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Proper reduction scheme to an extendedt-J model and the hole dispersion in Sr2CuO2Cl2
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The reduction of the three-bandp-d model for the CuO2 plane in cuprates with the standard set of param-
eters as derived by Hybertsenet al. @Phys. Rev. B41, 11 068~1990!# to an effectivet-t8-t9-J model with a
three-site hopping term is discussed in detail in the framework of the cell-perturbation method. The reduction
procedure is formulated to avoid any ambiguity in obtaining the correct signs of the hopping parameters in the
effective model, and the contributions of first and second order resulting from the intercell hopping are
distinguished. Based on the so-defined extendedt-J model, the dispersion of a single hole in an antiferromag-
netic background is calculated both by a variational ansatz and within the self-consistent Born approximation
~SCBA!. An extension of the variational method allows us to investigate the influence of a three-site hopping
term both on the mean-field level and beyond this approximation. The latter corrections are shown to be small.
Both methods give the coinciding result that the additional hopping terms lead to a more isotropic minimum of
the dispersion at the point (p/2,p/2) in k space and to a slightly increased bandwidth in comparison to the
puret-J model. These results are compared with recent photoemission measurements for Sr2CuO2Cl2 @Wells
et al., Phys. Rev. Lett.74, 964~1995!#, showing an improvement against the puret-J model, but no complete
agreement. In particular, a small anisotropy in the calculated effective masses remains. The lifetime of the hole
quasiparticles is investigated within the SCBA, and it is shown that the upper part of the hole spectrum loses
its quasiparticle character due to a strong increase of damping if the bare hole bandwidth exceeds a certain
threshold value of roughly 2J. @S0163-1829~97!02623-4#
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I. INTRODUCTION

Recent angle-resolved photoemission spectrosc
~ARPES! measurements1 of the insulating, antiferromagneti
compound Sr2CuO2Cl 2 provided a good test for severa
theories of the electronic structure of cuprate supercond
ors. For the first time it was possible to measure a valen
band dispersion in an undoped compound, which co
sponds to the well-defined theoretical problem of the o
hole motion in an antiferromagnetic background. T
position of the dispersion minimum at the point (p/2,p/2)
~in the notation of the two-dimensional square lattice! and
the measured bandwidth, which is roughly twice the value
the exchange integralJ, are in good agreement with predic
tions of theories based on the puret-J model.2–6 However,
large deviations from these predictions have been foun
the shape of the dispersion, especially along the line (0
(p,0). Also in contrast to thet-J model, the experiment1

indicated that the dispersion near the minimum is highly i
tropic. Subsequent theoretical investigations7–9 have shown
that better agreement with the experiment could be obta
if one extends thet-J model by taking into account a secon
hopping integralt2 ~or t8 in other notation! to next nearest
neighbors7 and the so-called three-site hopping term.8,9 Up to
now, the additional hopping parameters are treated usual
phenomenological ones. So a further justification both for
form of the extendedt-J model and for the numerical value
of its parameters is strongly required from first-principle c
culations. That is especially important in the light of mo
recent ARPES measurements by Schmidtet al.,10 who con-
550163-1829/97/55~23!/15562~14!/$10.00
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firmed in main features the results by Wellset al. for
Sr2CuO2Cl 2, but revealed a noticeable dispersion anis
ropy near the minimum.

Usually, first-principle calculations are understood as
start with the determination of the band structure within t
local-density approximation~LDA !. These LDA calcula-
tions, however, have severe difficulties in describing
electronic structure of Sr2CuO2Cl 2 or similar compounds
such as La2CuO4, for instance.

11,12 In this approach a me
tallic behavior is predicted for the undoped compound wh
the bandwidth and the shape of the band crossing the F
level differ substantially from the ones obtained in t
ARPES experiment.1 The reason consists in the insufficie
treatment of the strong electron correlations in the LDA c
culations. So the question arises if there is any chance
calculate the one-hole dispersion in Sr2CuO2Cl 2 in a ‘‘first-
principle’’ sense. A possible solution for that problem can
proposed in two steps. As the first stepA one has to construc
an effective many-band Hubbard-like Hamiltonian~such as
the p-d model! whose parameters are determined by a c
strained density-functional calculation. That has been car
through, for instance, for La2CuO4.

13 Band-structure calcu-
lations for Sr2CuO2Cl 2 show only few differences: the ad
ditional Cl atoms influence only the states far away from
Fermi level.11 Therefore, we will assume here that the p
rameters for La2CuO4 are representative for Sr2CuO2Cl 2 as
well. The second stepB deals with the dispersion of one ho
in the valence band. Since we are interested in the lo
energy electronic excitations, the high-lying orbitals shou
be eliminated. So it is reasonable first to reduce the deri
15 562 © 1997 The American Physical Society
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55 15 563PROPER REDUCTION SCHEME TO AN EXTENDEDt-J . . .
multiband model to an effectivet-J-like Hamiltonian and
then to calculate the dispersion for this one-band Hamil
operator which is restricted to the low-energy physics on

In the present paper we adopt the solution for stepA as it
was presented in Ref. 13 and elaborate stepB in great detail
and with all the necessary accuracy. We will address
points, namely, the reduction of the three-bandp-d model to
an effectivet-J-like Hamiltonian and the calculation of th
one-hole motion characteristics in this extendedt-J model.
There exist already publications that deal with one part of
problem, either with the reduction procedure14–19or with the
calculation of the one-hole dispersion using phenomenol
cal parameters from the comparison with the ARPES data
Sr2CuO2Cl 2.

7–9 Here we concentrate on the connection b
tween these two parts, providing a microscopical derivat
of the extendedt-J model and its direct comparison wit
experiment.

Following the original paper by Zhang and Rice,14 a sys-
tematic reduction scheme from the underlyingp-d model to
the effective Hamiltonian describing the low-energy ele
tronic properties of the CuO2 plane was proposed indepe
dently by three groups of authors15–17and developed furthe
in Refs. 18 and 19. The advantage of this derivation base
the cell-perturbation method is that it allows one to take i
account exactly all the intracell electron correlations and p
vides a good convergence in treating the intercell inter
tions. In the present work we turn again to this problem~see
Sec. II! and present in a short manner a derivation of thet-
t8-t9-J Hamiltonian from the three-bandp-d model contain-
ing the complete set of parameters as given by Hybert
Stechel, Schlu¨ter, and Jennison.13 Here we pursue severa
aims. The first one is to give the reader a compressed s
formulas connecting the parameters of the effectivet-t8-t9-
J model with that of the underlyingp-d model. For a par-
ticular choice of the latter parameters the former ones
now be easily estimated by a numerical procedure. As for
parameter regime where the reduction is valid we refer
reader to more extensive papers.18,19Second, a careful analy
sis shows that the two versions of the reduction sche
while being very similar to each other as they were presen
originally, for instance, in Ref. 15 or in Refs. 16 and 1
contain a subtle difference. The essence of this differe
remains to be discussed below. Here we notice only
within the second approach developed in Refs. 16 and 18
encounters an ambiguity in obtaining the correct sign for
transfer-matrix elements in the effective Hamiltonian, whi
may lead to an incorrect band dispersion.~See also the dis
cussion in Ref. 20.! Here we use the first approach,15,21

which is free from this drawback. We have also deliberat
chosen notation close to the one used in Refs. 18 and
which makes it easier to compare directly between the
approaches mentioned. In distinction to the former work13

we find from the reduction procedure that one has to incl
also a hopping termt3 ~or t9) to third nearest neighbors.

