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Shallow electron states of bounded intrinsic stacking faults in silicon

Niklas Lehto
Department of Physics, Lulea˚ University of Technology, S-971 87 Lulea˚, Sweden

~Received 30 September 1996; revised manuscript received 23 January 1997!

The electronic structure of bounded intrinsic stacking faults in silicon is studied. Especially the influence of
the stacking fault width on the electronic states in the band gap is investigated. The extended defect studied
comprises an intrinsic stacking fault with two reconstructed 90° partials as boundaries. The atomic structure is
determined by different valence force fields. These are the Keating potential, the bond-charge model, and an
anharmonic version of the bond-charge model. The electronic structure is calculated by linear combinations of
atomic orbitals. Ten Gaussian-type atomic orbitals ofs-, p-, andd-type are used, and up to fourth-nearest-
neighbor interactions are taken into account. The levels in the band gap are evaluated by the recursion method
for nonorthogonal basis functions, and by a continued fraction representation of the local density of states.
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I. INTRODUCTION

Electronic and structural properties of extended defect
silicon have attracted considerable attention see, e.g., th
views by Labusch and Shro¨ter,1 Alexander,2 or Alexander
and Teichler.3 This is not surprising, since it is known tha
such defects in the active region of silicon devices degr
the performance of these devices. This problem is see
both integrated circuits and high voltage devices. Most st
ies concentrate on bond-breaking defects, such as disl
tions and vacancies. In contrast, there are few investigat
of stacking faults. This is due to experimental and calcu
tional difficulties resulting from the small energies involve

Since stacking faults are produced when perfect dislo
tions split into partial dislocations, stacking faults and dis
cations are unambiguously linked. Therefore it is import
to study stacking faults if an understanding of the electro
properties of extended defects is wanted. Such knowle
may be of help in the design of new devices.

An important question is if there exist, within the ga
electronic energy levels that are associated with a def
Since most interest has been focused on the dislocation
states, there are few experimental investigations of stac
faults. However, Weber and Alexander,4 using photolumi-
nescence spectra of plastically deformed silicon, observe
stacking fault state at approximatelyEv10.15 eV.

This work is a theoretical investigation of the electron
energy levels associated with bounded intrinsic stack
faults. It is focused on how the energy levels within the g
are influenced by the width of the stacking fault. The outli
of the paper is as follows. In the next section the geometr
the bounded stacking fault is described. The unit cells
presented in Sec. III. Section IV describes the calculatio
method used to determine the electronic structure of
stacking faults. The results are presented in Sec. V and
cussed in the concluding Sec. VI.

II. GEOMETRY OF THE BOUNDED STACKING FAULT

Silicon crystallizes in the diamond structure, which cor
sponds to two interpenetrating fcc lattices, one of which
550163-1829/97/55~23!/15601~7!/$10.00
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4) with respect to the other. The atoms

the two lattices do not have identical surroundings, so
structure can be described by an fcc lattice with a basis
two atoms per unit cell. Therefore, dislocations in the d
mond structure are expected to be similar to dislocations
fcc metals.

In fcc metals the main slip planes are the$111% planes,
and the major slip directions are^110&. The smallest perfec
Burgers vector is12^110&. There are two perfect dislocation
with Burgers vectors and dislocation lines along^110& direc-
tions. One is a pure screw and the other is a 60° dislocat
These perfect dislocations can dissociate into two par
ones. The 60° dislocation splits into one 30° and one 9
partial, while for the screw dislocation two 30° partials a
formed. These partials are separated by a low-energy st
ing fault, which is a planar defect corresponding to errors
the stacking sequence in the^111& direction. This fault is due
to relative displacements of$111% planes by1

6^211&. This
type of dissociation into two partials reduces the strain
ergy associated with the dislocation. The size of the stack
fault is determined by the balance of the 1/r repulsion be-
tween the partials, with the constant attractive force result
from the formation of the stacking fault.

The same characteristics are found in the diamond latt
However, the existence of two sublattices generates a la
structure containing $111% planes in the sequenc
. . .AaBbCcAaBb. . . , where the pairs of planes with th
same indices, e.g.,Aa, project the same positions on$111%.
The distance between the subsequent planes in one pair,
A anda, is three times longer than the distance between
subsequent planes in different pairs, e.g.,a andB. Therefore,
there are two distinct types of$111% glide planes in the dia-
mond lattice, the one between planes in one pair, which
called the ‘‘shuffle plane’’ and the one between differe
pairs, which is called the ‘‘glide plane.’’ The existence
two distinct types of glide planes results in two sets of d
locations with quite different core structures.

