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Photon drag in single and multiple two-level quantum wells
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Starting from a density-matrix operator description we derive an expression for the photon-drag response
tensor of a quantum-well system containing an arbitrary number of subbands. Subsequently we analyze the
structure of the nonlinear response tensor and make a specialization to the case of a two-level quantum well.
In the wake of a self-consistent calculation of the local fields in a two-level well and in multiple quantum wells
the photon-drag currents are determined. We illustrate the main ingredients of our theory by carrying out a
number of numerical calculations of the drag current in a 15-Å wide niobium quantum well deposited on a
crystalline quartz substrate and a GaAs/AlxGa12xAs multiple-quantum-well structure. In particular we pay
attention to the frequency, angle of incidence, and number of wells dependencies of the current, and we
demonstrate that local-field effects may give rise to a significant blueshift and an asymmetric form of the
resonance peak.@S0163-1829~97!05224-7#
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I. INTRODUCTION

In the last decade studies of the photon-drag effect p
nomenon in quantum-well structures have attracted some
tention, and theoretical1–5 as well as experimental6–8 inves-
tigations have been carried out. Thus, in the work by Lur1

the photon-drag effect accompanying light-induced inters
band transitions in a waveguide formed by an AlAs/Ga
superlattice was studied theoretically, and it was shown
the high intersubband absorption coefficient in combinat
with the high mobility of the two-dimensional electron g
may lead to a large photon-drag current. The theory of
photon-drag effect in a two-dimensional electron gas sys
was further developed by Grinberg and Luryi2 who demon-
strated that an enhanced effect may occur due to the di
ence in the momentum relaxation times in the ground
excited subbands. Particular attention was devoted to the
fluence of the collision and Doppler shift line broadening
the intersubband absorption. In the work by Stockmanet al.3

the light-induced drift of electrons confined in a semicond
tor heterostructure was studied and it was shown that
drag current reverses its direction when the electromagn
frequency is tuned through the relevant electronic transi
frequency. This reversal of the current was also found in R
2. In both of the aforementioned works the photon-drag c
rent is antisymmetric with respect to the transition frequen
In the paper by one of the present authors4 the photon drag
effect in a single-level metallic quantum well was studi
and the role of local-field effects was examined in detail. T
one-level system seems of particular importance for inve
gations of pure two-dimensional dynamics since elect
motions in and out of the well plane are prohibited. In
recent paper by Vasko5 the photon drag in tunnel-couple
quantum wells was investigated. Readers interested in a
cent review and a generalized Boltzmann equation anal
of the photon drag in bulk solids are referred to the paper
Shalaevet al.9 An important experimental study of the res
nant photon-drag effect in a GaAs quantum-well system w
presented by Wiecket al.6 who showed that the voltage in
duced by the momentum transfer from the field to the mob
550163-1829/97/55~23!/15706~14!/$10.00
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carriers changes sign when the photon frequency is scan
through the electronic resonance. An experimental st
aimed at photon-drag detectors for the 10-mm wavelength
range was carried out by Kesselringet al.7 Further experi-
mental evidence for the photon-drag phenomenon in tw
band metals was given by Shalaevet al.9 who attributed a
spatially asymmetry in the photoemission from silver film
to the drag effect.

Although a number of important aspects of the drag p
nomenon related to intersubband transitions have been in
tigated in the above-mentioned works,1–3,5,6 it appears that
the local field driving the process has been assumed to
constant across the well. Technically, this means that
interaction Hamiltonian describing the dynamics perpendi
lar to the plane of the well was approximated by its electr
dipole form. Recent studies of local-field effects in linear a
nonlinear optics have shown, however, that particularly
cases where the electron motion perpendicular to the plan
the quantum well is appreciable the prevailing electric fie
can vary significantly across the well.10–12 Even in the
single-level case local-field effects appear to be
importance.4

In the present paper we focus our attention on the r
played by local-field effects in cases where intersubba
transitions are important for the photon-drag phenomen
Local-field aspects do not only appear in the calculation
the driving field. Also the nonlinear response function its
exhibits such effects. In the one-level case the photon d
would vanish if local-field effects were neglected in the r
sponse function and therefore these effects are indispens
In the resonant intersubband case it turns out, however,
the relative change of the dominating part of the nonlin
response function is less than;1023 when local-field cor-
rections are involved. Our work therefore shows that only
the driving field itself local-field corrections are needed, b
here they are significant. The nonlocal theory of the phot
drag response function given below covers cases where
quantum-well system has many bound states, and only w
it comes to the determination of the prevailing field and t
15 706 © 1997 The American Physical Society
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55 15 707PHOTON DRAG IN SINGLE AND MULTIPLE TWO- . . .
numerical calculation do we specialize ourselves to the t
intersubband case.

Starting from a density-matrix operator approach we
rive a general expression for the part of the photon-drag
sponse tensor which is of importance in the present con
and we discuss the explicit form of this tensor in the lo
temperature limit. Expressions for the photon-drag curr
density and the drag current itself are also presented in
section. In Sec. II B, the photon drag in a two-level well
calculated. In Sec. III, the theory of the local ac field insi
the quantum well is presented and particular emphasis is
on an explicit calculation within the framework of the simp
infinite-barrier model. In Sec. IV, the theory is extended
multiple quantum-well structures. The significance of inc
porating local-field effects is demonstrated in Sec. V, wh
a number of numerical results are discussed. Thus, in
V A the quantum-well system we investigate is composed
a niobium quantum well of thickness 15 Å deposited on
crystalline quartz substrate. We have chosen this system
cause a number of experimental and theoretical invest
tions of local-field effects in linear and nonlinear optics ha
already been carried out on this~see, e.g., the review given i
Ref. 12!. First, the frequency dependence of the nonlin
response function in the vicinity of the intersubband re
nance is calculated, and then the frequency and angl
incidence dependencies of the drag current and the local-
corrections to this are determined. We find from these st
ies that the drag current is blueshifted in frequency and
the resonance exhibits an asymmetric form when local-fi
effects are taken into account. Finally, we demonstrate th
change in the electric damping rate does not result in
blueshift or~redshift! of the drag resonance. In Sec. V B w
investigate the drag current in a GaAs/AlxGa12xAs multiple
quantum-well structure. First, the importance of the radiat
coupling among the wells is shown by comparing drag c
rents calculated with and without radiative interaction amo
the wells. Next, the frequency dependence of the drag
rent for different numbers of wells is investigated. Final
the dependence of the drag current on the number of wel
calculated for three incident photon energies.