After calculating the parameters of the extendedt-J-like
Hamiltonian, the dispersion relation of one hole will be d
termined here by two different methods. The first one
based on a variational ansatz for the wave function of
hole ~Sec. III! and the second one is the self-consistent B
approximation22 ~SCBA! ~Sec. IV!. Both of them have sev
eral advantages such that they complement each other.
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we adapt the variational approach in such a way that it
lows us to investigate the influence of a three-site hopp
term. This term appears naturally in the effective Ham
tonian as the second-order correction in the reduction pro
dure and describes also, beyond the mean-field approx
tion, a hole propagation accompanied by a spin-fl
fluctuation. This kind of a hole motion would manifest itse
as a higher-order magnon process not included usually in
conventional SCBA. On the other hand, the variational
proach can hardly be applied at lower values ofJ and ignores
also the quasiparticle lifetime effects, both of which can
done, however, within the SCBA.

The variational ansatz is proposed23 and widely
used20,24,25 to describe the propagation of a hole as a s
polaron of minimal size, a limit that makes the problem tra
table analytically. That ansatz is constructed here assum
the singlet ground state of the spin part of the Hamilton
~Heisenberg model!. We compare in detail the spin polaro
dispersions corresponding to the first and second order o
reduction procedure, showing reasonable convergence.
other important question concerns the bandwidth of the q
siparticle dispersion. Recently it was claimed, using als
variational wave function, that the inclusion of addition
hopping terms with the realistic range of the paramet
leads to an increase of the bandwidth up to a factor of 4.20 A
result like that would contradict the experimental finding.1 In
contrast, we will show in Sec. III that a correct application
the variational ansatz leads only to a moderate increase o
calculated bandwidth in comparison to the puret-J model.

Being restricted to a minimal size of the spin polaron, t
variational ansatz is not applicable for smallJ. For this more
realistic case we therefore use a complementary method
SCBA. In distinction to Refs. 7 and 8 we take values fort2
andt3 that are calculated from ‘‘first principles.’’ Both meth
ods ~the SCBA and variational ansatz! show reasonable
agreement for the calculated hole dispersion despite the
that the SCBA uses a Ne´el-type two-sublattice ground state
whereas the variational ansatz does not break the spin
tional symmetry. Like in the variational approach, the ban
with calculated in the SCBA is not substantially increas
due to the additional hopping integrals. Instead, a feature
visible in the puret-J model occurs. Actually, we investigat
the question of the quasiparticle damping due to the prese
of additional hopping integrals~i.e., due to the bare hole
dispersion! and show that this damping possesses a thres
character. Namely, if the bandwidth of the bare dispers
exceeds a certain threshold value the upper parts of the
siparticle hole spectrum become overdamped, which res
in the disappearance of quasiparticle states in some pa
the Brillouin zone.

II. PROPER REDUCTION SCHEME
AND THE EFFECTIVE HAMILTONIAN

We start with the three-bandp-d model for the copper
oxygen plane with the same parameters as those estimate
Hybertsenet al.13 for the La2CuO4 compound. To be spe
cific, we use the Cu-O and O-O hopping integralstpd51.3
eV and tpp50.65 eV, respectively, the charge-transfer e
ergyD5«p2«d53.6 eV, and the Coulomb repulsions give
by Ud510.5 eV,Up54 eV, andUpd51.2 eV. An effect of
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the direct Cu-O exchange that is not included into the or
nal p-d model is discussed at the end of this section.
proceed with the cell-perturbation method, one has to in
duce the symmetric (pis) and antisymmetric (p̃ is) orthonor-
malized oxygen Wannier orbitals. The details are contai
in Appendix A and in Refs. 15, 16, 18, and 19. The origin
Hamiltonian can now be written as

H5H01Ht1DH,

H05«d(
i ,s

nis
d 1«p(

i ,s
~pis

† pis1 p̃ is
† p̃ is!1Ud(

i
ni↑
d ni↓

d ,

~2.1!

Ht52tpd(
i , j ,s

l i j ~dis
† pjs1H.c.!2tpp(

i , j ,s
@m i j ~pis

† pjs

2 p̃ is
† p̃ js!2n i j ~pis

† p̃ js1H.c.!#,

DH5Upd (
l ,i , j ,s

f l i j nl
dpis

† pjs1Up (
k,l ,i , j

jkli j pk↑
† pl↑pi↓

† pj↓

1DH8.

From now on any site indexi on a square lattice labels a ce
In Eq. ~2.1! the coefficientsl i j , m i j , n i j , f l i j , and jkli j
follow from the Wannier transformation and fall off rapidl
with the relative distance between cells. The largest val
for some of these coefficients are presented in Table I. T
gives us the opportunity to develop a perturbative approa
The local intracell interactions given by all relevant terms
Eq. ~2.1! with coinciding lattice indices, which we denot
hereafter asH loc , are taken into account exactly, while th
remaining intercell interactionsHhop are treated perturba
tively.

In Eq. ~2.1! the termDH8 has minor importance for the
low-energy physics. Actually, this contribution is generat
by the Coulomb repulsionsUp andUpd as well, but formed
by antisymmetric operatorsp̃ is . Hence only some high
energy hole states are entangled in it. In the following
take into account exactly the local contributions contained
the two explicitly written Coulomb terms inDH, while the
corrections due to the intercell static interactions, as wel
due toDH8, will be involved in a mean-field manner at th
final stage of our derivation. It is shown below that the
corrections are important to reproduce a reliable value for
superexchange constantJ, but less significant for the effec
tive hopping parameterst8 and t9. Some residual Coulomb
effects, not accounted here, lead to a further generalizatio
the t-J model involving residual interactions between dop
holes ~forming Zhang-Rice singlets! on neighboring cells.
These interactions discussed in details in Ref. 19 are ir
evant for the present purpose of investigating a single Zha
Rice singlet dispersion. Moreover, the effective hopping c

TABLE I. Coefficients of the oxygen Wannier orbitals.

iW2 jW l m n

0 0.958 1.454 0.0

xW 20.14 20.546 20.266

xW1yW 20.02 0.244 0.0

2xW 20.014 20.128 0.082
i-
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tributions coming fromUpd andUp are much smaller than
those fromtpd andtpp terms. So, concerning the coefficien
f l i j and jkli j , we need onlyf l l l 5f0 and j l l l l 5j0, which
can be found to bef050.918 andj050.211. The sum rules
( l (Þ i )f l i i 522f0 and( l (Þ i )j l l i i 5

1
22j0 will also be used.

Further details of the cell-perturbation procedure are c
tained in Appendix A. In essence, after performing a diag
nalization of the local HamiltonianH loc , one finds the lowest
one-hole stateu i f s& at a cell i and with a spin projection
s5↓,↑ that possesses mainly a copper character. In the
sulating, undoped compound each cell is occupied by on
these spin states that interact antiferromagnetically. Am
the two-hole states that appear due to doping the lowest
is the Zhang-Rice singlet denoted in the following asu ic1&.
Excluding all high-energy hole states by the Schrieffer-Wo
transformation up to second order we obtain the effect
Hamiltonian

Heff5Ht
~1!1Ht

~2!1HJ ,

Ht
~1!5 (

iÞ j ,s
t i j Xi

c1,fsXj
fs,c1 ,

~2.2!

