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Roughness scattering in a finite-length wire

Yasuhiro Tokura and Seigo Tarucha
Nippon Telegraph and Telephone Corporation, Basic Research Laboratories, Atsugi-shi, Kanagawa 243-01, Japan

~Received 12 December 1996!

Semiclassical conductance of a finite two-dimensional wire is theoretically evaluated. The bulk scattering is
neglected. Rigorous formulas for situations with completely diffuse and partially diffuse straight boundaries
are given. For the short limit of wire length the conductance decreases according to 1/(11ca), wherea is an
aspect ratio parameter~length divided by wire width!, and c is a prefactor depending on the specularity
parameter of the boundary. If the wire is long enough, conductance decreases withc8lna/a using another
constantc8, which is consistent with the classical analysis of resistivity by boundary roughness scattering of an
infinite wire. @S0163-1829~97!05123-0#
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I. INTRODUCTION

Ballistic transport in one- and two-dimensional electr
systems has been the subject of intensive research. Quan
conductance was observed first in point contacts formed
split gate,1,2 and then in quantum wires formed from a hig
mobility substrate by electron-beam lithography and w
chemical etching.3–5 A necessary condition for observin
quantized conductance is that the elastic mean free pathl e is
much longer than the sample lengthL and the widthW. In
Hall-bar geometries, bend resistance6,7 and several anomalie
in low-field Hall resistance8–10 are characteristics typical o
ballistic electron transport, and, chaotic behavior occurs
low temperatures.11,12Some of these effects are not intrins
to the quantum wire, but are instead due to junction cha
teristics. More recently, correction in the quantum cond
tance stemming from a one-dimensional electron many-b
effect has been found, and was explained in terms of
Tomonaga-Luttinger liquid picture.13 Ballistic long wire is
crucial to see these many-body effects, because o
dimensional power-law behavior disappears for the temp
tures lower than\vF /L, wherevF is the Fermi velocity. A
ballistic transport system can therefore be said to be an i
experimental setup for studying quantum mechanics
many-body effects.

Of course the more we obtain samples free from b
scattering, the more the transport is controlled by the con
tion of the potential boundary. The effect of boundary roug
ness in a quantum wire transport was first reported by Tho
ton et al., who found the effect in a low-field
magnetoresistance peak.14 Such a magnetosize effect ha
been investigated theoretically and explained
semiclassical15 and quantum treatments.16,17 Conductance
fluctuation18–20 and chaotic behavior21,22 induced by the
boundary scattering have also been investigated recently

Another many-body effect was discovered by Molenka
and de Jong23 in the nonlinear transport characteristics of
quantum wire with cleverly situated thermometers. Exc
current up to about 20mA raises the electron temperatu
while keeping the lattice temperature almost constant. If
current is small enough, the electrons have negligible in
action with boundaries. The heating drastically decreases
electron-electron scattering time, which in turn increases
550163-1829/97/55~23!/15740~8!/$10.00
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probability of electrons being scattered into the bounda
and increases the resistance. A successive increase o
electron temperature then makes the electrons scatter
quently with each other, which prevents the electrons fr
diffusing to the boundaries. This results in a decrease of
resistance.24 They analyzed these effects quantitatively
solving Boltzmann’s equation for an infinite wire.25

The transition from Sharvin ballistic resistance to diff
sive Ohmic resistance is another interesting topic related
nearly ballistic transport in a wire, and semiclassical so
tions for short-range bulk scatterers26 and small-angle
scatterers27 have been obtained. In these analyses, bound
scattering was assumed to be specular. As yet there seem
have been no rigourous treatment of resistance~not resistiv-
ity! of boundary roughness scattering, although there h
been several attempts to evaluate it using the billi
model.28–31 A Landauer-type treatment is of course quite
powerful tool for obtaining the quantum-mechanic
resistance,17–19but a rigorous semiclassical understanding
boundary roughness in a finite wire is quite important
single out the quantum-mechanical effects.

