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Photon drag in single and multiple two-level quantum wells
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Starting from a density-matrix operator description we derive an expression for the photon-drag response
tensor of a quantum-well system containing an arbitrary number of subbands. Subsequently we analyze the
structure of the nonlinear response tensor and make a specialization to the case of a two-level quantum well.
In the wake of a self-consistent calculation of the local fields in a two-level well and in multiple quantum wells
the photon-drag currents are determined. We illustrate the main ingredients of our theory by carrying out a
number of numerical calculations of the drag current in a 15-A wide niobium quantum well deposited on a
crystalline quartz substrate and a GaAg@d, ,As multiple-quantum-well structure. In particular we pay
attention to the frequency, angle of incidence, and number of wells dependencies of the current, and we
demonstrate that local-field effects may give rise to a significant blueshift and an asymmetric form of the
resonance peakS0163-1827)05224-7

[. INTRODUCTION carriers changes sign when the photon frequency is scanned
through the electronic resonance. An experimental study
In the last decade studies of the photon-drag effect pheaimed at photon-drag detectors for the 4@+ wavelength
nomenon in quantum-well structures have attracted some atange was carried out by Kesselriegal.” Further experi-
tention, and theoreticl® as well as experimenfaf inves-  mental evidence for the photon-drag phenomenon in two-
tigations have been carried out. Thus, in the work by Luryi band metals was given by Shalaewal® who attributed a
the photon-drag effect accompanying light-induced intersubspatially asymmetry in the photoemission from silver films
band transitions in a waveguide formed by an AlAs/GaAsto the drag effect.
superlattice was studied theoretically, and it was shown that Although a number of important aspects of the drag phe-
the high intersubband absorption coefficient in combinatiomomenon related to intersubband transitions have been inves-
with the high mobility of the two-dimensional electron gas tigated in the above-mentioned works:>8it appears that
may lead to a large photon-drag current. The theory of th@ne |ocal field driving the process has been assumed to be
photon-drag effect in a two-dimensional electron gas systergonstant across the well. Technically, this means that the
was further developed by Grinberg and Ldryiho demon- interaction Hamiltonian describing the dynamics perpendicu-
strated that an enhanced effect may occur due to the dlffe(Eir to the plane of the well was approximated by its electric-

ence in the momentum relaxatlon_nmes in the ground an ipole form. Recent studies of local-field effects in linear and
excited subbands. Particular attention was devoted to the in-

- o 1 .~ nonlinear optics have shown, however, that particularly in
fluence of the collision and Doppler shift line broadening "N cases where the electron motion perpendicular to the plane of
the intersubband absorption. In the work by Stockregal 3 Perp P

the light-induced drift of electrons confined in a semiconduc—the quantum well is appreciable the prevailing electric field

tor heterostructure was studied and it was shown that thgan Vary significantly across the wéft:** Even in the
drag current reverses its direction when the electromagnetfi"9le-level case local-field effects appear to be of
frequency is tuned through the relevant electronic transitiodmportance’ _

frequency. This reversal of the current was also found in Ref. [N the present paper we focus our attention on the role
2. In both of the aforementioned works the photon-drag curPlayed by local-field effects in cases where intersubband
rent is antisymmetric with respect to the transition frequencytransitions are important for the photon-drag phenomenon.
In the paper by one of the present autdre photon drag Local-field aspects do not only appear in the calculation of
effect in a single-level metallic quantum well was studiedthe driving field. Also the nonlinear response function itself
and the role of local-field effects was examined in detail. Theexhibits such effects. In the one-level case the photon drag
one-level system seems of particular importance for investiwould vanish if local-field effects were neglected in the re-
gations of pure two-dimensional dynamics since electrorsponse function and therefore these effects are indispensable.
motions in and out of the well plane are prohibited. In aln the resonant intersubband case it turns out, however, that
recent paper by VasRahe photon drag in tunnel-coupled the relative change of the dominating part of the nonlinear
quantum wells was investigated. Readers interested in a reesponse function is less than10~2 when local-field cor-
cent review and a generalized Boltzmann equation analysigections are involved. Our work therefore shows that only in
of the photon drag in bulk solids are referred to the paper byhe driving field itself local-field corrections are needed, but
Shalaeet al® An important experimental study of the reso- here they are significant. The nonlocal theory of the photon-
nant photon-drag effect in a GaAs quantum-well system waslrag response function given below covers cases where the
presented by Wieckt al® who showed that the voltage in- quantum-well system has many bound states, and only when
duced by the momentum transfer from the field to the mobilét comes to the determination of the prevailing field and the
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numerical calculation do we specialize ourselves to the two- =
intersubband case. Jret
Starting from a density-matrix operator approach we de-
rive a general expression for the part of the photon-drag re-
sponse tensor which is of importance in the present context >
and we discuss the explicit form of this tensor in the low- Einc“lwa
temperature limit. Expressions for the photon-drag current
density and the drag current itself are also presented in this
section. In Sec. Il B, the photon drag in a two-level well is —d
calculated. In Sec. I, the theory of the local ac field inside —
the quantum well is presented and particular emphasis is put
on an explicit calculation within the framework of the simple Vaec. QW Sub.
infinite-barrier model. In Sec. IV, the theory is extended to
multiple quantum-well structures. The significance of incor-
porating local-field effects is demonstrated in Sec. V, where — ——
a number of numerical results are discussed. Thus, in Sec. : :
V A the quantum-well system we investigate is composed of — - — — E
a niobium quantum well of thickness 15 A deposited on a . g F
crystalline quartz substrate. We have chosen this system be- ’
cause a number of experimental and theoretical investiga-
tions of local-field effects in linear and nonlinear optics have
already been carried out on tiigee, e.g., the review givenin  FIG. 1. Upper part: schematic figure showing the metallic
Ref. 19. First, the frequency dependence of the nonlineauantum-well system under study as well as the Cartesian coordi-
response function in the vicinity of the intersubband resonate system used in the calculation. The thickness of the welll is
nance is calculated, and then the frequency and angle @hd ap-polarized incident fielcE;,. of wave vectorg gives rise to
incidence dependencies of the drag current and the local-fielal photon-drag current densify(z) in the quantum well. The “ex-
corrections to this are determined. We find from these studternal” field which drives the photon-drag phenomenon is com-
ies that the drag current is blueshifted in frequency and thagosed of the incident field and the fielfq reflected from the
the resonance exhibits an asymmetric form when local-fiel@ubstrate. Lower part: schematic illustration of a quantum well with
effects are taken into account. Finally, we demonstrate that & Square poterjtial. The WeII_ is containing a number of bound states
change in the electric damping rate does not result in an?“d. the Fermi energyE) is located between statda and b)
blueshift or(redshify of the drag resonance. In Sec. V B we Naving energies, ande .
investigate the drag current in a GaAs/@k, _,As multiple , ) )
quantum-well structure. First, the importance of the radiative !N order to investigate the photon-drag effect in the
coupling among the wells is shown by comparing drag Cur_quf'intum-well s_ystem, it is adequate to take_ as a starting
rents calculated with and without radiative interaction amon(a‘?o'nt the following expression for the photon induced non-
the wells. Next, the frequency dependence of the drag cufin€ar dc current densit}:
rent for different numbers of wells is investigated. Finally, ) _ )
the dependence of the drag current on the nugmber of well)é is JoZTf{pf\,oL)j o+ 3Tr{pb)j ’lf}+ Tr{(p™M) T}, 2
calculated for three incident photon energies.
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where Tr{---} denotes the trace ¢f--}, j; andj; are the free
and field-perturbed parts of the current density operator, re-
IIl. THEORETICAL FRAMEWORK spectively,p(*) andpﬁ’L’ are the light-induced linear and non-
A. Photon-drag response tensor and current density linear (NL) dc parts of the density-matrix operator, and the
. . . agger stands for Hermitian conjugation. In passing we note
The qu_ant.um-well system under c;on5|derat!0n_con3|sts at the expression in ER) is valid to second power in the
a superthin, i.e., a few monolayer thick, metaliic film Olepos'electric field. Using the relaxation-time approximation, and