Ht
~2!5 (

j ,i , j 8
H(

s
t j i j 8
N Xj

c1,fsXj 8
fs,c1N̂i

1(
a,b

t j i j 8
S Xj

c1,faXj 8
fb,c1

~sW ba•SW i !J ,
HJ5(̂

i j &
~Ji j SW iSW j1Yi j N̂i N̂j !.

HereXi
c1,fs5u ic1&^ i f su is a projection operator and the de

sity and spin operators are given as

N̂i5(
s

Xi
fs, fs , Xi

fs, fs85u i f s&^ i f s8u,

Si
z5

1

2(s sXi
fs, fs , Si

s5Xi
fs, f s̄, ~2.3!

with s51 (↑), 2 (↓) and s̄52s. In Eq. ~2.2! sW ba are
matrix elements of Pauli matrices.

The results presented in Appendix A specify the para
eters of the effective Hamiltonian. Namely, the first-ord
transfer matrix elementst i j in Ht

(1) are given by Eq.~A10!
and in the framework of thet-t8-t9-J model we have to
retain only the largest onest1, t2, and t3 for the lowest sin-
glet hopping between the first, second, and third neighb
respectively. The resulting three-site transfer-matrix e
ments including a spin-dependent hoppingt j i j 8

N/S in Ht
(2) are

given by Eq.~A14!. Again we keep only the largest contr
butions with the obvious notationt2

N/S5t j , j1x, j1x1y
N/S ,

t3
N/S5t j , j1x, j12x . Finally, the parameters of the exchan
partHJ are presented by Eq.~A16!. Using the parameters o
thep-d model in accordance with Hybertsenet al.,13 we ob-
tain the values of the above parameters as given in Tabl
Because the exchange between more distant cells is sm
we restrict ourselves to the nearest neighborsJ15J.

Though the form of the Hamiltonian~2.2! coincides with
the one derived in Refs. 18 and 20 the values of its para
eters calculated with the same parameters of the underl
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p-d model may be different. The difference reduces mai
to a sign problem. Actually, as an intermediate step of
present derivation we define the action of the original ope
torsAis5dis , pis , andp̃ is within the ‘‘new’’ one-cell basis
ua& ~see Appendix A! as

Ais5 (
a8,a

^a8uAsua&Xi
a8a ~2.4!

and then substitute these expansions into the inter
part of the HamiltonianHhop. Because the coefficients i
Eq. ~2.4! are unambiguously connected with the matrix e
ments of unitary transformations~A8! as ^a8uAsua&
5(n8n^a8un8&^n8uAsun&^nua& and the decomposition ofAs

given by^n8uAsun& within the ‘‘old’’ basis un& is unique, the
two-site matrix elementst i j ,s and t̃ i j ,s in Eq. ~A9! are also
obtained in a unique fashion. In another approach16,18 one
first defines a set of two-cell wave functions as direct pr
ucts such asu ia, jb&5u ia& ^ u jb&. As it was pointed out in
Ref. 20 an evaluation of the matrix elemen
^ ia8, jb8uHhopu ia, jb& within this basis contains an unce
tainty in the signs for these elements, which requires a s
cial subtle convention to fix the signs.

Further, to define properly the exchange constantJ, each
pair of siteŝ i j & enters into the summation inHJ @Eq. ~2.2!#
only once, which explains why the calculated value
J5235 meV is twice as large as the one presented in Ref.
Our estimation so far is nearly the same as the one repo
in Ref. 19 and significantly larger than the accepted exp
mental value for copper oxides. Several corrections of
opposite~ferromagnetic! sign toJ, however, should be take
into account. Two sorts of corrections are mainly due
intercell Coulomb interactions presented by the off-site p
of DH in Eq. ~2.1! where one has to distinguish between t
density-density and the spin-dependent exchange term19

The former one, as well as the residueDH8, we treat in a
mean-field manner as presented at the end of Appendix
The procedure that is explained there leads to a substa
reduction of the nearest-neighbor exchange constantJ to a
value of 202 meV. The other parameters of Table II are o
slightly changed (t2 to a value of236 meV, for instance!,

TABLE II. Hopping and exchange parameters in first and s
ond order of the reduction procedure.

Parameter i51 i52 i53

t i ~meV! 498 241 77
Ji ~meV! 235 20.2 4
t i
N ~meV! 25 12
t i
S ~meV! 258 258
y
e
-

ll

-

-

e-

f
8.
ed
i-
e

o
rt

.

A.
ial

y

which we therefore neglect in the following. Similar effec
of suppression of the superexchange due to the intersite C
lomb interaction in the charge-transfer system was rece
discussed by Ederet al.26 The Coulomb exchange betwee
neighboring cells induced byUp and considered in Refs. 1
and 19 leads to the second correction

DJp522j1v
4Up . ~2.5!

The third correction stems from the direct Cu-O exchang

HK522K(̂
i l &

SW i
~d!
•sW l

~p! , ~2.6!

whereK50.18 eV~Refs. 13 and 27! and the spin operator
SW i
(d) and sW l

(p) are defined in terms of the originaldis and

pls ( lW5 ıW6xW /2, ıW6 yW /2) operators. This interaction, not in
cluded in the originalp-d model, is considered by severa
authors.13,27,28 Within the reduction procedure develope
here the correction to the exchange constant is

DJK524f1u
2v2K. ~2.7!

In Eqs. ~2.5! and ~2.7! j1.0.06 andf150.243 are coeffi-
cients of the Wannier transformation andu and v are the
components of theT1 matrix ~A8!. So for the present param
eters, the calculation givesDJp5233 meV and
DJK5234 meV. Thus we can confirm the observation
Stechel and Jennison13,27 that the inclusion of the direc
Cu-O exchange~2.6! leads to a considerable reduction of th
value of J. Taking into account that the exchange~2.6! di-
minishes the energy distance between the bare singlet
triplet states@see Eq.~A6!# by an amount of 2 K leads to an
additional correction of25 meV. The resulting superex
change constant then becomesJ5130 meV, which is close
to the one usually reported for copper oxides and coinci
with the estimation obtained by Hybertsenet al.13

III. VARIATIONAL ANSATZ
FOR THE ONE-HOLE MOTION

Now we use the Hamiltonian~2.2! with the parameters
given in Table II to calculate the dispersion of one hole
the antiferromagnetic state of the Heisenberg Hamilton
HJ ~with only nearest-neighbor exchange!. For that purpose
we may set the density operatorN̂i equal to unity. From now
on we neglect also the constant energy shift resulting fr
the N̂i in HJ @Eq. ~2.2!#. For convenience we write the three
site termHt

(2) in a more spin rotational invariant form an
find

Ht
~1!1Ht

~2!5K̂1T̂ , K̂5 (
i ,b,s

t̃ bXi
0sXi1b

s0 , ~3.1!

with

-

t̃ b55
t̃ 15t1 if b is a nearest-neighbor vector

t̃ 25t212~ t2
N2tS/2! if b is a second-nearest-neighbor vector

t̃ 35t31~ t3
N2tS/2! if b is a third-nearest-neighbor vector

0 otherwise,

~3.2!
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15 566 55V. YU. YUSHANKHAI, V. S. OUDOVENKO, AND R. HAYN
where we replaceXi
c1,fs5Xi

0s to simplify the notation. So

the K̂ term involves, on the mean-field level, also the thre
site hopping term. With the parameters presented in Tab
the effective hopping integralst̃ 2 and t̃ 3 take the values

t̃ 2566 meV, t̃ 35118 meV. ~3.3!