This paper therefore evaluates the boundary roughn
scattering in a finite wire by using a semiclassical Boltzma
treatment without bulk scatterings. We find a formula for t
conductance for general boundary conditions, and we
analytical characteristics of the conductance in the limit
parameters by a power-series expansion method. Sectio
describes the theoretical model and basic formulation
terms of Boltzmann’s equation. Section III presents a clo
formula for completely diffuse boundaries. Section IV e
tends the result to boundaries with general specularity
rameters. Section V gives some numerical results of cond
tance and current distribution. Section VI discusses
results, and presents our conclusions. Appendixes A an
shows some details of the calculations.

II. MODEL AND BASIC EQUATION

We consider a quantum wire with lengthL and widthW
in a two-dimensionalx-y plane as shown in Fig. 1 (x is
along the wire!. Ideal reservoirs are attached to both ends
the quantum wire. The two confining walls aty50 and
y5W, which are straight on a scale much larger than Fe
15 740 © 1997 The American Physical Society
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55 15 741ROUGHNESS SCATTERING IN A FINITE-LENGTH WIRE
wavelength, are diffusive. Consider steady-state Boltzman
equations at zero temperature for the distribution funct
f (r ,k) of two-dimensional electrons with electric fiel
E(r ) applied to the system, wherer is a two-dimensional
position andk is the electron momentum,

eE~r !
] f ~r ,k!

\]k
1v•

] f ~r ,k!

]r
5

] f ~r ,k!

]t U
coll

, ~1!

where the first term shows the response to the external fi
the second shows the effect due to electron drift motion,
v is the electron velocity. The right-hand side correspond
the bulk scattering due to impurities or to other electro
The distribution function is expanded around equilibriu
Fermi-Dirac distribution functionf 0(«) as follows:

26,32

f ~r ,k!5 f 0~«!1S 2
] f 0
]« De@Vu~r ,f!2F~r !#, ~2!

where« is the electron Fermi energy andF(r ) is the elec-
trostatic potential. The new functionu(r ,f) corresponds to a
deviation of the local chemical potential from« when it is
averaged inf. Deep inside the reservoirs, the second term
Eq. ~2! vanishes since the chemical potentials,«1eV in the
left reservoir and« in the right reservoir, cancel with
eF(r ) from the charge neutrality condition. We neglect t
change of velocity and setv5vF(cosf,sinf) using the
Fermi velocity vF , where we measure the angle from t
positive x axis. Then we can expand Boltzmann’s equat
to the lowest order of the field by using the identi
2]F/]r5E(r ):

v•
]u~r ,f!

]r
5

]u~r ,f!

]t U
coll

. ~3!

In the following discussions we completely neglect bu
scattering processes, and the right-hand side of Eq.~3! is
zero. The bulk~electron-electron or other! scatteringsin the
reservoirsmaintain the equilibrium Fermi-Dirac distribution
The electron current density including the spin freedom i

FIG. 1. Schematic diagram of the system considered. Sha
regions are where the infinitely high confinement potential defi
the wire region with lengthL and widthW.
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j ~r !52e(
k

f ~r ,k!•v

5e2VDvFE
0

2pdf

2p
u~r ,f!~cosf,sinf!, ~4!

whereD5m/(p\2) is the two-dimensional density of state
andm is the electron effective mass. Therefore, Eq.~3!, with
no collision term, is nothing but a bulk current conservati
relation: divj (r )50. The total currentI (x) across a line
x5X is given by integrating thex component ofj (r ) from
y50 to y5W:

I ~X!5VG0

p

WE
0

W

dyE
0

2pdf

2p
u~X,y,f!cosf, ~5!

where G05(2e2/h)(WkF /p) is the inverse of classica
Sharvin’s resistance with Fermi momentumkF andWkF /p
is the total number of subbands.4,33 In the following we will
show formulas for the dimensionless conductan
g(x)5I (x)/(VG0), where the current conservation is e
pressed asdg(x)/dx50.

To solve Boltzmann’s equation, we should define boun
ary conditions at four regions. Since we are considering p
fect reservoirs, we use the following idealized conditions
the boundaries to source (x50) and to drain (x5L), respec-
tively:

u~0,y,f!51, fPF2 p

2
,
p

2G, ~6!

u~L,y,f!50, fPFp2 , 3p

2 G . ~7!

At the confinement boundaries we impose the following g
eral conditions using specularity parameterp(f) ~Refs. 34
and 35! depending on the incident anglef:

u~x,0,f!5p~f!u~x,0,2f!

