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Shallow electron states of bounded intrinsic stacking faults in silicon
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The electronic structure of bounded intrinsic stacking faults in silicon is studied. Especially the influence of
the stacking fault width on the electronic states in the band gap is investigated. The extended defect studied
comprises an intrinsic stacking fault with two reconstructed 90° partials as boundaries. The atomic structure is
determined by different valence force fields. These are the Keating potential, the bond-charge model, and an
anharmonic version of the bond-charge model. The electronic structure is calculated by linear combinations of
atomic orbitals. Ten Gaussian-type atomic orbitals-of p-, andd-type are used, and up to fourth-nearest-
neighbor interactions are taken into account. The levels in the band gap are evaluated by the recursion method
for nonorthogonal basis functions, and by a continued fraction representation of the local density of states.
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l. INTRODUCTION displaced by £,3,7) with respect to the other. The atoms in
the two lattices do not have identical surroundings, so the

Electronic and structural properties of extended defects irstructure can be described by an fcc lattice with a basis of
silicon have attracted considerable attention see, e.g., the rewo atoms per unit cell. Therefore, dislocations in the dia-
views by Labusch and Sher! Alexander® or Alexander mond structure are expected to be similar to dislocations in
and Teichle? This is not surprising, since it is known that fcc metals.
such defects in the active region of silicon devices degrade In fcc metals the main slip planes are tfEl1} planes,
the performance of these devices. This problem is seen iand the major slip directions at@10). The smallest perfect
both integrated circuits and high voltage devices. Most studBurgers vector ig(110). There are two perfect dislocations
ies concentrate on bond-breaking defects, such as dislocaith Burgers vectors and dislocation lines algid 0 direc-
tions and vacancies. In contrast, there are few investigationgons. One is a pure screw and the other is a 60° dislocation.
of stacking faults. This is due to experimental and calcula-These perfect dislocations can dissociate into two partial
tional difficulties resulting from the small energies involved. ones. The 60° dislocation splits into one 30° and one 90°

Since stacking faults are produced when perfect dislocapartial, while for the screw dislocation two 30° partials are
tions split into partial dislocations, stacking faults and dislo-formed. These partials are separated by a low-energy stack-
cations are unambiguously linked. Therefore it is importantng fault, which is a planar defect corresponding to errors in
to study stacking faults if an understanding of the electroniche stacking sequence in thel1) direction. This fault is due
properties of extended defects is wanted. Such knowledg® relative displacements dfl11} planes by#211). This
may be of help in the design of new devices. type of dissociation into two partials reduces the strain en-

An important question is if there exist, within the gap, ergy associated with the dislocation. The size of the stacking
electronic energy levels that are associated with a defectault is determined by the balance of the tépulsion be-
Since most interest has been focused on the dislocation cot@een the partials, with the constant attractive force resulting
states, there are few experimental investigations of stackinffom the formation of the stacking fault.

faults. However, Weber and AIexandbusing photolumi- The same characteristics are found in the diamond lattice.
nescence spectra of plastlcal_ly deformed silicon, observed However, the existence of two sublattices generates a layer
stacking fault state at approximatefy, +0.15 eV. structure containing {111 planes in the sequence

This work is a theoretical investigation of the electronic ... AaBbCcAaBh .., where the pairs of planes with the
energy levels associated with bounded intrinsic stackingame indices, e.gAa, project the same positions ¢mh11}.
faults. It is focused on how the energy levels within the gapThe distance between the subsequent planes in one pair, e.g.,
are influenced by the width of the stacking fault. The outlineA anda, is three times longer than the distance between two
of the paper is as follows. In the next section the geometry Ofsubsequent planes in different pairs, eagandB. Therefore,
the bounded stacking fault is described. The unit cells arghere are two distinct types ¢f.11} glide planes in the dia-
presented in Sec. lll. Section 1V describes the calculationainond lattice, the one between planes in one pair, which is
method used to determine the electronic structure of thealled the “shuffle plane” and the one between different