The remaining partT̂ of the three-site term has the form

T̂5tS (
i ,a1 ,a2 ,s1 ,s2

d̄ a1 ,2a2
Xi
0s1Xi1a1

s1s2Xi1a11a2

s20 , ~3.4!

with tS5t2
S5t3

S as given in Table II, where the sum ove

a1 ,a2 goes over next nearest neighbors andd̄ a1 ,2a2
is zero

if a152a2 and equal to unity in all the other cases. TheT̂
term involves contributions to a hole propagation that
beyond the mean-field approximation. Actually, in the sla
fermion linear spin-wave representation developed in S
IV, this term corresponds to two-magnon scattering p
cesses that couple to the moving hole. It requires some
tension of the conventional SCBA to take this kind of pr
cess into account.8

Below we adapt the variational ansatz24,25 in a form that
allows us to calculate the influence of the termT̂ in detail.
The variational ansatz is constructed with the spin sing
ground stateuC0) of the Heisenberg Hamiltonian. The firs
basis function corresponds to the creation of one hole

uC0), i.e.,f i
01

uC0)5Xi
0suC0), and the other four basis op

erators

f i
a5(

s
Xi2a

ss Xi
s0 , a51, . . . ,4 ~3.5!

involve a spin defect at the neighboring sitea of the hole and
correspond to the so-called string state of length one. H
and in the followinga denotes at the same time a neighb
ing vector and a number between 1 and 4 that are conne
with each other in a unique way. Thus the ansatz correspo
to a magnetic polaron of minimal length. It describes sta
with a total spinStot51/2 that are known to represent th
lowest states of thet-J model with one hole.3,4

To calculate analytically the dispersion of the lowest on
hole state, we use the ansatz~3.5! like in the Ritz variational
principle. This means that we determine the overlap mat

Sab5(
j

~C0uf l
af j

b1
uC0!e

ik~ j2 l ! ~3.6!

and the Hamilton matrix

Hab~k!5(
j

~C0u@f l
a ,Ĥ#f j

b1
uC0!e

ik~ j2 l !, ~3.7!

where a and b denote different basis function
(a,b50, . . . ,4) and theHamiltonian ~3.7! contains the ki-
netic and exchange energies as well as the three-site t
Ĥ5K̂1T̂1ĤJ .

The matrix elements ofK̂ andĤJ have already been give
in Ref. 25, where the influence of doping on the spectr
had been studied. The doping was simulated by tempera
or a frustration term in the spin part of the Hamitonia
-
II

e
-
c.
-
x-

t

in

re
-
ted
ds
s

-

ms

re
.

Therefore, we will not repeat these matrices here. The o
new contribution, the matrix of theT̂ term, is given in Ap-
pendix B. All the contributions to the Hamilton matrixH
@Eq. ~3.7!#, as well as the overlap matrixS, depend on the
ground stateuC0) of the pure spin system due to static spi
spin correlation functions. Here we approximate four- a
six-point spin-spin correlation functions by decoupling the
into two-point spin-spin correlation functions.29 These have
been calculated by a self-consistent, spin rotational invar
Green’s-function technique for the Heisenberg model.30 We
have checked that the modified spin-wave theory
Takahashi31 gives essentially the same results. Once we h
determined the spin-spin correlation functions, we can ca
late the quasiparticle dispersion by finding the lowest eig
value ofHS21.

In Fig. 1 we compare the results for four sets of para
eters. SetA corresponds to the puret-J model; in setB we
take the additional hopping termst2 andt3, calculated in first
order ~Table II!; in setC we incorporate also the second
order corrections in the mean-field approximation~3.3!, and
in the complete case, setD, the termT̂ describing the three-
site hopping beyond the mean-field level is added. In
cases we chooseJ5t1 (5t) since our variational ansatz i
restricted to a magnetic polaron of minimal radius and is
applicable at smallerJ. For a proper treatment of the mor
realistic case of smaller values ofJ one needs to extend th
basis~3.5!. Nevertheless, it is worth discussing how the r
sults change if one retains the restricted basis even
J,t. In fact, we found that the shape of the dispersion d
not change and the bandwidth stays nearly the same a
Fig. 1. That is in contrast to the general expectation tha

FIG. 1. Quasiparticle dispersion within the variational ansatz
the four sets of parametersA–D, which are explained in the text
and a contour plot for caseD. The wave vectors are given in unit
of (p,p) ~lattice constanta51).
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decrease ofJ/t leads to a decrease of the bandwidth. Suc
decrease is not reproduced in the present variational an
The scaling of the bandwidth with the value ofJ is already
known for the puret-J model for a long time2–6 and the
results of Sec. IV prove it also for the case with addition
hopping terms on one sublattice~see also Refs. 25 and 32!.
Therefore, we feel justified to present the results in Fig. 1
units ofE/J, suggesting a simple scaling to smaller values
J.

In caseA without additional hopping terms the energies
(p/2,p/2) and (p,0) are nearly degenerate; there is ve
little dispersion along (p,0)-(0,p) and, consequently, a
highly anisotropic minimum at (p/2,p/2). These results are
consistent with former calculations for the puret-J model.2–6

In Refs. 25 and 32 we found that the variational ansatz in
form presented here agrees well with the exact diagona
tion data of a 434 cluster with periodic boundary cond
tions. The difference in energy between (p,p) and (0,0) is
due to our spin rotational invariant procedure, which do
not break the lattice translational symmetry. The bandwi
is 2.5J and is slightly enhanced in comparison to the SCB
and the exact diagonalization,3,4 which may be due to ou
limited basis. One should note that the discrepancies betw
different methods is especially large at (p,p), but smaller at
(0,0) and at the band bottom.

In all the other cases (B–D) taking into account the de
tails of the reduction procedure with increasing sophisti
tion we observe the common effect that the minimum
(p/2,p/2) becomes a more isotropic one. That is in agr
ment with the general tendency that is experimentally1,10 ob-
served in Sr2CuO2Cl 2. In Fig. 1 one notes a small aniso
ropy ~the ratio between effective masses in the extrem
directions! between 1.2~caseB) and 2~caseD). This feature
is closer to the results in Ref. 10 than to that in Ref. 1, wh
a highly isotropic minimum was reported. Although the a
proximate degeneracy for the hole energies at (p/2,p/2) and
(p,0) is now lifted out, our results fail to reproduce th
dispersionless feature along the line (0,0)-(p,0) seen in one
of the experiments.1

To interpret our result let us note that the additional ho
ping termst2 ( t̃ 2) and t3 ( t̃ 3) act in such a way that the
suppress the motion in the direction of the copper-oxyg
bond, but facilitate the motion along the diagonal. We c
support the observation of Ref. 33, pointing to the imp
tance of a particular combination of the additional hopp
parameters, namely,t222t3 ~or, correspondingly,t̃ 222 t̃ 3
in casesC andD). This combination is of crucial importanc
for the shape of the hole band and is responsible, for
stance, for the dispersion along the boundary of the anti
romagnetic~AFM! Brillouin zone ~BZ!. Comparing setsB
andC ~or D), one can see that the value of the above co
bination does not change significantly, though thet2 param-
eter changes sign:t2,0, while t̃ 2.0. This explains the
weak difference between the dispersions calculated for
B andC cases. Comparing casesD andC, we observe that
the detailed consideration of the nontrivial partT̂ of the
three-site term has little influence on the calculated disp
sion relation. In caseD the bandwith is enhanced due to th
additional hopping terms by a factor of 1.5 as compared
a
tz.
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the puret-J model. That is much less than what is report
in Ref. 20. The reason may be the difference in the va
tional ansatz.

