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Quantum confinement effect in thin quantum wires
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The electronic states and optical transition properties of three semiconductor wires Si, GaAs, and ZnSe are
studied by the empirical pseudopotential homojunction model. The energy levels, wave functions, optical
transition matrix elements, and lifetimes are obtained for wires of square cross section with width from 2 to 5
(v2a/2), wherea is the lattice constant. It is found that these three kinds of wires have different quantum
confinement properties. For Si wires, the energy gap is pseudodirect, and the wave function of the electronic
ground state consists mainly of four bulkstates. The optical transition matrix elements are much smaller than
that of a direct transition, and increase with decreasing wire width. Where the width of wire is 7.7 A, the Si
wire changes from an indirect energy gap to a direct energy gap due to mixing of thE Rtate. For GaAs
wires, the energy gap is also pseudodirect in the width range considered, but the optical transition matrix
elements are larger than those of Si wires by two orders of magnitude for the same width. However, there is
no transfer to a direct energy gap as the wire width decreases. For ZnSe wires, the energy gap is always direct,
and the optical transition matrix elements are comparable to those of the direct energy gap bulk semiconduc-
tors. They decrease with decreasing wire width due to mixing of the bulistate with other states. All
guantum confinement properties are discussed and explained by our theoretical model and the semiconductor
energy band structures derived. The calculated lifetimes of the Si wire, and the positions of photoluminescence
peaks, are in good agreement with experimental red8&163-18207)08424-5

I. INTRODUCTION 10-30 meV. The upper level lifetime is around ds
(“slow” ), and the lifetime of the lower level is around 3 ms
Recent experiments on porous Si have demonstrated effi-very slow” ). The high-energyr-band peaks at the green-
cient room-temperature visible photoluminescer(@.).!  blue (2.4 eV), and a decay time is faster tharx30 ®s.
The etching process produces material consisting mainly of his accounts for only 1-3 % of the emission in conven-
columns or wires with widths<50 A of crystalline S? The  tional porous silicon.
nature of the luminescence process is currently the subject of In this paper we use the empirical pseudopotential homo-
numerous experimental and theoretical studies. There hajgnction model to calculate the electronic states and corre-
been several mechanisms proposed, namely, the quantugfonding lifetimes of optical transition for Si thin quantum
confinement effect? specific molecular agents such as Wwires. The results verify the two decay channels model pro-
siloxene®* surface-related staté$, etc. For the quantum posed by Calcotet al,™* and verify further that there exist

confinement effect there have been many theoreticabptical transitions caused by quantum confinement states in
works/ =19 Most of the theoretical works, including tight- the porous silicon, though it is not the main mechanism for

binding calculationé,  empirical pseudopotential the strong luminescence. For comparison we also calculate
calculation$® and first-principles  pseudopotential the electronic states and corresponding lifetimes for GaAs
calculations:®~*2 have shown that quantum confinement in- and ZnSe quantum wires. GaAs and ZnSe are l1I-V and 1I-VI
creases the minimum band-gap energy and leads to a pseud@miconductor compounds, respectively, and they are all
direct gap at the center of the Brillouin zone. Thedirect-gap semiconductors. The calculation found that the
conduction-band-minimum wave functions retain a large€lectronic state properties are extremely different for these
composition from near thd minimum of the bulk Si con- two thin quantum wires; the GaAs wire becomes an indirect
duction band. Experimental observations of the phononenergy gap semiconductor just as the Si wire, while the ZnSe
related fine structure in low-temperature Blthe combined  Wwire is still a direct energy gap semiconductor. The reason is
photoluminescence and absorption studfesnd the model shown by our model. Section Il gives the theoretical model.
calculations point to optical transition with weak oscillator Sections Il and 1V are the results for the Si and GaAs and
strength, with phonon-assisted transition dominant for rednSe thin quantum wires, respectively. Section V contains a
emission. The room-temperature time-resolved PL experisummary.