ited on a dielectric substrate which is characterized by it?/vriting out only the last two terms of Ed2), the photon-
dielectric constantq . In a Cartesiaxy zcoordinate system drag current density is given by

the sharp surface of the substrate coincides with xkie

plane, and the substrate occupies the half spae8, the J :Tr{p(o)j !

boundaries of the quantum well being locatedat—d and 0 NLTO

z=0, as illustrated in Fig. 1. Due to the assumed transla- 1 fo(En)— fo(Em)
tional invariance of the quantum-well system parallel to the t2 i Ai(w+ilryn)+En—Epy

Xy plane, all vector and tensor-field component$ appear-
ing in our analysis can be expressed in the generic form

T(r,t)=T(2)exdi(q, - r—wt)], (1)

wherer andt are the space and time coordinates, respecwherefo(E) is the Fermi-Dirac distribution functiomd %) is

tively, o denotes the cyclic frequency of the electromagnetidhe part of the interaction Hamiltonian which is linear in the
field, andq, is the projection of the field wave vector on the field, andryy is the relaxation time for intersubband transi-
Xy plane. tions between théM) and |N) energy eigenstates. In this

X(MIH®|NYNI|jIIM) +c.c.|, 3)
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paper we assume that the relaxation time is the sajnfr

all M andN. For the energy eigenstates single-particle wave (U-ee)- f Tr{p\Liotdz=0. ®)
functions of the form (r representation (r|M)

=(2m) ! explk,-r)¢¥m(2), etc., are taken, whete, is the

component of the electron wave vector parallel to theln the following the explicit expression for Jis{)jo} is not
guantum-well surface. By adopting the above-mentionectheeded.

form it has been assumed the electron motion parallel to the et us then consider the situation where the monochro-
quantum-well plane is free-electron-like. The total energy ofmatic plane wave is incident upon the quantum-well system
the electron in theMith energy eigenstate thus is given by at an angle of incidencé=arcsirigco/(w\eF)]. From Eq.
Em=em+7%2k{/2my, my being the electron mass. Since the (3) one obtains the following-dependent photon-drag cur-
first term on the right-hand side of E(3) gives rise to a rent density:

current density

(U-ee) Tr{p\] R
teiiol Jo(z)=Tr{p§\,°|_)JO}+§[fH(z,z’,z”):E*(z’)

—2 (N|pQIM)(U—ee,) - (M]jg|N),

XE(Z")dZ'dZ'+c.c., (6)

4
along the quantum weIG being the unit tensor ang} a unit
vector in thez direction, and since one can show that ( whereE(z)[=E(z,09,,w)] is the z-dependent amplitude of
—e,6) - (M|jo|N)x i (2) % (2), the orthogonality of the the local electric fieldE(r,t) =E(z,q;, w)exfi(q-r—wt)].
wave functions of the energy eigenstates implies that th&/sing real wave functions, the so-called second-order
integral of the current density in E@4) over the quantum photon-drag response tensﬂ(z z',7") for the quantum-

well vanishes, i.e., well is given by
|
fiz.2' 2= e? f folent+ A2k —q|2/(2mg)]— fol e m+ A2k (2Mg) ]
T 2mpw? | S h(o+ilT) +en—emth2k — g2/ (2mg) — 712kET (2mg)
o Sk
X 8(2' = 2) nl(2) ¥ 2) Uj (K Ky — Gy 2 )(2 )2 0

where é is the Dirac delta functiore is the electron charge, angh(k;.k,—q,,2") is the transition current density which is
given by

efi
jnm(kH !kH_QH ’Z”): - rmo [i(2kll_qll)¢nm(2,,)+®nm(z,,)ez]v (8)

With ¢ m(2") = pmn(Z") = ¥n(Z") m(Z") and @pn(z") = = Pm(Z") = Yn(2)[dPm(Z")/dZ"] = hm(2")[dhn(2")[dZ"]. If the
electronic damping rate is zeror{>) the integrand in Eq.(7) has a pole athw+e,+h2k,—q,|%/(2mg)=¢n,
+h2kf/(2mo). This relation expresses the energy conservation in a process where an electron is excited by the electromag-
netic field from state to statem, conserving thépseudd momentum k;,— q,— k). To distinguish between the contributions

from the various physical processes and to facilitate the calculation of the integrations ovgr dbenain, we rewrite

