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Quantum confinement effect in thin quantum wires

Jian-Bai Xia* and K. W. Cheah†

Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
~Received 3 June 1996; revised manuscript received 17 March 1997!

The electronic states and optical transition properties of three semiconductor wires Si, GaAs, and ZnSe are
studied by the empirical pseudopotential homojunction model. The energy levels, wave functions, optical
transition matrix elements, and lifetimes are obtained for wires of square cross section with width from 2 to 5
(&a/2), wherea is the lattice constant. It is found that these three kinds of wires have different quantum
confinement properties. For Si wires, the energy gap is pseudodirect, and the wave function of the electronic
ground state consists mainly of four bulkD states. The optical transition matrix elements are much smaller than
that of a direct transition, and increase with decreasing wire width. Where the width of wire is 7.7 Å, the Si
wire changes from an indirect energy gap to a direct energy gap due to mixing of the bulkG15 state. For GaAs
wires, the energy gap is also pseudodirect in the width range considered, but the optical transition matrix
elements are larger than those of Si wires by two orders of magnitude for the same width. However, there is
no transfer to a direct energy gap as the wire width decreases. For ZnSe wires, the energy gap is always direct,
and the optical transition matrix elements are comparable to those of the direct energy gap bulk semiconduc-
tors. They decrease with decreasing wire width due to mixing of the bulkG1 state with other states. All
quantum confinement properties are discussed and explained by our theoretical model and the semiconductor
energy band structures derived. The calculated lifetimes of the Si wire, and the positions of photoluminescence
peaks, are in good agreement with experimental results.@S0163-1829~97!08424-5#
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I. INTRODUCTION

Recent experiments on porous Si have demonstrated
cient room-temperature visible photoluminescence~PL!.1

The etching process produces material consisting mainl
columns or wires with widths<50 Å of crystalline Si.2 The
nature of the luminescence process is currently the subje
numerous experimental and theoretical studies. There h
been several mechanisms proposed, namely, the qua
confinement effect,1,2 specific molecular agents such
siloxene,3,4 surface-related states,5,6 etc. For the quantum
confinement effect there have been many theoret
works.7–10 Most of the theoretical works, including tight
binding calculations,7 empirical pseudopotentia
calculations,8,9 and first-principles pseudopotenti
calculations,10–12 have shown that quantum confinement
creases the minimum band-gap energy and leads to a pse
direct gap at the center of the Brillouin zone. Th
conduction-band-minimum wave functions retain a lar
composition from near theD minimum of the bulk Si con-
duction band. Experimental observations of the phon
related fine structure in low-temperature PL,13 the combined
photoluminescence and absorption studies,14 and the model
calculations point to optical transition with weak oscillat
strength, with phonon-assisted transition dominant for
emission. The room-temperature time-resolved PL exp
ments found two different emission bands:13 the low-energy
S band and the high-energyF band. The low-energyS band
peaks in the deep red~1.72 eV! and with an overall room-
temperature lifetime of;331025 s. Its integrated intensity
accounts for 97% of the red emission from conventional
rous silicon. Examining the lifetimes at different emissi
energies shows that these could be fitted by assuming
decay channels with an energy difference in the range
550163-1829/97/55~23!/15688~6!/$10.00
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10–30 meV. The upper level lifetime is around 5ms
~‘‘slow’’ !, and the lifetime of the lower level is around 3 m
~‘‘very slow’’ !. The high-energyF-band peaks at the green
blue ~2.4 eV!, and a decay time is faster than 331028 s.
This accounts for only 1–3 % of the emission in conve
tional porous silicon.

