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Roughness scattering in a finite-length wire
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Semiclassical conductance of a finite two-dimensional wire is theoretically evaluated. The bulk scattering is
neglected. Rigorous formulas for situations with completely diffuse and partially diffuse straight boundaries
are given. For the short limit of wire length the conductance decreases according taca),wherea is an
aspect ratio parametdtength divided by wire width andc is a prefactor depending on the specularity
parameter of the boundary. If the wire is long enough, conductance decreases wéta using another
constant’, which is consistent with the classical analysis of resistivity by boundary roughness scattering of an
infinite wire.[S0163-18207)05123-7

[. INTRODUCTION probability of electrons being scattered into the boundaries
and increases the resistance. A successive increase of the
Ballistic transport in one- and two-dimensional electronelectron temperature then makes the electrons scatter fre-
systems has been the subject of intensive research. Quantizedently with each other, which prevents the electrons from
conductance was observed first in point contacts formed bgliffusing to the boundaries. This results in a decrease of the
split gate? and then in quantum wires formed from a high- resistancé? They analyzed these effects quantitatively by
mobility substrate by electron-beam lithography and wetsolving Boltzmann'’s equation for an infinite wif2.
chemical etchinﬁ__5 A necessary condition for observing The transition from Sharvin ballistic resistance to diffu-
quantized conductance is that the elastic mean freelpash ~ sive Ohmic resistance is another interesting topic related to
much longer than the sample lendthand the widthw. In  nearly ballistic transport in a wire, and semiclassical solu-
Hall-bar geometries, bend resistahéand several anomalies tions for_short-range bulk scatterétsand small-angle
in low-field Hall resistanc&° are characteristics typical of Scatterers have been obtained. In these analyses, boundary
ballistic electron transport, and, chaotic behavior occurs a$cattering was assumed to be specular. As yet there seems to
low temperature$:*? Some of these effects are not intrinsic have been no rigourous treatment of resistaime resistiv-
to the quantum wire, but are instead due to junction charadty) of boundary roughness scattering, although there have
teristics. More recently, correction in the quantum conducbeen several attempts to evaluate it using the billiard
tance stemming from a one-dimensional electron many-bodjnodel?*** A Landauer-type treatment is of course quite a
effect has been found, and was explained in terms of th@owerful tool for obtaining the quantum-mechanical
Tomonaga-Luttinger liquid pictur® Ballistic long wire is  resistance;*°but a rigorous semiclassical understanding of
crucial to see these many-body effects, because ondoundary roughness in a finite wire is quite important to
dimensional power-law behavior disappears for the temperssingle out the quantum-mechanical effects.
tures lower tharkvg /L, wherev is the Fermi velocity. A This paper therefore evaluates the boundary roughness
ballistic transport system can therefore be said to be an ide&rattering in a finite wire by using a semiclassical Boltzmann
experimenta| Setup for Studying quantum mechanics anéfeatment without bulk Scatterings. We find a formula for the
many-body effects. conductance for general boundary conditions, and we find
Of course the more we obtain samples free from bulkanalytical characteristics of the conductance in the limiting
scattering, the more the transport is controlled by the condiParameters by a power-series expansion method. Section Il
tion of the potential boundary. The effect of boundary rough-describes the theoretical model and basic formulation in
nessin a quantum wire transport was first reported by Thornterms of Boltzmann’s equation. Section Il presents a closed
ton etal, who found the effect in a low-field formula for completely diffuse boundaries. Section IV ex-

magnetoresistance pe¥k.Such a magnetosize effect has tends the result to boundaries with general specularity pa-
been investigated theoretically and explained byrameters. Section V gives some numerical results of conduc-
semiclassicaP and quantum treatment$!” Conductance tance and current distribution. Section VI discusses the
fluctuatiort®=2° and chaotic behaviét?? induced by the results, and presents our conclusions. Appendixes A and B
boundary scattering have also been investigated recently. Shows some details of the calculations.