H(z z',Z") as

) , , ) 2|(|I
(z,z',2")= 2 {folent+h? k=% (2mo) ]~ folem+ A 2K/ (2mp) ]}Dnm—(zmz
e <Ep en>Ep

em<Eg em<Eg

= f >, {folenth?k—al*(2mo) ]~ folemt A2k (2mo) 1+ 2, {TolentAlky—qyl %/ (2mo) ]

en<Ep
em~Ep

—folem+ A2k (2mg) 1} + 2 {folen+h2[ky— a2/ (2mo)]— fol em+ 2k (2mg) 1}

en>Ep
em>Ep - 2k||
+ % {fo[8n+ﬁ2|ku_qH|2/(2mo)]_fo[8m+ﬁ2kf/(2mo)]} Dnm 2mn? 9
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where
= _ €28(2' ~2) () ¥a(2) Ul K k=011, 2)
"M 2myw[h(w+ilT) +sn—em+h2|k”—qH|2/(2m0)—ﬁ2kf/(2mo)] '

Approximating the Fermi-Dirac distribution function by its low-temperature form, fgE)=93(Er—E), where is the
Heaviside unit step function arigl- is the Fermi energy, one then obtains

(10

en<Ep en<Ep
em<Ep em~Ep

ﬁ(z,z’,z")=f % {fo[sn+ﬁ2|k”—q”|2/(2m0)]—fo[sm+h2kf/(2m0)]}+ % {folen+|k,—q?/(2my) 1}

en>Ep
em<Ep - d2k”
= 2 Afolenth%(2mo)]} | Dam 557

en<Ep
em<Ep

= f % {fo[8n+ﬁ2|k||_Q|||2/(2mo)]—fo[8m+h2kf/(2mo)]}6nm

en<Ep
em~Ep 2
2 2 P 21,2 = d°k;
+ % {f0[8n+ﬁ |kH_QH| /(zmo)]Dnm_{fO[8n+h k||/(2mo)]}Dmn] W (11)

The integrations over thk, domain appearing in Eq11) can be carried out analytically in the manner described in the
Appendix. Choosingy, in the x direction, see Fig. 1, the nonzero components of the photon-drag response tensor become

[ en<Eg en<Ep
em<Ep em>Ep

(2,2 ,2)=78Z' =2)| 2 ¢an(@am(ZVRM™=RI™)+ D ¢(2) dan(ZNROM=R™) |, (12)

[ en<Ep en<Ep
em<Eg em>Ep

Mod2.2,2)=iv8(z' =2)| 2 o@D Pan(Z)H"+HI™) + X (2 Ppm(Z)HO™+HM) | (13

and h2qf
a@m)zﬁ(w+i/7)+8n—smi—2m , (19
M(2,2',2)) =1y (2,2',2")=1,,(2,2' ,2"), (14) 0
\/Zmo(EF_S ) \2mo(E|:_8 )
HyA2,2",2") =11y (2,2 ,2")=11,,42,2",Z"), (15 K”'+=Tm, K”,,=Tn.
where (20
and
e 16 "
Y=7 52 2
Ampe B=——q. (21)
0
R _ 1 1 Za(inm) _ In the above equations to obtain the two quantiRéE”) and
* Tomglg\ T g T H({™  one has to interchange the supscriptm and thus

K),+ With ; _ in Egs.(17)—(20).

Among the twenty-seven elements of the second order
photon-drag response tensor only six are nonvanishing. The
six elements fall in two groups, each containing three iden-
and tical elements. The symmetry scheme of the response tensor
is shown in Fig. 2. Due to the presence of the Difsftinc-
tion in Egs.(12) and(13), the photon-drag response tensor is
208° (M= (aP™)2-p2%f.) (18 a so-called semilocal tensor. The contribution to

I1(z,z',Z") from the intrasubband transitions are given by
with the terms in Egs(12) and (13) for which m=n. Since

2 2
x(a(inm)_ \/(a(inm))z_ﬁz"\\,i)_ K +

, (17

H (™ =
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band dynamics. The intersubband transitions of course con-
tribute to the elements in Eql4) also. It is easy to
demonstrate thaR("™—0 for q,—0. This means that
Ix(2,2",2") [and alsolly,(z,z',2") and II,,(z,2',2")]
vanishes in the locafloc), i.e., q;—0, limit. The physical
reason for this originates in the fact that excitations along the
[xij] [yij] [zij ] well.require a net momen_tum exchange between the field and
particle system, as mentioned also in Ref. 4. A net momen-
FIG. 2. Symmetry scheme of the semilocal photon-drag retum transfer is not required for excitations perpendicular to
sponse tensor. the plane of the well, and therefolé,,(z,z’,z") [and also
IyyA2z,2',2") andll,,{z,2',2")] is different from zero

®,,(2)=0, it appears that only the elements in Ed4) (m)y  _ _ 2 i _

contribute to the intrasubband photon drag. This is in agree-{(Ht o= Mo(Er —en) 27 (w +i/7) +en=emli}.

ment with the results obtained for a one-level quantum welFor p-polarized light, the two elements containing the index
in Ref. 4, and the result is obvious since intrasubband trany, namely I1,,(z,z’,z") andIl,,/z,z',Z"), do not contrib-
sitions can only give rise to a transition current density in theute to the drag phenomenon, and if the incident field is
plane of the well. The presence of intersubband transitionpolarized the photon-drag effect is absent.

means that the transition current density attains a component Finally, by substituting Eqs(12)—(15) into Eg. (6), one
perpendicular to the well plane, and therefore the three elefinds that the photon-drag current density along the quantum
ments in Eq.(15) show up only in the context of intersub- well is given by

Jox(2)6=(U—ee)-Jo(2)

en<Ep
em<Eg
=\ 2 [%E:(zwnm(z) <R<_“m>—R<fm>>f Ex<z'>¢nm<z’>dz'+i<H<_”m)+H<+”m)>f EL(2)®an(2))dZ' | +c.c.
m,n
en<Ep
em>Eg v
2 [5 Ex (2) ¢om(2)| (RI™—R{™) f Ex(Z') dam(2)dZ +i(HO™ +H{"™)
><J E 2)®nn(z')dZ |+c.cf | e+ (U—ge) Trip@jol. (22

By integrating Eq.(22) across the quantum well and by using E8), the photon-drag current along the quantum well, i.e.,
lo=J24Jox(z)dz, becomes

sn<EF
8m<EF 2
lo=7y Re mEﬂ [(RS“W—R&“”‘)) fEx<z>¢nm<z>dz +i(HM™+HT™) E:(z>¢nm<z>dzj E2)®nn(2)dz
sn<EF
em>Eg 2
) {(R“‘@—R&mm) f E(2) bun(2)dZ +i(HO™ 4+ H) f EF (2) om(2)d2 f E P2z (. (23)
[
B. Photon-drag response in a two-level model em<Eg, (iii) transitions between different bandsandm,

