta1 , and
located at a depth from the substrate surface. Using a po
law model similar to Eq.~4!, we assume that the vertica
lattice constantaz varies with the lateral distancex in the
following way:

az~x!5a2F11«z
0S 2uxu

w D pG , ~5!

where«z
0 is the maximum difference between the strains

the center and at the edge of the QWR.
In Fig. 4 we plot the calculated intensity contour imag

in theqx-qz plane around a (0,0,l ) Bragg reflection for three
different transverse strain variations:~a! p51, ~b! p55, and
~c! p520, all with w5980 Å, L54000 Å, and «z

05

r

FIG. 3. Schematic illustration of grating diffraction patterns f
a buried quantum wire array,~a! without transverse strain gradien
]az /]x and ~b! with a ]az /]x gradient.
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15 794 55QUN SHEN AND STEFAN KYCIA
20.025. Again, the diffraction patterns shown in these pl
are very sensitive to the strain distribution in the quantu
wire structures. In both cases~a! and ~b!, there exist notice-
ably broad, tilted intensity streaks in the envelope functi
which are characteristic of the diffraction pattern from
transverse strain gradient. By measuring the position and
direction of these streaks in reciprocal space, we can ob
the strain gradient directly from an x-ray diffraction expe
ment.

A plot of how the lattice constantaz varies according to
Eq. ~5! is shown in Fig. 4~d!. The case ofp55 is particularly
interesting because it shows a central region with rough
constant lattice parametera2 and a transitional region nea
the side walls whereaz varies almost linearly. We will show
in the next section that this case is very close to the t
strain variation in a real quantum-wire structure.

FIG. 4. Calculated grating diffraction patterns around a symm
ric (0,0,l ) reflection for a buried quantum wire array with seve
different transverse strain variations,~a! p51, ~b! p55, and ~c!
p520, according to the power-law model Eq.~5!. the maximum
strain is assumed to be«z

0520.025 and its variations are illustrate
in ~d!.
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IV. EXPERIMENT ON BURIED In 0.2Ga0.8As QWR’s

We show in this section some recent experimental res
obtained in a high-resolution synchrotron x-ray diffractio
experiment on a buried In0.2Ga0.8As QWR array. These
QWR’s, embedded in a GaAs substrate, were fabricated
combination of electron beam lithography and molecu
beam epitaxial growth techniques.2 Each wire in this particu-
lar array ~area of 0.5 mm2) has a nominal width of 50 nm
and a height of 10 nm and the period of the array is 400 n
Because the GaAs cap layer on top of the In0.2Ga0.8As QWR
is about 380 nm thick, x-ray diffraction is one of the fe
nondestructive techniques that can be used to probe
structural properties of the QWR’s.

The experiment was done at the A2 station at the Cor
high Energy Synchrotron Source~CHESS!. The incident
x-ray beam was monochromated by a pair of Si~111! crystals
to an energy of 8.3 keV. Most of our measurements w
concentrated around the symmetric~004! and the asymmetric
~115! reflections of In0.2Ga0.8As and GaAs. The QWR
sample was mounted at the center of a standard four-c
diffractometer equipped with a postsample Si~111! analyzer.
The incident beam, about 1 mm by 0.5 mm in size, cover
sample surface area about twice as large as the patte
QWR region at typical diffraction geometries. Brag
reflection topographs were taken to ensure that the x
beam was centered on the patterned region. We show
several types of strain information, discussed in the last s
tion, can indeed be obtained from the high-resolution x-
diffraction measurements.

(1) Average Strain. In Fig. 5, we show the measured x-ra
diffraction pattern around the ~115! reflection of
In0.2Ga0.8As: a two-dimensional reciprocal-space map in~a!
and a line scan profile through the In0.2Ga0.8As peak in~b!. It
can be clearly seen that the center of the grating peak in
sity envelope is shifted with respect to the~115! peak from
the unpatterned region, even though the grating peaks rem
at positions that are commensurate to the unpatterned
substrate peaks. This result of the satellite-peak comme
rality directly confirms the theoretical arguments presen
in the last section. The amounts of the shifts in both theqx
and theqz directions reveal an orthorhombic distortion
D«xx51.131023 and D«zz522.531023. It should be
noted that this distortion in the QWR’s is the strain rela
ation relative to the tetragonal strain,«xx520.014 and«zz
510.013 with respect to the bulk In0.2Ga0.8As, that already
exists in the two-dimensional thin film of In0.2Ga0.8As.