ments found two different emission bandghe low-energy

S band and the high-enerdﬁ/ band. The IOW-energ$ band 1. EMPIRICAL PSEUDOPOTENTIAL

peaks in the deep red.72 e\j) and with an overall room- HOMOJUNCTION MODEL (REF. 8)

temperature lifetime of~-3x107° s. Its integrated intensity

accounts for 97% of the red emission from conventional po- We use the supercell model to study a free-standing wire
rous silicon. Examining the lifetimes at different emissionWith a square cross section, as shown in Fig. 1. The system
energies shows that these could be fitted by assuming twieas translational symmetries in th&l10], [ 110], and[001]
decay channels with an energy difference in the range oflirections with periods 1¢2/2)a, (v2/2)a, and a, where
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for the conduction-band states and negative for the valence-
band states. That is, the vacuum regions are replaced by the
same bulk material with the conduction bands rigidly shifted
upward by a constant and the valence bands shifted down-
ward by another constant. The problem now resembles that
of a homojunction. The mixing of conduction and valence-
band states is neglected by solving the problem separately
for conduction and valence bands. That means that first we
project all the plane waves on to the bulk conduction-band
subspace and the bulk valence-band subspace, then we cal-
culate the electron and hole states of the wire in these two
subspaces, respectively. This is a reasonable approximation
because the energy gap between the electron and hole states
increases with the quantum confinement strengthening, and
the mixing of conduction and valence-band states becomes
FIG. 1. Schematic plot of the cross section of square standingmaller and smaller.
wires. The filled area is the wire region, the open area is the vacuum Using the degenerate perturbation theory, we obtain a
region. The dashed line signs the super unit cell inxhe plane. secular equation for the wire,

[010]

| is an integer which determines the size of the unit cell, and |En k+gOnn 8gg +(N.k+glAV|n" k+g")—E[=0, (6)

a is the lattice constant. Because of the periodicity of the ) )

system, the wave function of the wire can be written in termaVhere Eq i is the energy eigenvalues of the bulk. In the
of its bulk states with wave vectork+g, whereg are Ccoordinate system with theandy axes along th¢110] and
reciprocal-lattice vectors of the model system enclosed110] directions, respectively, the matrix elements of the
within the first Brillouin zone of the bulk material. Here we Perturbation potential can be written as

use a double unit cell with the basic vectors 5 5
-m
a a <g+G|AV|g’+G’>=VO|—2 for AG,=0, AG,=0,

alzz (1!1!Ql aZZE (_1!1!Q1 a3:a(010!])1 (1)

instead of the usual unit cell of the diamond structure, in

b
. L int AGym =
order to satisfy the periodicity. The componentsgoélong 2m sm( ym 2)

the[110] and[ 110] directions are given by ~Voz AG,b for AG,=0, AG,#0, @
2 b
9:1= 1, - -
1 \/5 1 om sm(Ame 2)
|7 a _VO I—zw for AG)ﬁ&O, AGyZO,
X
2
l,=—[(1-21)/2],...,0,...]1/2], ) b\ . b
, Vo sin Ame§ sin AGymE o AGo
rs e or s
92:T|2, 3) 1 AGb AG,b x
2
| 7 a AGy?&O,

where G is the reciprocal-lattice vector of the bully
l,=—[(1-1)/2],...,0,...[1/2], (4 =(v2/2)a, and mb is the width of the wire @<l),
where we used the symbpt] to denote an integer closest to AG=g+G-g'~G". . ,
and no larger tham. Using these bulk states as basis func- 1he form factors of the empirical pseudopotentials
tions for the expansion of the wave functions of wire, we Vs(3), Vs(8), Vs(11), andVa(3), Va(4), andVa(11) are
have not enough for the double-unit-cell energy-band calculation,
so we fit the atomic form factors by an analytical formula.
The atomic form factors for the empirical pseudopotential
W(r)=2 Cprsglnisglr), (5 used in this paper are listed in Table |
"o The optical transition matrix elements and corresponding
where i, 14 represents the bulk Bloch states associatedifetime are given by
with the n-th band and wave vectd+g,
We assume that the perturbation potential in the vacuum i 1 T
region (the open area in Fig.)1AV(r)=V,, while in the an':m_0|<“|pi|n Mo i=xy.z, (8)
wire region(the filled area in Fig. LAV(r)=0, whereV, is
large relative to the energy range considered. It is positivand
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TABLE |. Fitted form factorsV(2m+/N/a) of the atomic em-  of the hole(V1 andV2) are twofold degenerate. Figure 2
pirical pseudopotential normalized to the atomic voluineunits of compares our calculated energy gaps with other theoretical
Ry). a is the lattice constant. results for the Si wire case. From Fig. 2 we see that for the