In Sec. Il A we have derived the general expression foVith en<Er anden>Ee. In case(i) only the first sum in

the photon-draa response function and the explicit ex resI-Eq' (12) contributes and there are hence only three nonzero
P 9 P P P lements in the response tensor. For d@sesince the tran-

ston _for the photon-drag purre_:nt._ln th'_s subsection we ShalEitions involve different levels, the first sum on the right-
restrict ourselves to the situation in which there are only tWo,5nd side of both Eq€12) and (13) is different from zero,
bound states in the quantum well, and assume that only thend there thus are six nonzero elements in the response ten-
ground state is populated. It is known that there exist thregor. In casiii ) only the second sums on the right-hand sides
kinds of possible transitions in the quantum well, namély, of Egs.(12) and(13) are present.

transitions in the same band, sayande,<Eg, (ii) transi- In the remaining part of the paper we consider only case
tions between different bands, sayndm, with e ,<Eg and  (iii). The level being below the Fermi energy is denoted by
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subscripta, and the othefabove the Fermi levils denoted ) - -
by b. From the general expressipiq. (23)] for the photon- E(Z):EB(Z)—lﬂowJ J G(z,2")-o(2',2")-E(2")dZ'dZ’,
drag current one then obtains (25)
2
whereEB(z) denotes the so-called background field consist-
ing of the sum of the incident field and the field reflected
from the substrate in the absence of the quantum well. The
+i(H®P+ H(fa))f EX (2) an(2)dz appropriate electromagnetic propaga®yiz,z’') is given by

|0=y R%(R(_ab)_R(fa)) j Ex(z)¢ab(z)dz

xf E,(2)®,,(2)dz|. (29

- 1
G(z.2')= zr—{expliq.|z=2'|)[9(z—2)ee
q.
In order to complete the calculation of the photon-drag
effect in the quantum well, we still need to determine the
local electric field inside the well.

+ 32 —2)ge]+rPexd —iq.(z+2)]ee}

2
+ 8(z' —2)ee,, (26)

Ill. LOCAL FIELD IN A TWO-LEVEL QUANTUM WELL

Since only thep-polarized electric field is involved in the Wheree =(co/w)(d.,—q;), &=(Co/@)(—0qL,— ), Co IS
intersubband transition process, for simplicity in the follow- the light speed in vacuum, and is the p-polarized ampli-
ing we omit they component of the electric field in our tude reflection coefficient, which is given by’=(q.eq
analysis. This means that vectors are two-component quanti=k,)/(q, eq+Kk,) with k, = \/(w/co)sz—qf being thez
ties and tensors 22 matrices. By taking as a starting point component of the wave vector in the substrate, agdhe
a Green's function description, the local field in the well dielectric constant of the substrate. In the long wavelength

satisfies the following vectorial integral equatitit? limit the conductivity tensor entering EQR5) is given by
|
w2 f ho |\ folenth2k2(2mg)]— folem+ A2k (2mg)] . P (kg d?k, )
o(z'.2")=— D7 b P T Tmn(Ky Ky Z")jnm(Ky u,Z)W, (27)
|
in dyadic notation. The presence of the factbw/(ey, E(z)=EB(z)+§(z)~n, (30)
—¢&,) indicates that both the diamagnetic and paramagnetic
parts are incorporated ix(z’,z"). where
In the present context it is sufficient to approximate
o(z',7") by its low-temperature form. By carrying out next ~ ~ ~ -
the integration in Eq(27), one finds that the conductivity E(z)= fG(z,z’)-T(z’)dz’ .09, (31)
tensor of our two-band model is diagonal, with the nonzero
elements given by
=| T(2E 2
. ie? (Ep—&4)2 o 7 f (2)-E(2)dz, (32
UXX(Z "z )_% [ﬁ((x)"’i/T)]z_(Sb_Ea)z d)(Z )¢(Z )1 .
(28) with
- - #(z) O
o,(2',7") _
z _ T(2) ( 0 B2 (33
_ihe? (Er—¢,) P
= Zamo (o F D (eg—eg? TP g
(29)
o [O4h O
L N 0= , (34)
For simplicity, here and below, we omit writing the sub- 0 0,

scripts on the wave function combinations, i.eb(z)
= ¢ap(2) and P (2)=D4y(2). the elements o8 being given by

The diagonal form ofo(z’,z"), plus the fact that both
oy.(2',2") ando,/z',Z") consist of products of functions of

’ " : : . /.Loeza) (EF_ Sa)z
z' andz”, respectively, allows one to rewrite E@5) in the 0. = (35)
form X awh [f(e+ilT)]—(sp—8a)"
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po€’hw (EF—¢a)

T oy (h(@ DT (e 0

Written in the form given in Eq(30), the integral equa-
tion for the local field is easily solved by standard tech-
niques. Then, by multiplying Eq.30) with T(z) from the
left, and thereafter performingzintegration of the resulting
equation, one finds that the unknown vecigs (7, , 7,) can

be obtained from the matrix equation
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N=(sz)=f T(2)-EB(2)dz (38)
and
o [Py Py, - .
P:(PZX Pzz):f T(z)-E(z)dz (39

At this point we need to specify the wave functions and

(G—E’)- -N 37) energies of the two bands. Hence, by using the wave func-
7= tions of the simple infinite-barrier model, one finds that the
where parameters appearing in E@7) are given by
Pyx= OnCodid ! + ! +ig, d[1+exp(iq, d)}{2+rP[1+exp(iq, d
XX 2w2 (K+7T)2—(qLd)2 (K,ﬂ')z_(qj_d)z 1q. [ eXF(IQJ_ )]{ r[ equqj_ )]}
X ! ! r} (40
(kpm)*=(q.d)*  (k-m)?—(q.d)?| |’
Pox=— @_XX Pyz
zz
B O,k K, T2CHq, 1 1 — o )2 rPr1 o d
- 2idw2 (K+7T)2_(qLd)2+(K_W)Z_(qLd)z +|qL [ +eXF(|qL )]{ _r[ +exq|qi )]}
X ! ! 2] (41
(kpm)?=(q.d)? (k_m)?—(q.d)?] |
_®zz772C(2) K%+Ki ®ZZK2 K2+7T COqH q.d Ki K2
P 7 2 210, Po? | im2k2 k2 | (kM2 (@02 (k, 72— (q, )2
1 2
+[1+exp(iq, d)[{2+rP[1+expiq,d , 42
[ [X a. )]{ [ F( q. )]} (K,W)Z—(qld)z (K+7T)2—(qld)2 J ( )
|
and IV. PHOTON DRAG IN MULTIPLE QUANTUM-WELL

N,=—iq,d cos#{1+expiq, d)+rP[1+expiq, d)]}
« 1 3 1
(K+7T)2_(Chd)2 (K—ﬂ')z_(chd)z

(43

2
T sing{1+expliq, d) + P 1+ exg(iq, d) ]}

y 1 - 1
(rem)?=(q d)® (k-m)®—(q,d)?