(2) Longitudinal strain gradient.Besides the averag
strain components, the effect of a longitudinal strain gradi
in the lateral direction]ax /]x can also be observed in Fig. 5
In particular, the grating peak intensities on the high-qx side
are substantially reduced compared to the correspon
peaks on the low-qx side, just as illustrated in Fig. 1~c!.
Using the power-law strain distribution model Eq.~4!, we
can fit the intensity envelope of the experimental data in F
5~b! by adjusting the exponentp and the effective wire width
w, while keeping the average strain«xx5131023 constant.
The best visual fit, shown as the dashed envelope curv
Fig. 5~b!, is obtained withp50.860.3 andw511366 nm.
The effective widthw appears to be much larger than th
true QWR widthw, due to the effect of the transverse stra

t-
l
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55 15 795DETERMINATION OF INTERFACIAL STRAIN . . .
gradient]az /]x as we will discuss in the next paragrap
The inset of Fig. 5~b! illustrates how the lateral lattice con
stant varies with lateral positionx, according to the best fi
values of the power-law model. This indicates a roughly c
stant strain gradient of]ax /]x511.031025, which shows
a very gradual relaxation of the lateral lattice parameterax
from the center to the edge of the QWR.

(3) Transverse strain gradient.The best way to observ
the transverse strain gradient]az /]x is around a symmetric
Bragg reflection such as the~004! where the influence o
lateral lattice distortionsDax /ax is minimal. In Fig. 6~a! we

FIG. 5. ~a! Measured grating x-ray diffraction pattern at~115!
Bragg reflection from a buried In0.2Ga0.8As/GaAs quantum-wire ar-
ray. The wires are nominally 50 nm wide and 10 nm high with
period of 400 nm. Intensities are converted into a 32-level g
scale with uniform logarithmic intervals from 1~white! to a cutoff
intensity of 43104 ~black! counts.~b! A line scan in the (h,h,0)
direction through the In0.2Ga0.8As ~115! peak, atl54.88. Experi-
mental data are shown as filled circles connected by solid lines.
calculated best-fit intensity envelope function is shown as
dashed curve. Included in the calculation is a lateral strain varia
as shown in the inset. This spatial distribution of strain gives rise
the enhanced intensities on the low-h side and the diminished in
tensity on the high-h side in the diffraction profile.
-

y

he
e
n
o

FIG. 6. X-ray diffraction patterns around the symmetric~004!
reflection of the In0.2Ga0.8As/GaAs QWR array.~a! Measured dif-
fraction pattern in which intensities are converted into a 32-le
gray scale with even logarithmic intervals from 1~white! to a cutoff
intensity of 13105 ~black! counts.~b! Best-fit calculation showing
the tilted diffuse scattering streaks due to the existence of a tr
verse strain gradient]az /]x near the QWR side walls.~c! Same
calculation without the strain gradient.~d! A line scan in the
(h,h,0) direction through the In0.2Ga0.8As ~004! peak. Experimental
data are shown as filled circles and the best-fit calculation is sh
as the solid curve with the dashed curve indicating the envel
function. The strain variation used in the calculation is shown in
inset as the solid curve, which can also be represented by a
ezoid model as indicated by the dashed curve in the inset.
comparison the envelope function calculated without the linea
strained region in the trapezoid model is shown as the dash-do
curve in the main figure.
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15 796 55QUN SHEN AND STEFAN KYCIA
show the measured x-ray diffraction pattern around the s
metric ~004! reflection of In0.2Ga0.8As. We see in this plot
that there is no lateral shift in the In0.2Ga0.8As ~004! peak
with respect to the substrate peak because of the null la
momentum transfer. However, the tilted diffraction strea
as illustrated in Fig. 3 due to a transverse strain variat
]az /]x, can be clearly observed. This strain variation in t
QWR arises from the compressive pressure supplied by
surrounding GaAs substrate on its side@see Fig. 3~b!#. Using
the power-law model Eq.~5!, we can again fit the diffraction
pattern by adjusting the exponentp and the wire width
w.The maximum strain«zz