II. THEORETICAL FRAMEWORK

A. Photon-drag response tensor and current density

The quantum-well system under consideration consist
a superthin, i.e., a few monolayer thick, metallic film depo
ited on a dielectric substrate which is characterized by
dielectric constant«Q . In a Cartesianxyz-coordinate system
the sharp surface of the substrate coincides with thexy
plane, and the substrate occupies the half spacez.0, the
boundaries of the quantum well being located atz52d and
z50, as illustrated in Fig. 1. Due to the assumed trans
tional invariance of the quantum-well system parallel to
xy plane, all vector and tensor-field components (T) appear-
ing in our analysis can be expressed in the generic form

T~r ,t !5T~z!exp@ i ~qi•r2vt !#, ~1!

where r and t are the space and time coordinates, resp
tively, v denotes the cyclic frequency of the electromagne
field, andqi is the projection of the field wave vector on th
xy plane.
-
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In order to investigate the photon-drag effect in t
quantum-well system, it is adequate to take as a star
point the following expression for the photon induced no
linear dc current density:4

J05Tr$rNL
~0!j0%1 1

4 Tr$r
~1!j1

†%1 1
4 Tr$~r~1!!†j1%, ~2!

where Tr$•••% denotes the trace of$•••%, j0 andj1 are the free
and field-perturbed parts of the current density operator,
spectively,r (1) andrNL

(0) are the light-induced linear and non
linear ~NL! dc parts of the density-matrix operator, and t
dagger stands for Hermitian conjugation. In passing we n
that the expression in Eq.~2! is valid to second power in the
electric field. Using the relaxation-time approximation, a
writing out only the last two terms of Eq.~2!, the photon-
drag current density is given by

J05Tr$rNL
~0!j0%

1
1

4 F (
M ,N

f 0~EN!2 f 0~EM !

\~v1 i /tMN!1EN2EM

3^M uH ~1!uN&^Nu j1
†uM &1c.c.G , ~3!

wheref 0(E) is the Fermi-Dirac distribution function,H
(1) is

the part of the interaction Hamiltonian which is linear in th
field, andtMN is the relaxation time for intersubband trans
tions between theuM & and uN& energy eigenstates. In thi

FIG. 1. Upper part: schematic figure showing the meta
quantum-well system under study as well as the Cartesian coo
nate system used in the calculation. The thickness of the welld
and ap-polarized incident fieldEinc of wave vectorq gives rise to
a photon-drag current densityJ0(z) in the quantum well. The ‘‘ex-
ternal’’ field which drives the photon-drag phenomenon is co
posed of the incident field and the fieldErefl reflected from the
substrate. Lower part: schematic illustration of a quantum well w
a square potential. The well is containing a number of bound st
and the Fermi energy (EF) is located between states~a and b!
having energies«a and«b .



v

th
e
th
o
y
e

th

ro-
em

r-

f

der

15 708 55XIN CHEN AND OLE KELLER
paper we assume that the relaxation time is the same~t! for
all M andN. For the energy eigenstates single-particle wa
functions of the form ~r representation! ^r uM &
5(2p)21 exp(iki•r )cm(z), etc., are taken, whereki is the
component of the electron wave vector parallel to
quantum-well surface. By adopting the above-mention
form it has been assumed the electron motion parallel to
quantum-well plane is free-electron-like. The total energy
the electron in theM th energy eigenstate thus is given b
EM5«m1\2ki

2/2m0 , m0 being the electron mass. Since th
first term on the right-hand side of Eq.~3! gives rise to a
current density

~UI2ezez!•Tr$rNL
~0!j0%

5 (
M ,N

^NurNL
~0!uM &~UI2ezez!•^M u j0uN&,

~4!

along the quantum well,UI being the unit tensor andez a unit
vector in thez direction, and since one can show that (UI

2ezez)•^M u j0uN&}cn(z)cm* (z), the orthogonality of the
wave functions of the energy eigenstates implies that
integral of the current density in Eq.~4! over the quantum
well vanishes, i.e.,
e

e
d
e
f

e

~UI2ezez!•E
2d

0

Tr$rNL
~0!j0%dz50. ~5!

In the following the explicit expression for Tr$rNL
(0)j0% is not

needed.
Let us then consider the situation where the monoch

matic plane wave is incident upon the quantum-well syst
at an angle of incidenceu5arcsin@qic0 /(vA«B)#. From Eq.
~3! one obtains the followingz-dependent photon-drag cu
rent density:

J0~z!5Tr$rNL
~0!j0%1

1

2 F E PI ~z,z8,z9!:E* ~z8!

3E~z9!dz8dz91c.c.G , ~6!

whereE(z)@[E(z,qi ,v)# is the z-dependent amplitude o
the local electric fieldE(r ,t)5E(z,qi ,v)exp@i(qi•r2vt)#.
Using real wave functions, the so-called second-or
photon-drag response tensorPI (z,z8,z9) for the quantum-
well is given by
s

ctromag-
s

PI ~z,z8,z9!5
e2

2m0v
2 E (

m,n

f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m1\2uki2qiu2/~2m0!2\2ki
2/~2m0!

3d~z82z!cm~z!cn~z!UI jnm~ki ,ki2qi ,z9!
d2ki

~2p!2
, ~7!

whered is the Dirac delta function,e is the electron charge, andjnm(ki ,ki2qi ,z9) is the transition current density which i
given by

jnm~ki ,ki2qi ,z9!52
e\

2im0
@ i ~2ki2qi!fnm~z9!1Fnm~z9!ez#, ~8!

with fnm(z9)5fmn(z9)5cn(z9)cm(z9) and Fnm(z9)52Fmn(z9)5cn(z9)@dcm(z9)/dz9#2cm(z9)@dcn(z9)/dz9#. If the
electronic damping rate is zero (t→`) the integrand in Eq.~7! has a pole at\v1«n1\2uki2qiu2/(2m0)5«m
1\2ki

2/(2m0). This relation expresses the energy conservation in a process where an electron is excited by the ele
netic field from staten to statem, conserving the~pseudo! momentum (ki2qi→ki). To distinguish between the contribution
from the various physical processes and to facilitate the calculation of the integrations over theki domain, we rewrite
PI (z,z8,z9) as

PI ~z,z8,z9!5E (
m,n

$ f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#%DInm

d2ki

~2p!2

5E F (
m,n

«n,EF
«m,EF

$ f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#%1 (

m,n

«n.EF
«m,EF

$ f 0@«n1\2uki2qiu2/~2m0!#

2 f 0@«m1\2ki
2/~2m0!#%1 (

m,n

«n,EF
«m.EF

$ f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#%

1 (
m,n

«n.EF
«m.EF

$ f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#%GDInm d2ki

~2p!2
, ~9!
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where

DInm5
e2d~z82z!cm~z!cn~z!UI jnm~ki ,ki2qi ,z9!