Only the ‘‘glide-set’’ dislocations have properties simila
to dislocations in fcc metals, so dislocations in this set c
dissociate into partials separated by a low-energy stack
fault. The dissociation into partials was experimentally o
15 601 © 1997 The American Physical Society
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15 602 55NIKLAS LEHTO
served in silicon and germanium by the weak-beam te
nique of electron microscopy.5–7

The stacking fault separating the partial dislocations
found to be either intrinsic or extrinsic, but in silicon a m
jority is of intrinsic character.8 These low-energy stackin
faults involve the insertion or removal of pairs of planes w
the same indices;Aa, Bb, etc. The layer structure of a
intrinsic fault is . . .AaBbCc†BbCcAa. . . , where † indi-
cates an absentAa plane. In silicon the width of the stackin
fault separating the two partials in a dissociated dislocatio
about 40 Å for the screw dislocation and 65 Å for the 6
dislocation.8

III. GEOMETRY OF THE UNIT CELLS

A theoretical study of extended defects is restricted t
finite and relatively small number of atoms. There are t
approximation methods which could be used in the stu
The first is to construct a large finite cluster surrounding
defect. However, it is likely then that the influence from t
surface of the cluster would mask the more subtle electro
effects of the stacking fault studied here. The second met
which is used in this work, is the large unit cell method. Th
method involves forming an infinite superlattice of defe
by periodically repeating a large unit cell. The use of pe
odic boundary conditions requires that the sum of the B
gers vectors in the unit cell is zero, since otherwise the e
tic strain energy of the crystal would be infinite. This mea
that the cell must contain at least two dislocations and i
contains two the Burgers vectors must be equal in magnit
and opposite in direction for the two dislocations.

In the most realistic study of the electronic effects fro
the stacking fault the unit cell should contain a pair of d
sociated perfect dislocations with opposite Burgers vect
which means four partials. This would lead to a very lar
unit cell. To restrain the size of the problem one of the p
tials in a dissociated perfect dislocation could be replaced
a different partial so that the sum of the Burgers vectors
the two partials is zero. This means that the unit cell o
needs to contain two 30° partials or two 90° partials.

The strain field is influenced by this exchange. Howev
this deficiency does not alter the topology of the stack
fault.

In silicon the partials are reconstructed. This means
the unit cell length along the dislocation lines must cor
spond to the periodicity of the reconstruction of the partia
For the reconstructed 30° partials this length is twice as l
as for the reconstructed 90° partials, i.e., the 30° part
requires twice as many atoms.

A unit cell withholding one intrinsic stacking fault with
two reconstructed 90° partials as boundaries implies that
number of atoms in the cell is reduced by roughly a factor
four compared with the most realistic case. Therefore
type of cell is used in this work.

There is one additional consideration that must be ta
into account when the unit cells are constructed. Gener
unit cells containing dislocations will generate grain boun
aries when the cell is repeated periodically. Unless the
of the cell is commensurate with the periodicity of the gra
boundaries a misfit is introduced at the cell boundaries. O
way to avoid this is to construct a unit cell so that a quad
-
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polar lattice of dislocations is generated. This avoids the ge
eration of grain boundaries altogether, which means that
unit cells can be joined without any misfit at the cell bound
aries.

In this work the construction of the unit cells starts from
an ideal crystal. Cuts are made in zig-zag patterns throu
this crystal as shown in Fig. 1, where the atoms indicated
squares are removed. The horizontal cuts will generate
intrinsic stacking fault and the vertical cuts will generate th
90° partials. Next linear elasticity theory is used to find
first approximation to the atomic structure. Finally an ob
lique unit cell, containing two dislocations and one intrins
stacking fault, is constructed. A resulting 64-atom unit cell
seen in Fig. 2. The primitive translation vectors of this sup
lattice are obtained from the primitive translation vectors
the ideal crystal and the Burgers vectors of the partials. T
means that the average density is assumed to be unchan
when the defects are introduced in the crystal.