1E
p

2pdu

2
@12p~u!#usinuuu~x,0,u!,

fP@0,p# ~8!

u~x,W,f!5p~f!u~x,W,2f!

1E
0

pdu

2
@12p~u!#sinuu~x,W,u!,

fP@p,2p#, ~9!

where the specularity parameter must have the symm
p(f)5p(p2f)5p(2f) from physical considerations
The completely diffuse scattering boundary corresponds
p50, and the specular boundary corresponds top51. The
factor sinu corresponds to the effective solid angle of a u
segment of the boundary for an incident flux with incide
angle u. The current conservation is fulfilled with thes
boundary conditions, as shown in Appendix A. In oth
words, the current density at the boundary normal to
boundary is shown to vanish with the above boundary c

ed
s
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15 742 55YASHUHIRO TOKURA AND SEIGO TARUCHA
ditions. de Jong and Molenkamp25 used another boundar
condition, whereusinuu/2 is replaced with 1/p in the above
equations, which does not conserve current. However, in
case of an infinite-length wire, which they considered,
second terms in Eqs.~8! and ~9! disappear because of th
symmetry.25,34,35 In our finite-wire calculation the secon
terms, which is set tov(x) in the following sections, remain
finite and play an important role.

III. COMPLETELY DIFFUSE BOUNDARIES

This section shows a conductance of a wire with co
pletely diffuse boundaries (p50). Here we define a function
v(x) which is the uniformly scattered flux into the wire at
point r5(x,0) of a bottom boundary. This function is act
ally the second term of the right-hand side of Eq.~8! with
p(f)50. We notice the auxiliary relationu(x,y,f)
5u(x,W2y,2f) which is due to the symmetry. Using th
method of the characteristic equation, we can modify
angular integral in Eq.~8! into line integrals at the left sourc
@the source termv0(x)# and at the top boundary@integral of
u(x,W,2f)5u(x,0,f)5v(x) with fP@p,2p##. The inte-
gral equation to be solved is

v~X!5E
0

L

dx G~X2x!v~x!1v0~X!, ~10!

with

G~X!5
W2

2~X21W2!3/2
, ~11!

v0~X!5
1

2
2

X

2AX21W2
, ~12!

which is an inhomogeneous Fredholm equation of the sec
kind. In the following we move the origin ofx to the wire
center and normalize the length withW—that is,
Z5@X2(L/2)#/W—and define an aspect ratio parame
a5L/(2W). Then by defining a new function
V(z)5v@(z1a)W#2 1

2 in zP@2a,a#, and by transforming
Eq. ~10!, we find that the functionV(z) satisfies the follow-
ing equation:

V~Z!5 1
2 E

2a

a

dz
V~z!

@~Z2z!211#3/2

1
1

4F a2Z

A11~a2Z!2
2

a1Z

A11~a1Z!2
G . ~13!

Therefore,V(z) is an odd function ofz. We evaluate the
approximated solution by the power series expansion aro
z50, V(z)5a1z1a3z

3/3!1a5z
5/5! . . . . After a lengthy

but straightforward calculation, we found analytical forms
the approximated solution up to fifth order ofz. The coeffi-
cients have limiting values for very smalla ~short wire!,

(a1,a3,a5)→ (2 1
21 3

4a
2, 322 45

4 a
2,2 45

2 1 1575
4 a2) 1 O(a3);

and for large a ~long wire!, (a1 ,a3 ,a5) →@2 3
7/a1 11

14/

(alna),2 2
7/(a

3lna),26
7/(a

5lna)#. The conductance defined i
e
e

-

e

nd

r

nd

f

Eq. ~5! can be similarly evaluated by integrating all fluxe
from the source, top boundary, and bottom boundary as

g~Z!5E
2a

a

dzF sgn~Z2z!2
Z2z

A~Z2z!211
GV~z!

