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Self-consistent calculation of discrete and continuous states
in spherical semiconductor quantum dots
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A self-consistent procedure for calculating the energy structure, wave functions, and charge distribution in
spherically symmetric semiconductor quantum dots is presented that takes account of both bound and free-
electron states. The Scliiager and Poisson equations are solved iteratively while using the Morse-type
parametrized potential to keep the charge neutrality in each iterative step. Numerical calculations performed for
a GaAs-Al ;Ga, ;As based quantum dot indicate that under realistic doping conditions bound states account
for most of the charge accumulated in the dot. However, the self-consistent potential very significantly modi-
fies the free-state wave functions and hence the bound-free transition matrix elements.
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I. INTRODUCTION hZ 1
{_ 7V<m*<r> v

+U(r)}Re(r)Y/m(‘9!¢)

Semiconductor quantum dot structures have attracted con-
. ) . . =ER(r)Y m(6,0), 2
siderable research attention, both theoretical and experimen- Re(1)Y/m(6,6) @
tal. Analytical models based on the multiband effective massvhereR(r) is the radial part of the envelope function, and
approximation, have been developed for spherically symmetn* (r) the radially depe.nde.nt electron effective mass. In the
ric dots! and self-consistent studies of the accumulatedstructure considered it is given by
charge have been doAeret, the free part of energy spec- R
trum in these structures was not very thoroughly studied. In iy | Mwr T<Ro 3
. m*(r)= )
analogy to the more conventional quantum well structures my, =Ry,

one may expect that free-electronic states in the dot may al%ahereR is the dot radius andn,(m,) are the effective
become very important in some phenomena or applicationﬁwassesoin GaAGAl,Ga, _ As) i.eYV thl(je well and bulk ma-
of quantum dot$.Here we present a self-consistent Proce-arials. Introducina tﬁax néw ;‘unctionqs/(k r)  with
dure for calculating the energy structure and charge distribu (") =r¢,(k,r), as usual in such problemé V\,/e recast Eq.
tion in quantum dots, taking account of both the bound an 23 into '
free states. Also, we explore the influence of the self-
consistency on intraband bound-bound and bound-free opti- 1 d{ , 1 d (d)/(k,f)” Z(/+1) ¢ (k)
r el —

cal transitions. r2dr| m*(r) dr r r3 m* (1)
E_U ¢ (Kr) 0 4
Il. THEORETICAL CONSIDERATIONS + P[ (] r - )
A. The effective mass Schrdinger equation with /~ denoting the orbital quantum numbéi(r) the po-
for a quantum dot tential energy, and the constakt is related to energy,

_ _ E=(%2k?/2m;). The boundary conditions for the function
Electronic states close to the conduction band extremu%/(k r), in the center of the structure®is

can be described by a single-electron one-band effective

mass equation: lim2/7+1)1r=" "¢ (k,r)=1. (5)
r—0
) - - - The asymptotic form of the solution of Ed4) for large
[E(=iV)+U(r)]F(r)=EF(r), (D values of radii may be obtained by first writing its general

solution as a linear combination of counterpropagating plane

- . waves f (=k,r) that satisfy the asymptotic boundary
where F(r) denotes the envelope function. In the case of.,4itiong

GaAs and similar materials with the isotropic electron effec-
tive mass, Eq(1) applied to a spherically symmetric quan- lime™ % f (+xk,r)=i", (6)
tum dot takes the form o
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in terms of which the solution of Ed4) reads j/+1 "
é,(Ko,r —0)= m\[(7%2)72] f (—ko)e ™'
6,k =Ca(RF (kD) +CoRTA-KD), (D) 2k/+1(m_W)
b
with
e lkolr, (16)
my | 1772 A ted by Eq.(16) bstitute ¢, (K,r)
C.(K)= (_) f(=K), 8 s suggested by Eq. we substitute ¢ (k,r
1= 57 My A=k ® =F_ (k,r)e " in Eq. (4), and the differential equation for