The final atomic structure of the unit cells is obtained b
using different valence force fields. The ones used are
Keating potential,9 the bond-charge model,10 and an anhar-
monic version of the bond-charge model.11 The Keating po-
tential accurately reproduces the elastic constants or sim

FIG. 1. A projection of an ideal diamond lattice on the (110
plane. Cuts are made in zig-zag patterns and the atoms indicate
squares are removed from the crystal. The horizontal parts of
cuts will generate the intrinsic stacking faults and the vertical cu
will generate the 90° partials. From the resulting crystal the 6
atom unit cell shown in Fig. 2 is obtained.

FIG. 2. The 64-atom unit cell projected on thexy plane. The
cell contains one stacking fault, which is about 13 Å wide~dashed
line!, bounded by two reconstructed 90° partials~solid lines! with
opposite Burgers vectors.
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55 15 603SHALLOW ELECTRON STATES OF BOUNDED . . .
lates the phonon softening depending on the choice
parameters. The bond-charge model simultaneously re
duces the elastic constants and the phonon softening.
anharmonic version of the bond-charge model reproduce
addition, the third order elastic constants and gives a m
realistic form on the potential between two atoms than
other two valence force fields.

IV. ELECTRONIC STRUCTURE CALCULATIONS

The electronic structure of the stacking faults is calcula
using linear combinations of atomic orbitals, which is a ve
convenient choice of basis functions for band-struct
calculations.12,13 The Schro¨dinger equation, which deter
mines the band structureEn(k), is

F2
\2

2m
¹21V~r!Gcn~k,r!5En~k!cn~k,r!, ~1!

wherecn(k,r) refers to a Bloch function with wave vecto
k.

The potentialV(r) is a sum of atomic potentialsv(r),
V(r)5(v(r), where v(r1Rm)5v(r) for any atomic site
Rm in the crystal. The atomic potential is represented
spherical Gaussians as

v~r !5b1e
2a1r

2
1b2e

2a2r
2
, ~2!

where b1520.0, b25217.7, a150.633, anda250.459
in atomic units.14

A set of functions,ui , localized on the atoms of the crys
tal is used to expand the Bloch functionscn . The function
ui(r2Rm) denotes thei th function on the atomic siteRm .
The functions used are Gaussian orbitals of the form

ui~r!5Nir
le2jr2Kl , j~ r̂ !, ~3!

in which Ni is a normalization constant,j is a decay con-
stant, andKl , j ( r̂ ) is a Kubic harmonic. In this study two
s-like, three p-like, and five d-like Gaussian orbitals are
used. The twos orbitals have, respectively,j50.19 and
j50.31, and the other orbitals havej50.19.

The advantage of employing Gaussians to describe
potential and basis orbitals is that all matrix elements in
Hamiltonian and overlap matrices can be expressed ana
cally. Interactions up to fourth-nearest neighbors are
cluded in the calculations, since this accurately reprodu
the band structure of silicon based on plane waves when
above orbitals and potential are used.14

The basis functions are nonorthogonal. This means
the problem of determining the electronic structure of
crystal is turned into the problem of solving a generaliz
eigenvalue problem. Since the unit cells in the study of
bounded stacking fault contain up to about 2000 atoms,
each atom is described by ten basis functions, the dimen
of the eigenvalue problem is roughly 20 000. Therefore us
solving methods may not be used. Instead the electro
structure is evaluated by the recursion method for non
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thogonal basis functions.14,15In this method the quantum me
chanical problem is transformed into a chain model start
on a stateuu0&, called the seed state. This means that
generalized eigenvalue problem is now represented b
tridiagonal Jacobi matrix. The energy of the states in
band gap are determined by calculating the eigenvalue
this tridiagonal Jacobi matrix and the orbitals which gi
these states are determined by evaluating the local densi
states in the way described by, e.g., Wang and Lindefelt14

In Fig. 3 the convergence of the eigenvalues of the Jac
matrix is shown for one 196-atom and one 1936-atom u
cell. The states near the valence band maximum are
converged after about 500 recursion steps even for the la
cell. To get a correct prediction of the energies of the el
tronic states, 1000 recursion steps are used in this stud
the bounded intrinsic stacking fault.

V. RESULTS

The infinite intrinsic stacking fault is used as a referen
system in this work. Earlier investigations of infinite intrins
stacking faults in silicon,16–19show that these faults genera
doubly degenerated shallow electronic states at the Brillo
zone center. These states are occupied and have an e
about 0.1 eV above the valence band maximum (Ev) and
they split and bend rapidly into the valence band when le
ing the Brillouin zone center.