1 1
2 @A11~Z1a!21A11~Z2a!2#2~Z1a!,

~14!

where the function sgn(z) gives 1 for z.0 and21 for
z,0. We can confirm the current conservation by direc
differentiatingg(Z) in Eq. ~14! with respect toZ, and by
using Eq.~13!. The conductance atZ50, which corresponds
to X5L/2 ~the wire’s center!, is most accurate since the in
tegral kernel of Eq.~14! has peaks nearz5Z, and V is
expanded aroundz50. We evaluateg(0) at two limits: If
a→0, then g→12a1a21O(a3), and if a→` then
g→(3/7a)ln2a1(2/7a). The leading term of the latter limi
approaches (1/2a)ln2a if we take higher-order expansions o
V(z), whereas the limit fora→0 approaches 1/(11a). This
logarithmic dependence of conductance on length is remi
cent of the ‘‘catastrophic’’ disappearance of th
resistivity,34,36which has been known to occur in an infini
wire, where the resistivityr decreases logarithmically an
disappears when the bulk mean free pathl e approaches in-

finity, i.e., r0 /r; 3
4k ln(1/k), wherer0}1/l e is the resistivity

of bulk andk5W/ l e . Notice that the resistance remains
nite even if there is no bulk scattering.

IV. PARTIALLY DIFFUSE BOUNDARIES

The result of Sec. III can be extended to the case in wh
the boundaries are partially diffuse. Here we use a clo
formula to give a conductance, and show some of the a
lytical approximated results.

Since there is no bulk scattering, the incident flux
(X,0) with anglef in Eq. ~8! originates from the source
(0,y) or from the upper boundary (x2W/tanf,W) ~see the
ray trace in Fig. 1!. DefiningXn(f)5X2nW/tanf and us-
ing the auxiliary relation ofu, we have

u~X,0,f!5v~X!1p~f!u„X1~f!,W,2f…

5v~X!1p~f!u„X1~f!,0,f…

5v~X!1p~f!@v„X1~f!…1p~f!u„X2~f!,0,f…#,

where nowv(x) contains the factor 12p. We can extend
the iteration untilXn(f),0 orXn(f).L, where the integer
n depends onX andf. Using the boundary condition ofu at
x50 andL, we can reduce the above equation to

u~X,0,f!5v„X0~f!…1p~f!v„X1~f!…1•••

1pn21~f!v„Xn21~f!…1Q, ~15!

whereQ5pn(f) for Xn(f),0 or 0,f,p/2, andQ50
for Xn(f).L or p/2,f,p. Therefore, if we knowv(X)
for all X we can solve the problem. In a way similar to th
in Sec. III, we can evaluatev(X) by integrating at the source
and at the top boundary by defining incident ang
fX2x5arctan@W/(X2x)#:
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55 15 743ROUGHNESS SCATTERING IN A FINITE-LENGTH WIRE
v~X!5E
0

W

dy K~X,y!F12pS yXD G1E
0

L

dx G~X2x!

3F12pS W

X2xD Gu~x,0,fX2x!, ~16!

where we redefinedp(f) as p(tanf) and K(X,y)
5Xy/2/(X21y2)3/2. The first term on the right-hand side
the flux from the source, and the second integral is the
from the top boundary. We have an equivalent equation
Eq. ~10!, when we replaceG(X) with

Gp~X!5 (
n50

` Wn
2

2~X21Wn
2!3/2

F12pSWn

X D GpnSWn

X D , ~17!

andv(X) with

v0p~X!5E
0

W

dy K~X,y!F12pS yXD G
1E

0

X

dx G~X2x!F12pS W

X2xD G
2E

0

X

dx Gp~X2x!F12pS Wn

X2xD G , ~18!

whereWn is n3W. A detail derivation is given in Appendix
B. Of course these functions reduce toG(X) and v0 if
p50.

The current is evaluated similarly, and the result is

g~X!5
2

WE
0

W

dyE
0

L

dx(
n51

`

K~X2x,ny!qnv~x!

1
2

WE
0

W

dyE
0

X

dxFK~X2x,y!2 (
n51

`

K~X2x,ny!