: (44)

wherexk_=b—aandk, =

a+b, a andb being the quantum

SYSTEMS

In this section we consider the photon drag in a multiple
quantum-well structure which consists Mf wells embedded
in an infinitely extended homogeneous and isotropic me-
dium. For a multiple well system E¢25) must thus be re-
placed by the integral equation

E(z)=EB2z)—ipuqw
M
szl J J G(z—-2')

oV(z',2")-E(z")dZ'dZ ,

(49)

numbers of the two states in consideration. The quanturwhere G(z z') is the direct part of the electromagnetic

numbers enter in the wave functions as follows;(z)
= —(2/d)'? sin(mmzd), m=a,b.

propagator in Eq(26), and 6V(z’,z") is the conductivity
tensor of thejth well.
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Following the same procedure as discussed in the previ- 2
ous section and assuming that in each well there are two
bound states, of which only the lower one is populated, we
can rewrite Eq(45) as

M
E(Z)=EB(Z)+21 E0)(z)- 9, (46)
P

where 20)(2)=[[G(z—2')-T()(2')dZ']-©. The yet un-
known vectorsy") satisfy the algebraic relation

M
D.ﬁn_gaaux#szm,izlzpuM, (47)

o e o 10 -6 -2 2 6 10
where  PD=[T0(2). E0)(2)dz=[fT"(2)- [G(z~2') R(w—wye) [meV]
-TO(z")dz'dZ]-® and NO=[T()(z).EB(z)dz. For each
of the indicesi=1,2,...M a new relation is obtained, and FIG. 3. Photon-drag response functiéh=R®@”—R(P? as a
together these relations constitute sufficient equations to déunction of the incident photon energy measured from the electronic
termine the variousy")'s. The induced radiative coupling transition energyiws,. The solid and dashed lines represent the
between the wells appear via tiRE1)'s for which i #j. If real and imaginary parts &, respectively. The angle of incidence
we neglect the radiative coupling among the wells, theS 60°.
7"’s are determined via
T I N =6, and the corresponding energy separation ejg,
U-g =P /=N, 1=1,2,... M. (48)  —1.8380 eV. The Fermi energy is 5.32 eV. The frequency

. . dependence of the dielectric constant of the quartz substrate
Since the quantum wells are assumed to be electronlcallg

isolated, the induced photon-drag current in the system i sg) are as in Ref. 13, and the relaxation energy used in
: ' P g curre Y igs. 3-9 ish/7=0.6 meV. Since the photon-drag current is
just the sum of the currents of the individual wells, i.e.,

proportional to the square of the amplitude of the incident
M 2 (inc) field E;,, it is adequate to normalize the photon drag
lo=7 Re{ 2 data with the magnitude of the time-averaged Poynting vec-
j=1 tor of the incident fieldS;,.= &oCo| Einc /2. The normalized
photon-drag current hence is given by

(REP-REY)

f Ex(2)¢di(2)dz

+i<H<f‘,?>+H(+",?>>f Ex (2) ¢th(2)dz

lo 2y .
0 Si_:b‘ C |E- |2 RQR|77X|2+IH77:772], (50
X | Ef2)®Ly(2)dz| ¢, (49 nc 0ColEinc

. ) . ; - _ p(ab)_ (ba) _ 1y(ba)

in an obvious notation. with the abbreviationsR=R*”—-Ry® and H=HY

+H@,
V. NUMERICAL CALCULATION AND DISCUSSION It is instructive first to study the behavior & andH of
_ _ Eqg. (50). In Figs. 3 and 4 we thus pl® andH as functions
A. Photon drag in a single quantum well of the incident photon energy, using an angle of incidence of

In this subsection numerical calculations of the photon-60°. It appears that botR andH exhibit a resonance behav-
drag current in a vacuum/niobium/quartz quantum-well sysior aroundep,. To compare the contribution from the first
tem are presented. For this system local-field calculations ctnd second terms on the right-hand side of Exf), we
(i) the s- and p-polarized linear reflection coefficient§j)  notice that| z,|~|7,|d. This implies that we have to com-
the electromagnetic surface wave dispersion relatigiig, pare the two quantitietR| and|H|/d. Sinced~10"° m, it
the optical second-harmonic generation, dnd intrasub- ~ appears from Figs. 3 and 4 tht|/d is two orders of mag-
band(one-leve) photon drag have already been carried outnitude larger thafiR|. Therefore, the second term in H§0)
and the experimental studies of thgolarized reflection co- gives the dominating contribution to the photon-drag current.
efficient, the surface wave dispersion relations, and the We know from our previous discussion th& =0 in the
second-harmonic generation show qualitative agreemenecal limit. Here we shall investigatél in the local (loc)
with the theory. For a general review of these effects thdimit. Thus, in Fig. 5 we show the difference betwegrand
reader is referred to Ref. 12. H,.c as a function of the photon energy for two different

We choose the two levels in such a manner that the Fern@ingles of incidence, namely=60° (curves } and #=30°
energy is located in between them, and the range of the lighcurves 2. The solid and dashed lines represent the real and
frequencies used are so close to the interlevel transition frémaginary parts ofH —H,, respectively. It is clear from
guency that the two-level model is a good approximationFig. 5 that the local approximation fot is extremely good
The thickness of the niobium well is in all caséss15A.  [the relative difference —H,.)/H being less than 0.1
The quantum numbers of the chosen statesaat® andb When the angle of incidence decreases, the differdfice



15714 XIN CHEN AND OLE KELLER 55

2

I

g

—|< 0_____._...—._.?..:__
ar}

vro -1

—

-2

_ T T T T T T T

10 -6 “2 32 6 10
R(w—wse) [meV]