2m0v
2@\~v1 i /t!1«n2«m1\2uki2qiu2/~2m0!2\2ki

2/~2m0!#
. ~10!

Approximating the Fermi-Dirac distribution function by its low-temperature form, i.e.,f 0(E)5q(EF2E), whereq is the
Heaviside unit step function andEF is the Fermi energy, one then obtains

PI ~z,z8,z9!5E F (
m,n

«n,EF
«m,EF

$ f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#%1 (

m,n

«n,EF
«m.EF

$ f 0@«n1\uki2qiu2/~2m0!#%

2 (
m,n

«n.EF
«m,EF

$ f 0@«m1\2ki
2/~2m0!#%GDInm d2ki

~2p!2

5E F (
m,n

«n,EF
«m,EF

$ f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#%DInm

1 (
m,n

«n,EF
«m.EF

$ f 0@«n1\2uki2qiu2/~2m0!#DInm2$ f 0@«n1\2ki
2/~2m0!#%DImn#

d2ki

~2p!2
. ~11!

The integrations over theki domain appearing in Eq.~11! can be carried out analytically in the manner described in
Appendix. Choosingqi in the x direction, see Fig. 1, the nonzero components of the photon-drag response tensor be

Pxxx~z,z8,z9!5gd~z82z!F (
m,n

«n,EF
«m,EF

fnm~z!fnm~z9!~R2
~nm!2R1

~nm!!1 (
m,n

«n,EF
«m.EF

fnm~z!fnm~z9!~R2
~nm!2R1

~mn!!G , ~12!

Pxxz~z,z8,z9!5 igd~z82z!F (
m,n

«n,EF
«m,EF

fnm~z!Fnm~z9!~H2
~nm!1H1

~nm!!1 (
m,n

«n,EF
«m.EF

fnm~z!Fnm~z9!~H2
~nm!1H1

~mn!!G ~13!
der
The
en-
nsor

is
to
by
and

Pxxx~z,z8,z9!5Pyyx~z,z8,z9!5Pzzx~z,z8,z9!, ~14!

Pxxz~z,z8,z9!5Pyyz~z,z8,z9!5Pzzz~z,z8,z9!, ~15!

where

g52
\e3

4m0
2v2 , ~16!

R6
~nm!5

1

2pb F 1b S 2a6
~nm!

b
7qi D

3~a6
~nm!2A~a6

~nm!!22b2k i ,6
2 !2k i ,6

2 G , ~17!

and

H6
~nm!5

1

2pb2 ~a6
~nm!2A~a6

~nm!!22b2k i ,6
2 ! ~18!

with
a6
~nm!5\~v1 i /t!1«n2«m6

\2qi
2

2m0
, ~19!

k i ,15
A2m0~EF2«m!

\
, k i ,25

A2m0~EF2«n!

\
,

~20!

and

b5
\2

m0
qi . ~21!

In the above equations to obtain the two quantitiesR1
(mn) and

H1
(mn) , one has to interchange the supscriptn↔m and thus

k i ,1 with k i ,2 in Eqs.~17!–~20!.
Among the twenty-seven elements of the second or

photon-drag response tensor only six are nonvanishing.
six elements fall in two groups, each containing three id
tical elements. The symmetry scheme of the response te
is shown in Fig. 2. Due to the presence of the Diracd func-
tion in Eqs.~12! and~13!, the photon-drag response tensor
a so-called semilocal tensor. The contribution
PI (z,z8,z9) from the intrasubband transitions are given
the terms in Eqs.~12! and ~13! for which m5n. Since
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15 710 55XIN CHEN AND OLE KELLER
Fnn(z)50, it appears that only the elements in Eq.~14!
contribute to the intrasubband photon drag. This is in agr
ment with the results obtained for a one-level quantum w
in Ref. 4, and the result is obvious since intrasubband tr
sitions can only give rise to a transition current density in
plane of the well. The presence of intersubband transiti
means that the transition current density attains a compo
perpendicular to the well plane, and therefore the three
ments in Eq.~15! show up only in the context of intersub

FIG. 2. Symmetry scheme of the semilocal photon-drag
sponse tensor.
fo
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band dynamics. The intersubband transitions of course c
tribute to the elements in Eq.~14! also. It is easy to
demonstrate thatR6

(nm)→0 for qi→0. This means that
Pxxx(z,z8,z9) @and alsoPyyx(z,z8,z9) and Pzzx(z,z8,z9)#
vanishes in the local~loc!, i.e., qi→0, limit. The physical
reason for this originates in the fact that excitations along
well require a net momentum exchange between the field
particle system, as mentioned also in Ref. 4. A net mom
tum transfer is not required for excitations perpendicular
the plane of the well, and thereforePxxz(z,z8,z9) @and also
Pyyz(z,z8,z9) andPzzz(z,z8,z9)# is different from zero

ˆ~H6
~nm!! loc5m0~EF2«n!/$2p\2@\~v1 i /t!1«n2«m#%‰.

For p-polarized light, the two elements containing the ind
y, namely,Pyyx(z,z8,z9) andPyyz(z,z8,z9), do not contrib-
ute to the drag phenomenon, and if the incident field iss
polarized the photon-drag effect is absent.

Finally, by substituting Eqs.~12!–~15! into Eq. ~6!, one
finds that the photon-drag current density along the quan
well is given by

-

e.,
J0,x~z!ex5~UI2ezez!•J0~z!

5S (
m,n

«n,EF
«m,EF H g

2
Ex* ~z!fnm~z!F ~R2

~nm!2R1
~nm!!E Ex~z8!fnm~z8!dz81 i ~H2

~nm!1H1
~nm!!E Ez~z8!Fnm~z8!dz8G1c.c.J

1 (
m,n

«n,EF
«m.EF H g

2
Ex* ~z!fnm~z!F ~R2

~nm!2R1
~mn!!E Ex~z8!fnm~z8!dz81 i ~H2

~nm!1H1
~mn!!

3E Ez~z8!Fnm~z8!dz8G1c.c.J D ex1~UI2ezez!•Tr$rNL
~0!j0%. ~22!