number of monolayersN=8 and 10, our results are in
agreement with the results of Ref. 9, which also used the

Si Ga As Zn Se

a A 5.43 5.64 5.64 5.65 5.65 empirical pseudopotential method. But for the cases when
N=1 —0.3622 -0.3075 -0.5082 —0.1055 —0.6799 N=6 and 4, our calculated energy gaps are larger than those
2 —-0.2779 —0.2377 -0.3948 -0.0797 —0.5320 of Ref. 9. This is because as the wire becomes thinner, the
3 —0.2100 —-0.1816 —0.2999 —0.0500 —0.4104 proportion of surface atoms relative to the atoms in the bulk
4 —0.1510 —0.1328 —0.2200 —0.0190 —0.3105 becomes larger. Then surface states will dominate the energy
5 —0.0978 —0.0888 —0.1522 0.0110 —0.2284 gap of the wire. In our calculation we use an ideal potential
6 —0.0488 —0.0483 —0.0947 0.0381 —0.1609 barrier to deal with the surfadef. Eq. (7)]. Hence, our re-
7 —0.0031 —0.0105 -0.0458 0.0610 —0.1055 sults represent the energy gaps caused by quantum confine-
8 0.0394 0.0252 —0.0049 0.0789 —0.0599  ment effect only, while the results of Ref. 9 depend on the
9 0.0761 0.0586 0.0271 0.0913-0.0224  surface statéwith or without H covered as in Ref.) 9espe-
10 0.0955 0.0871 0.0466 0.0971 0.0080 cially in the case of a thin wire. The other three results Read
11 0.0800 00946  0.0500 00900 00304 etal'® Buda, Kahanolf, and Parrinelld, and Ohno,
12 00436 00640 00400 00555 00391 Shiraishi, and Ogawi are based on the first-principles
pseudopotential calculation with the local-density approxi-
mation (LDA) for the exchange-correlation energy and po-
| 4awn tential. From Fig. 2, we see that these three groups of energy
—=-—— Qun, (9) gaps are all smaller than energy gaps calculated with the

T 3mgC empirical pseudopotential method. The first-principles

wherea is the fine structure constan,is the photon angu- PSeudopotential method with the LDA can predict with good
lar frequency, andh is the refractive index. accuracy the properties of ground states, such as total energy,
force constants, construction phase transition etc., but cannot
IIl. RESULTS OF Si WIRES give an accurate behavior of the excited states. For example,

it consistently underestimates the energy gap. On the other

In all calculations in this paper we take=7, m=5, 4, 3, hand, the empirical pseudopotential method, though empiri-
and 2, and the four lowest conduction-band states and fouwral and simple, can produce accurate conduction and valence
highest valence-band states of the bulk as basis functions states, therefore it is more suitable for studying the quantum
Eq. (5), hence we have only 196 basis functions in the wave€onfinement effect of a quantum wire.
function expansion. Th¥, values are taken as 8 antb eV The wave functions of the electronic states consist of
for the conduction and valence-band states, respectively. mainly four bulk A states in thex-y plane, the components

The eigenenergies of the lowest four conduction-bandf states near thE point increase with a decreasing width of
states and the highest four valence-band states dt guwnt  the wire (m). Using Eq.(8) we calculated the optical transi-
for m=5, 4, 3, and 2 structures are shown in Table Il, andtion matrix elements fo€1, C2 states td/1, V2 states. The
the energy gap as function of the wire width is shown in Fig.results are shown in Table 1ll, where the first number repre-
1. From Table Il we see that the electronic ground statesents that for polarization along thxeandy directions(av-
(C1) is singlefold, and the second and third excited stategrage, and the second number is for polarization along the
(C2 andC3) are twofold degenerate. The two highest states direction (wire direction). From Table Il we see that the

TABLE II. Energy levels of quantum wires relative to the valence-banditopnits of eV). m represents
the width of the wire(see text, Cn and Vn are the conduction- and valence-band states, respectively.