Another many-body effect was discovered by Molenkamp
and de Jon_@ in t.he nonlinear.transport characteristics of a IIl. MODEL AND BASIC EQUATION
guantum wire with cleverly situated thermometers. Excess
current up to about 2QuA raises the electron temperature ~ We consider a quantum wire with lengthand widthW
while keeping the lattice temperature almost constant. If thén a two-dimensionalk-y plane as shown in Fig. 1x(is
current is small enough, the electrons have negligible interalong the wirg. Ideal reservoirs are attached to both ends of
action with boundaries. The heating drastically decreases thbe quantum wire. The two confining walls =0 and
electron-electron scattering time, which in turn increases thg =W, which are straight on a scale much larger than Fermi
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Y j(r)=2eEk f(r,k)-v
=e?VDv J 2Wd—d)u(r ¢)(cosp,sing) (4)
W\ oWihanow) | Flo 2z , ,
2// whereD = m/(7#4?) is the two-dimensional density of states,
andm is the electron effective mass. Therefore, 8], with

no collision term, is nothing but a bulk current conservation
relation: dij(r)=0. The total current (x) across a line
x= X is given by integrating th& component ofj(r) from
y=0toy=W.:

Source | N Drain

» . W 2md
A I(X)=VGOVIVL olyf0 %u(x,y,d))co&ﬁ, ®)

scattering

where Gy=(2e?/h)(Wkg/1) is the inverse of classical

FIG. 1. Schematic diagram of the system considered. Shade. harvin's resistance with Fermi momentukg andWke/m

. el . . . “™™s the total number of subban#s?In the following we will
regions are where the infinitely high confinement potential defmeséh0 formulas for the dimensionless conductance
the wire region with length. and widthW. w u : : u

a(x)=1(x)/(VGyp), where the current conservation is ex-

wavelength, are diffusive. Consider steady-state Boltzmann'gressed aslg(x)/dx=0.

equations at zero temperature for the distribution function To SOI.V.e Boltzmann's gquaﬂo_n, we should def.me _bound-
f(r,k) of two-dimensional electrons with electric field ary conditions at four regions. Since we are considering per-

E(r) applied to the system, whereis a two-dimensional Iﬁctbrese(rjvo!rs, ,ENe use theofollov;lrggcljde_allzsﬁl-cond|t|ons at
position andk is the electron momentum, € boundaries to sourcg£ 0) and to drainX=L), respec-

tively:
E )af(r,k) of(r,k) af(r,k) i .o
eE(r v- = , - __ -
h ok ar at |, uy,¢)=1, de /-7, 2}, (6)
where the first term shows the response to the external field,
the second shows the effect due to electron drift motion, and u(L,y,$)=0, de m 3_77 _ @)
v is the electron velocity. The right-hand side corresponds to Y ' 2" 2

the bu_Ik scattering du_e to impurities or to other eI_e_ctr_ons.At the confinement boundaries we impose the following gen-
The distribution function is expanded around equilibrium

S L . 26.32 eral conditions using specularity paramepgib) (Refs. 34
Fermi-Dirac distribution functiorfy(e) as follows: and 35 depending on the incident angie

f _
f(r.k)="fo(e) + —&—;>e[Vu<r,¢>—<1><r>], ) ux0.4)=p($Hu(x.0.~¢)
27d O ]
wheree is the electron Fermi energy aml(r) is the elec- +f 7[1—p(0)]|sm6|u(x,0,0),
trostatic potential. The new functiar(r, ¢) corresponds to a i
deviation of the local chemical potential fromwhen it is be[0,7] (8)
averaged inp. Deep inside the reservoirs, the second term of '
Eq. (2) vanishes since the chemical potentials; eV in the U(X,W, ) =p(b)u(x, W, — &)