By integrating Eq.~22! across the quantum well and by using Eq.~5!, the photon-drag current along the quantum well, i.
I 05*2d

0 J0,x(z)dz, becomes

I 05g ReH (
m,n

«n,EF
«m,EF F ~R2

~nm!2R1
~nm!!U E Ex~z!fnm~z!dzU21 i ~H2

~nm!1H1
~nm!!E Ex* ~z!fnm~z!dzE Ez~z!Fnm~z!dzG

1 (
m,n

«n,EF
«m.EF F ~R2

~nm!2R1
~mn!!U E Ex~z!fnm~z!dzU21 i ~H2

~nm!1H1
~mn!!E Ex* ~z!fnm~z!dzE Ez~z!Fnm~z!dzG J . ~23!
ero

t-
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es

se
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B. Photon-drag response in a two-level model

In Sec. II A we have derived the general expression
the photon-drag response function and the explicit exp
sion for the photon-drag current. In this subsection we s
restrict ourselves to the situation in which there are only t
bound states in the quantum well, and assume that only
ground state is populated. It is known that there exist th
kinds of possible transitions in the quantum well, namely,~i!
transitions in the same band, sayn, and«n,EF , ~ii ! transi-
tions between different bands, sayn andm, with «n,EF and
r
s-
ll
o
he
e

«m,EF , ~iii ! transitions between different bands,n andm,
with «n,EF and«m.EF . In case~i! only the first sum in
Eq. ~12! contributes and there are hence only three nonz
elements in the response tensor. For case~ii !, since the tran-
sitions involve different levels, the first sum on the righ
hand side of both Eqs.~12! and ~13! is different from zero,
and there thus are six nonzero elements in the response
sor. In case~iii ! only the second sums on the right-hand sid
of Eqs.~12! and ~13! are present.

In the remaining part of the paper we consider only ca
~iii !. The level being below the Fermi energy is denoted
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55 15 711PHOTON DRAG IN SINGLE AND MULTIPLE TWO- . . .
subscripta, and the other~above the Fermi level! is denoted
by b. From the general expression@Eq. ~23!# for the photon-
drag current one then obtains

I 05g ReF ~R2
~ab!2R1

~ba!!U E Ex~z!fab~z!dzU2

1 i ~H2
~ab!1H1

~ba!!E Ex* ~z!fab~z!dz

3E Ez~z!Fab~z!dzG . ~24!

In order to complete the calculation of the photon-dr
effect in the quantum well, we still need to determine t
local electric field inside the well.

III. LOCAL FIELD IN A TWO-LEVEL QUANTUM WELL

Since only thep-polarized electric field is involved in the
intersubband transition process, for simplicity in the follo
ing we omit they component of the electric field in ou
analysis. This means that vectors are two-component qu
ties and tensors 232 matrices. By taking as a starting poi
a Green’s function description, the local field in the w
satisfies the following vectorial integral equation:10,12
et

te
xt

er

b-

f

ti-

l

E~z!5EB~z!2 im0vE E GI~z,z8!•sI~z8,z9!•E~z9!dz9dz8,

~25!

whereEB(z) denotes the so-called background field cons
ing of the sum of the incident field and the field reflect
from the substrate in the absence of the quantum well.
appropriate electromagnetic propagatorGI (z,z8) is given by

GI~z,z8!5
1

2iq'
$exp~ iq'uz2z8u!@q~z2z8!eiei

1q~z82z!erer #1r pexp@2 iq'~z1z8!#erei%

1S c0v D 2d~z82z!ezez , ~26!

whereei5(c0/v)(q' ,2qi), er5(c0/v)(2q' ,2qi), c0 is
the light speed in vacuum, andr p is thep-polarized ampli-
tude reflection coefficient, which is given byr p5(q'«Q
2k')/(q'«Q1k') with k'5A(v/c0)2«Q2qi

2 being thez
component of the wave vector in the substrate, and«Q the
dielectric constant of the substrate. In the long wavelen
limit the conductivity tensor entering Eq.~25! is given by
sI~z8,z9!5
2i

v E (
m,n

S \v

«m2«n
D f 0@«n1\2ki

2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m
jmn~ki ,ki ,z8!jnm~ki ,ki ,z9!

d2ki

~2p!2
, ~27!
in dyadic notation. The presence of the factor\v/(«m
2«n) indicates that both the diamagnetic and paramagn
parts are incorporated insI(z8,z9).

In the present context it is sufficient to approxima
sI(z8,z9) by its low-temperature form. By carrying out ne
the integration in Eq.~27!, one finds that the conductivity
tensor of our two-band model is diagonal, with the nonz
elements given by

sxx~z8,z9!5
ie2

p\

~EF2«a!
2

@\~v1 i /t!#22~«b2«a!
2 f~z8!f~z9!,

~28!

szz~z8,z9!

5
i\e2

2pm0

~EF2«a!

@\~v1 i /t!#22~«b2«a!
2 F~z8!F~z9!.

~29!

For simplicity, here and below, we omit writing the su
scripts on the wave function combinations, i.e.,f(z)
[fab(z) andF(z)[Fab(z).

The diagonal form ofsI(z8,z9), plus the fact that both
sxx(z8,z9) andszz(z8,z9) consist of products of functions o
z8 andz9, respectively, allows one to rewrite Eq.~25! in the
form
ic

o

E~z!5EB~z!1JI~z!•h, ~30!

where

JI~z!5F E GI~z,z8!•TI~z8!dz8G•QI , ~31!

h 5E TI~z!•E~z!dz, ~32!

with

TI~z!5S f~z! 0

0 F~z!
D , ~33!

and

QI5S Qxx 0

0 Qzz
D , ~34!

the elements ofQI being given by

Qxx5
m0e

2v

p\

~EF2«a!
2

@\~v1 i /t!#22~«b2«a!
2 , ~35!
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Qzz5
m0e

2\v

2pm0

~EF2«a!

@\~v1 i /t!#22~«b2«a!
2 . ~36!

Written in the form given in Eq.~30!, the integral equa-
tion for the local field is easily solved by standard tec
niques. Then, by multiplying Eq.~30! with TI(z) from the
left, and thereafter performing az integration of the resulting
equation, one finds that the unknown vectorh5(hx ,hz) can
be obtained from the matrix equation

~UI2PI!•h5N, ~37!

where
tu
-

N5SNx

Nz
D5E TI~z!•EB~z!dz ~38!

and

PI5S Pxx Pxz

Pzx Pzz
D 5E TI~z!•JI~z!dz. ~39!

At this point we need to specify the wave functions a
energies of the two bands. Hence, by using the wave fu
tions of the simple infinite-barrier model, one finds that t
parameters appearing in Eq.~37! are given by
Pxx52
Qxxc0

2q'
2d

2v2 H F 1

~k1p!22~q'd!2
1

1

~k2p!22~q'd!2G1 iq'd@11exp~ iq'd!#$21r p@11exp~ iq'd!#%

3F 1

~k1p!22~q'd!2
2

1

~k2p!22~q'd!2G
2J , ~40!