C1 Cc2 C3 C4 V1 V2 V3 V4
Si m=>5 1.314 1.334 1.334 1.342 -0550 -0.551 —-0.595 -0.607
4 1.570 1.593 1.593 1594 -0.825 -0.825 —-0.862 —0.925
3 2.062 2.073 2.087 2092 -1.239 —-1.240 -—-1.339 —1.488
2 3.376 3.411 3.418 3435 —2.208 —2.205 —-2.254 2724
GaAs m=5 2.352 2.353 2.507 2,537 —-0.360 —0.437 -—-0.545 —0.545
4 2.569 2.569 2.796 2.853 —-0.534 -0.650 -0.813 —0.813
3 3.004 3.005 3.270 3.414 -0.867 —1.044 -—-1281 —-1.281
2 4.328 4.339 4.734 4899 —-1573 —-1.886 —2.194 —-2.195
ZnSe m=5 3.565 4.383 4.383 4969 -0.152 -0.189 —-0.263 -—0.264
4 3.910 4.890 4.890 5196 -0.232 —-0.292 -0.394 —-0.396
3 4.501 5.478 5.478 5646 —0.402 —-0.494 -0.641 —-0.643
2 5.781 6.634 6.635 6.643 —0.793 —-0.998 —1.338 —1.341
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FIG. 2. Energy gaps of three semiconductors

ZnSe wires as functions of the number of monolayers

for each edge. The present results are indicated
by filled circles connected by lines. The discrete

points are theoretical energy gaps of Si wires

taken from Refs. 9Yeh), 7 (Chang, 10 (Read,

a 11 (Buda, and 12(Ohno, respectively.

Energy gap (eV)

4 6 8 10
Number of monolayers (N)

optical transition matrix elements are small compared to thesion peaks and lifetimes observed by Caleital. are sche-
direct transition in bulk GaAgabout several ey which  matically shown in Fig. 3. The wire width has a broad
means that the energy gap is pseudodirect, as shown by thstribution 3010 A as in Ref. 11, so we take omn=5
wave-function composition. When the width of wine de-  (19.2 A) results. From Tables Il and Il we see that the low-
creases from 5 to 819.2 A to 11.5 A the optical transition est transitions are€€1—V1 (V2) and C2—V1 (V2) (be-
matrix elements increase due to the mixing of the bAlk causeV1l andV2 are degenerateand the optical transition
states and nedr-states. Am=2 (7.7 A) there is an abrupt energies are 1.86 and 1.88 eV, respectively, with an energy
change, and the optical transition matrix elements forzhe difference of 20 meV. The corresponding optical transition
polarization reach 1.7 eV, as in the direct transition. This ismatrix elementsQ,,, [Eq. (8)] are 9.4x10 " and 1.34
caused by the mixing of the bulk and I'y5 states. At X102 eV, respectively. Inserting th®,, ’s into Eq. (9),
m=5, 4, and 3, the wave function of th&l state does not we obtain the lifetimes 2.1 ms and 1., in good agreement
consist ofl'y5 state components, but ai=2 it consists of with the experiment. This result verifies that there surely
I' 15 state components, resulting in a direct transition. Be-exist optical transitions between quantum confinement states
cause the effective mass of thgs state is largéeven nega- in porous silicon, though the luminescence strength is not
tive), as the width of wire decreases due to the quantuntarge enough to explain the strong luminescence.
confinement the\ states approaches thgs state, there oc- The calculated lifetimes as functions of the number of
curs a strong mixing of these two states. This result is conmonolayersN, together with the results of Ref 9, are shown
sistent with Sanders and Chang’s result of the tight-bindingn Fig. 4. From Fig. 4, we see that, & decreases, the
calculation for thin Si wireg. lifetimes for CS1 and CS2 states decrease, and cross near
We compare our theoretical results with the room-N=6. They have the minimum values of X940 *°and 3
temperature time-resolved PL experim&hThe main emis- X 10 ° s onN=4, which are characteristics of direct transi-

