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Fine structure in the off-resonance conductance of small Coulomb-blockade systems
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We show how a fine, multiple-peak structure can arise in the off-resonance, zero-bias conductance of
Coulomb-blockade systems. In order to understand how this effect comes about one must abandon the ortho-
dox, mean-field understanding of the Coulomb-blockade phenomenon and consider quantum fluctuations in the
occupation of the single-particle electronic levels. We illustrate such an effect with a spinless Anderson-like
model for multilevel systems and an equation-of-motion method for calculating Green’s functions that com-
bines two simple decoupling schemgS0163-182807)02723-9

Resonant tunneling through small, isolated, multilevelto the limit where CB dominates. From our results we con-
systems such as a quantum doauses a peak in the zero- clude that there is a possibility of observing an enhancement
bias conductance whenever a single-electron level coincidedf the off-resonance current through small quantum dots that
with the chemical potentialg) in the leads. Without a Cou- carries a direct “fingerprint” of the discrete single-particle
lomb interaction a series of peaks with separative levels. Specifically, we address the problem on how the
(energy-level spacingwould be observed when, for in- mean-field picture breaks down as/I" crosses over from
stance, the energy levels are lowered relative.tby exter- >1 to =1. We find that in the regimée/I'=1 quantum
nal gates. At each peak the number of electrons in the systeftuctuations in the single-particle levels create “dynamical”
increases by one, filling the corresponding single-electroghannels that are available for transport. In this limit, these
state. Coulomb interactions, however, have drastic effects opew channels give rise to a multiple-peak structure in the
the conductance(i) On the one hand, the current can be off-resonance conductance in addition to the smooth signa-
suppressed over a large range of gate voltages since incoriwe of virtual tunneling processes, which is known as elastic
ing electrons may be strongly repelled by those alreadycotunnelind
present in the system. This phenomenon is generally known We begin by considering a multilevel system connected to
as Coulomb blockadgCB). A mean-field-type pictufesuf-  left and right leads described by the Hamiltonian
fices to describe such an effect: Each time an additional elec-
tron is added to a single-particle state in the system all the N N
other energy levels are shifted with respect to their previous _ + + Tt
values by an amount that is related to the Coulomb repul- H_El €id; d‘+k€ER’L EkaCk+j>i§;1 Ujjdi didjd,
sion. Therefore, ifU>Ae, a sparse series of conductance N,
peaks with separatiot) is expected instead of that with
separationAe. (i) A more exotic phenomenon can take +Zl k;L Vi(k)[cldﬁdi‘rck]’ @
place when, at very low temperatures, the conductance be- '
tween CB peaksoff-resonance conductanads enhanced as-
sisted by quantum fluctuations in the single-electron degerwhered; (d;) are the creatioiannihilatior) operators asso-
erate (usually spin-degeneratelevels®>* This effect is ciated with theN, single-particle levels in the system with
closely related to the Kondo effect, which is well known in energies; , cl (cy) are the ones for the levels in the left and
the literaturé’. Below the Kondo temperatutavhat deter- right leads with energieg,, andV;(k) are the hopping ma-
mines which one of the above-mentioned phenomena domtfix elements between them. The third term in the Hamil-
nates the conductance properties of the system is the rattonian takes care of the electronic correlations within the
Ae/l’, whereI is the coupling strength to the leads. For system. Such a term contains the necessary contributions
A€/T'>1, the mean-field picture is basically correct and CB(those of the type density-density interacjido study the
physics dominate$For A e/T'<1, fluctuations can take over most fundamental aspects of transport through quantum dots.
and so can Kondo-type physits: (Additional terms might be added if one is interested in more

Although the CB phenomenon has been experimentallyletailed correlation effecfsbut this lies beyond the scope of
well established in quantum dotsto our knowledge, the this work) Degeneracies like those due to the spin degree of
latter is yet to be observed in such systems, in part, due to thigeedom are not considered eitiarhigh magnetic field may
extremely low temperatures required. In this work we showbe implicitly assumed
that the presence of quantum fluctuations in the occupation The conductancg through the interacting system can be
of the electronic levels can also play a significant role closesalculated with the formufa
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2e? (= )
ngfixdw fep(@)IM{t] v (0) Gjj(w) ]}, (2)

where f{y(w) is the derivative of the Fermi-Dirac distribu-
tion function, y(w) is the hopping matrix defined by

YR(w) Y- (w) /[ YR(w) + y-(w)], where

(@) ==2Im 2 ()]

lim X Vi(kV(K/(0—E+id) |,
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(nj>E<dde,->. In this approximation the Green's function
takes the simple formG(w)=[(G%(w)) *—3(w)] 7},
whereG°(w) is the diagonal Hartree-Fock Green’s function
for the isolated system

G (w)=Ilim !