F,(k,r) inside the dot reads

(_ 1)/| m, —[(/+2)/2]
c (k)Z—ﬁ—(—) f (k), 9 d?F dF m 2m
2 2k T\ m,, g o k—L | 1- k- | S U
dr dr my, h
andf (+k) denotes the Jost function defined as ,
(/+1) Eo—0 1
(KD (k) A 17
f (£k)=Iim e (10
o (27-1)H and in the bulk (>Ry) it has the form
The solution of Eq(4) may thus be written as d?F,, dF,, [2my A(/+1) F—0
_ gz kg, Tz YO+ —z—|F2=0,
i
b kD) = [ AR AkT) 19
2k/+1(—w) with the bound state enerdy= — (%2k?/2m,). The bound-
m ary conditions to be imposed t#®, (k,r) andF, (k,r) fol-
VY . low from Egs.(5) and(16) and from the continuity of radial
(=171 Aof(=k,n)]. (A finction derivative at the heterointerface
By comparing the solution of Ed4) for the constant effec- 1 dR 1 drR
tive mass casein the limit r —, it "4 it 4 (19)
m, dr | _. my dr | _.
i/ t1lg=i6,(K) _ _ _ 0= 0+
b (K r =) ——— [e K —(—1) e?oWelkr], These read
(12 Fi(kr=0)=0, Fi,(kr=Ry_)=Fp(kr=Ry,),
and Eq.(11) in the same limit
dF,,
i/+1 - Fz/(k,l’—mo)zl, T =0 (20)
¢, (K,r—o0)= , [f(—ke T
2k/+1(ﬂ)[( +2)/2] and
My
dFy (k,r=Ro-) _my dF;/(k,r=Ry,) N ( 1- %)
— (=D (k)€ ], (13 dr My dr My
}/.vee. E_]‘lnd that the ratio of Jost functions remains unchanged, | ke R_O Fo (kI =Ro.). 21)
f (k) The normalization constant€ (k) of the eigenfunctions
f(/—k):eiw/(k), (14) ¢ ,(k,r) are to be determined from the unity-norm condition.
(=
so the asymptotic solution with the position-dependent mass C. Free-electron states
(3) is of the same form as that with constant mass, The free-(continuous electron spectrum is characterized

by positive energiesE=(%2k?/2m,), measured from the
conduction band edge deep in the bulk. From the asymptotic
expression(15) it follows that ¢ (k,r) for large values of

r can be written as

The position-dependent effective mass is, however, reflected _

in the values of the phase-shift function. ¢ (k,r)=Im{elkr=(7maToME (k). (22

Substituting it in Eq.(4) we find that forr >Ry,

. (15

, /o
¢/(k,r—>00)OCC(k)SIF{kr— 74— 6,(k)

B. Bound electron states ) i
d Fz/ . d Fz/ 2mb /( / + 1)
ar2 +2ik ar |\ 72 U(r +r—2 F,, =0,

(23

Valug(s) kg in the lower half of the complek plane in
which the Jost function became zero correspond to bound
states of the systefnFrom Eq.(11), then, it follows that the
corresponding eigenfuntions asymptotically behave as and forr <R,
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d’Fy,  _ dFy, Rint—* 1 a6,
7(“’ +2|k—dr fo d)/dr—ﬂ k Rinf"’ﬁ
My W (/+1) 1 l
+ E_1>k2_(?U(r)+T F1,=0. —§S|n2(kRmf—7+5/(k)) o
inf—
(29 (31)
The boundary condition fofF;, and F,, is found using
similar arguments as in the case of bound states, and reads€:
dF,, Rin— C2(k) 96
1 2% _ in 2 . / . _/
inf—*
F1(Kr=Ro-)=F2(Kr=Ro.), (25 pecauseg,(k,Ry)=0. For the quasicontinuous spectrum
and we havé
dF(k,r=Rg_) m, dF,(k,r=Rg.) [my dk 1 .. 2dk
dr “my dr lm, 1 =T sk CAR=—1 (33
1 inf 9K
X|ik—=]|Fy(k,r=Rg,). 26 . o
I Ry 2/( o+) (26) and, using Eq(29), the free-electron density is given by
To complete the construction of radial eigenfunctions one 1 /max 22
should find the phase shif (k). Using Eq.(4) we find ne(r)= ?/Zo (2/+ 1)f0 |R</n1)k(r)|szD( 2mb) dk. (34)
|m{ei[kr_(/ﬂ-/2)+5/(k)]Fl/(k,l’=O)}=O, (27) /
wherefrom The bulk is tgkgn 'to pe uniformly doped with donors, and
degree of their ionization being
Im{F,,(k,r=0)}
tar{6,(k)]=— REF L (KI=0)}" (28) Ng
1A Nd(1) = T 5 alEr Eps UTTReT] (39

D. Electron density whereNy, Eq,, andEpp, denote the donors density, bulk

The normalized bound state wave functions, upon takind-ermi level, and donor ionization energy. Equati@3) ac-
the modulus squared, and multiplying by the Fermi-Diraccounts for the influence of the local potentld(r) on the
distribution function fepE;=[el(Fi~Er/keTl+ 1171 are di- degree of ionization.
rectly applicable for calculating the electron density on
bound states, via E. Poisson equation