stacking faults. The results are presented in Sec. V and digairs, which is called the “glide plane.” The existence of

cussed in the concluding Sec. VI. two distinct types of glide planes results in two sets of dis-
locations with quite different core structures.
Il. GEOMETRY OF THE BOUNDED STACKING FAULT Only the “glide-set” dislocations have properties similar

to dislocations in fcc metals, so dislocations in this set can
Silicon crystallizes in the diamond structure, which corre-dissociate into partials separated by a low-energy stacking
sponds to two interpenetrating fcc lattices, one of which isfault. The dissociation into partials was experimentally ob-
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served in silicon and germanium by the weak-beam tech:

nique of electron microscopy.’ ... , e e e s e e e e
The stacking fault separating the partial dislocations is | | Egg.g E‘E‘-‘: o :@: . :@: Eg ..
found to be either intrinsic or extrinsic, but in siiconama- | & T g 0 U000, o E E B e
jority is of intrinsic charactef. These low-energy stacking R @: .: . : I = IS S
faults involve the insertion or removal of pairs of planes with . e . . o o . . . o
- B E° TP e® o® o® o® o o® o® o & o o® % o
the same indicesAa, Bb, etc. The layer structure of an B 8 JT 0% 0% o® o® @ B G GF B 0° o° o o° o° o°
intrinsic faultis .. .AaBbCc'BbCcAa...,where 1 indi- e 0 0% o® o® o0 ¥ ST T L 0 0 0 e
cates an abserita plane. In silicon the width of the stacking 0% 0% 0% 0% 0% 0% T 4% 4% 4% 4% o0 o0 o0 o0 BT T
fault separating the two partials in a dissociated diSIOCAtIoN IS | & «® % o® «® o® o® B o® ¢® o® o o® o® o* & ° o*
about 40 A for the screw dislocation and 65 A for the 60° o® o " B GF B T 0% o % o® o® o o W " o
dislocation® R O IR C NI C I R e e ORI
....@......Q..'. ....@OE’OEQEQEO....

Ill. GEOMETRY OF THE UNIT CELLS

A theoretical study of extended defects is restricted to a FIG. 1. A projection of an ideal diamond lattice on the (110)
finite and relatively small number of atoms. There are twoPlane. Cuts are made in zig-zag patterns and the atoms indicated by
approximation methods which could be used in the studySquares are removed _from t_he crys_tal. The horizontal parts of the
The first is to construct a large finite cluster surrounding thefuts will generate the intrinsic stacking faults ar_wd the vertical cuts
defect. However, it is likely then that the influence from the Wil generate the 90° partials. From the resulting crystal the 64-
surface of the cluster would mask the more subtle electroni@®™ unit cell shown in Fig. 2 is obtained.
effects of the stacking fault studied here. The second method,
which is used in this work, is the large unit cell method. This
method involves forming an infinite superlattice of defectspolar lattice of dislocations is generated. This avoids the gen-
by periodically repeating a large unit cell. The use of peri-eration of grain boundaries altogether, which means that the
odic boundary conditions requires that the sum of the Burunit cells can be joined without any misfit at the cell bound-
gers vectors in the unit cell is zero, since otherwise the elasaries.
tic strain energy of the crystal would be infinite. This means In this work the construction of the unit cells starts from
that the cell must contain at least two dislocations and if itan ideal crystal. Cuts are made in zig-zag patterns through
contains two the Burgers vectors must be equal in magnitudthis crystal as shown in Fig. 1, where the atoms indicated by
and opposite in direction for the two dislocations. squares are removed. The horizontal cuts will generate the