TABLE IIl. Optical transition matrix elementSn units of e\) for C1 andC2 states td/1 andV2 states.
The first number is for the,y polarization(averagg, the second number is for theepolarization,m is the
width of wire, and values less than 1-10 are set to zero.

C1l-v1 Cl-v2 Cc2-v1 C2-v2
Si m=5 941-7 2299 9017 O 1476 1343 1466 2544
4 413-5 O 4115 486-7 5936 261-2 6.50-6 4.96-3
3 2073 O 209-3 O 400-3 O 4.05-3 1.66-6
2 414-4 1.73 406-4 2181 8644 1851 8564 1.49
GaAs m=5 1824 O 1216 O 7.00-5 O 1416 O
4 3243 O 270-3 0 2653 O 273 O
3 58~2 0 1241 O 540-2 O 1241 O
2 389-1 O 6.40-1 O 351 O 6.46-1 O
ZnSe m=5 0 5.34 0 0 1433 O 1.44 0
4 0 5.05 0 0 3833 0 1.42 0
3 0 4.67 0 0 1222 0 809-1 O
2 0 4.07 0 0 782 O 81~1 O
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FAST STATE 24V degenerate. For a ZnSe wire the second and third electronic
stateqC2 andC3) are twofold degenerate, and the third and
fourth hole state$V3 andV4) are twofold degenerate. The
degenerate states are different for these three kinds of wire.
A From Table lll we see that the GaAs wire becomes an indi-
rect gap semiconductor just like the Si wire. This is a sur-
prising result. From the wave functions of the conduction-
band state€C1 andC2 we see that they consist of mainly
four bulk A states, resulting in an indirect transition. At thie
point of the Brillouin zone of bulk GaAs, the lowest
conduction-band state is thg state, from which the transi-
tion to valence-band top states is the direct transition. But the
effective mass of th&'; state is small compared to that of the
A states in the axial direction. When the width of the wire
decreases, th&'; state rises faster than thk states, at a
critical width there occurs &-A crossover, thd'; state be-
comes higher thai states, and the GaAs wire changes from
VALENCE BAND a direct energy gap to an indirect energy gap. This case is
something like thd™-X crossover in the GaAs AlAs short-
FIG. 3. Schematic depiction of the main emission peaks and)erIOd sgperlattlcejsr’. **When the pe_rlod qf the GaAs/AlAs
lifetimes observed by Calcott al. (Ref. 13 for anodically pre- ~ SUPerlattice decreases, testate confined in the AlAs quan-
pared porous Si. The figure is taken from Ref. 9. tum well becomes lower than thi state confined in the
GaAs quantum well, and the superlattice changes from a

tion, whereas Ref. 9 shows that the two lifetimes of CS1 andlirect energy gap to an indirect energy gap. In the case of the
CS2 states decrease monotonously with decreasingtil ~ Superlattice thex state is provided by AlAs, while in the
N=6, but with no result oiN=4. As mentioned above, this case of wire the\ states are provided by GaAs. Because the
contradiction may be due to the surface state effect for thigffective mass of th€, state is small, until the width of wire
wires. m decreases to 27.7 A) the wave functions of the lowest
conduction-band state€€1 andC2) do not consist of the
component of buld™; state, hence the GaAs wire is still an
IV. RESULTS OF GaAs AND ZnSe WIRES indirect energy gap semiconductor. But from Table Il we

Our model can be applied equally to other semiconductof€e that the optical transition matrix elements of the GaAs
wires, because the model does not add any restricted condiire are larger than those of the Si wire by about two orders
tion to the boundary, only a constant potential barrier. Theof magnitude for the same width, and increase with decreas-
eigenenergies of the conduction- and valence-band states fitg width.