1 “m Np(#) The electrostatic potential is found by solving the Poisson
(=52 (2/+1) 2 IR AN*fes(Ei), (29 equation,

where Ny(/) denotes the number of bound states for any VIe(r)Ve(r)]=—p, (36)
particular value of” and the factor 2(2+1) accounts for
the spin and magnetic quantum number degeneracy, and t B o o
functions are taken to be normalized B&R2r2dr=1. permittivity which is also position dependen(r)=e, for
The expression for free-electron density, analogous to Ec{.<R$ ande(r) =& for rrTROt') Due to the spherical symme-
(29), depends on the type of free wave function normaliza- ry of structure Eq(36) thus becomes
tion. Here we use the “box” normalization, i.e., take the
structure to be embedded in a spherical loofinite poten- i
tial), its radiusR;,; being very large. The continuous spec- re
trum in such a case becomes quasicontinuous, i.e., formally . .
very dense discrete. With the effective mass dependenc¥ith — ¢(r) ~ satisfying  the  boundary  conditions
given by Eq.(3) the unnormalized free spectrum wave func- $(0)=0de/dr|;_o=0, the first of which is simply the

erep denotes the charge density anft) the dielectric

de
E(r)rza =-p, (37

d
dr|

tions ¢, (k,r) satisfy choice of reference. Integratin@7) then delivers
Rui o [0, db, P, _ 1fr v(v=)p(v)
2k o ¢/dr— WT— /M . . (30 (P(r)_F 0 Tdv (38

nf

From Eq.(15 ¢ (k,Rj—®)xsinkRy—(/m7/2)+5,(k)]  Sincep(r)=—e[ny(r)+n.(r)—ny(r)], the ionized donors
and it follows from the above expression that density is
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0, r<Ry
ng(r)= N . (39
17 2elEro EoligT: = Ro
The potential inside the dot €Ry) is
e r
en)= = [ olny(w)+ne(o)1a
€11 Jo
1(r
—;f vz[nb(v)+nc(v)]dv} (40)
0

and outside (> R)

€1

R 1 (R
o(r)= E[ JO ov[nb(v)+nc(v)]dv—;J0 "0 ny(v)

e
+ne(v)]dv |+ —
€2

L: v[np(v)+ne(v)—ng(v)]dv

: (4

1(r
_ _J v ny(v)+ne(v)—ng(v)]dv
Ro

and the

potential energy isU(r)=—ep(r)—AE;

F. Charge neutrality of the structure

The global charge neutrality of the structure implies that

fw[nb(r)+nc(r)—nd(r)]rzdr=0. (42

0

Substituting the expressions for charge densities in(&2).
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merical integration of the Schdinger equation, and in the
bulk region the potential is written as a Morse-type function
with three parameters

Po
1-p8

as is customarily done in such a cdSeHere ¢, represents
the potential of the heterointerfacesR), while A and 8

are related through the conservation of dielectric displace-
ment at the interface:

@(r—Rp)= [e MR- ge 2 =Ro] (44

de
exh ot e1gr -
— B 07
285N ot 81@
r=Rg_

Therefore, a single free parametex)(remains to fit the
Morse potential in order to get the charge neutrality, Eq.
(43). As usual, a suitably chosen convergence faftaras
introduced to make the procedure stalflege., the input po-
tential in the next iteration was taken as weighted average of
the input and output potentials of the previous iteration,
UM D=yt fum—ymy,

out in

(46)

The value off =0.7 was taken in our calculations.

H. Intraband transition matrix elements

Having found the wave functions of bound and free states
in a quantum dot, it is straightforward to calculate the matrix
elements of bound-bound and bound-free optical transitions.
Given the spherical symmetry of the system these are polar-

and using some analytical properties of free-state wave funGzation insensitive. For bound-free transitiofgaiantum dot

tions (see the Appendjx we find

1o 2 e 8,(k)kdk
?/E:O (2/+ 1) 4mkaTf0 ﬁ hzkz_zmbEFb
¢ 2mgkgT
7 max Np(#)

6,(0) )
- Tt +520 (2/+1) 2 fro(E)

—JRHw[ncb— ng(r)Jr2dr=0, (43
0

wheren, in the last integral denotes the electron density in

the bulk.

G. The parametric self-consistent procedure
Within the self-consistent procedure the Salinger and

Poisson equations are solved iteratively. Somewhat differert,=12.24,

“jonization” ) the dipole matrix elemehtis given by

M(n/,E/’)=f R, R dr, (47)
0

where n denotes the principal quantum number of bound,
and E the energy of the free state. The same expression,
upon substitutiore—n’, holds for bound-bound transitions.