3qn~12q!G1
AX21W22X

W
, ~19!

where we definedq5p@ny/(X2x)# for simplicity.
The above equations are general for any angular de

dence of the specularity parameterp. Here we evaluate the
analytical limiting value of the conductance for a specular
parameterp which is independentof angle. This timev(x)
is not a sum of12, and an odd function ofx2L/2 for a plau-
sible reason: ifp→1, thenv(x)50 for all z. But we again
expand v as v(x)5c01c1(x2L/2)1c2(x2L/2)2/2!
1c3(x2L/2)3/3!1•••, and find that the even coefficien
and odd coefficients are independent and only the odd c
ficients contribute to the current at wire centerx5L/2. The
result for smalla5L/(2W) is

g→12~12p!z1~p!a1
12p

2
@z2~p!1~12p!z1~p!2#a2,

~20!

where we defined power series functio
of p, zm(p)5(n51

` pn21/nm. Here (12p)z1(p)
52(12p)/pln(12p) is a monotonically decreasing func
x
to

n-

f-

tion of p, and z2(p)5(1/p)*0
pdt(1/t)ln@1/(12t)#. The ap-

proximated limit for largea is

g→
3

7

12p

a (
n51

`

pn21nln
2a

n
, ~21!

where again lna/a characteristics are found, and the prefac
approaches12 with higher-order approximation. The result fo

an infinite wire wasr0 /r→ 3
4(12p)kln(1/k).34

V. NUMERICAL RESULTS

The integral equation~10! can also be evaluated by
numerical method. First discretize thex length L into N
points, and transform the integral equation into aN3N ma-
trix equation. By matrix inversion or by an iteration metho
we can solvev in anN-dimensional vector form. We com
pared the result obtained by power-series expansion with
obtained by the numerical method withN51000~typically!,
and found that they coincide within 5% even for the larg
aspect ratioa530. This numerical method has an advanta
in that we can consider any angular dependence ofp(f).

First let us show the conductanceg depending on the
aspect ratioa for the completely diffuse boundaries in Fig.
The inset shows the plot of ln2a vs 2a3g for a wider range
of a in order to demonstrate the ln2a/(2a) dependence. There
have been several empirical selections of the specularity
rameter. We take two models: one with angularly indep
dentp ~model A! and other in whichp depends on the angl
as exp@2(asinf)2# ~model B!.25,37 In model B the flux inci-
dent at the glancing angles (u→0,p) is always specularly
scattered. Figure 3 shows the conductance for several sp
larity parameters. Two sequences of results for models A
B are shown. Comparing these two sets of results, we
that the conductance for model A has a shorter tail for la
a than does the conductance for model B. This can be

FIG. 2. Aspect ratioa dependence of the conductanceg for
completely diffuse boundary. Dashed curve and dotted curves
for a→0 and a→` limits, respectively. The inset showsa vs
2ag for larger range ofa, and the dashed line is the limiting ap
proximations ln2a for a→` limit.
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derstood because the dominant current component in w
with a large aspect ratio is flux with a smaller incident ang
which rarely suffers backscatterings in model B. Akera a
Ando also evaluated the effect of roughness scatterings
the electron level population by the semiclassical Boltzma
equation. They found that most of the current is carried
the electrons in lower subbands for zero magnetic field10

although quantitative comparison with our result is not po
sible.

We also evaluated the angular distribution of curre
emitted from the wire into the right reservoir~drain! by cal-
culating current atx5L. The current with a larger angle
component suffers diffuse scattering more frequently. The
fore, the emission angular profile has a narrow peak at
angle parallel tox. This effect is enhanced for the angular
dependentp ~model B! for the same reason as given in th
previous paragraph. Several angular distributions atx5L,
r(f) defined by*0

Wdyu(L,y,f)/W are shown in Fig. 4. The
current distribution in the drain measured at a distance m
larger thanW is given byr(f)cosf if we can neglect bulk
scatterings. This diffuse-scattering-mediatedcollimation ef-
fect was analyzed by the billiard model, and was used
explain why the bend resistance peak is larger than the
pected value, which is evaluated with assuming uniform
jection into the cross geometry.29–31The collimation effect is
larger for longer and more diffuse wires. Furthermore,
M-shaped peak is found in the distribution derived usi
model B. The flat region nearf50 is the direct injection
from the source. The side peaks are the sum of the cur
injected at the glancing angle, which is scattered once alm
specularly, and the diffusively scattered current after injec
almost normal to the boundaries.31