FIG. 4. Photon-drag response functith=H®”+H®? as a

function of the incident photon energy measured from the electronic
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E

transition energyh w,,. The solid and dashed lines represent the — 0
real and imaginary parts &, respectively. The angle of incidence =
is 60°. E
< ~27

—Hoc becomes smaller. This is so becaugealso gets ®
smaller. In the limitd— 0, H—H. =)

In Fig. 6(a) the normalized photon-drag current is plotted L —4 3
as a function of the incident photon energy for different o
angles of incidence. The solid lines show the resulty ( 2
obtained when local-field corrections are included, and the ~ e
dashed lines represent the resulig) (without the local-field '-IE
corrections. The angles of incidence are (6Qfves 1, )
60°%curves 2, and 70fcurves 3. It appears from Fig. @) ~ 1
that the photon-drag current shows two distinct resonance -8 T T |
peaks in which the currents flow in opposite directions. —4 -2 0 2 4
Without the local-field corrections, the current is antisym- (o) F(w=wya) [meV]

metric with respect te,,, and when the incident photon

energy is less than the energy separatgg, the current
flows in the negativex direction, and fori w> ¢y, the flow

FIG. 5. Difference betweem and H,,. as a function of the
photon energy measured from the transition enétgy,, for two
different angles of incidencé=60° (curves }, §=30° (curves 2.
The real and imaginary parts bf—H,,; are plotted in the solid and
dashed lines, respectively.

FIG. 6. (a). Photon-drag current normalized with the magnitude
of the incident Poynting vector as a function of the incident photon
energy measured fromw,,, for different angles of incidence. The
results with and without the local-field corrections are plotted in
solid and dashed lines, respectively. The angles of incidence are 50°
(curves 1}, 60° (curves 2, and 70°(curves 3. (b) Difference be-
tween the drag current®ormalized with the magnitude of the in-
cident Poynting vectorwith (1,) and without (g) local-field ef-
fects incorporated as a function of the photon enefmggasured
from % wy,,) for three different angles of incidence, viz., 5@urves
1), 60° (curves 2, and 70°(curves 3.

is in the positivex direction. Neglect of local-field effects
means that the field is equal to the background field so that
n=N. In the frequency range aroutidv,,~1.8380 eV, the
reflection coefficientP is almost real, and this implies that
the product N3 N,) is almost a purely imaginary number
[see Eqgs(43) and(44)]. The form of the photon-drag current
hence reflects the frequency behavior of the real pait of
(compare Figs. 4 and)6From our numerical calculation it
turns out that the local field inside the quantum well can be
highly nonuniform, and thus the local-field corrections which
appears in thep parameters can produce major changes in
the calculated photon-drag current in the quantum-well sys-
tem. A guantitative comparison of the frequency dependence
of the photon-drag current with and witho(te., with #
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FIG. 7. Blueshift of the zero point of the photon-drag current as ~ FIG. 8. Photon-drag current normalized to the magnitude of the
a function of the angle of incidence. incident Poynting vector plotted as a function of the angle of inci-
dence for different incident photon energies, viz., 1.8378 eV
(curves 3, 1.8380 eV(curves 2, 1.8382 eV(curves 3, and 1.8385
eV (curves 4. Results with and without the local-field corrections
are plotted in solid and dashed lines, respectively.

=N) local-field corrections is shown in Fig(l§), where the
difference between the drag currents witl)(and without
(Ig) local-field effects incorporated is plotted in normalized
form for the same angles of incidence as in Fig)6Also . ) o o )
the remaining input data are as in the previous figure. I the negativex direction for all angles of incidence. It is
appears from this figure that the local-field corrections argvorthwhile to note that for curves 3 and 4 the drag current
particularly important around the electronic resonanceChanges sign at a certailarge angle of incidence. This is so
Local-field effects also give rise to a blueshift of the dragbecause the local-field qorrectlons shift the photon-drag cur-
current spectra. rent sp_ectrum upwards. In energy. .

In Fig. 7 we plot the blueshift of the zero point of the I Fig. 9 the normalized current differencé{-1g)/Spnc
photon-drag current as a function of the angle of incidence. ItS Plotted as a function of the angle of incidence. The photon
appears from this figure that the shift increases monotonienergies are 1.8375 eVcurve 1), 1.8378 eV (curve 3,
cally with 6. When the angle of incidence is larger than, say,1-8382 eV(curve 3, 1.8385 eV(curve 4, and 1.8390 eV
75°, the shift is significant, and increases rapidly as a funclcurve 3. It appears from Fig. 9 that when the incoming
tion of the angle of incidence. We know that with the in- photon energy is close to the electronic energy separation
crease of the incident angle, tkecomponent of the local
field, which is mainly responsible for the intersubband tran-
sitions, increases and this makes the intersubband transition
process more probable. As a result the need for taking local-
field corrections into account becomes more important with
increasingé.

In Fig. 8 the normalized photon-drag current is plotted as
a function of the angle of incidence for various incident pho-
ton energies, viz., 1.8378 el¢urves )}, 1.8380 eV(curves
2), 1.8382 eV(curves 3, and 1.8385 e\(curves 4. Results
with and without the inclusion of local-field corrections are
plotted in solid and dashed lines, respectively. In the limit
06— 0, thez component of the local field must vanish so that
| 7,/—0 and since als¢R|—0 for g,—0, the photon-drag
current must be zero fa#=0. This is also obvious for sym-
metry reasons. Fof— /2, thex component of the local
field approaches zero, and in turn this implies thai — 0. 0 15 30 45 60 75 90
The photon-drag current therefore goes to zeraferr/2. It 6 [deg.]
also appears from Fig. 8 that the location of the normalized
maximum of the drag current depends on the photon energy. FIG. 9. Difference between the drag currefsrmalized with
Since the photon-drag response functidrdoes not change e magnitude of the incident Poynting vegtaiith (1) and with-
very much with the angle of incidence, the maximum in theqgyt () local-field effects incorporated as a function of the angle of
drag current is mainly determined by the quantiy»,. At incidence for different photon energies, viz., 1.8375 @urve 1,
hw=¢gy, (curves 2 the current is zero, unless local-field 1.8378 eV(curve 2, 1.8382 eV(curve 3, 1.8385 eV(curve 4, and
effects are included. These effects give rise to a current flowt.8390 eV(curve 5.