In this paper we use the empirical pseudopotential hom
junction model8 to calculate the electronic states and cor
sponding lifetimes of optical transition for Si thin quantu
wires. The results verify the two decay channels model p
posed by Calcottet al.,13 and verify further that there exis
optical transitions caused by quantum confinement state
the porous silicon, though it is not the main mechanism
the strong luminescence. For comparison we also calcu
the electronic states and corresponding lifetimes for Ga
and ZnSe quantum wires. GaAs and ZnSe are III-V and II-
semiconductor compounds, respectively, and they are
direct-gap semiconductors. The calculation found that
electronic state properties are extremely different for th
two thin quantum wires; the GaAs wire becomes an indir
energy gap semiconductor just as the Si wire, while the Zn
wire is still a direct energy gap semiconductor. The reaso
shown by our model. Section II gives the theoretical mod
Sections III and IV are the results for the Si and GaAs a
ZnSe thin quantum wires, respectively. Section V contain
summary.

II. EMPIRICAL PSEUDOPOTENTIAL
HOMOJUNCTION MODEL „REF. 8…

We use the supercell model to study a free-standing w
with a square cross section, as shown in Fig. 1. The sys
has translational symmetries in the@110#, @ 1̄10#, and @001#
directions with periods (l&/2)a, (&/2)a, and a, where
15 688 © 1997 The American Physical Society
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55 15 689QUANTUM CONFINEMENT EFFECT IN THIN QUANTUM WIRES
l is an integer which determines the size of the unit cell, a
a is the lattice constant. Because of the periodicity of
system, the wave function of the wire can be written in ter
of its bulk states with wave vectorsk1g, where g are
reciprocal-lattice vectors of the model system enclo
within the first Brillouin zone of the bulk material. Here w
use a double unit cell with the basic vectors

a15
a

2
~1,1,0!, a25

a

2
~21,1,0!, a35a~0,0,1!, ~1!

instead of the usual unit cell of the diamond structure,
order to satisfy the periodicity. The components ofg along
the @110# and @ 1̄10# directions are given by

g15
2p

l
A2
2

a

l 1 ,

~2!

l 152@~ l21!/2#,...,0,...,@ l /2#,

g25
2p

l
A2
2

a

l 2 , ~3!

l 252@~ l21!/2#,...,0,...,@1/2#, ~4!

where we used the symbol@x# to denote an integer closest
and no larger thanx. Using these bulk states as basis fun
tions for the expansion of the wave functions of wire, w
have

C~r !5(
n,g

Cn,k1gcn,k1g~r !, ~5!

where cn,k1g represents the bulk Bloch states associa
with then-th band and wave vectork1g,

We assume that the perturbation potential in the vacu
region ~the open area in Fig. 1! DV(r )5V0 , while in the
wire region~the filled area in Fig. 1! DV(r )50, whereV0 is
large relative to the energy range considered. It is posi

FIG. 1. Schematic plot of the cross section of square stand
wires. The filled area is the wire region, the open area is the vac
region. The dashed line signs the super unit cell in thex-y plane.
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for the conduction-band states and negative for the valen
band states. That is, the vacuum regions are replaced by
same bulk material with the conduction bands rigidly shift
upward by a constant and the valence bands shifted do
ward by another constant. The problem now resembles
of a homojunction. The mixing of conduction and valenc
band states is neglected by solving the problem separa
for conduction and valence bands. That means that first
project all the plane waves on to the bulk conduction-ba
subspace and the bulk valence-band subspace, then we
culate the electron and hole states of the wire in these
subspaces, respectively. This is a reasonable approxima
because the energy gap between the electron and hole s
increases with the quantum confinement strengthening,
the mixing of conduction and valence-band states beco
smaller and smaller.

Using the degenerate perturbation theory, we obtai
secular equation for the wire,

uEn,k1gdnn8dgg81^n,k1guDVun8,k1g8&2Eu50, ~6!

where En,k is the energy eigenvalues of the bulk. In th
coordinate system with thex andy axes along the@110# and
@ 1̄10# directions, respectively, the matrix elements of t
perturbation potential can be written as

^g1GuDVug81G8&5V0

l 22m2

l 2
for DGx50, DGy50,

2V0

2m

l 2

sinS DGym
b

2D
DGyb

for DGx50, DGyÞ0,
~7!

2V0

2m

l 2

sinS DGxm
b

2D
DGxb

for DGxÞ0, DGy50,

2
V0

l 2

sinS DGxm
b

2D
DGxb

sinS DGym
b

2D
DGyb

for DGxÞ0,

DGyÞ0,

where G is the reciprocal-lattice vector of the bulk,b
5(&/2)a, and mb is the width of the wire (m, l ),
DG5g1G2g82G8.