IV. SELF-CONSISTENT BORN APPROXIMATION

A powerful method of investigating a hole dispersion
an AFM background is the SCBA applied to thet-J-like
model in slave-fermion representation

Xi
s05 f ibis

† . ~4.1!

Here f i is the spinless fermion associated with the cha
degrees of freedom and the Schwinger boson operatorbis

†

keeps track of the spins. In the linear spin wave approxim
tion and after the Fourier transformation the Hamiltoni
~2.2! can be written as

Ht
~1!5(

k
«k

~1! f k
†f k1(

k,q
M ~k,q!@ f k

†f k2qbq1H.c.#1dHt
~1! ,

Ht
~2!5(

k
«k

~2! f k
†f k1dHt

~2! , ~4.2!

HJ5(
q

vqbq
†bq1DEJ

0 , vq5szJA12gq
2.

Here the lowest-order hole-magnon vertexM (k,q) has the
form

M ~k,q!5
zt1

AN
~uqgk2q1vqgk!, gk5

1

2
~coskx1cosky!,

~4.3!

with uq and vq being the coefficients of the Bogoliubo
transformation for spin variables.DEJ

0 is the change of the
magnetic ground-state energy due to introducing a hole
the half-filled background (s5 1

2, z54):

DEJ
05JzFs21sS 12

1

N(
q

A12gq
2D G . ~4.4!

We have to define also

«k
~1!54t2coskxcosky12t3@cos2kx1cos2ky# ~4.5!

and «k
(2) takes the same form as«k

(1) with the replacement
t2→2(t2

N2 1
2t2
S), t3→(t3

N2 1
2t3
S). The main differences of the

Hamiltonian~4.2! from the well-known spin polaron mode
arising from the puret-J model are~i! the appearance of th
bare dispersions«k

(1) and«k
(2) due to free hole hopping pro

cesses of the first (;t2 ,t3) and second (;t2
N/S,t3

N/S) order
and ~ii ! the involvement in the hole-magnon interaction
two-magnon processes, such asf k

†f k2q12q2
bq1

b2q2
† , which

are included in the first-orderdHt
(1) (;t2 ,t3) and the

second-orderdHt
(2) (;t2

N/S ,t3
N/S) corrections with their own

more complicated vertices not written here.
The main part of the hole-magnon interaction (;t5t1) is

given by the second term inHt
(1) . As it was proved in nu-

merous investigations for the puret-J model, just this term is
responsible for the formation of a quasiparticle~QP! hole
propagation with a bandwidthW.2J in the wide range of
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J values ifJ,t. Recently Bala, Oles´, and Zaanen8 examined
an extendedt-J-like model and showed numerically that th
two-magnon processes mentioned above are insignific
while the influence of a bare hole dispersion on the ove
picture resulting from the SCBA is important. Similar thoug
more restricted results were also reported by Nazare
et al. in Ref. 7 based on thet-t8-J model not including three-
site hopping terms.

We addressed the same problem and calculated within
SCBA a single hole~spin polaron! band dispersion based o
the Hamiltonian~4.2!, however, withoutdHt

(1) and dHt
(2) ,

i.e., higher-order magnon processes are assumed to be i
nificant. We compare the results with that derived in the p
t-J model6 to highlight the effects of free hole propagatio
given by a bare dispersion«(k). We differentiate the case
where «(k)5«k

(1) and a more complete case where t
second-order hopping processes also contrib
«(k)5«k

(1)1«k
(2) .

We solved numerically on the 32332 cluster the equation
for the self-energy

S~kW ,v!5(
q

M2~kW ,qW !G~kW2qW ,v2vq!

with the hole Green’s function

G~kW ,v!5
1

v2«~kW !2S~kW ,v!
.

The organization of the self-consistent numerical proced
is the same as in Ref. 34 and the exchange integral is ch
to be eitherJ50.4t or J5t.

Let us now discuss the results of numerical calculatio
The upper panels in Figs. 2~a! and 2~b! show the spectra
density function A(k,v)52p21ImG(k,v1 ih) for two
momentakW5(p/2,p/2) andkW5(0,0) as the most represen
tative ones. Here we setJ50.4t and«(k)5«k

(1)1«k
(2), which

corresponds to a bare bandwidthW8.3J. One can see a
kW5(p/2,p/2) a very sharp, well-pronounced peak in t
low-energy part of the spectrum, while atkW5(0,0) this peak
is strongly broadened. To get more insight into the proble
we show also, in the lower panels, the imaginary part of
self-energy ImS(k,v). @Because A(kW ,v)>0 and
ImS(k,v)<0 these two pieces can be easily distinguish
in the pictures.# It can be seen from Fig. 2~a! ~and we exam-
ined it numerically! that atkW5(p/2,p/2) in the energy in-
terval where the low-energy peak is located ImS(k,v).0
holds with good accuracy. So the visible broadening of t
well-defined QP peak is due to the artificial valu
h50.005t introduced in our numerical procedure to faci
tate the computations. At the same time, atkW5(0,0) the po-
sition of the low-energy peak coincides with a large value
ImS(k,v) and hence this peak can hardly be detached fr
the incoherent part of the spectrum. In this way we verifi
the existence of a QP hole state in the most part of the A
BZ except for the centerkW5(0,0) and its nearest vicinity
where the QP is not well defined. That is the effect of a b
dispersion«(k) with a large enough bandwidthW8. We no-
tice that in the puret-J model «(k)50, a well-defined QP
nt,
ll

o

he

ig-
e

e,

re
en

s.

,
e

d

s

f
m
d

e

state, though with a weight atkW5(0,0) somewhat smalle
than atkW5(p/2,p/2), exists in the whole BZ. Balaet al.8

came to the same conclusion. Further support of this st
ment was found by taking the valueJ5t. In this case for any
dispersion«(k) examined here, the bare bandwidth is not t
high,W8,1.2J, and the well-defined QP state is found in th
whole BZ.

The resulting dispersionE(k) extracted from the low-
energy peak positions inA(kW ,v) is shown in Figs. 3~a! and
3~b! for J5t and J50.4t, respectively. Three curves ar
plotted in each picture to compare the following possibilitie
~a! the puret-J model«(k)50, ~b! the t-t8-t9-J model with
a reduced bare dispersion«(k)5«k

(1) , and ~c! the full ver-
sion for the bare dispersion«(k)5«k

(1)1«k
(2) . In Fig. 3 the

continuous thin line is reserved for case~a!, while the circles
and crosses are for~b! and~c!, respectively. Please note als
the agreement of the absolute values of the energies betw
the variational ansatz~Fig. 1! and the SCBA forJ5t @Fig.
3~a!#. For that it is important to include the energy sh
DEJ

0 @Eq. ~4.4!# ~which was done in Fig. 3, but not in Fig. 2!.
Only those circles~crosses! that are connected by a thic
~thin! line in Fig. 3 correspond to well-defined QP states. F
J50.4t @Fig. 3~b!#, well-defined QP states do not occur o
the upper parts of the dispersions, i.e., at the cen

FIG. 2. Spectral density and imaginary part of the self-ene
for J50.4t, t8/t50.13, andt9/t50.24 (t51) within the SCBA at
~a! (p/2,p/2) and~b! (0,0).
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kW5(0,0) and at the equivalent pointskW5(6p,6p) of the
BZ, where the QP states are overdamped for both case~b!
and ~c!. So the resulting true QP bandwidth is estimated
becomeW.2J, not larger. Actually, high-energy QP state
lost their identity due to a strong scattering into hole state
lower energy with emitting a magnon. This scattering p
cess possesses a threshold character and becomes much
intensive if the bandwidth of QP states tends to exceed
maximum magnon energy 2J. Some proof of this statemen
is given in Appendix C.