left reservoir ande in the right reservoir, cancel with

ed(r) from the charge neutrality condition. We neglect the 7d 4 i

change of velocity and set=vg(cosp,sing) using the +f0 7[1—p(0)]sm0u(x,w,0),

Fermi velocityvr, where we measure the angle from the

positive x axis. Then we can expand Boltzmann’'s equation 2 9

to the lowest order of the field by using the identity ¢elm2n], ()
—ad®/dr=E(r): where the specularity parameter must have the symmetry

p(p)=p(7m— d)=p(—¢) from physical considerations.
u(r,¢) au(r,¢) The completely diffuse scattering boundary corresponds to
U T ot ' (3) p=0, and the specular boundary correspondp+ol. The

coll factor sirg corresponds to the effective solid angle of a unit

In the following discussions we completely neglect bulk segment of the boundary for an incident flux with incident

scattering processes, and the right-hand side of (Bgis  angle . The current conservation is fulfilled with these
zero. The bulk(electron-electron or othgscatteringsn the  boundary conditions, as shown in Appendix A. In other
reservoirsmaintain the equilibrium Fermi-Dirac distribution. words, the current density at the boundary normal to the
The electron current density including the spin freedom is boundary is shown to vanish with the above boundary con-
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ditions. de Jong and Molenkafpused another boundary
condition, wherg/sing|/2 is replaced with 4 in the above
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Eqg. (5) can be similarly evaluated by integrating all fluxes
from the source, top boundary, and bottom boundary as

equations, which does not conserve current. However, in the

case of an infinite-length wire, which they considered, the

second terms in Eq¥8) and (9) disappear because of the
symmetry?>343® |n our finite-wire calculation the second
terms, which is set ta(x) in the following sections, remain
finite and play an important role.

Ill. COMPLETELY DIFFUSE BOUNDARIES

This section shows a conductance of a wire with com
pletely diffuse boundariegp=0). Here we define a function
w(Xx) which is the uniformly scattered flux into the wire at a
point r =(x,0) of a bottom boundary. This function is actu-
ally the second term of the right-hand side of E§). with
p(4)=0. We notice the auxiliary relationu(x,y,¢)
=u(x,W—y,— ¢) which is due to the symmetry. Using the
method of the characteristic equation, we can modify th
angular integral in Eq8) into line integrals at the left source
[the source termwy(x)] and at the top boundafyntegral of
u(x,W,— ¢)=u(x,0,¢) = w(x) with ¢ e[ ,27]]. The inte-
gral equation to be solved is

w(X)=fOLdX G(X=X)w(X)+ we(X), (10
with
2
G(X)= 2T WO (11
I S (12)
w07 W

g(Z)=fadZ[ sgdZ—Z)—W Q(z)
+i[V1+(Z+a)’+1+(Z—a)?]-(Z+a),
(14)

where the function sguzj gives 1 forz>0 and —1 for
z<0. We can confirm the current conservation by directly

differentiatingg(Z) in Eq. (14) with respect toZ, and by
using Eq.(13). The conductance &=0, which corresponds
to X=L/2 (the wire’s centex is most accurate since the in-
tegral kernel of Eq.14) has peaks neaz=Z, and () is
expanded around=0. We evaluategy(0) at two limits: If
a—0, then g—1—a+a?+0(a’, and if a— then

eg—>(3/7a)In2£;1+(2/7a). The leading term of the latter limit

approaches (1#)In2a if we take higher-order expansions of

QO (z), whereas the limit foa— 0 approaches 1/(1a). This
logarithmic dependence of conductance on length is reminis-
cent of the “catastrophic” disappearance of the
resistivity 3**® which has been known to occur in an infinite
wire, where the resistivityp decreases logarithmically and
disappears when the bulk mean free phattapproaches in-

finity, i.e., po/p~ 2 kIn(1/k), wherepy= 1/, is the resistivity
of bulk andk=W/I.. Notice that the resistance remains fi-
nite even if there is no bulk scattering.