GaAs and ZnSe wires are shown in Table II, the energy gaps The ZnSe wire shows another characteristics. From Table
as functions of the width of wire are shown in Fig. 2, and thelll we see that the ZnSe wire is always a direct energy gap
optical transition matrix elements are shown in Table IIl.semiconductor until the width of wire decreases to 2. Be-
From Table Il we see that for a GaAs wire the first two cause the bulld states are far higher than the bdlk state
electronic state$C1 andC2) are twofold degenerate, and by 1.7 eV, furthermore the effective mass of the ZriSe

the third and fourth hole state®3 andV4) are twofold State is rather large (0.f%), hence the buld’; state is
always lower than the bulld states as the width of wire

. . . decreases to 2. The wave function of the electronic ground
6 8 10 state C1) includes the large component of the bililk state

2 0.42 and 0.12 for wire widthen=5 and 2, respectively.
From Table Il we see that the direct transition matrix ele-
ments for the electronic ground state are not equal to zero
only for the z polarization, which is verified by the
experiment®?! and the effective-mass thedtyThe direct
optical transition matrix elements decrease, with the width of
the wire decreasing due to the mixing of the bilk state
and other states. Experimentally it is found that a II-VI com-

SLOW STATES >1.7 Ev

<3X10% sec

3
2-5X 107 sec 2- 11 x 10" sec

log [lifetime (sec) ]

—+—Pres.cs1 pound semiconductor cluster of 20—200 A shows good lumi-
by nescence charactefspur results prove theoretically that the
o venes2 optical transition is direct in these thin quantum wires or
Number of manolayers (N) dots, and give a fine prospect for them in the practical appli-
cation.
FIG. 4. Calculated radiative lifetimes for the lowest two conduc- V. SUMMARY

tion stategCS1 and CSpPto the highest valence states as functions
of the number of monolayer for each edge. The two groups are In this paper we studied the electronic states and optical
present results and those of Ref. 9. transition properties of three semiconductor wires Si, GaAs,
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and ZnSe, using the empirical pseudopotential homojunctiostates. All the quantum confinement properties are discussed
model. The energy levels, wave functions, optical transitiorand explained by our theoretical model and the semiconduc-
matrix elements, and lifetimes are obtained for wires oftor energy-band structures. The calculated lifetimes of the Si
sguare cross section with widths from 2 to®6&/2). Itis  wire and the positions of PL peaks are in good agreement
found that these three kinds of wires have different quantunwith the experimental results of Calcett al*® The theoret-
confinement properties. For Si wires, the energy gap iscal model has some advantages compared to the direct
pseudodirect, and the wave function of the electronic groungiseudopotential calculation. If we perform the direct pseudo-
state consists of mainly four bulk states. The optical tran- potential calculation we need to use 6000 plane waves. The
sition matrix elements are much smaller than those of a disecular equation cannot be solved without using a sophisti-
rect transition, and increase with the decreasing width of theated computer, while the dimension of the secular equation
wire. When the width of wire is 7.7 A, the Si wire changes in our model is only 196. The wave functions calculated by
from an indirect energy gap semiconductor to a direct energpur model obviously consist of components of bulk states in
gap semiconductor due to mixing of the bulks state. For  the Brillouin zone, so it is convenient to analyze the transi-
GaAs wires, the energy gap is also pseudodirect in the widtkion property. Our model does not put any restricted condi-
range considered, but the optical transition matrix elementtion on the boundary, hence it can be applied to any semi-
are larger than those of Si wires by two orders of magnitudeonductor wires, and takes into account the pure quantum
for the same width. At the smallest width there is no transferconfinement effect-?

to the direct energy gap as in the Si wire. For the ZnSe wires,
the energy gap is always direct, and the optical transition
matrix elements are comparable with those of direct energy
gap bulk semiconductors. They decrease with decreasing This work was supported by a Croucher Foundation Re-
wire width due to the mixing of the bulK; state and other search Grant.
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