Let us note that the effective hopping parameterst8 and
t9 can be defined ast85t212(t2

N2 1
2t2
S) and t95t31(t3

N2
1
2t3
S). Just these parameters determine a bare hole dispe

e(k)5ek
(1)1ek

(2) with the values estimated to bet8/t50.13
and t9/t50.24 ~Table II!. Recently, Belinicher, Chernyshev
and Shubin reported35 the results of the SCBA calculatio
for the QP dispersion based on the same Hamiltonian~1.2!
with J/t50.4, but for another choice of thet8 andt9 param-
eters:t8/t'0 and t9/t50.25; the latter is very close to ou
estimate. The authors in Ref. 35 found nearly flat QP disp
sion along the line (0,0)-(p/2,0)-(p,0) and almost isotropic
dispersion near the QP band minimum. So it was claime
Ref. 35 that excellent agreement between the SCBA com
tation and ARPES results of Ref. 1 is reached.

Our SCBA computation performed with the same valu
of parameterst8 and t9 as in Ref. 35 andJ/t50.4 show,
however, that the relevant QP dispersion curve depicte
Fig. 3~b!, case~c!, only slightly changes and preserves
main character. Namely, the QP energies at (p,0) remain
nearly in the middle of the band and the effective QP mas

FIG. 3. Quasiparticle dispersion within the SCBA for the p
rameter setsA ~thin line!, B ~circles and thick line!, andC ~crosses
and thin line! for ~a! J5t and~b! J50.4t. Only those points that are
connected by a line have a well-defined QP character.
o

f
-
ore
e

ion

r-

in
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s

in
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the (p,0)-(0,p) direction is about twice as large as that
the (0,0)-(p,p) direction. So we may infer that, to a larg
extent, the overall shape of the QP dispersion is insensi
to the t8 value provided that there is a larget9 parameter.

V. SUMMARY AND CONCLUSIONS

To investigate the hole band dispersion in copper oxi
we have derived the form and estimated the parameter va
for a one-band extendedt-J model as the low-energy limit o
the underlying three-bandp-d model for the CuO2 plane.

13

The reduction procedure is based on the cell-perturba
method and developed here in such a way that there is
ambiguity in the signs of the hopping integrals in the effe
tive one-band model. In distinction to forme
expectations,7,13 the reduction procedure pointed to the n
cessity to include not only a hopping to second (t8), but also
to third (t9) neighbors.

Further, in calculating the hole band dispersion, bo
within the variational approach and the SCBA, we dist
quished between two sets of parameters derived in
(t8/t520.08, t9/t50.15) and up to second orde
(t8/t50.13, t9/t50.24). The leading effect of the so-calle
three-site hopping term was shown to be provided already
the mean-field level. Both methods and both sets of par
eters were shown to lead to a similar shape of the hole
persion.

As the main result we found that the present extension
the t-J model leads to a more isotropic minimum
(p/2,p/2) in comparison to the puret-J model. The calcu-
lated dispersion between (0,0) and (p,0) does not com-
pletely vanish~in distinction to the dispersionless feature
Ref. 1! and it remains an anisotropy at (p/2,p/2) between
1.2 and 2. It is interesting to note that also the more rec
experiment10 indicated a small anisotropy around the min
mum (p/2,p/2).

Let us briefly discuss the limitations imposed by our a
proximations or in the presentt-t8-t9-J model itself. For in-
stance, the higher-order magnon processes coupled to
hole propagation and generated by the additional hopp
terms deserve to be examined more carefully in a refi
SCBA. The form of the present effective model seems to
rather general; however, the values of its parameters, as
as that for thep-d model, may vary for different coppe
oxides. In the present paper we used parameters that
derived for La2CuO4.

13 So a constrained density-function
calculation for Sr2CuO2Cl 2 is strongly desirable. In tha
case it might be helpful that we gave the formulas of t
reduction procedure explicitly.

The experiments1,10 indicated also that the quasipartic
states on the upper part of the hole spectrum are not so
defined as at the bottom. Along with this finding, our resu
~see also Ref. 8! show a threshold character of this quasip
ticle damping. Actually, an increase of the resulting ho
dispersion, due to the presence of a bare hole band of
siderable bandwidth, is inhibited by strong scattering of
high-lying quasiparticle states into lower ones. That impo
an upper cutoff, roughly 2J, on the resulting hole bandwidth
and leads to the disappearence of well-defined quasipar
states in considerable regions of the Brillouin zone cente
at (0,0) and (p,p). On the other hand, our calculations r
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15 570 55V. YU. YUSHANKHAI, V. S. OUDOVENKO, AND R. HAYN
sult in a well-defined quasiparticle state around (p,0), where
it is strongly overdamped in the experiment.1,10 The above-
described mechanism of damping due to a large bare dis
sion would provide us with such an effect, however, only
unrealistic values of the parameterst8 and t9. Therefore, it
seems likely that additional damping processes, not inclu
in the SCBA, exist as well.
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APPENDIX A

In this appendix the main steps of the mapping from
p-d to the effectivet-t8-t9-J model are presented. We sta
with the definition of the symmetric and antisymmetric o
tonormalized oxygen orbitals by introducing the correspo

ing annihilation operatorspqs and p̃qs , respectively,
16

pqs5
isq,x
lq

pqs
~x!2

isq,y
lq

pqs
~y! ,

p̃qs5
isq,y
lq

pqs
~x!1

isq,x
lq

pqs
~y! . ~A1!

Here pqs
(x,y) are the Fourier-transformed original oxygen o

bitals

pqs
~a!5

1

AN(
i
piW1aW /2,s

~a! e2 iqW ~ ıW1aW /2!, ~A2!

whereaW 5xW ,yW are two orthogonal unit vectors on the squa

lattice with sitesiW ~lattice constanta51).The coefficients
sq,a andlq are defined below.

The p-d model originally written in terms ofpl ,s
(x) and

pl ,s
(y) operators (lW5 iW1aW /2) can now be presented in terms

Wannier orbitals associated withpis and p̃ is @Eq. ~2.1!# in
the main text. This can be done first by inverting the relat
~A1! and then performing the Fourier transformation to t
coordinate space. This transformation generates a set o
efficientsl i j , m i j , andn i j defined as
er-
r

d

s
lz,
l
e
n
2-
e

e

-

n

o-

$l,m,n%~ iW2 jW !5
1

N(
q

$l,m,n%qWe
iqW ~ iW2 jW !,

lq
25sq,x

2 1sq,y
2 , mq58

sq,x
2 sq,y

2

lq
2 ,

~A3!

nq54sq,xsq,y~sq,x
2 2sq,y

2 !/lq
2 ,

sq,x5sin~qx/2!, sq,y5sin~qy/2!.