IV. PARTIALLY DIFFUSE BOUNDARIES

The result of Sec. lll can be extended to the case in which
the boundaries are partially diffuse. Here we use a closed
formula to give a conductance, and show some of the ana-
lytical approximated results.

which is an inhomogeneous Fredholm equation of the second Since there is no bulk scattering, the incident flux at

kind. In the following we move the origin af to the wire
center and normalize the Ilength wittW—that is,

(X,0) with angle¢ in Eg. (8) originates from the source
(0y) or from the upper boundaryx W/tang, W) (see the

Z=[X—(L/2)]/W—and define an aspect ratio parameterray trace in Fig. 1 Defining X,(#)=X—nW/tang and us-

a=L/(2W). Then by defining a new function
Q(2)=w[(z+a)W]—1%in ze[ —a,a], and by transforming
Eq. (10), we find that the functio)(z) satisfies the follow-
ing equation:

e O(2)
0@ | trprr e

L
4

a—27 3 at+Z
Ji+(a-2)2 Ji+(a+2)?|

13

Therefore,()(z) is an odd function ofz. We evaluate the

approximated solution by the power series expansion around

After a lengthy
but straightforward calculation, we found analytical forms of
the approximated solution up to fifth order af The coeffi-
cients have limiting values for very smadl (short wire,
(ar,a3,85) — (-3 +3a%3—Fa%, — T+ 1% + O(a%);
and for largea (long wire), (a;,az,as) —[—Ya+y

(alna),—2/(a%Ina),—%/(a’Ina)]. The conductance defined in

ing the auxiliary relation ofi, we have

U(X,0,¢)=w(X) +p(P)u(Xy(¢),W,— )
= o(X)+p()u(Xi(¢),0,¢)
= w(X)+p(d)[w(X1(¢)+p()u(Xx(4),0,H)],

where noww(x) contains the factor + p. We can extend
the iteration untilX,(¢) <0 or X,(¢)>L, where the integer
n depends oiX and ¢. Using the boundary condition of at
x=0 andL, we can reduce the above equation to

U(X,0,¢)= w(Xo(#))+p(P)w(Xy(h))+ - - -
+p" P o(Xn-1()+Q,

where Q=p"(¢) for X,(¢$)<0 or 0<¢<w/2, andQ=0

for X,()>L or w/2< <. Therefore, if we knoww(X)

for all X we can solve the problem. In a way similar to that
in Sec. lll, we can evaluate(X) by integrating at the source
and at the top boundary by defining incident angle
by = arctapW/(X—x)]:

(15
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w L
w(X)=JO dy K(X,y)[l—p(% +j0 dx G(X—x)

u(x,0,¢x—x), (16)

W
X|1-p X x

where we redefinedp(¢) as p(tang) and K(X,y)
=Xy/l2/(X2+y?)%?2 The first term on the right-hand side is
the flux from the source, and the second integral is the flux
from the top boundary. We have an equivalent equation to
Eq. (10), when we replac&(X) with

reduced conductance ¢

- W2 W, W,
0=, s ool P15 47

and w(X) with

0 0.5 1 15 2 .25 3 5
aspect ratio a = L/(2W

w
oo )= [ “ay K(x,y>[1—p(§”

FIG. 2. Aspect ratioa dependence of the conductangefor

X W completely diffuse boundary. Dashed curve and dotted curves are
+J’ dx G(X—x) 1—p(x—) for a—0 anda— limits, respectively. The inset shows vs
0 —X 2ag for larger range ofa, and the dashed line is the limiting ap-
X W proximations In2 for a—oo limit.
n
jo dx Gy(X—=x)[1 p(x_x> , (18

tion of p, and £»(p)=(1/p) [Hdt(1/)In[1/(1—t)]. The ap-

whereW, is nXW. A detail derivation is given in Appendix Proximated limit for largea is