In the most realistic study of the electronic effects fromintrinsic stacking fault and the vertical cuts will generate the
the stacking fault the unit cell should contain a pair of dis-90° partials. Next linear elasticity theory is used to find a
sociated perfect dislocations with opposite Burgers vectordjrst approximation to the atomic structure. Finally an ob-
which means four partials. This would lead to a very largelique unit cell, containing two dislocations and one intrinsic
unit cell. To restrain the size of the problem one of the par-stacking fault, is constructed. A resulting 64-atom unit cell is
tials in a dissociated perfect dislocation could be replaced bgeen in Fig. 2. The primitive translation vectors of this super
a different partial so that the sum of the Burgers vectors ofattice are obtained from the primitive translation vectors of
the two partials is zero. This means that the unit cell onlythe ideal crystal and the Burgers vectors of the partials. This
needs to contain two 30° partials or two 90° partials. means that the average density is assumed to be unchanged

The strain field is influenced by this exchange. Howeverwhen the defects are introduced in the crystal.
this deficiency does not alter the topology of the stacking The final atomic structure of the unit cells is obtained by
fault. using different valence force fields. The ones used are the

In silicon the partials are reconstructed. This means thaKeating potentiaf, the bond-charge modé&l,and an anhar-
the unit cell length along the dislocation lines must corre-monic version of the bond-charge modéThe Keating po-
spond to the periodicity of the reconstruction of the partialstential accurately reproduces the elastic constants or simu-
For the reconstructed 30° partials this length is twice as long
as for the reconstructed 90° partials, i.e., the 30° partial~

requires twice as many atoms. e o o o o
A unit cell withholding one intrinsic stacking fault with e o o e o o
two reconstructed 90° partials as boundaries implies that th o o e o
number of atoms in the cell is reduced by roughly a factor of ® o _ @ ®
four compared with the most realistic case. Therefore thi * LA b
type of cell is used in this work. e e e o
e o o o o

There is one additional consideration that must be takel
into account when the unit cells are constructed. Generall o o e o e o o o
unit cells containing dislocations will generate grain bound-
aries when the cell is repeated periodically. Unless the size F|G. 2. The 64-atom unit cell projected on thg plane. The
of the cell is commensurate with the periodicity of the graincell contains one stacking fault, which is about 13 A widashed
boundaries a misfit is introduced at the cell boundaries. Ongne), bounded by two reconstructed 90° partiéslid lines with
way to avoid this is to construct a unit cell so that a quadru-opposite Burgers vectors.
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lates the phonon softening depending on the choice of 15
parameters. The bond-charge model simultaneously repro- A . = =
duces the elastic constants and the phonon softening. The 1 T — —
anharmonic version of the bond-charge model reproduces, ing ~ F. - - . - . E
addition, the third order elastic constants and gives a more z, osf -7 . . .. 0 oL . ]

=

realistic form on the potential between two atoms than the e

other two valence force fields. 0 7 T
IV. ELECTRONIC STRUCTURE CALCULATIONS 05E
LsfF

The electronic structure of the stacking faults is calculated
using linear combinations of atomic orbitals, which is a very 1
convenient choice of basis functions for band-structure 5 E
calculations-**® The Schrdinger equation, which deter- ?E 05k
b L
&

mines the band structutg,(k), is

4] —_-'.'._ ,...' 2 2 ol e e e
r A QI
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[__V2+V(r)}%(k,r):En(k)wn(k,r), 1) 0.5 L R
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Dimension of the Jacobi matrix

L

where ,(k,r) refers to a Bloch function with wave vector FIG. 3. Eigenvalues of the Jacobi matrix vs matrix dimension.

k. The valence band maximunk() of the ideal structure is atero
The potentialV(r) is a sum of atomic potentials(r), eV. The seed state is a simple linear combinatiomp afrbitals on

V(r)=Zuv(r), wherev(r+ RM)=v(r) for any atomic site four different atoms in the center of the stacking fault.(& the