These coefficients fall off rapidly with the distance (ıW2 jW),
Table I. A brief remark should be made on the symmetry
the coefficients. Actually,l i j andm i j do not change butn i j
does change sign when (iW2 jW) is reflected in the@1,1# or

@1,1̄# direction. In particular,n(yW )52n(xW ), which leads to
opposite second-order corrections for the effective hole h
ping amplitudes to the second@;n(x)n(y)52n2(x)# and
third @;n2(x)# neighbors.

Besides the vacuum u i0& and one-hole state
u ids&[dis

† u0&, u ips&[pis
† u0& and u i p̃s&[ p̃ is

† u0&, one has

to introduce a two-hole basis for each cell~the site indexiW is
implied! as

uc1&5S~d†,p†!u0&, utm&5Tm~d†,p†!u0&,

uc2&5p↑
†p↓

†u0&,

uc3&5d↑
†d↓

†u0&,
~A4!

uc̃1&5S~d†, p̃ †!u0&, u t̃ 1m&5Tm~d†, p̃ †!u0&,

uc̃2&5S~p †, p̃ †!u0&, u t̃ 2m&5Tm~p†, p̃ †!u0&,

uc̃3&5 p̃ ↑
† p̃ ↓

†u0&,

where

S~a†,b†!5
1

A2
~a↑

†b↓
†2a↓

†b↑
†!,

Tm~a†,b†!5S a↑†b↑† , 1A2 ~a↑
†b↓

†1a↓
†b↑

†!,a↓
†b†_↓ D ~A5!

for m511,0,21, respectively. The energies of these sta
are given by

«c15«d1«p2tppm01Updf0 , «t5«c1

«c252~«p2tppm0!1Upj0 ,

«c352«d1Ud ,
~A6!

«c̃15«d1«p1tppm0 , « t̃ 15«c̃1

«c̃252«p , « t̃ 25«c̃2

«c̃352~«p1tppm0!.
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The three- and four-hole states do not contribute to the l
energy physics we are interested in. Within this basis
Hamiltonian can now be written asH5H loc1Hhop, where
the zeroth-order HamiltonianH loc presents the intracell inter
action

H loc5(
i ,s

$«dXi
ds,ds1~«p2tppm0!Xi

ps,ps1t~Xi
ds,ps

1H.c.!%1(
i ,s

~«p1tppm0!Xi
p̃s, p̃s

1(
i

H (
k51

3

«ckXi
ck,ck1A2t~Xi

c1,c21Xi
c1,c31H.c.!J

1(
i

(
m

«tXi
tm,tm1(

i
H (
k51

3

«c̃kXi
c̃k,c̃k

1t~Xi
c̃1,c̃21H.c.!J

1(
i

(
m

H (
k51

2

« t̃ kXi
t̃ km, t̃ km1t~Xi

t̃ 1m, t̃ 2m1H.c.!J ,
~A7!

wheret52tpdl0.0 andXi
nm5u in&^ imu. Diagonalization of

H loc can be performed independently in each set of cu
brackets in Eq.~A7! to give instead ofu in& @Eq. ~A4!# the
new one- and two-hole basis statesu ia& as given by

S uds&

ups&
D 5T1S u fs&

ugs&
D , T15S u v

2v uD
S uv D 5A1

2H 16
uD̃u

AD̃214t2
J , D̃5«p2«d2tppm0 ,

« f ,g5
1

2
$~«d1«p2tppm0!7AD̃214t2%,

uc i&5 (
k51

3

b ikuck&, b ik5$T2% ik , ~A8!

T2
21S «c1 A2t A2t

A2t «c2 0

A2t 0 «c3

D T25S «c1 0 0

0 «c2 0

0 0 «c3
D ,

S uc̃1&

uc̃2&
D 5T1S u c̃1&

u c̃2&
D , uc̃3&[u c̃3&,

« c̃1, c̃25
1

2
$~«d13«p1tppm0!7AD̃214t2%,

« c̃35«c̃3 ,

S u t̃ 1m&

u t̃ 2m&
D 5T1S ut1m&

ut2m&
D ,

« t15« c̃1 , « t25« c̃2 .
-
e

y

Theu andv components of the matrixT1 and corresponding
energies«a for some new states are written explicitly in E
~A8!, while the componentsb ik of the orthogonal 333 ma-
trix T2 and energies «ck for the singlet states
uck& (k51,2,3) should be found numerically with a partic
lar choice for the parameters of the underlyingp-d model.

The zeroth-order Hamiltonian now takes the form

H loc5(
i ,a

«aXi
aa ,

and for the intercell interactionsHhop we have (iÞ j )

Hhop5 (
i , j ,s

(
a,a8,b,b8

@ t i j ,s~a8,aub8,b!

1 t̃ i j ,s~a8,aub8,b!#Xi
a8,aXj

b8,b ,

t i j ,s~a8,aub8,b!52tpdl i j @^a8uds
† ua&^b8upsub&1^a8ups

† ua&

3^b8udsub&#2tppm i j ^a8ups
† ua&

3^b8upsub&, ~A9!

t̃ i j ,s~a8,aub8,b!5tppn i j @^a8ups
† ua&^b8u p̃sub&1^a8u p̃ s

† ua&

3^b8upsub&#.

In Eq. ~2.1! the termsp̃ is
† p̃ js with iÞ j describe transitions

between high-lying states and hence do not contribute to
low-energy physics. So we drop these terms inHhop from the
beginning. To derive the low-energy effective Hamiltonia
Heff , the HamiltonianHhop should be reduced further. Below
we write down explicitly the amplitudest i j ,s and t̃ i j ,s for
the processes that contribute toHeff up to second order.

To first order the only hopping amplitudes for the lowe
singlet uc1& are

t i j ,s~c1 , f s̄ u f s̄ ,c1!

522tpdl i j @vb112A2ub31#@ub112A2vb21#

2
1

2
tppm i j @ub112A2vb21#

2

[t i j . ~A10!

Below we denote this interaction as theHt
(1) term in Heff .

There are several kinds of processes that contribute toHeff in
second order. Namely, one kind of relevant process is gi
by the amplitudes

t i j ,s~ck , f s̄ u f s̄ ,c1!52tpdl i j ~akb11bka1!2tppm i j bkb1

[Fi j
ck ~k52,3!,

t i j ,s~tm, fs8u f s̄ ,c1!52sgn~2s!Cm~s8,s!@2tpdl i j ~ua1

1vb1!2tppm i j ub1#

[2sgn~2s!Cm~s8,s!Fi j
t ,

~A11!
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t̃ i j ,s~ c̃1 , f s̄ u f s̄ ,c1!5tppn i j
b1

A2
[Fi j

c̃1,

t̃ i j ,s~ t1m, fs8u f s̄ ,c1!52sgn~2s!Cm~s8,s!tppn i j b1

[2sgn~2s!Cm~s8,s!Fi j
t1 ,

where

ak52
v

A2
b1k1ub3k , bk5

u

A2
b1k2vb2k ,

Cm~s8,s!5
1

A2
dm,0ds8,s̄1dm,2sds8,s . ~A12!