(Io=15)/Sine [107" Am /W]
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FIG. 10. Photon-drag current normalized by the magnitude of F|G. 11. Photon-drag current normalized by the magnitude of
the incident Poynting vector as a function of the photon energyhe incident Poynting vector as a function of the photon energy. The
(measured fronfiwy,) for two different relaxation energies, viz., solid and dashed lines are the results with and without inclusion of
hl7=0.4 meV(curve J and 0.6 meMcurve 2. The angle of inci-  radiative coupling among the wells, respectively. The angles of in-
dence isf§=60°. cidence are 20fcurve 3 and 60°(curve 2, the number of wells is

10, A=400 A, and the tick bar denotes the electronic resonance
epa (curves 2 and Bone can expect a particularly pro- energy.
nounced difference in the predicted,(Ig) currents. This

fact is in agreement with the remarks accompanying Fig. |n Fig. 11 we show the normalized photon-drag current as
6(b). . . a function of the incident photon energy witholid lineg

In Fig. 10 we show the normalized photon-drag current anq without(dashed linesinclusion of the radiative coupling
a function of the incident photon energy for two different among the wells. The angles of incidence are @@fve 3
relaxation energies, namely/7=0.4 meV(curve ) and 0.6 5nq 60°(curve 2, the spatial period of the multiple quantum-
meV (curve 2. The angle of incidence i8=60°. The nu- \ye|| system is\ =400 A, and the number of wells is 10. The
merical results demonstrate that the heights of the resonanggy par denotes the electronic resonance energy. It appears
peaks in the photon-drag current are very sensitive_ to thgom Fig. 11 that when the angle of incidence is snielirve
(chosen value of the relaxation energy. A change in the 1) the radiative coupling is not important. However, when
relaxatlon energy dpes not shift the spectrum, however. Byhe angle of incidence is largeurve 2, a neglect of the
varying the relaxation energy, the magnitudes of both thggiative coupling may lead to a significant overestimation of
photon-drag response function and the two quantifieand  the magnitude of the drag current near resonance. It was
7, are changed. apparent from the results presented in Fig) éhat the local-
field corrections destroy the antisymmetric form of the fre-
quency dependence of the drag current near resonance, the
general tendency being that the magnitude of the peak lying

To illustrate the importance of the radiative coupling on the high-frequency side of the resonance is reduced, while
among quantum wells we have carried out numerical StUdieﬁ]e magnitude of the other peak becomes |arger_ In the mul-
of the drag current in a GaAs/£&a, _,As multiple quantum tiple quantum-well case this asymmetry becomes more pro-
well structure consisting of identical wells. The used inputnounced particularly for large angles of incidence, and the
data for the system are as follows. Effective electron masssigh-frequency peak may even disappear, see curve 2.
mo=0.06", (m, being the free electron masguantum- To exemplify how the photon-drag current may depend
well width: d=130 A, quantum numbers of the two bound on the number of wells in the structure we have plotted in
states:ta=1 and b=2, relaxation energyfi/7=1.0 meV,  Fig. 12 the normalized drag current as a function of the in-
conduction electron number per unit areds=1.0 cident photon energy for different numbers of wells, viz., 1
X 10" cm~2 (from this number the distance of the Fermi (curve 1, 2 (curve 2, 10 (curve 3, 40 (curve 4, 80 (curve
level from the lower lying level is calculated using the for- 5), 150 (curve 6, and 200(curve 7. In all cases the angle of
mula Eg— e, = m%2Ns/mp), energy separation between the incidence is#=60°, and the spatial period of the structure is
two bound states¢,;=99.7 meV (using the infinite barrier A=400A. Since the angle of incidence is rather large the
mode), relative dielectric constant of the &a _,As me-  spectra display one peak only, see curve 2 of Fig. 11. When
dium in the vicinity of the transition frequencg.o=13.1.  the number of wells is small, the photon drag current in-
For convenience we have also for the multiple-well case norereases proportional to the number of wells. This is so be-
malized the drag current data with the magnitude of the timeeause the all-over radiative coupling is weak and the back-
averaged Poynting vector of the incident field heS, ground field is the same on each well. In Fig. 12 this
=soco\/%| Eind /2. proportionality appears when the currents belonging to

B. Photon drag in multiple quantum wells
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FIG. 12. Photon-drag current normalized by the magnitude of F|G. 13. Mutual values of the peak height of the normalized
the incident Poynting vector as a function of incident photon energyphoton-drag current at resonance and its location in frequency
for different numbers of wells, viz., fcurve 1, 2 (curve 2, 10 shown for different numbersM) of quantum wells. The spatial
(curve 3, 40 (curve 4, 80 (curve 9, 150(curve 6, and 200(curve  period of the structure ia =400 A and the angle of incidence is
7). In all cases the angle of incidence #s=60° and the spatial either §=20° (0) or #=60° (A). Results without inclusion of the
period of the structure ia =400 A. radiative coupling among the wells are plotted in black cir¢®s

. . for #=60°.
curves 1 and 2 are compared. With an increase of the number

of wells, more wells contribute to the radiative interaction

process and this changes the internal dynamics of each welincreased beyond, saly] =25 the peak location tends to be

As a result the rate of increase in the current with the welishifted downwards in frequency, and as the structure con-

number becomes smaller. When the number of wells is intains more and more wells the rate of this downwards shift

creased up toM=150 a shoulder appears on the high_gradually becomes smaller and the current tends to saturate.

frequency side of the peak, and fdr=200 this shoulder has For M =200 the resonance frequency is still far above the

developed into a peak. electronic transition frequency, however. Altogether it ap-
When the number of wells is increased the peak in thePears that self-field effects give a significant blueshift of the

photon-drag current increases and is shifted downwards ifingle-well resonance frequency with respect to the elec-

frequency, see Fig. 12. A systematic display of this aspect i§onic resonance and when the radiative coupling among the

shown in Fig. 13, where the current peak height and thavells is turned on the resonance frequency experiences a

associated resonance frequency have been shown for differ-

ent numbers of quantum wells in the range W <200. The

spatial period of the structure is as in Fig. 12=400 A.

The angle of incidence is eith&=20° ({(J) or #=60° (A).

For comparison, results obtained without inclusion of the

radiative coupling are shown by the black circl@®) for ¢

=60°. If the radiative coupling among the wells is ignored

the resonance peaks belonging to the various number of

wells are located at the same frequeney=(108.4 meV).