Here, as in the earlier works,16–19 the electronic structure
of the infinite intrinsic stacking fault is calculated using
small hexagonal unit cell. This unit cell generates a crys
with faults extending infinitely in the basal plane and repe

FIG. 3. Eigenvalues of the Jacobi matrix vs matrix dimensio
The valence band maximum (Ev) of the ideal structure is atzero
eV. The seed state is a simple linear combination ofp orbitals on
four different atoms in the center of the stacking fault. In~a! the
unit cell is a 196-atom cell relaxed with the anharmonic bon
charge method and in~b! the unit cell is a 1936-atom cell relaxe
with the same valence force field. The shallow states near (Ev) are
well converged after about 500 recursion steps even for the la
cell.
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15 604 55NIKLAS LEHTO
ing periodically normal to it. Ideal bounding lengths an
angles are used, since this is what is predicted for this sys
by the valence force fields used in the atomic structure
laxation of the bounded stacking faults. The distance
tween two adjacent fault planes is determined by the num
of atoms in the hexagonal unit cell. The number of atoms
the cells is varied from 4 to 76 atoms, which means that
distance between adjacent fault planes varies from 6.3 Å
119 Å.

In Fig. 4 the energy of the doubly degenerate fault stat
seen as a function of the number of atoms in the unit c
which, in turn, is proportional to the distance between ad
cent fault planes. The energy of this fault state conver
exponentially toEv175 meV when the distance is increase
This is somewhat lower than the energy found in the wo
cited above, but this is due to the larger unit cells used h
The electronic fault states are due top orbitals in the plane of
the stacking fault, whereas thep orbitals perpendicular to the
stacking fault do not contribute to the states in the band g

In the study of the bounded intrinsic stacking fault sev
unit cells of different sizes where used. These cells con
64, 196, 400, 676, 1024, 1444, and 1936 atoms. The stac
fault width is proportional to the square root of the numb
of atoms in the unit cell. The width is about 13 Å for th
smallest cell and about 70 Å for the 1936-atom cell. Th
the largest cell contains a stacking fault which is wider th
the experimentally observed width of 65 Å. These obliq
unit cells generate quadrupolar lattices of dislocations as
cussed in Sec. IV. Since the fault states due to infinite int
sic stacking fault are seen in the Brillouin zone center
electronic structure of the bounded faults is calculated
k50, i.e., in the Brillouin zone center.

In Fig. 5 the energy of the fault states is plotted vs t
number of atoms in the unit cell. The energy of these sta
alternates between higher and lower values when the
size is increased, but it approaches a value slightly ab
Ev1100 meV for the larger cells. The alternation in ener

FIG. 4. The energy of the doubly degenerate fault state of
infinite intrinsic stacking fault as a function of the number of ato
in the unit cell. The number of atoms is proportional to the dista
between two adjacent fault planes. The valence band maxim
(Ev) of the ideal structure is atzeroeV. The inset shows the type o
unit cell used in the calculation. The stacking fault plane is in
cated by the dashed line.
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is due to the fact that the cells with 64, 400, 1024, and 19
atoms are rotationally symmetric about the center of the c
while the cell with 196, 676, and 1444 atoms are inversio
ally symmetric about the cell center. The energy is somew
lower in the rotationally symmetric cells than in the inve
sionally symmetric ones, but it must converge to the sa
value, since the symmetry is insignificant when the width
the stacking fault is large~infinite!. It should also converge
to the valueEv175 meV of the infinite stacking fault when
the width goes to infinity, but the convergence is seen to
very slow.

These fault states are ascribed to the stacking fault s
they are localized in its vicinity. This is seen in Fig. 6, whe

n

e
m

-

FIG. 5. The energy of the fault state of an intrinsic stacking fa
bounded by two 90° partials as a function of the number of atom
the unit cell. The square root of the number of atoms is proportio
to the width of the stacking fault. The atomic structure is det
mined by the Keating model~squares and solid line!, the bond-
charge model~triangles and dotted line!, and the anharmonic bond
charge model~circles and dashed line!. The valence band maximum
(Ev) of the ideal structure is atzero eV. The inset shows a 400
atom unit cell used in the calculation.