In either case the orbital quantum numbgrand /"’ satisfy
the selection rule”— /"= +1.

IIl. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations were performed for a GaAs dot
with the radiusRy=10 nm embedded in Al:Ga, ;As bulk.
Based on data in Ref. 12 the following parameters were used
in calculation: the effective masses in the dot and bulk ma-
terials m,=0.067 andm,=0.092 (in free-electron mass
unity, and the dielectric permittivitiese;=13.18 and
respectively, the donor binding energy

from the conventional self-consistent procedure that deal&p,=8.21 meV and conduction band offsatE.=227.9
only with bound states, we have employed the parametrizaneV. The Fermi level for a given donor doping level was
tion of Hartree potenti&f within each iterative step, which calculated from EqgA3) and(35). All the calculations were
enables one to enforce the charge neutrality condition andone for the temperatufe=300 K, and the donor density in
contributes to the numerical stability of the procedure. Inthe bulk was taken in the rangefe 10 cm™3, i.e., not far
effect, inside the dot the potential is obtained by direct nufrom unintentional doping levels in these materials, the
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b 2 N —— Non self-consistent calculation
1.0 Ng=10" fem™®)
- N.=10"[em ] ‘
Nd_1015[cmz] ] r=10nm
Nd=10 [em™] 0.3-:
0.6
0.4
0.2
0.0 +rrrrrrr e T T .
0.0 0.3 0.4

1 0.2
! ottt T Energy [eV]
10 20 30 40 50 60 70 80 90 100
r [nm]

FIG. 2. Dipole matrix element squared for the bound-free tran-
sition (n=0,"=1)—(continuum/=0) in R=10 nm GaAs/
FIG. 1. Self-consistent Hartree potential in the bulk region of Al ; ;Ga, sAs quantum dot, calculated with or without the self-
R=10 nm GaAs quantum dot structure, at two different donor dopconsistent effects, with the donor doping ledg)= 10" cm 3,
ing levels of the bulk.
depletion region extends from the dot boundary to deep in-

Fermi level being—0.229 eV and—0.169 eV in two limit ~ side the bulk.

cases, measured from the conduction band edge deep insideWhile the free-state space charge may not have large ef-
the bulk. fects on the electronic structure, except for very large doping

To find the energy spectrum Eq4.7)—(18) for discrete levels, the wave functions @mostly unpopulatedree states
and Egs.(23)—(24) for free states were numerically inte- may be substantially affected by the self-consistent Hartree

- _ . potential of accumulated bound states charge. This is re-
arjstefggzﬂtgf ;gg?dfgr t(? (I)E ;gg) g?lg 522) C?ﬁ;gﬁuorlﬁgﬁl_ty flected in the values of bound-free intraband optical transi-
cal procedure employed%vas found to be véry stable and of tion matrix elements, describing the absorption related to

hiah 2 Within th i t th antum dot “ionization,” to use the analogy with atomic
'gh accuracy. Within the continuous spectrum he energy physics. Such transitions have been considered in Ref. 14,
range included in calculations extendedHEg,=130 meV

] I I with the space charge effects neglected. In Figs. 2 and 3 we
above the bulk conduction band edge. This was sufficient t?;ive the dipole matrix elements squared vs free-state energy

cover all significantly populated states while keeping thedepedence for bound-frem€0,/=1)—(E,/’ =0) transi-
nonparabolicity low(the largesk vector were<1/20 of the  tjon, calculated via Eq(47) self-consistently or non-self-
distance to the Brillouin zone boundaries consistently. The accumulated space charge tends to increase

There are five bound states in this dot. The non-selfthe matrix elements squared, taken at the peak absorption
consistent calculation gives their energigse notation is energy, by a modest 11% at the doping density of*10
En,) asEgo=—0.189 eV,E; ;=—-0.080 eV,Eq;=—-0.148  cm3, or a very significant 65% at ¥dcm™2. It is mostly
eV, Eg,=—0.098 eV, andEq;=—0.040 eV. The corre- the sensitivity of wave functions in continuum which brings
sponding values obtained by the self-consistent calculatioabout the importance of self-consistency. The bound-bound
are —0.181 eV, —0.078 eV, —0.142 eV, —-.092 eV, and
—0.034 eV atNyg=10*cm~3 and—0.162 eV,—0.052 eV,
—0.124 eV, —0.075 eV, and—0.018 eV atN4=10" cm
~3, Effects of self-consistency are thus quite significant.
However, they are here due mostly to bound, not free, states
space charge.