The form factors of the empirical pseudopotentia
Vs(3), Vs(8), Vs(11), andVA(3), VA(4), andVA(11) are
not enough for the double-unit-cell energy-band calculati
so we fit the atomic form factors by an analytical formu
The atomic form factors for the empirical pseudopoten
used in this paper are listed in Table I

The optical transition matrix elements and correspond
lifetime are given by

Qnn8
i

5
1

m0
u^nupi un8&u2, i5x,y,z, ~8!

and9

g
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l

t
5
4avn

3m0c
2 Qnn8 , ~9!

wherea is the fine structure constant,v is the photon angu-
lar frequency, andn is the refractive index.

III. RESULTS OF Si WIRES

In all calculations in this paper we takel57,m55, 4, 3,
and 2, and the four lowest conduction-band states and
highest valence-band states of the bulk as basis function
Eq. ~5!, hence we have only 196 basis functions in the wa
function expansion. TheV0 values are taken as 8 and26 eV
for the conduction and valence-band states, respectively

The eigenenergies of the lowest four conduction-ba
states and the highest four valence-band states at theG point
for m55, 4, 3, and 2 structures are shown in Table II, a
the energy gap as function of the wire width is shown in F
1. From Table II we see that the electronic ground st
(C1) is singlefold, and the second and third excited sta
~C2 andC3! are twofold degenerate. The two highest sta

TABLE I. Fitted form factorsV(2pAN/a) of the atomic em-
pirical pseudopotential normalized to the atomic volume~in units of
Ry!. a is the lattice constant.

Si Ga As Zn Se

a ~Å! 5.43 5.64 5.64 5.65 5.65
N51 20.3622 20.3075 20.5082 20.1055 20.6799
2 20.2779 20.2377 20.3948 20.0797 20.5320
3 20.2100 20.1816 20.2999 20.0500 20.4104
4 20.1510 20.1328 20.2200 20.0190 20.3105
5 20.0978 20.0888 20.1522 0.0110 20.2284
6 20.0488 20.0483 20.0947 0.0381 20.1609
7 20.0031 20.0105 20.0458 0.0610 20.1055
8 0.0394 0.0252 20.0049 0.0789 20.0599
9 0.0761 0.0586 0.0271 0.091320.0224
10 0.0955 0.0871 0.0466 0.0971 0.008
11 0.0800 0.0946 0.0500 0.0900 0.030
12 0.0436 0.0640 0.0400 0.0555 0.039
ur
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-

d

d
.
e
s
s

of the hole~V1 andV2! are twofold degenerate. Figure
compares our calculated energy gaps with other theore
results for the Si wire case. From Fig. 2 we see that for
number of monolayers,N58 and 10, our results are in
agreement with the results of Ref. 9, which also used
empirical pseudopotential method. But for the cases w
N56 and 4, our calculated energy gaps are larger than th
of Ref. 9. This is because as the wire becomes thinner,
proportion of surface atoms relative to the atoms in the b
becomes larger. Then surface states will dominate the en
gap of the wire. In our calculation we use an ideal poten
barrier to deal with the surface@cf. Eq. ~7!#. Hence, our re-
sults represent the energy gaps caused by quantum con
ment effect only, while the results of Ref. 9 depend on
surface state~with or without H covered as in Ref. 9!, espe-
cially in the case of a thin wire. The other three results Re
et al.,10 Buda, Kahanolf, and Parrinello,11 and Ohno,
Shiraishi, and Ogawa12 are based on the first-principle
pseudopotential calculation with the local-density appro
mation ~LDA ! for the exchange-correlation energy and p
tential. From Fig. 2, we see that these three groups of ene
gaps are all smaller than energy gaps calculated with
empirical pseudopotential method. The first-principl
pseudopotential method with the LDA can predict with go
accuracy the properties of ground states, such as total en
force constants, construction phase transition etc., but ca
give an accurate behavior of the excited states. For exam
it consistently underestimates the energy gap. On the o
hand, the empirical pseudopotential method, though emp
cal and simple, can produce accurate conduction and vale
states, therefore it is more suitable for studying the quan
confinement effect of a quantum wire.