R, in the crystal. The atomic potential is represented byunit cell is a 196-atom cell relaxed with the anharmonic bond-

spherical Gaussians as charge method and ifb) the unit cell is a 1936-atom cell relaxed
with the same valence force field. The shallow states nggr ére

anr? Cwr? well converged after about 500 recursion steps even for the larger
v(r)=p.e 1 +pBre 2, 2 cell

where 8,=20.0, B8,=—17.7, «;=0.633, anda,=0.459
in atomic units:*

A set of functionsy; , localized on the atoms of the crys-
tal is used to expand the Bloch functiogig. The function
ui(r—R,) denotes theth function on the atomic sit&,, .
The functions used are Gaussian orbitals of the form

thogonal basis function$:'*In this method the quantum me-
chanical problem is transformed into a chain model starting
on a statgluy), called the seed state. This means that the
generalized eigenvalue problem is now represented by a
tridiagonal Jacobi matrix. The energy of the states in the
band gap are determined by calculating the eigenvalues of
, R this tridiagonal Jacobi matrix and the orbitals which give
ui(r)=Nr'e ¢ Ky j(r), (3) these states are determined by evaluating the local density of
states in the way described by, e.g., Wang and Lind&felt.

. . : o , In Fig. 3 the convergence of the eigenvalues of the Jacobi
in which N; is :a normalization constang, is a decay con- matrix is shown for one 196-atom and one 1936-atom unit
stant, andK, ;(r) is a Kubic harmonic. In this study two cell. The states near the valence band maximum are well
s-like, three p-like, and five d-like Gaussian orbitals are converged after about 500 recursion steps even for the larger
used. The twos orbitals have, respectivelyf=0.19 and cell. To get a correct prediction of the energies of the elec-

¢=0.31, and the other orbitals hage=0.19. tronic states, 1000 recursion steps are used in this study of
The advantage of employing Gaussians to describe thghe bounded intrinsic stacking fault.

potential and basis orbitals is that all matrix elements in the

Hamiltonian and overlap matrices can be expressed analyti- V. RESULTS

cally. Interactions up to fourth-nearest neighbors are in-

cluded in the calculations, since this accurately reproduces The infinite intrinsic stacking fault is used as a reference

the band structure of silicon based on plane waves when th&ystem in this work. Earlier investigations of infinite intrinsic

above orbitals and potential are uséd. stacking faults in silicot®=**show that these faults generate
The basis functions are nonorthogonal. This means thaloubly degenerated shallow electronic states at the Brillouin

the problem of determining the electronic structure of thezone center. These states are occupied and have an energy

crystal is turned into the problem of solving a generalizedabout 0.1 eV above the valence band maximug))(and

eigenvalue problem. Since the unit cells in the study of thehey split and bend rapidly into the valence band when leav-

bounded stacking fault contain up to about 2000 atoms, anthg the Brillouin zone center.

each atom is described by ten basis functions, the dimension Here, as in the earlier work§;*°the electronic structure

of the eigenvalue problem is roughly 20 000. Therefore usuabf the infinite intrinsic stacking fault is calculated using a

solving methods may not be used. Instead the electronismall hexagonal unit cell. This unit cell generates a crystal

structure is evaluated by the recursion method for nonorwith faults extending infinitely in the basal plane and repeat-
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FIG. 4. The energy of the doubly degenerate fault state of an FIG. 5. The energy of the fault state of an intrinsic stacking fault
infinite intrinsic stacking fault as a function of the number of atomsbounded by two 90° partials as a function of the number of atoms in
in the unit cell. The number of atoms is proportional to the distancethe unit cell. The square root of the number of atoms is proportional
between two adjacent fault planes. The valence band maximurto the width of the stacking fault. The atomic structure is deter-
(E,) of the ideal structure is aeroeV. The inset shows the type of mined by the Keating modelsquares and solid lingthe bond-
unit cell used in the calculation. The stacking fault plane is indi-charge mode{triangles and dotted lineand the anharmonic bond-
cated by the dashed line. charge mode(circles and dashed lineThe valence band maximum

(E,) of the ideal structure is ateroeV. The inset shows a 400-
atom unit cell used in the calculation.