Pzx52
Qxx

Qzz
Pxz

52
Qxxk2k1p2c0

2qi

2idv2 H F 1

~k1p!22~q'd!2
1

1

~k2p!22~q'd!2G1 iq'd@11exp~ iq'd!#$22r p@11exp~ iq'd!#%

3F 1

~k1p!22~q'd!2
2

1

~k2p!22~q'd!2G
2J , ~41!

Pzz5
Qzzp

2c0
2

v2d3 S k2
2 1k1

2

2 D 1
Qzzk2

2 k1
2 p4c0

2qi
2

2iq'd
2v2 H q'd

ip2k2
2 k1

2 F k1
2

~k2p!22~q'd!2
1

k2
2

~k1p!22~q'd!2
G

1@11exp~ iq'd!#$21r p@11exp~ iq'd!#%F 1

~k2p!22~q'd!2
2

1

~k1p!22~q'd!2G
2J , ~42!
le

e-

ic
and

Nx52 iq'd cosu$11exp~ iq'd!1r p@11exp~ iq'd!#%

3F 1

~k1p!22~q'd!2
2

1

~k2p!22~q'd!2G , ~43!

Nz5
k1k2p2

d2
sinu$11exp~ iq'd!1r p@11exp~ iq'd!#%

3F 1

~k1p!22~q'd!2
2

1

~k2p!22~q'd!2G , ~44!

wherek25b2a andk15a1b, a andb being the quantum
numbers of the two states in consideration. The quan
numbers enter in the wave functions as follows:cm(z)
52(2/d)1/2 sin(mpz/d), m5a,b.
m

IV. PHOTON DRAG IN MULTIPLE QUANTUM-WELL
SYSTEMS

In this section we consider the photon drag in a multip
quantum-well structure which consists ofM wells embedded
in an infinitely extended homogeneous and isotropic m
dium. For a multiple well system Eq.~25! must thus be re-
placed by the integral equation

E~z!5EB~z!2 im0v

3(
j51

M E E GI~z2z8!•s~ j !~z8,z9!•E~z9!dz9dz8,

~45!

where GI (z2z8) is the direct part of the electromagnet
propagator in Eq.~26!, andsI ( j )(z8,z9) is the conductivity
tensor of thej th well.
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55 15 713PHOTON DRAG IN SINGLE AND MULTIPLE TWO- . . .
Following the same procedure as discussed in the pr
ous section and assuming that in each well there are
bound states, of which only the lower one is populated,
can rewrite Eq.~45! as

E~z!5EB~z!1(
j51

M

JI ~ j !~z!•h~ j !, ~46!

where JI ( j )(z)5@*GI (z2z8)•TI( j )(z8)dz8#•QI . The yet un-
known vectorsh( i ) satisfy the algebraic relation

UI•h~ i !2(
j51

M

PI~ i , j !
•h~ j !5N~ i !, i51,2,...,M , ~47!

where PI( i , j )5*TI( i )(z)•JI ( j )(z)dz5@*TI( i )(z)•*GI (z2z8)
•TI( j )(z8)dz8dz] •QI and N( i )5*TI( i )(z)•EB(z)dz. For each
of the indicesi51,2,...,M a new relation is obtained, an
together these relations constitute sufficient equations to
termine the varioush( i )’s. The induced radiative coupling
between the wells appear via thePI( i , j )’s for which iÞ j . If
we neglect the radiative coupling among the wells,
h( i )’s are determined via

UI•h~ i !2PI~ i ,i !
•h~ i !5N~ i !, i51,2,...,M . ~48!

Since the quantum wells are assumed to be electronic
isolated, the induced photon-drag current in the system
just the sum of the currents of the individual wells, i.e.,

I 05g ReH (
j51

M F ~R2, j
~ab!2R1, j

~ba!!U E Ex~z!fab
~ j !~z!dzU2

1 i ~H2, j
~ab!1H1, j

~ba!!E Ex* ~z!fab
~ j !~z!dz

3E Ez~z!Fab
~ j !~z!dzG J , ~49!

in an obvious notation.

V. NUMERICAL CALCULATION AND DISCUSSION

A. Photon drag in a single quantum well

In this subsection numerical calculations of the photo
drag current in a vacuum/niobium/quartz quantum-well s
tem are presented. For this system local-field calculation
~i! the s- and p-polarized linear reflection coefficients,~ii !
the electromagnetic surface wave dispersion relations,~iii !
the optical second-harmonic generation, and~iv! intrasub-
band~one-level! photon drag have already been carried o
and the experimental studies of thes-polarized reflection co-
efficient, the surface wave dispersion relations, and
second-harmonic generation show qualitative agreem
with the theory. For a general review of these effects
reader is referred to Ref. 12.

We choose the two levels in such a manner that the Fe
energy is located in between them, and the range of the l
frequencies used are so close to the interlevel transition
quency that the two-level model is a good approximati
The thickness of the niobium well is in all casesd515 Å.
The quantum numbers of the chosen states area55 andb
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56, and the corresponding energy separation is«ba

51.8380 eV. The Fermi energy is 5.32 eV. The frequen
dependence of the dielectric constant of the quartz subs
(«Q) are as in Ref. 13, and the relaxation energy used
Figs. 3–9 is\/t50.6 meV. Since the photon-drag current
proportional to the square of the amplitude of the incide
~inc! field Einc , it is adequate to normalize the photon dr
data with the magnitude of the time-averaged Poynting v
tor of the incident fieldSinc5«0c0uEincu2/2. The normalized
photon-drag current hence is given by

I 0
Sinc

5
2g

«0c0uEincu2
Re@Ruhxu21 iHhx*hz#, ~50!

with the abbreviationsR5R2
(ab)2R1

(ba) and H5H1
(ba)

1H2
(ab) .
It is instructive first to study the behavior ofR andH of

Eq. ~50!. In Figs. 3 and 4 we thus plotR andH as functions
of the incident photon energy, using an angle of incidence
60°. It appears that bothR andH exhibit a resonance behav
ior around«ba . To compare the contribution from the firs
and second terms on the right-hand side of Eq.~50!, we
notice thatuhxu'uhzud. This implies that we have to com
pare the two quantitiesuRu and uHu/d. Sinced'1029 m, it
appears from Figs. 3 and 4 thatuHu/d is two orders of mag-
nitude larger thanuRu. Therefore, the second term in Eq.~50!
gives the dominating contribution to the photon-drag curre

We know from our previous discussion thatuRu50 in the
local limit. Here we shall investigateH in the local ~loc!
limit. Thus, in Fig. 5 we show the difference betweenH and
H loc as a function of the photon energy for two differe
angles of incidence, namely,u560° ~curves 1! andu530°
~curves 2!. The solid and dashed lines represent the real
imaginary parts ofH2H loc , respectively. It is clear from
Fig. 5 that the local approximation forH is extremely good
@the relative difference (H2H loc)/H being less than 0.01#.
When the angle of incidence decreases, the differenceH

FIG. 3. Photon-drag response functionR5R2
(ab)2R1

(ba) as a
function of the incident photon energy measured from the electro
transition energy\vba . The solid and dashed lines represent t
real and imaginary parts ofR, respectively. The angle of incidenc
is 60°.
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15 714 55XIN CHEN AND OLE KELLER
2H loc becomes smaller. This is so becauseqi also gets
smaller. In the limitu→0, H→H loc .