The wave functions of the electronic states consist
mainly four bulkD states in thex-y plane, the component
of states near theG point increase with a decreasing width
the wire (m). Using Eq.~8! we calculated the optical trans
tion matrix elements forC1,C2 states toV1, V2 states. The
results are shown in Table III, where the first number rep
sents that for polarization along thex andy directions~av-
erage!, and the second number is for polarization along
z direction ~wire direction!. From Table III we see that the
TABLE II. Energy levels of quantum wires relative to the valence-band top~in units of eV!.m represents
the width of the wire~see text!, Cn and Vn are the conduction- and valence-band states, respectively.

C1 C2 C3 C4 V1 V2 V3 V4

Si m55 1.314 1.334 1.334 1.342 20.550 20.551 20.595 20.607
4 1.570 1.593 1.593 1.594 20.825 20.825 20.862 20.925
3 2.062 2.073 2.087 2.092 21.239 21.240 21.339 21.488
2 3.376 3.411 3.418 3.435 22.203 22.205 22.254 22.724

GaAs m55 2.352 2.353 2.507 2.537 20.360 20.437 20.545 20.545
4 2.569 2.569 2.796 2.853 20.534 20.650 20.813 20.813
3 3.004 3.005 3.270 3.414 20.867 21.044 21.281 21.281
2 4.328 4.339 4.734 4.899 21.573 21.886 22.194 22.195

ZnSe m55 3.565 4.383 4.383 4.969 20.152 20.189 20.263 20.264
4 3.910 4.890 4.890 5.196 20.232 20.292 20.394 20.396
3 4.501 5.478 5.478 5.646 20.402 20.494 20.641 20.643
2 5.781 6.634 6.635 6.643 20.793 20.998 21.338 21.341
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FIG. 2. Energy gaps of three semiconducto
wires as functions of the number of monolaye
for each edge. The present results are indica
by filled circles connected by lines. The discre
points are theoretical energy gaps of Si wir
taken from Refs. 9~Yeh!, 7 ~Chang!, 10 ~Read!,
11 ~Buda!, and 12~Ohno!, respectively.
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optical transition matrix elements are small compared to
direct transition in bulk GaAs~about several eV!, which
means that the energy gap is pseudodirect, as shown b
wave-function composition. When the width of wirem de-
creases from 5 to 3~19.2 Å to 11.5 Å! the optical transition
matrix elements increase due to the mixing of the bulkD
states and near-G states. Atm52 ~7.7 Å! there is an abrup
change, and the optical transition matrix elements for thz
polarization reach 1.7 eV, as in the direct transition. This
caused by the mixing of the bulkD and G15 states. At
m55, 4, and 3, the wave function of theC1 state does no
consist ofG15 state components, but atm52 it consists of
G15 state components, resulting in a direct transition. B
cause the effective mass of theG15 state is large~even nega-
tive!, as the width of wire decreases due to the quant
confinement theD states approaches theG15 state, there oc-
curs a strong mixing of these two states. This result is c
sistent with Sanders and Chang’s result of the tight-bind
calculation for thin Si wires.7

We compare our theoretical results with the roo
temperature time-resolved PL experiment.13 The main emis-
e

the

s

-

m

-
g

-

sion peaks and lifetimes observed by Calcottet al. are sche-
matically shown in Fig. 3. The wire width has a broa
distribution 30610 Å as in Ref. 11, so we take ourm55
~19.2 Å! results. From Tables II and III we see that the low
est transitions areC12V1 (V2) andC22V1 (V2) ~be-
causeV1 andV2 are degenerate!, and the optical transition
energies are 1.86 and 1.88 eV, respectively, with an ene
difference of 20 meV. The corresponding optical transiti
matrix elementsQnn8 @Eq. ~8!# are 9.4131027 and 1.34
31023 eV, respectively. Inserting theQnn8 ’s into Eq. ~9!,
we obtain the lifetimes 2.1 ms and 1.5ms, in good agreemen
with the experiment. This result verifies that there sur
exist optical transitions between quantum confinement st
in porous silicon, though the luminescence strength is
large enough to explain the strong luminescence.