B. Of course these functions reduce & X) and wg if 31-p

p=0. _ o _ —>——2 p" lnln— (21)
The current is evaluated similarly, and the result is 7 a im1

o where again la/a characteristics are found, and the prefactor
g(X)= ngfwdnyde K(X—=x,ny)q"w(X) approachesg with higher-order approximation. The result for
0 0 n=1

an infinite wire waspo/p— 3(1—p)«In(1/x) 3
2 (W X
+ W f . dy f . dx
The integral equatior{10) can also be evaluated by a
VXZ+W2 =X numerical method. First discretize thelength L into N
W (19 points, and transform the integral equation inthl& N ma-
trix equation. By matrix inversion or by an iteration method,
where we definedj=p[ny/(X—x)] for simplicity. we can solvew in an N-dimensional vector form. We com-
The above equations are general for any angular deperﬁ)al’ed the result obtained by power-series expansion with that
dence of the specularity parameferHere we evaluate the obtained by the numerical method with= 1000 (typically),
analytical limiting value of the conductance for a specularityand found that they coincide within 5% even for the largest
parametep which is independenbf angle. This timew(x) aspect ratiaa=30. This numerical method has an advantage
is not a sum of}, and an odd function af—L/2 for a plau-  in that we can consider any angular dependence(d).

K(X=xy)— S K(X=x,ny) V. NUMERICAL RESULTS
n=1

Xq'(1—q)|+

sible reason: ifp—1, thenw(x)=0 for all z. But we again First let us show the conductange depending on the
expand @ as w(X)=Cy+Cq(X—L/2)+cy(x—L/2)%/2! aspect ratia for the completely diffuse boundaries in Fig. 2.
+c3(x—L/2)%3!+- -, and find that the even coefficients The inset shows the plot of las 2aXx g for a wider range

and odd coefficients are independent and only the odd coeff a in order to demonstrate the laZ2a) dependence. There
ficients contribute to the current at wire centerL/2. The have been several empirical selections of the specularity pa-
result for smalla=L/(2W) is rameter. We take two models: one with angularly indepen-
dentp (model A and other in whiclp depends on the angle
1— as exp—(asing)?] (model B.%3"In model B the flux inci-
g—1-(1-p)ii(p)at—— [52(!3 +(1-p)¢i(p)]a?, dent at the glancing angle90,) is always specularly
(20) scattered. Figure 3 shows the conductance for several specu-
larity parameters. Two sequences of results for models A and
where we defined power series functions B are shown. Comparing these two sets of results, we find
of p, Im(P)=Sp_.p"Un™  Here (1-p)i(p) that the conductance for model A has a shorter tail for large
=—(1-p)/pIln(1—p) is a monotonically decreasing func- a than does the conductance for model B. This can be un-
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FIG. 3. Conductancg versus aspect ratio for several specular-
ity parameters. See the text for the definitionaof I n

derstood because the dominant current component in wire
with a large aspect ratio is flux with a smaller incident angle, .. 08 |
which rarely suffers backscatterings in model B. Akera anc <
Ando also evaluated the effect of roughness scatterings ¢
the electron level population by the semiclassical Boltzmant
equation. They found that most of the current is carried by
the electrons in lower subbands for zero magnetic figld,
although quantitative comparison with our result is not pos-
sible.

We also evaluated the angular distribution of current
emitted from the wire into the right reservduirain) by cal- 02
culating current atx=L. The current with a larger angle
component suffers diffuse scattering more frequently. There

angular distribution

fore, the emission angular profile has a narrow peak at th 0 s 1 05 0 05 1 15 9
angle parallel tox. This effect is enhanced for the angularly (b) emission angle ¢ (radians)

dependenp (model B for the same reason as given in the

previous paragraph. Several angular distributionsatL, FIG. 4. Angular distribution at the exit of wires with several

p(¢) defined byf\évdyu(L,y,¢>)/W are shown in Fig. 4. The aspect ratios assuming the constant specularity pararpet&9
current distribution in the drain measured at a distance mucf$olid lines and p=0.5 (dashed ling (upper figurg. The lower
larger thanW is given byp(¢)cosp if we can neglect bulk figure is the angular distributions for angularly depending specular-
scatterings. This diffuse-scattering-mediatadlimation ef- ity parameter withx=0.7.