ing periodically normal to it. Ideal bounding lengths and

angles are used, since this is what is predicted for this system

by the valence force fields used in the atomic structure rels due to the fact that the cells with 64, 400, 1024, and 1936
laxation of the bounded stacking faults. The distance be@toms are rotationally symmetric about the center of the cell,
tween two adjacent fault planes is determined by the numbefhile the cell with 196, 676, and 1444 atoms are inversion-
of atoms in the hexagonal unit cell. The number of atoms irfly Symmetric about the cell center. The energy is somewnhat
the cells is varied from 4 to 76 atoms, which means that the2Wer in the rotationally symmetric cells than in the inver-

distance between adjacent fault planes varies from 6.3 A tglonally.symmetrlc Ones, b.UI.'t must converge to thg same
119 A, value, since the symmetry is insignificant when the width of

. .the stacking fault is largénfinite). It should also converge
In Fig. 4 the energy of the doubly degenerate fault state Yo the vaIugE +75 me\??)f the i?’lfinite stacking fault whgen

seen as a function of the number of atoms in the unit Ce”the width goes to infinity, but the convergence is seen to be

which, in turn, is proportional to the distance between adja—Very slow.

cent fault planes. The energy of this fault state converges Tpege fault states are ascribed to the stacking fault since
exponentially tdE, + 75 meV when the distance is increased. ihey are localized in its vicinity. This is seen in Fig. 6, where
This is somewhat lower than the energy found in the works

cited above, but this is due to the larger unit cells used here.
The electronic fault states are dueptorbitals in the plane of
the stacking fault, whereas tipeorbitals perpendicular to the
stacking fault do not contribute to the states in the band gap.
In the study of the bounded intrinsic stacking fault seven

o....‘oAAAO

unit cells of different sizes where used. These cells contain . ,: _: - - - oo _f _:
64, 196, 400, 676, 1024, 1444, and 1936 atoms. The stacking R R S
fault width is proportional to the square root of the number o T ey 8, By B .

of atoms in the unit cell. The width is about 13 A for the

smallest cell and about 70 A for the 1936-atom cell. Thus
the largest cell contains a stacking fault which is wider than
the experimentally observed width of 65 A. These oblique

unit cells generate quadrupolar lattices of dislocations as dis-
cussed in Sec. IV. Since the fault states due to infinite intrin-
sic stacking fault are seen in the Brillouin zone center the
electronic structure of the bounded faults is calculated for g5 . (a) The local density of states of the fault state in the

k=0, i.e., in the Brillouin zone center. _ 400-atom unit cell relaxed by the anharmonic bond-charge model.

In Fig. 5 the energy of the fault states is plotted vs theThe density of states is projected on the eight different seed states
number of atoms in the unit cell. The energy of these stateghown in (b). (b) Each seed state is a linear combination pof
alternates between higher and lower values when the cedrbitals on four atoms. The positions of the four atoms are shown
size is increased, but it approaches a value slightly abovey the symbols. The atoms marked by squares are at the center of
E,+ 100 meV for the larger cells. The alternation in energythe bounded stacking fault.

Local density of states

50 100 150
Energy (meV)
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the local density of stated DOS) of the fault state in the

400-atom unit cell relaxed by the anharmonic bond charge & 142 £ ~e---o---- o mees o -mmmoon- e o]
model is shown. The density of states is projected on differ- 3 4!+ @ 3
ent positioned seed states where each seed state is a line i;‘g Fa R A E
combination ofp orbitals on four atoms. The LDOS of the 138 £ 3
fault state is highest in the center of the stacking fault. It 137 £ 3
decreases when the seed state is moved away perpendicular £ 136 |- 3
from the stacking fault. The local density of states also de- 135 | E
creases when the seed state is moved closer to one of th £ 13 Fo e ——p———er— o1

partials on the stacking fault side and almost vanishes be:
tween the partial dislocations on the perfect material side.