In Fig. 6~a! the normalized photon-drag current is plott
as a function of the incident photon energy for differe
angles of incidence. The solid lines show the results (I 0)
obtained when local-field corrections are included, and
dashed lines represent the results (I B) without the local-field
corrections. The angles of incidence are 50°~curves 1!,
60°~curves 2!, and 70°~curves 3!. It appears from Fig. 6~a!
that the photon-drag current shows two distinct resona
peaks in which the currents flow in opposite direction
Without the local-field corrections, the current is antisy
metric with respect to«ba , and when the incident photo
energy is less than the energy separation«ba , the current
flows in the negativex direction, and for\v.«ba the flow

FIG. 4. Photon-drag response functionH5H2
(ab)1H1

(ba) as a
function of the incident photon energy measured from the electro
transition energy\vba . The solid and dashed lines represent t
real and imaginary parts ofH, respectively. The angle of incidenc
is 60°.

FIG. 5. Difference betweenH and H loc as a function of the
photon energy measured from the transition energy\vba for two
different angles of incidenceu560° ~curves 1!, u530° ~curves 2!.
The real and imaginary parts ofH2H loc are plotted in the solid and
dashed lines, respectively.
t

e

e
.
-

is in the positivex direction. Neglect of local-field effects
means that the field is equal to the background field so
h5N. In the frequency range around\vba'1.8380 eV, the
reflection coefficientr p is almost real, and this implies tha
the product (Nx*Nz) is almost a purely imaginary numbe
@see Eqs.~43! and~44!#. The form of the photon-drag curren
hence reflects the frequency behavior of the real part oH
~compare Figs. 4 and 6!. From our numerical calculation i
turns out that the local field inside the quantum well can
highly nonuniform, and thus the local-field corrections whi
appears in theh parameters can produce major changes
the calculated photon-drag current in the quantum-well s
tem. A quantitative comparison of the frequency depende
of the photon-drag current with and without~i.e., with h

ic

FIG. 6. ~a!. Photon-drag current normalized with the magnitu
of the incident Poynting vector as a function of the incident pho
energy measured from\vba for different angles of incidence. The
results with and without the local-field corrections are plotted
solid and dashed lines, respectively. The angles of incidence are
~curves 1!, 60° ~curves 2!, and 70°~curves 3!. ~b! Difference be-
tween the drag currents~normalized with the magnitude of the in
cident Poynting vector! with (I 0) and without (I B) local-field ef-
fects incorporated as a function of the photon energy~measured
from \vba! for three different angles of incidence, viz., 50°~curves
1!, 60° ~curves 2!, and 70°~curves 3!.
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55 15 715PHOTON DRAG IN SINGLE AND MULTIPLE TWO- . . .
5N! local-field corrections is shown in Fig. 6~b!, where the
difference between the drag currents with (I 0) and without
(I B) local-field effects incorporated is plotted in normaliz
form for the same angles of incidence as in Fig. 6~a!. Also
the remaining input data are as in the previous figure
appears from this figure that the local-field corrections
particularly important around the electronic resonan
Local-field effects also give rise to a blueshift of the dr
current spectra.

In Fig. 7 we plot the blueshift of the zero point of th
photon-drag current as a function of the angle of incidence
appears from this figure that the shift increases monot
cally with u. When the angle of incidence is larger than, s
75°, the shift is significant, and increases rapidly as a fu
tion of the angle of incidence. We know that with the i
crease of the incident angle, thez component of the loca
field, which is mainly responsible for the intersubband tra
sitions, increases and this makes the intersubband trans
process more probable. As a result the need for taking lo
field corrections into account becomes more important w
increasingu.

In Fig. 8 the normalized photon-drag current is plotted
a function of the angle of incidence for various incident ph
ton energies, viz., 1.8378 eV~curves 1!, 1.8380 eV~curves
2!, 1.8382 eV~curves 3!, and 1.8385 eV~curves 4!. Results
with and without the inclusion of local-field corrections a
plotted in solid and dashed lines, respectively. In the lim
u→0, thez component of the local field must vanish so th
uhzu→0 and since alsouRu→0 for qi→0, the photon-drag
current must be zero foru50. This is also obvious for sym
metry reasons. Foru→p/2, the x component of the loca
field approaches zero, and in turn this implies thatuhxu→0.
The photon-drag current therefore goes to zero foru5p/2. It
also appears from Fig. 8 that the location of the normaliz
maximum of the drag current depends on the photon ene
Since the photon-drag response functionH does not change
very much with the angle of incidence, the maximum in t
drag current is mainly determined by the quantityhx*hz . At
\v5«ba ~curves 2! the current is zero, unless local-fie
effects are included. These effects give rise to a current fl

FIG. 7. Blueshift of the zero point of the photon-drag current
a function of the angle of incidence.
It
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in the negativex direction for all angles of incidence. It is
worthwhile to note that for curves 3 and 4 the drag curr
changes sign at a certain~large! angle of incidence. This is so
because the local-field corrections shift the photon-drag c
rent spectrum upwards in energy.

In Fig. 9 the normalized current difference (I 02I B)/Sinc
is plotted as a function of the angle of incidence. The pho
energies are 1.8375 eV~curve 1!, 1.8378 eV ~curve 2!,
1.8382 eV~curve 3!, 1.8385 eV~curve 4!, and 1.8390 eV
~curve 5!. It appears from Fig. 9 that when the incomin
photon energy is close to the electronic energy separa

s FIG. 8. Photon-drag current normalized to the magnitude of
incident Poynting vector plotted as a function of the angle of in
dence for different incident photon energies, viz., 1.8378
~curves 1!, 1.8380 eV~curves 2!, 1.8382 eV~curves 3!, and 1.8385
eV ~curves 4!. Results with and without the local-field correction
are plotted in solid and dashed lines, respectively.