fect was analyzed by the billiard model, and was used to

explain why the bend resistance peak is larger than the exorrected with backscatterings by the diffuse boundaries in
pected value, which is evaluated with assuming uniform inthe intermediate channel of length Takagakiet al.” evalu-
jection into the cross geometfy.*' The collimation effectis  ated this backscattering in multilead geometry defined with
larger for longer and more diffuse wires. Furthermore, anar.jon milling in GaAs-Al,Ga;_,As heterostructures where
M-shaped peak is found in the distribution derived using) s 2~3 um. They fitted the experimental results in an

model B. The flat region neap=0 is the direct injection exponential formg~ exy —L/Ls(W)] for L<1 wum (quasi-

from the source. The side peaks are the sum of the currept, ... region, and foundLg=5W for W<0.1 2 m. Com-
injected at the glancing angle, which is scattered once almost ' B = AT

2 o aring this form with Eqg. (200 and equating
specularly, and the diffusively scattered current after injecte o _
almost normal to the boundariék. /LgW)=(1=p){y(p)a, we found p=08. Sakamoto

et al?® tried to demonstrate the result with a simplified bil-
liard model. Their result is qualitatively similar to ours. As
noted in Sec. V, diffuse scattering modifies the angular dis-
The most direct application of the present formulation istribution of the current in the channel near the voltage probe
to analyze the transfer resistafé®in a very high-mobility ~ (at the exit of wire or right reservairand then changes the
sample, where the resistance peak at zero-magnetic field probability of direct injection. Moreover, the initial distribu-
assumed in the first approximation as ideal bend resistand®n near the current probgeft reservoij, which has been

VI. DISCUSSION
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assumed to be a uniform injection from a perfect reservoir irchange of the current at= X is proportional to
our analysis, is probably distorted quite a bit. But these im-

perfections can be corrected with minor modifications of the ag(X) Wd de u(X.y, )
theory, and the present result serves as the first approxima- X cho yfo ¢ aX cosp
tion.

The angular distribution of the current has recently been W 2m  gu(X,y, )
measured directly by using small superconducting quantum = —f dyf d¢p———sin¢g
interference device¥:3° The results for rather wider ballistic 0 0 %
guantum wires, where more than 30 subbands are occupied, ,
show large collimation. This collimation is too large to be e .
explained by the rounding of the openifigorn effec}, or “Jo dplu(X.0,¢) = u(X, W, $)]sing,
the barrier collimation effect which arises from the reduction (A3)
of carrier concentration in the constricti8hPart of this col-
limation effect might originate from the diffuse scattering,
although other possibilities cannot be ruled out¥et.

Finally, several extensions of the present work seem pos- ., .
sible. The first is to integrate the magnetic field effect, which f d¢ u(X,O,¢)sin¢=f d¢ u(X,0,— ¢)p(d)sing
was first treated phenomenologically by Thornetral# in 0 0
order to explain the low-field magnetoresistance peak. The
second extension is to include the effect of bulk scatterings. +f
We can assume the effect of bulk scatterings and diffuse
boundary scatterings independently in qualitative discus- (A4)
sions. However, there seem to be two exceptions. One is in = fﬂdd’ u(x,0,— )
the approach to the limit of a long wire, where the effect of 0
bulk scatterings become more and more important while the .
effect of diffuse scattering decreases logarithmically. The X[p(d)=p(=¢)Ising  (A5)
other is the case of electron-electron scatterings. As demon-
strated by Molenkamp and deJéAgnd Gurzhi, Kalimenko, =0, (AB)
and Kopeliovich?' electron-electron scatterings and diffuse yyhere we used the symmetpf ¢) = p(— ¢). Similarly, the
boundary scatterings are closely related with each other, a 27 L
electron transport is affected by these two scattering pr(’;t_@rmfo dPu(x, W, g)sing is also zero.
cesses in total. It seems it would be quite interesting to in-
vestigate these effects in a wire of finite aspect ratio. Finally, APPENDIX B: INTEGRAL EQUATION
the quantum correction to the present result is an important FOR PARTIALLY SPECULAR BOUNDARY