In the above range of doping densities the Fermi level is
well below the conduction band edge, i.e., the population of
free states is quite low. The charge density in the dot region 97
almost entirely originates from bound states, and the same 96
holds true for the Hartree potential. It is only at very much 0.5
larger doping densities, of the order of'I@m ™2 or more, 0.4
that free-state space charge and Hartree potential would be- 0.3
come non-negligable in respect to bound states contributions. 0.2
However, quantum dot structures with such doping do not  o.1
seem to be of interest at present. The calculated self- o0
consistent Hartree potential for two values of doping, is 0.0 0.1 0.2 0.3 0.4
given in Fig. 1, indicating the increasing importance of the Energy [eV]
self-consistent calculation as the doping increases. The FIG. 3. Same as in Fig. 2, but fdty=10" cm3,

Self-consistent calculation
- Non self-consistent calculation

N=10"% [em™®]
r=10nm




15 686 TODOROVIC, MILANOVIC , IKONIC, AND INDJIN 55

transition matrix elements squared, calculated via the twdhe second term ifA4) is the “excess” density that appears
approaches at 10 cm™3, differ by less than 5%. This is due to the heterojunction. In E432) for the free-electron
because bound states wave functions are essentially detefensity it is convenient to use(r)=(1k)R!"(r) instead
mined by the built-in confining potential and are not very of the unnormalized radial functioR(")(r). Prior to substi-
sensitive to the details of mild self-consistent correctionsyting (A4) into (42) the integrals [R~*(R*)2r2dr and
Fig. 1. On the other hand, free-state wave functions come O‘j{RH“jﬁ(kr)err are evaluated, using E¢32)

to be sensitive, apparently because the Hartree potential has 4

rather long range, just like the character of the wave func- R - 1 ds,(K)
. * = — - -
tions themselves. Jo (RY)“redr= 213 k| R+ JK )
IV. CONCLUSION 1 S
. . — =sin2l kKR— —+4,(k) ||,
The self-consistent procedure for calculating the elec- 2 2
tronic structure and charge density in semiconductor quan- (A5)

tum dots, taking into account both the discrete and continu-
ous parts of energy spectrum is presented. Numerical R 1 1 S
calculations performed for a GaAs-§dGa, -As based quan- j j/(kr)rzdrzﬁ{kR— Esinz( kR— 7) }
tum dot show that only bound states significantly contribute 0

to the total charge in the dot region, unless the doping level

of bulk is quite large 10" cm™2%). However, the free-state wherefrom

wave functions are considerably affected by the Hartree po-

tential of the accumulated charge. This shows in the values R 2 2 5

of bound-free optical transition matrix elements, calculated jo [(RZ)“=j(kr)]r=dr
self-consistently or non-self-consistently, the difference be-

tween the two approaches becomming prominent at doping 1 dé (k)
levels 134—10' cm™3. Calculating the bound-free intra- “5KkZ dk T a3
band absorption in most structures is thus likely to require
the self-consistant procedure.

'Z(kR m
Sin —7

s

> +5/(k)”. (A7)

—sin2< kR—

APPENDIX . . o .
and, following the same lines as described in Ref. 8, we find

In a homogeneous, uniformly doped bulk semiconductor

the free-electron density is given by R—o
f n(r)radr
1 3
Neo(r)=—3 2, (2/+1)J j2(kn) fep(k)k?dk, (A1)
T =0 0 R 12 »  98,(K)
_ . o =f 2dr+ — >, (2/+1)f frp—"dk
where j (kr) are the spherical Bessel functions, i.e., the o Mool A~ o P gk '
regular solution of Eq(4). Using the property of spherical (A8)

Bessel function's . .
From Eqg.(41) the bound electron density may be written as

2/+1)j%(kr)=1, A2 R
2 )jZ(kr) (A2) f (P2
0
we find from (A1) that the electron density in bulk is
/max Nb(/)
l % 1 , R—
ncb:;zfo fep(K)k2dk. (A3) :ZZO (27+1) Z:l fFD(Ei)fO IR (r)[?r?dr
Using Eq.(A3) in Eq. (34) we get 1 7max Nl
—EZO (2/+1) ;1 fen(Ep). (A9)

1 ©
=Nep+ RW() P2 (kr)}Hep(k)k2dk,
Me(F)="Nep ?fo R =k} Teo(k) Substituting Egs(A8) and (A9) into Eq. (42) the charge
(A4) neutrality equation(43) is derived.
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