The influence of the bounding partial dislocations on the
states in the band gap is significant in the smallest unit cells.
For the ideal infinite intrinsic stacking fault it is theorbit-

o5 |

als in the stacking fault planep() that give rise to the states 94 , RS e— NT— _
in the band gap as discussed above. When the same invest E ]
gation is done on the 64-atom unit cells it is found that it is 93 b, o oo oo °

Minimum bond angles (degrees) Maximum bond angles (degrees)

\\I‘\I\\‘I\l\‘VIVIIIIIIIIIIIII‘lI‘\\\\g
the p orbitals perpendicular to the fault planp,() that give 0 250 500 b750f 1000 hIZSQ 1500 1750 2000
the most significant contribution to the states in the band gap. Number of atoms in the unit ce
These orbitals do not contribute at all to the fault states due g5 7 The maximuna) and minimum(b) bond angles found

to an infinite stacking fault. The contribution from to the  in the unit cells as a function of the number of atoms in the cell. The
shallow states decreases as the size of the cell is increasegtgest deviations from the ideal bond angle (109.47°) are found in
For the largest unit cells it ip that give rise to the deepest the cores of the partial dislocations. The atomic structures are de-
(shallow states in the band gap, as in the infinite case. Thatermined by the Keating modésquares and solid lingthe bond-
p, contributes to the fault states in the smaller cells and thagharge modetriangles and dotted lineand the anharmonic bond-
reverse is the case for the larger cells as well as for the ide&harge mode(circles and dashed line
infinite fault, depends on the larger deformations introduced
in the crystal when the dislocation density is increased.  seen that the largest deformations of bond angles converge to
In the 64-atom unit cells it is thp, that give the deepest definite values as the number of atoms in the unit cell is
electronic states. This can be explained if one looks at thécreased. This convergence is most rapid for the anhar-
spatial extension of their wave functions. The wave functiongnonic bond-charge model. The Keating model has a wig-
made up o, penetrate deeper into the perfect material sidegling convergence of the bond angles, which indicates that
of the partials than the wave functions composedppf
Therefore, there is a larger overlap between the fault wave

functions ofp, character on neighboring stacking faults than g b . L eteerte e eI
between those gf character, which in turn accounts forthe = | -~ @
significant contribution op, to the states in the band gap in g sE 7 3
the smallest cells. The fact that larger overlap between the = - 4
fault wave functions cause deeper states is confirmed by i § 45 — ]
calculation on an ideal intrinsic stacking fault interrupted by 2 il

rows of vacancies in the fault plane. ég , ]

In Fig. 5 it is seen that the three models used to determine 35F
the atomic structure of the unit cells give rise to a disparity in a
the prediction of the energy of the states in the band gap
This disparity is largest for the small unit cells and dimin-
ishes when the cell is enlarged.

28 ¢
29 F

3.1 fa

Minimum bond stretch (%)

The disparity in the prediction of the energy of the states 4
in the band gap between the three different valence force ¢ -32f
fields is due to the fact that they produce different atomic 33 ¢
structures for the unit cells. The largest difference in the 34

produced atomic structures is found in the cores of the partia el S S
dislocations. Figures 7 and 8 show the largest deviations o B b 00 A2 1300717502000
bond angles and bond lengths compared to ideal bonding vs

the size of the unit cell. These most deformed bonds are i g The maximuma and minimum(b) bond expansions
found in the cores of the reconstructed 90° partial dislocasoung in the unit cells as a function of the number of atoms in the
tions for all the relaxed structures. The anharmonic bondge|l. The largest deviations from the ideal bond len@i85 A) are
charge model produces the largest bond angle deviations, thgund in the cores of the partial dislocations. The atomic structures
harmonic bond-charge model gives rise to somewhat smallefre determined by the Keating modstuares and solid lingthe
bond angle deformations, and the Keating model results imond-charge moddtriangles and dotted lingand the anharmonic
the smallest deviations from ideal bond angles. In Fig. 7 it isbond-charge modekircles and dashed line
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the core structure obtained with this model is influenced by The energy of the fault states is predicted to be higher for
the symmetry of the unit cell. This is reflected in the calcu-a bounded stacking fault than for an infinite one, which is an
lated energy of the states in the band gap, where the wigglingffect of the elastic strain field, present in the first case, due
character is very distinct for the cells relaxed with the Keat-to the partial dislocations. The confinement of the wave
ing model. functions of these states to the stacking fault ribbon seems to
Figure 8 shows that the largest deformations of bondower the energy, but this effect is small. That the energy of
lengths also converge to definite values as the number ghe fault states is higher for a bounded fault is probably valid
atoms in the unit cell is increased. The Keating model pro g for a real dissociated dislocation, even though the elastic
duces maximum bond stretches of about 3.5% and maximuy,4in, field is somewhat different in that case. This assump-
bond compressions of about 3.3%, so they are of the samg,, js confirmed by a calculation on a 504-atom unit cell
magnitude. The bond-charge model gives rise to larger bon bntaining an intrinsic stacking fault bounded by two 30°