FIG. 6. ~a! The local density of states of the fault state in t
400-atom unit cell relaxed by the anharmonic bond-charge mo
The density of states is projected on the eight different seed s
shown in ~b!. ~b! Each seed state is a linear combination ofp
orbitals on four atoms. The positions of the four atoms are sho
by the symbols. The atoms marked by squares are at the cent
the bounded stacking fault.
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55 15 605SHALLOW ELECTRON STATES OF BOUNDED . . .
the local density of states~LDOS! of the fault state in the
400-atom unit cell relaxed by the anharmonic bond cha
model is shown. The density of states is projected on dif
ent positioned seed states where each seed state is a
combination ofp orbitals on four atoms. The LDOS of th
fault state is highest in the center of the stacking fault
decreases when the seed state is moved away perpendic
from the stacking fault. The local density of states also
creases when the seed state is moved closer to one o
partials on the stacking fault side and almost vanishes
tween the partial dislocations on the perfect material side

The influence of the bounding partial dislocations on
states in the band gap is significant in the smallest unit ce
For the ideal infinite intrinsic stacking fault it is thep orbit-
als in the stacking fault plane (pi) that give rise to the state
in the band gap as discussed above. When the same inv
gation is done on the 64-atom unit cells it is found that it
thep orbitals perpendicular to the fault plane (p') that give
the most significant contribution to the states in the band g
These orbitals do not contribute at all to the fault states
to an infinite stacking fault. The contribution fromp' to the
shallow states decreases as the size of the cell is increa
For the largest unit cells it ispi that give rise to the deepes
~shallow! states in the band gap, as in the infinite case. T
p' contributes to the fault states in the smaller cells and
reverse is the case for the larger cells as well as for the i
infinite fault, depends on the larger deformations introduc
in the crystal when the dislocation density is increased.

In the 64-atom unit cells it is thep' that give the deepes
electronic states. This can be explained if one looks at
spatial extension of their wave functions. The wave functio
made up ofp' penetrate deeper into the perfect material s
of the partials than the wave functions composed ofpi .
Therefore, there is a larger overlap between the fault w
functions ofp' character on neighboring stacking faults th
between those ofpi character, which in turn accounts for th
significant contribution ofp' to the states in the band gap
the smallest cells. The fact that larger overlap between
fault wave functions cause deeper states is confirmed b
calculation on an ideal intrinsic stacking fault interrupted
rows of vacancies in the fault plane.

In Fig. 5 it is seen that the three models used to determ
the atomic structure of the unit cells give rise to a disparity
the prediction of the energy of the states in the band g
This disparity is largest for the small unit cells and dimi
ishes when the cell is enlarged.

The disparity in the prediction of the energy of the sta
in the band gap between the three different valence fo
fields is due to the fact that they produce different atom
structures for the unit cells. The largest difference in
produced atomic structures is found in the cores of the pa
dislocations. Figures 7 and 8 show the largest deviation
bond angles and bond lengths compared to ideal bondin
the size of the unit cell. These most deformed bonds
found in the cores of the reconstructed 90° partial dislo
tions for all the relaxed structures. The anharmonic bo
charge model produces the largest bond angle deviations
harmonic bond-charge model gives rise to somewhat sm
bond angle deformations, and the Keating model result
the smallest deviations from ideal bond angles. In Fig. 7 i
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seen that the largest deformations of bond angles converg
definite values as the number of atoms in the unit cel
increased. This convergence is most rapid for the anh
monic bond-charge model. The Keating model has a w
gling convergence of the bond angles, which indicates t

FIG. 7. The maximum~a! and minimum~b! bond angles found
in the unit cells as a function of the number of atoms in the cell. T
largest deviations from the ideal bond angle (109.47°) are foun
the cores of the partial dislocations. The atomic structures are
termined by the Keating model~squares and solid line!, the bond-
charge model~triangles and dotted line!, and the anharmonic bond
charge model~circles and dashed line!.

FIG. 8. The maximum~a! and minimum~b! bond expansions
found in the unit cells as a function of the number of atoms in
cell. The largest deviations from the ideal bond length~2.35 Å! are
found in the cores of the partial dislocations. The atomic structu
are determined by the Keating model~squares and solid line!, the
bond-charge model~triangles and dotted line!, and the anharmonic
bond-charge model~circles and dashed line!.
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15 606 55NIKLAS LEHTO
the core structure obtained with this model is influenced
the symmetry of the unit cell. This is reflected in the calc
lated energy of the states in the band gap, where the wigg
character is very distinct for the cells relaxed with the Ke
ing model.