VI. DISCUSSION

The most direct application of the present formulation
to analyze the transfer resistance7,28 in a very high-mobility
sample, where the resistance peak at zero-magnetic fie
assumed in the first approximation as ideal bend resista

FIG. 3. Conductanceg versus aspect ratio for several specula
ity parameters. See the text for the definition ofa.
es
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corrected with backscatterings by the diffuse boundaries
the intermediate channel of lengthL. Takagakiet al.7 evalu-
ated this backscattering in multilead geometry defined w
Ar-ion milling in GaAs-AlxGa12xAs heterostructures where
l e is 2;3 mm. They fitted the experimental results in a
exponential formg;exp@2L/LB(W)# for L,1 mm ~quasi-
ballistic region!, and foundLB55W for W,0.1m m. Com-
paring this form with Eq. ~20! and equating
L/LB(W)5(12p)z1(p)a, we found p50.8. Sakamoto
et al.28 tried to demonstrate the result with a simplified b
liard model. Their result is qualitatively similar to ours. A
noted in Sec. V, diffuse scattering modifies the angular d
tribution of the current in the channel near the voltage pro
~at the exit of wire or right reservoir!, and then changes the
probability of direct injection. Moreover, the initial distribu
tion near the current probe~left reservoir!, which has been

-

FIG. 4. Angular distribution at the exit of wires with severa
aspect ratios assuming the constant specularity parameterp50.9
~solid lines! and p50.5 ~dashed line! ~upper figure!. The lower
figure is the angular distributions for angularly depending specu
ity parameter witha50.7.
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55 15 745ROUGHNESS SCATTERING IN A FINITE-LENGTH WIRE
assumed to be a uniform injection from a perfect reservoi
our analysis, is probably distorted quite a bit. But these
perfections can be corrected with minor modifications of
theory, and the present result serves as the first approx
tion.

The angular distribution of the current has recently be
measured directly by using small superconducting quan
interference devices.38,39The results for rather wider ballisti
quantum wires, where more than 30 subbands are occu
show large collimation. This collimation is too large to b
explained by the rounding of the opening~Horn effect!, or
the barrier collimation effect which arises from the reducti
of carrier concentration in the constriction.40 Part of this col-
limation effect might originate from the diffuse scatterin
although other possibilities cannot be ruled out yet.27

Finally, several extensions of the present work seem p
sible. The first is to integrate the magnetic field effect, wh
was first treated phenomenologically by Thorntonet al.14 in
order to explain the low-field magnetoresistance peak.
second extension is to include the effect of bulk scatterin
We can assume the effect of bulk scatterings and diff
boundary scatterings independently in qualitative disc
sions. However, there seem to be two exceptions. One
the approach to the limit of a long wire, where the effect
bulk scatterings become more and more important while
effect of diffuse scattering decreases logarithmically. T
other is the case of electron-electron scatterings. As dem
strated by Molenkamp and deJong23 and Gurzhi, Kalimenko,
and Kopeliovich,41 electron-electron scatterings and diffu
boundary scatterings are closely related with each other,
electron transport is affected by these two scattering p
cesses in total. It seems it would be quite interesting to
vestigate these effects in a wire of finite aspect ratio. Fina
the quantum correction to the present result is an impor
subject. For example, the localization effect due to the b
scattering is corrected by the properties of the bound
scattering.42 In numerical studies, there is no long-tailed co
ductance versus length in quantum transport.16,18,19 More-
over, the diffuse boundary scattering itself can cause lo
ization and fluctuation phenomena that will be quite differe
from those due to bulk scatterings.20,18,19

In conclusion, we have investigated the semiclassical c
ductance of a finite straight two-dimensional wire theore
cally, while neglecting the effect of bulk scattering. We pr
sented conductance formulas for general diffuse bound
specularity parameters. The conductance depends oa
~length divided by wire width! according to 1/(11a) if the
wire is short. We found that the conductance of wires that
long enough decreases with lna/a, which is consistent with
the classical analysis of resistivity by boundary roughn
scattering of an infinite wire. Collimated angular distributio
at the exit of a wire is also demonstrated.
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APPENDIX A: PROOF OF CURRENT CONSERVATION

Here we examine current conservation under the bou
ary condition specified in the text, Eqs.~8! and ~9!. The
n
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e
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e
-
in
f
e
e
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nd
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nt
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ry
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change of the current atx5X is proportional to

]g~X!