The calculated lifetimes as functions of the number
monolayers,N, together with the results of Ref 9, are show
in Fig. 4. From Fig. 4, we see that, asN decreases, the
lifetimes for CS1 and CS2 states decrease, and cross
N56. They have the minimum values of 3.9310210 and 3
31029 s onN54, which are characteristics of direct trans
TABLE III. Optical transition matrix elements~in units of eV! for C1 andC2 states toV1 andV2 states.
The first number is for thex,y polarization~average!, the second number is for thez polarization,m is the
width of wire, and values less than 1–10 are set to zero.

C1-V1 C1-V2 C2-V1 C2-V2

Si m55 9.4127 2.2929 9.0127 0 1.4726 1.3423 1.4626 2.5424
4 4.1325 0 4.1125 4.8627 5.9326 2.6122 6.5026 4.9623
3 2.0723 0 2.0923 0 4.0023 0 4.0523 1.6626
2 4.1424 1.73 4.0624 2.1821 8.6424 1.8521 8.5624 1.49

GaAs m55 1.8224 0 1.2126 0 7.0025 0 1.4126 0
4 3.2423 0 2.7023 0 2.6523 0 2.7123 0
3 5.8722 0 1.2421 0 5.4022 0 1.2421 0
2 3.8921 0 6.4021 0 3.5721 0 6.4621 0

ZnSe m55 0 5.34 0 0 1.4323 0 1.44 0
4 0 5.05 0 0 3.8323 0 1.42 0
3 0 4.67 0 0 1.2222 0 8.0921 0
2 0 4.07 0 0 7.8122 0 8.1721 0
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15 692 55JIAN-BAI XIA AND K. W. CHEAH
tion, whereas Ref. 9 shows that the two lifetimes of CS1 a
CS2 states decrease monotonously with decreasingN until
N56, but with no result onN54. As mentioned above, this
contradiction may be due to the surface state effect for t
wires.

IV. RESULTS OF GaAs AND ZnSe WIRES

Our model can be applied equally to other semiconduc
wires, because the model does not add any restricted co
tion to the boundary, only a constant potential barrier. T
eigenenergies of the conduction- and valence-band state
GaAs and ZnSe wires are shown in Table II, the energy g
as functions of the width of wire are shown in Fig. 2, and t
optical transition matrix elements are shown in Table I
From Table II we see that for a GaAs wire the first tw
electronic states~C1 andC2! are twofold degenerate, an
the third and fourth hole states~V3 andV4! are twofold

FIG. 3. Schematic depiction of the main emission peaks a
lifetimes observed by Calcottet al. ~Ref. 13! for anodically pre-
pared porous Si. The figure is taken from Ref. 9.

FIG. 4. Calculated radiative lifetimes for the lowest two condu
tion states~CS1 and CS2! to the highest valence states as functio
of the number of monolayer for each edge. The two groups
present results and those of Ref. 9.
d
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r
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degenerate. For a ZnSe wire the second and third electr
states~C2 andC3! are twofold degenerate, and the third a
fourth hole states~V3 andV4! are twofold degenerate. Th
degenerate states are different for these three kinds of w
From Table III we see that the GaAs wire becomes an in
rect gap semiconductor just like the Si wire. This is a s
prising result. From the wave functions of the conductio
band statesC1 andC2 we see that they consist of main
four bulkD states, resulting in an indirect transition. At theG
point of the Brillouin zone of bulk GaAs, the lowes
conduction-band state is theG1 state, from which the transi
tion to valence-band top states is the direct transition. But
effective mass of theG1 state is small compared to that of th
D states in the axial direction. When the width of the wi
decreases, theG1 state rises faster than theD states, at a
critical width there occurs aG-D crossover, theG1 state be-
comes higher thanD states, and the GaAs wire changes fro
a direct energy gap to an indirect energy gap. This cas
something like theG-X crossover in the GaAs AlAs short
period superlattices.15–19When the period of the GaAs/AlAs
superlattice decreases, theX state confined in the AlAs quan
tum well becomes lower than theG state confined in the
GaAs quantum well, and the superlattice changes from
direct energy gap to an indirect energy gap. In the case of
superlattice theX state is provided by AlAs, while in the
case of wire theD states are provided by GaAs. Because
effective mass of theG1 state is small, until the width of wire
m decreases to 2~7.7 Å! the wave functions of the lowes
conduction-band states~C1 andC2! do not consist of the
component of bulkG1 state, hence the GaAs wire is still a
indirect energy gap semiconductor. But from Table III w
see that the optical transition matrix elements of the Ga
wire are larger than those of the Si wire by about two ord
of magnitude for the same width, and increase with decre
ing width.