length deformations than the Keating model. They are foun ; : . : .
to be about 4.3% for the maximum ard3.5% for the mini- art|_als. The_ width of the stacking fault is about 23. A Wh'c?
is slightly wider than for the 196-atom cell containing 90

mum bond expansions. Thus the maximum bond stretch ISartials. For this 504-atom cell fault states are found at

hat | han th i i h
somewhat Jarger than the maximum bond compression w %+210 meV, which is about 60 meV higher than what is

the bond-charge model is used. The anharmonic bond-char i
model produces bond length deformations quite differen ound for the 196-atom cell. Consequently this effect should

from the other two models. This model causes maximunP€ €ven more distinct for a real dissociated dislocation than

bond compressions of about 3.0% and maximum bondOr the stacking fault bounded by 90° partials.
stretches of about 5.7%, i.e., the maximum bond stretches The energy of the shallow stacking fault states calculated

are almost twice as large as the maximum bond compred? this work is of the same order of magnitude as the experi-
sions. mental value of E,+0.15 eV found by Weber and

Alexander* In a study of the electronic structure of recon-
structed 90° partials by Lodget al,?° stacking fault levels
were found aE€,+0.11 eV in a 64-atom unit cell containing

In this work shallow electronic states are predicted to extwo partials. Their result is in excellent agreement with the
ist in silicon when intrinsic stacking faults bounded by par-energy calculated here for the 64-atom unit cell relaxed with
tial dislocations are present in the material. Such states athe bond-charge model. In contrast fault levelEat 0.3 eV
also found in silicon containing infinite intrinsic stacking were found using a nonoblique 256-atom unit ¢BIThe
faults. In this case the states are locatedEgt#-75 meV  notably higher energy found in that work is due to the arti-
when the fault planes are so far apart that there is no intefficial elastic stress introduced in the lattice by lattice misfit at
action between these planes. The states are occupied and #ne cell boundaries. This misfit, in turn, is due to the low
localized near the Brillouin zone center in the reciprocalangle grain boundary present in the crystal generated by that
space and near the stacking fault plane in real space. In thenoblique cell(see Sec. Il
case of a bounded intrinsic stacking fault width of 70 A, the At present the only experimental findings, known to the
shallow state is localized betweeBE,+102 meV and author, that verify the existence of the fault levels reported
E,+109 meV, depending on the method used to calculatéere is the work by Weber and AlexandeHowever, the
the atomic structure. From this it is clear that the core strucealculations done in this work show that shallow states in the
ture of the partial dislocations has an almost negligible influ-band gap appear when clean stacking fault ribbons are intro-
ence on the stacking fault states. The wave function of theluced in silicon.
fault states are found to be localized in the vicinity of the Since stacking fault ribbons in general are not clean, there
stacking fault ribbon. It is also found that the bounding of theis a need to investigate how point defects in these extended
stacking fault have a pronounced effect on the shallow statedefects influence the electronic properties of silicon. Thus
when the partials are close together, i.e., when the overlap dhe electronic properties of extended defects in silicon are
the fault states is not negligible. The effect of this overlap isnot yet entirely known, but this work increases the under-
to lower the energy of the fault states and to change the typstanding of how the electronic structure is affected by stack-
of orbitals contributing to the wave function of the deepesting faults, especially when the faults are due to dissociated
state. perfect dislocations.

VI. SUMMARY AND CONCLUSIONS
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