]X
}E

0

W

dyE
0

2p

df
]u~X,y,f!

]X
cosf ~A1!

52E
0

W

dyE
0

2p

df
]u~X,y,f!

]y
sinf

~A2!

5E
0

2p

df@u~X,0,f!2u~X,W,f!#sinf,

~A3!

where we used the local current conservation condition
the Boltzmann equation Eq.~3!. Then, using Eq.~8!,

E
0

2p

df u~X,0,f!sinf5E
0

p

df u~X,0,2f!p~f!sinf

1E
p

2p

df u~X,0,f!p~f!sinf

~A4!

5E
0

p

df u~X,0,2f!

3@p~f!2p~2f!#sinf ~A5!

50, ~A6!

where we used the symmetryp(f)5p(2f). Similarly, the
term *0

2pdfu(X,W,f)sinf is also zero.

APPENDIX B: INTEGRAL EQUATION
FOR PARTIALLY SPECULAR BOUNDARY

This appendix derives the kernelGp(X) and source term
v0p(X) in the integral equation ofv(x) for a partially dif-
fuse boundary. The second term of Eq.~16! is divided into
two integrals of regionsx,X andx.X. Let us first consider
x,X. For 0,x,X/2, the specular part of the flux come
from the source after one reflection. ForX/2,x,2X/3, the
specular part of the flux comes from the source after t
reflections, and vice versa. Noting thatx1(fX2x)
5x2(X2x)52x2X, and xn(fX2x)5x2n(X2x)
5(n11)x2nX, we can rewrite the first part of the integral

E
0

X/2

dx G~X2x!~12p!@v~x!1p#

3E
X/2

2X/3

dx G~X2x!~12p!

3@v~x!1pv~2x2X!1p2#1•••, ~B1!

wherep is understood to bep@W/(X2x)#. This equation is
reordered into

E
0

X

dx G~X2x!~12p!v~x!E
X/2

X

dx G~X2x!~12p!

3pv~2x2X!E
2X/3

X

dx G~X2x!~12p!p2v~3x22X!

1•••1D~X!, ~B2!
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whereD(X) is a sum of terms which is independent ofv(X). A similar argument is also applied to the second part of integ
(x.X):

E
X

L

dx G~X2x!~12p!v~x!E
X

~L1X!/2
dx G~X2x!~12p!pv~2x2X!E

X

~L12X!/2
dx G~X2x!~12p!p2v~3x22X!1•••. ~B3!

Therefore after combining Eqs.~B2! and ~B3!, we obtain

(
n50

` E
@nX/~n11!#

~L1nX!/~n11!

dx G~X2x!~12p!pnv@~n11!x2nX#1D~X!

5 1
2 (
n51

` E
0

L

ds
Wn

2

@~X2s!21Wn
2#3/2

F12pS Wn

X2sD GpnS Wn

X2sDv~s!1D~X!, ~B4!

where we definedWn5nW, and changed the variablex to s5(n11)x2nX. The constant termD(X) is also summed in a
closed form as

D~X!5E
0

X/2

dx G~X2x!~12p!p1E
X/2

2X/3

dx G~X2x!~12p!p@12~12p!#

1E
2X/3

3X/4

dx G~X2x!~12p!p@12~12p!2~12p!p#1•••

5E
0

X

dx G~X2x!@~12p!2~12p!2#2E
X/2

X

dx G~X2x!~12p!2p2E
2X/3

X

dx G~X2x!~12p!2p22•••

5E
0

X

dx G~X2x!~12p!2(
n
E
0

X

dx
Wn

2

2@~X2x!21Wn
2#3/2

F12pS Wn

X2xD G
2

pnS Wn

X2xD . ~B5!

Therefore, Eqs.~B4! and ~B5! give the kernel and source of the integral equation forv(x) when the boundary is partially
diffuse.
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