FIG. 9. Difference between the drag currents~normalized with
the magnitude of the incident Poynting vector! with (I 0) and with-
out (I B) local-field effects incorporated as a function of the angle
incidence for different photon energies, viz., 1.8375 eV~curve 1!,
1.8378 eV~curve 2!, 1.8382 eV~curve 3!, 1.8385 eV~curve 4!, and
1.8390 eV~curve 5!.
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15 716 55XIN CHEN AND OLE KELLER
«ba ~curves 2 and 3! one can expect a particularly pro
nounced difference in the predicted (I 0 ,I B) currents. This
fact is in agreement with the remarks accompanying F
6~b!.

In Fig. 10 we show the normalized photon-drag current
a function of the incident photon energy for two differe
relaxation energies, namely,\/t50.4 meV~curve 1! and 0.6
meV ~curve 2!. The angle of incidence isu560°. The nu-
merical results demonstrate that the heights of the reson
peaks in the photon-drag current are very sensitive to
~chosen! value of the relaxation energy. A change in t
relaxation energy does not shift the spectrum, however.
varying the relaxation energy, the magnitudes of both
photon-drag response function and the two quantitieshx and
hz are changed.

B. Photon drag in multiple quantum wells

To illustrate the importance of the radiative couplin
among quantum wells we have carried out numerical stu
of the drag current in a GaAs/AlxGa12xAs multiple quantum
well structure consisting of identical wells. The used inp
data for the system are as follows. Effective electron ma
m050.067me ~me being the free electron mass!, quantum-
well width: d5130 Å, quantum numbers of the two boun
states:a51 and b52, relaxation energy:\/t51.0 meV,
conduction electron number per unit area:Ns51.0
31012 cm22 ~from this number the distance of the Ferm
level from the lower lying level is calculated using the fo
mula EF2«15p\2Ns /m0!, energy separation between th
two bound states:«21599.7 meV~using the infinite barrier
model!, relative dielectric constant of the AlxGa12xAs me-
dium in the vicinity of the transition frequency:«Q513.1.
For convenience we have also for the multiple-well case n
malized the drag current data with the magnitude of the tim
averaged Poynting vector of the incident field here,Sinc
5«0c0A«QuEincu2/2.

FIG. 10. Photon-drag current normalized by the magnitude
the incident Poynting vector as a function of the photon ene
~measured from\vba! for two different relaxation energies, viz
\/t50.4 meV~curve 1! and 0.6 meV~curve 2!. The angle of inci-
dence isu560°.
.
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In Fig. 11 we show the normalized photon-drag current
a function of the incident photon energy with~solid lines!
and without~dashed lines! inclusion of the radiative coupling
among the wells. The angles of incidence are 20°~curve 1!
and 60°~curve 2!, the spatial period of the multiple quantum
well system isD5400 Å, and the number of wells is 10. Th
tick bar denotes the electronic resonance energy. It app
from Fig. 11 that when the angle of incidence is small~curve
1!, the radiative coupling is not important. However, wh
the angle of incidence is large~curve 2!, a neglect of the
radiative coupling may lead to a significant overestimation
the magnitude of the drag current near resonance. It
apparent from the results presented in Fig. 6~a! that the local-
field corrections destroy the antisymmetric form of the fr
quency dependence of the drag current near resonance
general tendency being that the magnitude of the peak ly
on the high-frequency side of the resonance is reduced, w
the magnitude of the other peak becomes larger. In the m
tiple quantum-well case this asymmetry becomes more p
nounced particularly for large angles of incidence, and
high-frequency peak may even disappear, see curve 2.

To exemplify how the photon-drag current may depe
on the number of wells in the structure we have plotted
Fig. 12 the normalized drag current as a function of the
cident photon energy for different numbers of wells, viz.,
~curve 1!, 2 ~curve 2!, 10 ~curve 3!, 40 ~curve 4!, 80 ~curve
5!, 150~curve 6!, and 200~curve 7!. In all cases the angle o
incidence isu560°, and the spatial period of the structure
D5400 Å. Since the angle of incidence is rather large
spectra display one peak only, see curve 2 of Fig. 11. W
the number of wells is small, the photon drag current
creases proportional to the number of wells. This is so
cause the all-over radiative coupling is weak and the ba
ground field is the same on each well. In Fig. 12 th
proportionality appears when the currents belonging

f
y

FIG. 11. Photon-drag current normalized by the magnitude
the incident Poynting vector as a function of the photon energy.
solid and dashed lines are the results with and without inclusion
radiative coupling among the wells, respectively. The angles of
cidence are 20°~curve 1! and 60°~curve 2!, the number of wells is
10, D5400 Å, and the tick bar denotes the electronic resona
energy.
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55 15 717PHOTON DRAG IN SINGLE AND MULTIPLE TWO- . . .
curves 1 and 2 are compared. With an increase of the num
of wells, more wells contribute to the radiative interacti
process and this changes the internal dynamics of each
As a result the rate of increase in the current with the w
number becomes smaller. When the number of wells is
creased up toM.150 a shoulder appears on the hig
frequency side of the peak, and forM.200 this shoulder has
developed into a peak.

When the number of wells is increased the peak in
photon-drag current increases and is shifted downward
frequency, see Fig. 12. A systematic display of this aspec
shown in Fig. 13, where the current peak height and
associated resonance frequency have been shown for d
ent numbers of quantum wells in the range 1<M<200. The
spatial period of the structure is as in Fig. 12,D5400 Å.
The angle of incidence is eitheru520° ~h! or u560° ~n!.
For comparison, results obtained without inclusion of t
radiative coupling are shown by the black circles~d! for u
560°. If the radiative coupling among the wells is ignor
the resonance peaks belonging to the various numbe
wells are located at the same frequency (v5108.4 meV).
This frequency, which thus is the resonance frequency
just one well, is blueshifted with respect to the electro
resonance frequency«21599.7 meV and this shift originate
in local-field effects caused by the self-field dynamics. T
self-field dynamics is described in the Green’s function f
malism by the delta-function part@(c/v)2d(z82z)ezez# of
the propagator in Eq.~26!.12 As long as the number of well
is so small that the background field acting on each wel
the same the photon-drag current increases proportiona
the number of wells, as may be seen from the equidistanc
the black circles. Now, when the radiative coupling amo
the wells is turned on~the triangular points foru560°!, the
situation changes radically. Thus, for small well numb
(M&25) the rate of increase of the photon-drag peak
much less, although the peak stays at the same frequen
in the uncoupled calculation. When the number of wells