5_)0w—ei—EjUij<nj>+i5' (4)

and3(w)=3R(w)+3"(w) is the total coupling self-energy.
The Green’s function projected on a levetiepends on the
occupation number&;) of all the other levels that are usu-
ally calculated self-consistently. Now, in order to include

G(w) is the retarded Green’s function that must be calcugynamical processesvhich will turn out to be relevant in
lated in equilibrium, and tr denotes the trace over the levelgertain limit9 in the Green’s function, one has to improve

of the interacting region.

upon the HFA. The way to do that in the framework of the

Equation-of-motion (EOM) techniques for calculating £QM method consists in generating higher-order Green’s

Green’s functions have been used in the past in the contextnctions
of the Anderson mod& and recently also in the context of
quantum dots:***2 According to such a technique one may

write

o((di;d))y={d;,.df )+ (([di,H];d)), 3

from ((din;;dl)), namely, ((cd[d;;d])),
((chdid;;dy), ((dinjny;d1)), and ((cen;;dl)). Following
Hewson and Zuckermari, we neglect Green’s functions
such ag(ccd]d; ;df)) and((c{d;d;;d)), which contain un-
paired operators. Physically, this corresponds to considering
only one-electron processes. By generating new Green’s

where Gij(w)=((d; ;d)). The higher-order Green’s func- functions from the remaining terms and successive decou-
tions generated by the last term in E§) must be approxi- plings similar to those mentioned in the HFA, a closed set of
mated at some stage of the calculation to obtain a closed setjuations is obtained. We will refer to this approximation as
of equations. The simplest way to do that is in the Hartreethe Hewson-Zuckerman approximatizA) from now on.
Fock approximatiorftHFA), where the higher-order Green’s After some lengthy algebra and excluding off-diagonal
functions generated in the first EOM cycle are decoupled inerms!* we find the following expression for the retarded

the following way: ((din;;dl))~(n;)){(d;;dl)), with

N

TS Uij(n;)

<T+i 0~ —Ujj— 3 (0)

_ 1
Glw)= o— €&~ (w)

Green’s function:

N
5 Uj; Ui(njni)

k>{=14 0~ = U;j—Uj—2(w)

N
5 Uj;UicUi(njngny)

( 1 1 2
% w_éi_Uij_Eii(w)+w—€i_Uik_2ii(w) Jrl>k>j:1,¢i o—€—Ujj—Uj—Uj—3j(w)

1
X

1

1

[0—€—Ujj—Zji(0)[o—6—Ujj—Uj—3ji(0)] +[w_Gi_Uij_Eii(w)][u’_Gi_Uij_Uil_Eii(w)]

1

i [o—€—Ui—Zji(0) [0~ &—Up—Ujj—Zji(0)] "o e Up—Sy(@)][o— & Uy~ Uy~ ()]

1

1

i [o—€&—Uj—Zjj(0)][o——U;—Uj—Zji(w)

where additional terms containing products th up to

1 [o—e Ui Si(@[o— & Uy~ Up— ()]

®)

simplest two-level case. As ustfalye take the total coupling

UNc—1 are present, but are not shown here. As in the HFAself-energy independent ab, equal for both levels, and

the occupanciegn;) and correlation functiongn;
may be calculated self-consistently.

...np

purely imaginaryX; (w) =—iI'. We plot half the difference
in the occupation numbers of the two levels as a function of

The HZA, as well as many other self-consistent EOMAe/I" when the chemical potential lies in between the singly
approximations beyond the HFA'2presents, however, a and doubly occupied statéaotice that this corresponds to
serious drawback: It gives unphysical values for the occupaplotting the magnetization for the usual symmetric Anderson
tion numbers. Figure 1 illustrates this shortcoming in themodef9. It is well known from other methods that the
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FIG. 1. Difference in the occupation numbers of the two levels
in the symmetric case as a function &%/I". The HFA and the
HZA are shown for two values df). The HFA gives the correct FIG. 2. Conductance in the HFA-HZ#&hick solid line, in the
limit for large values ofAe/I" when compared with, e.g., second- HEa (thin solid line, and in the HZA(dotted liné as a function of
order_ perturbagon theory i (see the text In the HZA, hqwever, w« in a five-level system up thi=3. We have se¢;=0. The other
Fhe difference is too small and decreases Witinstead of increas- parameters ard e=0.3, U;; =1, (&) kT=0.02,T'=0.002 and(b)