The ZnSe wire shows another characteristics. From Ta
III we see that the ZnSe wire is always a direct energy g
semiconductor until the width of wirem decreases to 2. Be
cause the bulkD states are far higher than the bulkG1 state
by 1.7 eV, furthermore the effective mass of the ZnSeG1
state is rather large (0.15m0), hence the bulkG1 state is
always lower than the bulkD states as the width of wire
decreases to 2. The wave function of the electronic gro
state (C1) includes the large component of the bulkG1 state
0.42 and 0.12 for wire widthsm55 and 2, respectively
From Table III we see that the direct transition matrix e
ments for the electronic ground state are not equal to z
only for the z polarization, which is verified by the
experiments20,21 and the effective-mass theory.21 The direct
optical transition matrix elements decrease, with the width
the wire decreasing due to the mixing of the bulkG1 state
and other states. Experimentally it is found that a II-VI com
pound semiconductor cluster of 20–200 Å shows good lu
nescence characters;22 our results prove theoretically that th
optical transition is direct in these thin quantum wires
dots, and give a fine prospect for them in the practical ap
cation.

V. SUMMARY

In this paper we studied the electronic states and opt
transition properties of three semiconductor wires Si, Ga
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and ZnSe, using the empirical pseudopotential homojunc
model. The energy levels, wave functions, optical transit
matrix elements, and lifetimes are obtained for wires
square cross section with widths from 2 to 5 (&a/2). It is
found that these three kinds of wires have different quant
confinement properties. For Si wires, the energy gap
pseudodirect, and the wave function of the electronic grou
state consists of mainly four bulkD states. The optical tran
sition matrix elements are much smaller than those of a
rect transition, and increase with the decreasing width of
wire. When the width of wire is 7.7 Å, the Si wire change
from an indirect energy gap semiconductor to a direct ene
gap semiconductor due to mixing of the bulkG15 state. For
GaAs wires, the energy gap is also pseudodirect in the w
range considered, but the optical transition matrix eleme
are larger than those of Si wires by two orders of magnitu
for the same width. At the smallest width there is no trans
to the direct energy gap as in the Si wire. For the ZnSe wir
the energy gap is always direct, and the optical transit
matrix elements are comparable with those of direct ene
gap bulk semiconductors. They decrease with decrea
wire width due to the mixing of the bulkG1 state and other
on
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states. All the quantum confinement properties are discus
and explained by our theoretical model and the semicond
tor energy-band structures. The calculated lifetimes of the
wire and the positions of PL peaks are in good agreem
with the experimental results of Calcottet al.13 The theoret-
ical model has some advantages compared to the di
pseudopotential calculation. If we perform the direct pseu
potential calculation we need to use 6000 plane waves.
secular equation cannot be solved without using a soph
cated computer, while the dimension of the secular equa
in our model is only 196. The wave functions calculated
our model obviously consist of components of bulk states
the Brillouin zone, so it is convenient to analyze the tran
tion property. Our model does not put any restricted con
tion on the boundary, hence it can be applied to any se
conductor wires, and takes into account the pure quan
confinement effect.21,22
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