subject. For example, the localization effect due to the bulk This appendix derives the kern@l,(X) and source term
scattering is corrected by the properties of the _boundaryl,op(x) in the integral equation of(x) for a partially dif-
scatterind®? In numerical studies, there is no long-tailed con-fuse boundary. The second term of Et6) is divided into
ductance versus length in quantum transpdtt'® More- o integrals of regions<X andx>X. Let us first consider
over, the diffuse boundary scattering itself can cause localy<x. For 0<x<X/2, the specular part of the flux comes
ization and fluctuation phenomena that will be quite differentyom the source after one reflection. P6R2< x< 2X/3, the

: 18,19
from those due to bulk scatterings’ _ . specular part of the flux comes from the source after two
In conclusion, we have investigated the semiclassical CONyeflections, and vice versa. Noting thaks(dx_)

ductance of a finite straight two-dimensional wire theoreti-_, _ (X—xX) =2x—X and X ( by ) =X—N(X—X)

cally, while neglecting the effect of bulk scattering. We Preé-— (n+1)x—nX, we can rewrite the first part of the integrals,
sented conductance formulas for general diffuse boundary

(A1)

(A2)

where we used the local current conservation condition or
the Boltzmann equation E@3). Then, using Eq(8),

2m
d¢ u(X,0,¢)p(¢)sing

w

specularity parameters. The conductance dependsaon X/2

(length divided by wire widthaccording to 1/(#a) if the dx G(X=x)(1—p)[w(x)+p]
wire is short. We found that the conductance of wires that are 0

long enough decreases withala, which is consistent with 2X13 i

the classical analysis of resistivity by boundary roughness X f X/2 dx G(X=x)(1=p)

scattering of an infinite wire. Collimated angular distribution B P _
at the exit of a wire is also demonstrated. XloX)+po(2x=X)+pT+---,  (BD)
wherep is understood to be[ W/(X—x)]. This equation is
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APPENDIX A: PROOF OF CURRENT CONSERVATION X
xpw(zx—X)f dx G(X—x)(1—p)p2w(3x—2X)
2X/3

Here we examine current conservation under the bound-
ary condition specified in the text, Eq&3) and (9). The +. .- +D(X), (B2)
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whereD (X) is a sum of terms which is independent®fX). A similar argument is also applied to the second part of integral
(x>X):

L (L+X)/2 (L+2X)/2
J dx GX—x)(1— p)w(x)f dx G(X—x)(l—p)pw(Zx—X)J dx GX—X)(1—p)p?w(3x—2X)+ . (B3)
X X X

Therefore after combining Eqé82) and (B3), we obtain
(L+nX)/(n+1)
> f dx G(X=x)(1—p)p"w[(n+1)x—nX]+D(X)
n=0 J[nX/(n+1)]
1 n
- zngl 0 d X—S)

where we definedV,=nW, and changed the variableto s=(n+1)x—nX. The constant ternD(X) is also summed in a
closed form as

2

n N W,
S[(x_s)2+wﬁ]3/2{1_p p (X—S) w(s)+D(X), (B4)

X/2 2X/I3
D<X>=f dx G<X—x>(1—p>p+f dx GX—x)(1—p)p[1—(1—p)]
0 X/2
3X/4
+f dx G(X—x)(1—p)P[L—(1—p)—(1—p)p]+ - -

2X/3

X X X
=f dx G(X—X)[(l—p)—(l—p)z]—f dx G(X—X)(l—p)zp—f dx G(X—x)(1—p)?p?—---
0 X/2 2X/3

2 2 Wn
p“( ) (B5)

zfxdx G(X—X)(1—p)— >, fxdx
0 n 0

Therefore, Eqs(B4) and (B5) give the kernel and source of the integral equationdgx) when the boundary is partially
diffuse.

Wi
X=X

2[(x—x)2+wﬁ]3’2{1_p(x—x
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