Ing. kT=0.002,T'=0.02 (all the magnitudes are in units &f). The
smaller peaks ir(b) correspond to dynamical channels opened by
fluctuations in both levels are asymptotically suppressed aie fluctuating occupation numbers of the individual single-particle
one increased ¢/T" and/orU/T" and that eventually the HFA levels.
occupation numbers are basically corré®t>® For in-
stance, second-order perturbation theories ian top of the  u moves up between the renormalized single-particle levels.
Hartree-Fock solutioft give ((n,)—(n;))/2~0.4 for  As expected, due to the derivative of the Fermi-Dirac distri-
Ae/lT~4 and U~2«T, which is what we obtain in the bution function in Eq.(2), the heights and widths of the
HFA. By contrast, the self-consistent HZA gives a muchpeaks are proportional toTLandT, respectively. In contrast,
smaller value. Moreover, this value, instead of increasinghe level occupancies obtained from the HZA when off reso-
with U/T", decreasesOne way to get around this difficulty nance [away from the charge-degeneracy points where
and to obtain realistic results out of the dynamical expressiom~ wuq4,{N)] are noninteger numbers and the total charge in
(5) is to avoid the fully self-consistent procedure. This can bethe dot is not perfectly quantize(Detailed analysis will be
effectively done by using the HFA static results for the oc-given elsewheré’)
cupation numbers and multiple-particle correlation functions As I' increasegFig. 2(b)] the occupation of the single-
in the expressiofi5) for the Green’s functiorfwe will here-  particle levels is no longer either strictly zero or one as a
after call this approximation HFA-HZA In this way, as we function of . The mean-field picture rendered by the HFA
approach the isolated-system linlit—0, the correct occu- is only approximately valid and quantum-mechanical fluc-
pancies are guaranteed while keeping open the possibility fauations mediated by the interaction play their role now. In
fluctuations at finite hopping. We expect this approximationfact, within the HFA-HZA, new peaks appear in the off-
to give reliable qualitative results in the limke/I'=1. It  resonance conductance as a consequence of these fluctua-
cannot be valid, however, fake/T'<1 for several reasons: tions. The presence of the peak labef{géfat x=1.0 can be
(i) The HFA breaks spontaneously the local symmetry whemunderstood in the following way. There is a finite probability
U/T'>1 (see Fig. 1, (ii) off-diagonal elements have been for the electron to be in any of the levels 1, 2, 3, 4, and 5. It
ignored, and(iii) in order to reliably account for the strong spends most of its time in level 1, but if it happens to be in
fluctuation effects, which occur in that limit, one should havelevels 2, 3, 4, 05 a second, external electron can enter the
gone beyond the HZA in the EOM methdy!t system through level 1. Schematically these processes can be

We now calculate the conductance of a five-level systemiepresented like O@O:--)—|@@®O---)—|O@O-- ),
where an increasing coupling of the levels to the leadsOO@®---)—|@0®-..)—|OO®---), and so on, where
2jj(w)=—i(I'j) simulates a realistic situation for quantum empty and filled dots represent empty and occupied states at
dots. All the interaction term&J;; are set to one. Figure 2 a given time, respectively. Although the cost in energy for
showsg vs u in two different limits. WhenAe/I'>1 [Fig.  these processes is the samgite;+Uq;—€;,=1.0, their
2(a)] both the HFA and HFA-HZA give similar results: likelihood decreases with. Peak(2) at w=1.6 can be un-
There is a peak in the conductance whenevederstood in a similar way. There is a small but finite prob-
u~E(N)—E(N—21)=ug{N), whereE(N) is the ground- ability for the system to have the level 2 empty even when
state total energy dfl particles in the dot. The single-particle u> rgo(2). This is taken advantage of by an electron in the
states are successively filled and remain fully occupied akad to sneak through via level 3. Schematically,

0



15738 J. J. PALACIOS, LERWEN LIU, AND D. YOSHIOKA 55

/@00 )~ |00®---)—|@OO---). The major peaks

lie basically where the HFA predicts and all the other minor
peaks can be associated with dynamical processes like thos
described abovdAs can be seen, the self-consistent HZA
overestimates the importance of these types of processes an
gives rise to the spurious off-resonance structure seen in Fig
2(a).]