0 50.025, is kept constant in th
fitting, which is obtained by the strain measurement arou
the ~115! and is determined by the lattice mismatch betwe
the In0.2Ga0.8As and the GaAs substrate, the Poisson’s ra
of the In0.2Ga0.8As, and the strain relaxationD«zz. The best
fit to the diffraction pattern is shown in Fig. 6~b! and is
obtained withp55 andw510365 nm. AQx scan through
the In0.2Ga0.8As ~004! peak atQz53.9(2p/a0) is shown in
Fig. 6~d! to demonstrate the excellent agreement between
fit and the experimental data.

The inset of Fig. 6~d! shows the vertical lattice constan
az as a function of the lateral positionx, according to the
best-fit power-law model. It can also be approximated b
trapezoid model consisting of a strain-relaxed constanaz
central core of about 55 nm in size and a linearly strain
interfacial region of 24 nm on each side of the QWR, with
gradient of ]az /]x526.331024, as indicated by the
dashed line in the inset. In fact a fit to the data using
trapezoid model produced an almost identical result as
one shown in Fig. 6~b!. We would like to point out that
although the line scan in Fig. 6~d! could be fit by a single
wire Fraunhofer diffraction profile with a wider wire width
it is impossible to describe the overall two-dimensional d
fraction map in Fig. 6~a! without the linearly strained or the
power-law-varying interfacial region near the QWR si
walls, as shown clearly in Fig. 6~c!.

V. CONCLUDING REMARKS

We have shown both theoretically and experimentally t
high-resolution x-ray diffraction from quantum wire arrays
a sensitive technique for studying strain fields near the
faces or the interfaces of the wire structures. The const
tive grating interference among the periodic superstructu
enhances the diffracted signal and allows a quantitative
termination of the strain gradients and variations in
QWR’s. Through an experiment on a real QWR sample,
have demonstrated that two types of strain gradients or va
tions can be distinguished unambiguously from the diffr
tion pattern. One is a longitudinal strain gradient such
nic
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]ax /]x, which produces an asymmetric profile in the grati
peak intensity envelope, and the other is a transverse s
gradient such as]az /]x, which produces tilted diffraction
streaks in reciprocal space. The diffraction patterns of b
of these cases are qualitatively distinct from that of a u
formly strained QWR structure, which exhibits only an ove
all shift in the centroid position of the grating peak envelo
profile.

From an x-ray crystallography point of view, the ability t
determine strain gradients and strain variations in nanost
ture arrays can be easily understood. The material wit
each period of the array, involving a single quantum wire
dot, can be viewed as a unit cell of the superlattice, and
grating peaks are simply the Bragg reflections from this
perlattice and their intensities are uniquely determined by
positions of each atom in the unit cell. Thus, in principle, t
information on strain as well as strain variations in the qu
tum wire or dot can be obtained completely by measuring
grating peak intensities and solving the crystallograp
phase problem. What we have shown is that for most epi
ial quantum-wire or -dot systems the possibility of stra
variation is constrained by lattice misfits, geometric shap
and elastic properties of the wire or dot. Therefore the ana
sis can be greatly simplified by concentrating on the inter
cial regions and by models that only involve monoton
variation in lattice constants.

The information on strain, especially on strain variati
near the interfaces, of quantum-wire and -dot structure
very important to the fabrication and the performance
these quantum confinement devices. As we have shown
strain may vary over a substantial fraction of the quantu
wire or -dot size, and thus may modify the confinement p
tential well in a significant way. On the other hand, one m
be able to tune the strain variation to achieve a particu
potential well shape. An example is the strain-induced c
finement structures in which no geometric quantum confi
ment exists, and strain is the sole contributor to the confi
ment potential. This may be the case where the x-
diffraction method described here can be applied to de
mine the quantum confinement potential experimentally.
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