Figure 8 shows that the largest deformations of bo
lengths also converge to definite values as the numbe
atoms in the unit cell is increased. The Keating model p
duces maximum bond stretches of about 3.5% and maxim
bond compressions of about 3.3%, so they are of the s
magnitude. The bond-charge model gives rise to larger b
length deformations than the Keating model. They are fou
to be about 4.3% for the maximum and23.5% for the mini-
mum bond expansions. Thus the maximum bond stretc
somewhat larger than the maximum bond compression w
the bond-charge model is used. The anharmonic bond-ch
model produces bond length deformations quite differ
from the other two models. This model causes maxim
bond compressions of about 3.0% and maximum bo
stretches of about 5.7%, i.e., the maximum bond stretc
are almost twice as large as the maximum bond comp
sions.

VI. SUMMARY AND CONCLUSIONS

In this work shallow electronic states are predicted to
ist in silicon when intrinsic stacking faults bounded by pa
tial dislocations are present in the material. Such states
also found in silicon containing infinite intrinsic stackin
faults. In this case the states are located atEv175 meV
when the fault planes are so far apart that there is no in
action between these planes. The states are occupied an
localized near the Brillouin zone center in the recipro
space and near the stacking fault plane in real space. In
case of a bounded intrinsic stacking fault width of 70 Å, t
shallow state is localized betweenEv1102 meV and
Ev1109 meV, depending on the method used to calcu
the atomic structure. From this it is clear that the core str
ture of the partial dislocations has an almost negligible in
ence on the stacking fault states. The wave function of
fault states are found to be localized in the vicinity of t
stacking fault ribbon. It is also found that the bounding of t
stacking fault have a pronounced effect on the shallow st
when the partials are close together, i.e., when the overla
the fault states is not negligible. The effect of this overlap
to lower the energy of the fault states and to change the
of orbitals contributing to the wave function of the deep
state.
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The energy of the fault states is predicted to be higher
a bounded stacking fault than for an infinite one, which is
effect of the elastic strain field, present in the first case,
to the partial dislocations. The confinement of the wa
functions of these states to the stacking fault ribbon seem
lower the energy, but this effect is small. That the energy
the fault states is higher for a bounded fault is probably va
also for a real dissociated dislocation, even though the ela
strain field is somewhat different in that case. This assum
tion is confirmed by a calculation on a 504-atom unit c
containing an intrinsic stacking fault bounded by two 3
partials. The width of the stacking fault is about 23 Å, whi
is slightly wider than for the 196-atom cell containing 90
partials. For this 504-atom cell fault states are found
Ev1210 meV, which is about 60 meV higher than what
found for the 196-atom cell. Consequently this effect sho
be even more distinct for a real dissociated dislocation t
for the stacking fault bounded by 90° partials.

The energy of the shallow stacking fault states calcula
in this work is of the same order of magnitude as the exp
mental value of Ev10.15 eV found by Weber and
Alexander.4 In a study of the electronic structure of reco
structed 90° partials by Lodgeet al.,20 stacking fault levels
were found atEv10.11 eV in a 64-atom unit cell containin
two partials. Their result is in excellent agreement with t
energy calculated here for the 64-atom unit cell relaxed w
the bond-charge model. In contrast fault levels atEv10.3 eV
were found using a nonoblique 256-atom unit cell.18 The
notably higher energy found in that work is due to the a
ficial elastic stress introduced in the lattice by lattice misfit
the cell boundaries. This misfit, in turn, is due to the lo
angle grain boundary present in the crystal generated by
nonoblique cell~see Sec. III!.

At present the only experimental findings, known to t
author, that verify the existence of the fault levels repor
here is the work by Weber and Alexander.4 However, the
calculations done in this work show that shallow states in
band gap appear when clean stacking fault ribbons are in
duced in silicon.

Since stacking fault ribbons in general are not clean, th
is a need to investigate how point defects in these exten
defects influence the electronic properties of silicon. Th
the electronic properties of extended defects in silicon
not yet entirely known, but this work increases the und
standing of how the electronic structure is affected by sta
ing faults, especially when the faults are due to dissocia
perfect dislocations.
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