This frequency, which thus is the resonance frequency for

just one well, is blueshifted with respect to the electronic

resonance frequenay,;=99.7 meV and this shift originates

in local-field effects caused by the self-field dynamics. The

self-field dynamics is described in the Green’s function for-

malism by the delta-function paf(c/w)?8(z' —z)ee,] of

the propagator in Eq26).22 As long as the number of wells

is so small that the background field acting on each well is 0 30 60 9'0 12'0 15'0 180

the same the photon-drag current increases proportional to Number of wells

the number of wells, as may be seen from the equidistance of

the black circles. Now, when the radiative coupling among  giG. 14. Photon-drag current normalized by the magnitude of
the wells is turned oifthe triangular points fof=60°), the  the incident Poynting vector as a function of the number of wells
situation changes radically. Thus, for small well numbersfor three different photon energies, viz., 108 mérve 1, 112
(M=<25) the rate of increase of the photon-drag peak ismeV (curve 2, and 120 meMcurve 3. The solid and dashed lines
much less, although the peak stays at the same frequency apresent results for the spatial periatls 200 and 400 A, respec-

in the uncoupled calculation. When the number of wells istively. The angle of incidence is in both casgs 60°.

Lo/Sine [107"° Am /W]




15718 XIN CHEN AND OLE KELLER 55
(smallep redshift from the single-well resonance. When thewell. Then, limiting ourselves to two-level quantum-well
angle of incidence i9=20° the effects are qualitatively as systems, we have carried out numerical calculations of the
discussed above, though the saturation tendency is no so prphoton-drag current in single and in multiple quantum-well
nounced forM = 200. structures as functions of the photon energy, angle of inci-
In Fig. 14 is shown the normalized drag current as a funcdence, and number of wells. Special attention has been paid
tion of the number of wells for three different incident pho- to the importance of the local-field corrections, as well as the
ton energies, viz., 108 melurve 1, 112 meV(curve 2, radiative coupling among the wells. It appears that these cor-
and 120 meV(curve 3. The solid and dashed lines presentrections may have a substantial effect on the photon-drag
results for the spatial periods =200 and 400 A, respec- current. In the present theory the blueshift and the asymmet-
tively, and the angle of incidence is in all casggs 60°. It  ric shape of the photon-drag current have been ascribed to
appears from Fig. 14 that, when the number of the wells idocal-field effects.
less than, say, 15, the increase of the drag current is propor-
tional to the number of wells. As the number of wells is ACKNOWLEDGMENT

larger thanM =15, and the incident energy is close to the One of the authoréX.C) would like to thank the Daloon

resonance energy, as it is in curves 1 and 2, the radiative, \1-ion for the financial support which enabled him to
coupling among the wells becomes important, and the draxg,arry out the present research

currents start to saturate, see Fig. 13. If the incident energy IS

far from resonance, the (_1rag current continues 10 iNCrease ppeNpIx: CALCULATION OF THE PHOTON-DRAG

(curve 3 almost linearly with the well number. By changing RESPONSE TENSORS

the spatial period of the structure to 400 A, the difference

between the two results is small fst=<15. With increasing In this appendix we indicate how the integrations over the

well numbers the radiative interaction processes becomlke, domain in Eq.(11) can be carried out in a convenient

more significant. manner. From the components of the transition current den-
In summary, in this paper we have derived general exsity parallel to the plane of the quantum well it appears that

pressions for the photon-drag current along the quanturone has to evaluate the vectorial quantity

R Jw fol en+7i2|ky—qyl %/ (2mg) 1= fol em+ 72K/ (2mp) ]

dzk”
 F(wF D) T on et 2K~ Q2 (2mg)— A2 2mg) 2~ W (22 (A)

Written out in Cartesian coordinates the integrand is an uneven function, @nd with the choice,=q,e,, Eq.(Al) is thus
reduced to

R™=(ROM—RM)e,, (A2)
where
” folen+h?[k—ql*/(2mg)] d%k
(nm) _ oLen Il I 0 o I
R j—:x: h(w"'i/7)+Sn_8m+fl2|kH—q“|2/(2m0)—h2kﬁ/(2mo) (2ky-&—ay) W
” folen+7i%kf/(2mo)] 2k,
_ s
f—x h(w+il7)+en—emth2kil (2mg) — 72|k +qy|%/(2mg) (2ki-ectan) G2 (A3)
and
= folem+ 72kl (2mg)] a2k
(nm) _ OLem I o o I
R f—w A(w+ilT)+eq—emt+h2k—q)|% (2mg) — A2k (2mg) (2ki- e~ (2m)? (A4)

The component of the transition current density perpendicular to the well plane leads to the consideration of the quantity

HOM = g™ — () (A5)
where
H<”m>—f°° folen+h2kZ/(2mg)] d?k, (A6)
- — o0 ﬁ(a)‘i"i/'T)+Sn_8m+ﬁ2kf/(2mo)_ﬁ2|k”+q”|2/(2mo) (277)2’
H(nm):fw folemth2k2/(2mg)] d2k, A7)
* o h(@+ilT)+en—emt A2k —q|%(2mg) — A2k (2mg) (27)?
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By using the low-temperatureT& 0 K) approximation for  and
the Fermi-Dirac distribution function, i.e., fo[g;

+ﬁ2kf/(2mo)]:13[E|:_8i—ﬁ2kﬁ/(2mo)], i=m, n, and (nm) kﬁnax 2m kH dedk”
by introducing polar coordinates [k .k y] HY = o Jo ™ pkcos (27)? HEg—em),
=k, [cos@,sin 4], the four integrals in EqSA1)—(A7) take + I (AL0)
the forms
max (2 (2k Coy_q“)k“ dadkH kmax 2w kH dﬁd k”
R(nm):fkn I E.— ’ H(nm):f I f S(Ee— ’
' o Jo o™~ pkicoss (2m)? Fem) - o Jo oa"™- ko (2m)* (Er—en)
(A8) (A11)
R(nm):Jkﬁ“‘ax 2m (2kjcosf+q)k; dodk Erme) where o™ and g are given in Eqs(19) and (21) and
- o Jo oa"™—pBkccosd (27)? Pk k"*=[2my(E—&;)]Y¥4#. Performing, finally, the integrals

(A9) over 6 andk; one obtains the results in Eq4d.7) and(18).
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