FIG. 12. Photon-drag current normalized by the magnitude
the incident Poynting vector as a function of incident photon ene
for different numbers of wells, viz., 1~curve 1!, 2 ~curve 2!, 10
~curve 3!, 40 ~curve 4!, 80 ~curve 5!, 150~curve 6!, and 200~curve
7!. In all cases the angle of incidence isu560° and the spatia
period of the structure isD5400 Å.
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increased beyond, say,M.25 the peak location tends to b
shifted downwards in frequency, and as the structure c
tains more and more wells the rate of this downwards s
gradually becomes smaller and the current tends to satu
For M5200 the resonance frequency is still far above
electronic transition frequency, however. Altogether it a
pears that self-field effects give a significant blueshift of t
single-well resonance frequency with respect to the e
tronic resonance and when the radiative coupling among
wells is turned on the resonance frequency experience

f
y

FIG. 13. Mutual values of the peak height of the normaliz
photon-drag current at resonance and its location in freque
shown for different numbers (M ) of quantum wells. The spatia
period of the structure isD5400 Å and the angle of incidence i
eitheru520° ~h! or u560° ~n!. Results without inclusion of the
radiative coupling among the wells are plotted in black circles~d!
for u560°.

FIG. 14. Photon-drag current normalized by the magnitude
the incident Poynting vector as a function of the number of we
for three different photon energies, viz., 108 meV~curve 1!, 112
meV ~curve 2!, and 120 meV~curve 3!. The solid and dashed line
represent results for the spatial periodsD5200 and 400 Å, respec
tively. The angle of incidence is in both casesu560°.
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~smaller! redshift from the single-well resonance. When t
angle of incidence isu520° the effects are qualitatively a
discussed above, though the saturation tendency is no so
nounced forM5200.

In Fig. 14 is shown the normalized drag current as a fu
tion of the number of wells for three different incident ph
ton energies, viz., 108 meV~curve 1!, 112 meV~curve 2!,
and 120 meV~curve 3!. The solid and dashed lines prese
results for the spatial periodsD5200 and 400 Å, respec
tively, and the angle of incidence is in all casesu560°. It
appears from Fig. 14 that, when the number of the wells
less than, say, 15, the increase of the drag current is pro
tional to the number of wells. As the number of wells
larger thanM*15, and the incident energy is close to t
resonance energy, as it is in curves 1 and 2, the radia
coupling among the wells becomes important, and the d
currents start to saturate, see Fig. 13. If the incident energ
far from resonance, the drag current continues to incre
~curve 3! almost linearly with the well number. By changin
the spatial period of the structure to 400 Å, the differen
between the two results is small forM&15. With increasing
well numbers the radiative interaction processes beco
more significant.

In summary, in this paper we have derived general
pressions for the photon-drag current along the quan
ro-

-

t

is
or-

ve
g
is
se

e

e

-
m

well. Then, limiting ourselves to two-level quantum-we
systems, we have carried out numerical calculations of
photon-drag current in single and in multiple quantum-w
structures as functions of the photon energy, angle of in
dence, and number of wells. Special attention has been
to the importance of the local-field corrections, as well as
radiative coupling among the wells. It appears that these
rections may have a substantial effect on the photon-d
current. In the present theory the blueshift and the asymm
ric shape of the photon-drag current have been ascribe
local-field effects.
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APPENDIX: CALCULATION OF THE PHOTON-DRAG
RESPONSE TENSORS

In this appendix we indicate how the integrations over
ki domain in Eq.~11! can be carried out in a convenien
manner. From the components of the transition current d
sity parallel to the plane of the quantum well it appears t
one has to evaluate the vectorial quantity
antity
R~nm!5E
2`

` f 0@«n1\2uki2qiu2/~2m0!#2 f 0@«m1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m1\2uki2qiu2/~2m0!2\2ki
2/~2m0!

~2ki2qi!
d2ki

~2p!2
. ~A1!

Written out in Cartesian coordinates the integrand is an uneven function ofki ,y and with the choiceqi5qiex , Eq. ~A1! is thus
reduced to

R~nm!5~R2
~nm!2R1

~nm!!ex , ~A2!

where

R2
~nm!5E

2`

` f 0@«n1\2uki2qiu2/~2m0!#

\~v1 i /t!1«n2«m1\2uki2qiu2/~2m0!2\2ki
2/~2m0!

~2ki•ex2qi!
d2ki

~2p!2

5E
2`

` f 0@«n1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m1\2ki
2/~2m0!2\2uki1qiu2/~2m0!

~2ki•ex1qi!
d2ki

~2p!2
, ~A3!

and

R1
~nm!5E

2`

` f 0@«m1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m1\2uki2qiu2/~2m0!2\2ki
2/~2m0!

~2ki•ex2qi!
d2ki

~2p!2
. ~A4!

The component of the transition current density perpendicular to the well plane leads to the consideration of the qu

H ~nm!5H2
~nm!2H1

~nm! , ~A5!

where

H2
~nm!5E

2`

` f 0@«n1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m1\2ki
2/~2m0!2\2uki1qiu2/~2m0!

d2ki

~2p!2
, ~A6!

H1
~nm!5E

2`

` f 0@«m1\2ki
2/~2m0!#

\~v1 i /t!1«n2«m1\2uki2qiu2/~2m0!2\2ki
2/~2m0!

d2ki

~2p!2
. ~A7!
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By using the low-temperature (T50 K) approximation for
the Fermi-Dirac distribution function, i.e., f 0@« i
1\2ki

2/(2m0)#5q@EF2« i2\2ki
2/(2m0)#, i5m, n, and

by introducing polar coordinates @ki ,x ,ki ,y#
5ki@cosu,sinu#, the four integrals in Eqs.~A1!–~A7! take
the forms

R1
~nm!5E

0

ki
maxE

0

2p ~2kicosu2qi!ki

a1
~nm!2bkicosu

dudki

~2p!2
q~EF2«m!,

~A8!

R2
~nm!5E

0

ki
maxE

0

2p ~2kicosu1qi!ki

a2
~nm!2bkicosu

dudki

~2p!2
q~EF2«n!,

~A9!
et

ci.
and

H1
~nm!5E

0

ki
maxE

0

2p ki

a1
~nm!2bkicosu

dudki

~2p!2
q~EF2«m!,

~A10!

H2
~nm!5E

0

ki
maxE

0

2p ki

a2
~nm!2bkicosu

dudki

~2p!2
q~EF2«n!,

~A11!

where a6
(nm) and b are given in Eqs.~19! and ~21! and

ki
max5@2m0(EF2«i)#

1/2/\. Performing, finally, the integrals
over u andki one obtains the results in Eqs.~17! and ~18!.
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