It is worth mentioning that the tunneling processes de-
scribed above seem to contribute to the off-resonance con-
ductance in a way different from the usual elastic
cotunneling’ which also anticipates a finite value of the off-
resonance conductance. In such a theory, the contribution tc
the conductance comes from second- or higher-ofdier
tual) tunneling processes. Virtual transport is already in- 00 2. TR TN\
cluded in the HFA, where, in addition, divergencies close to 705 0.0 05 1.0 1.5 20 25 3.0 35 4.0 4.5 50 55
the resonances are automatically taken care of. As can be b

seen in Fig. &), the elastic cotunneling is latent, for in- FIG. 3. Conductance in the HFA-HZA and total charge as a

stance, in the slight asymmetry of the first major resonancef'un(:tion of u in a five-level system for different values &f (no
In agreement with previous workthe Ae?/(Ae+U)? de- 0%? H 4

d f the off duct Iso b pendence with the single-particle level has been considered now
pendence ol the ofi-resonance conductance can alSo be Obr_ o go5 and all the other parameters are as in Fig. 2.I'As

tained in the HFA. l,n Fig. @), _however’ we See,th_at the increases, the fine structure starts disappearing as well as the overall
off-resonance value in the HFA is always a lower limit of the cg effect. One can also see how the charge quantization is lost

one obtained in the HFA-HZA. o N progressively.
Finally, we would like to stress the limits of validity of

our results. At low enough temperatures, the off—resonancsn distinctive CB ks ch int th ilati
fine structure relies on the existence of small quantum fluc: € distinctive peaks change Into a Smooth oscillation as

tuations in the occupation of the electronic levels. As we se& f_“nCt'OH Of"." HOW‘?VG“ as we discussed before, a quanti-
from Fig. 1, such fluctuations are suppressed wbenA e tative analysis of this regime is beyond the scope of our
or Aex>T, but they survive iftU=Ae andAe=TI". Whereas prelsent wcl)rk: EOM that bi wo diff td

the latter condition can be easily obtained by tuning gate h conclusion, an at compines two difierent de-

voltages, the former one can only be generically found incoupling schemes has been used to calculate the conductance

relatively small quantum dots (diameter typically through a general multilevel system with strong interactions.

=<0.1 um). (Such quantum dots exist at present, but their’C‘thumplter;peak. strucliure IS Oﬁtam%d ”,: Cdefta;” “mlt?th
transport properties have not been fully analyzed to pate. ereas the main peaxs are eastly understood in terms ot the

WhenT ~A e one expects not only the fine structure to dis‘_orthodox Coulomb-blockade theory, quantum fluctuations

appear, but the CB phenomenon altogefhéat least for a must be invoked to explain the _smaIIer peaks. The structure
system with an infinite number of levelsThis can be under- createq by these small peaks n t'he off-rgsonance qonduc-
stood very easily. The CB disappears when the conductané%nce lies on top of the contribution coming from virtual
of the insulating barriers, which keep the dot isolated from® astic tunneling.

the leads, becomes of the ord&h. This is equivalent to We acknowledge useful discussions with H. Fertig, L. I.
saying thaf pgor~ 1, wherepy is the density of states of the Glazman, A. H. MacDonald, A. Marn+Rodero, M. E.

dot. Since, to a first approximatiopg.~1/Ae, we obtain  Raikh, E. Soensen, C. Tejedor, and H. Yi. This work has
I'’'Ae~1 as the condition for the disappearance of the CBbeen supported by the National Science Foundation under
peaks. This trend is also confirmed by our calculations in th&srants Nos. DMR-9416902 and DMR-9503814. J.J.P. ac-
HFA-HZA for five levels, as can be seen in Fig. 3. As theknowledges support from NATO. D.Y. and J.J.P. thank the
broadening of the single-particle levels approaches the  hospitality of Indiana University and Aspen Center for Phys-
charge quantization is lost progressively and, consequentlycs where part of this work was done.
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