Within the perturbation expansion that we develop he
these amplitudes correspond to transitions between a gro
state singletu jc1& located at thejW site and an intermediat
virtual upper two-hole state at a siteiW ~the transfer to the
statesu c̃2& and ut2m& is forbidden!. Due to a discharging
process of a virtual state the lowest singlet appears at ano
jW8 site.This kind of second-order hopping is presented be
as theHt

(2) term inHeff . The rest of the processes also givin
rise to second-order corrections toHeff have the amplitudes

t i j ,s~ck , f s̄ u0,fs!5sgn~2s!H 2tpdl i j Fb1k

A2
2uv~b2k

1b3k!G2tppm i j F2
uv

A2
b1k1v2b2kG J

[sgn~2s!Di j
ck ,

t i j ,s~tm, fs8u0,fs!5Cm~s8,s!@2tpdl i j ~v
22u2!

2tppm i j uv#[Cm~s8,s!Di j
t ,
~A13!

t̃ i j ,s~ c̃1 , f s̄ u0,fs!52sgn~2s!tppn i j
v

A2

[2sgn~2s!Di j
c̃1,

t̃ i j ,s~ t1m, fs8u0,fs!5Cm~s8,s!tppn i jv[Cm~s8,s!Di j
t1 .

The corresponding processes lead to the superexchang
teraction ~the HJ term in Heff) between the localized spi
statesu i f s&. At the same time the amplitude in Eq.~A13!
with ck5c1 provides also an additional second-order con
bution to the lowest singlet hopping termHt

(2) .
Collecting all the processes with amplitudes~A11! and

~A13! into H8 we may now write down the relevant part o
the Hamiltonian as

H5H01Ht
~1!1H8.

The interactionH8 should be excluded by the Schrieffe
Wolff transformation to give the effectivet-t8-t9-J model
Heff presented in the main text@Eq. ~2.2#. The foregoing
formulas specify the parameters of the effective Hamiltoni
,
d-

er
w

in-

-

.

Actually, the first-order hopping amplitudest i j in Ht
(1) are

given by Eq.~A10! and in the present calculations we ke
only the largest onest1, t2, and t3 for the lowest singlet
hopping between the first, second, and third neighbors,
spectively. The resulting three-site hopping amplitudest j i j 8

N/S

in Ht
(2) are given by

t j i j 8
N/S

5jc1
N/S

Di j
c1Di j 8

c1

«c11«022« f
1 (

k52,3
jck
N/S

Fi j
ckFi j 8

ck

«ck2«c1
1jt

N/S
Fi j

t Fi j 8
t

«t2«c1

1j c̃1
N/S Fi j

c̃1Fi j 8
c̃1

« c̃12«c1
1j t1

N/S
Fi j
t1Fi j 8

t1

« t12«c1
, ~A14!

where

jc1
N 52jc2

N 52jc3
N 52j c̃1

N
5
1

2
, jt

N5j t1
N52

3

4
,

jc1
S 5jc2

S 5jc3
S 5j c̃1

S
521, jt

S5j t1
S 5

1

2
, ~A15!

and«0 is the energy of the vacuum cell state. The parame
of the exchange partHJ have the familiar form18

Ji j5 (
k51

3

zck
@Di j

ck#2

«ck1«022« f
1zt

@Di j
t #2

«t1«022« f

1z c̃1

@Di j
c̃1#2

« c̃11«022« f

1z t1
@Di j

t1#2

« t11«022« f
, ~A16!

where zck5z c̃154 and zt5z t1522. The value ofYi j is
given by the same formula as Eq.~A16! with the replace-
mentz→zY andzck

Y 5z c̃1
Y

521, zt
Y5z t1

Y 523/2.
Up to now only intracell Coulomb interactions have be

involved into the reduction procedure. Effects of static int
cell interactions can be easily accounted for in a mean-fi
manner18,19 if one assumes that in the reference backgrou
each cell carries a one-hole ground stateu fs&. Then one
finds the following shifts for the cell state energies:

D«d5Upd~22f0!^n
p&,

D«p5Upd~22f0!^n
d&1

1

2
UpS 122j0D ^np&,

D« p̃52Upd^n
d&1

1

4
Up^n

p&,

~A17!

D«c1
5D«t5D«d1D«p , D«c2

52D«p ,

D«c3
52D«d , D«c̃15D« t̃ 15D«d1D« p̃ ,

D«c̃25D« t̃ 25D«p1D« p̃ , D«c̃352D« p̃ ,

where ^nd,p&5^ fsu(ana
d,pu fs&5u2(v2). By putting these

Coulomb corrections intoH loc @Eq. ~A7!# and performing
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the diagonalization~A8! one finds the renormalized energi
«a for the cell eigenstatesua&. In particular, the corrected
energies« f , «ck , and «t lead to a renormalization of th
exchange energies~A16!. @Note that the last two terms in Eq
~A16! cancel each other.# A self-consistent determination o
the averaged number of holes in thed and p orbitals
(^nd,p& and, correspondingly,u andv) is not necessary for a
rough estimate of the effect of the static intercell Coulom
interaction. Any improvement should start by going beyo
the mean-field character.

APPENDIX B

Here we calculate the matrix elements of the termT̂ @Eq.
~3.4!# within the variational basis~3.5!,

Tab~k!5(
j

~C0u@f l
a ,T̂#f j

b1
uC0!e

ik~ j2 l !, ~B1!

wherea andb range from 0 to 4. The calculation is simila
to that for the matrix elements of the kinetic energyK̂ @Eq.
3.1!# and of the exchange partĤJ @Eq. ~2.2!# given in Ref.
25. The result may be expressed in terms of static correla
functions of Hubbard operators with noncoinciding lower
dices

Za5(
s

^Xi
ssXi1a

ss &, ~B2!
t

nc
e
dy
r

d

n

Da,b5 (
s1,s2

^Xi
ss1Xi1a

s1s2Xi1b
s2s

&,

Va,b,c5 (
s1 ,s2 ,s3

^Xi
ss1Xi1a

s1s2Xi1b
s2s3Xi1c

s3s
&,

Fa,b,c,d5 (
s1,s2,s3,s4

^Xi
ss1Xi1a

s1s2Xi1b
s2s3Xi1c

s3s4Xi1d
s4s

&,

where the angular brackets denote the average with
ground state (C0u uC0) of the Heisenberg model. With tha
notation the matrix elements may be expressed as

T00~k!5tS (
a1 ,a2

d̄ a1 ,2a2
Da1 ,a11a2

eik~a11a2!,

Tn0~k!5tS(
a

d̄ a,nZae
ik~a2n!

1tS (
a1 ,a2

d̄ a1 ,2a2
d̄ a1 ,2nVn,n1a1 ,n1a11a2

eik~a11a2!,

~B3!
Tnm~k!5
tS

2
d̄m,ne

ik~m2n!1tS(
a

d̄ a,n d̄ a,mDa,a2me
ik~a2n!1tS(

a
d̄ a,2n d̄ a,2mDn,n1ae

ik~a1m!

1tSd̄m,n d̄m,2n (
a1 ,a2

d̄ a1 ,2a2
d̄ a1 ,2nda11a2 ,m2nDa1 ,m2ne

ik~m2n!

1tS (
a1 ,a2

d̄ a1 ,2a2
d̄ a1 ,2n d̄ a2 ,m

d̄ a11a2 ,m2nFn,n1a1 ,n1a11a2 ,n1a11a22me
ik~a11a2!,
wheren,m range from 1 to 4 anda,a1 ,a2 denote neares
neighbors. Additionally, the notationda1 ,a2512 d̄ a1 ,a2

was
used.

To express the static correlation functions~B2! in terms
of spin-spin correlators we use the spin rotational invaria
of the ground state ofHJ . The expectation values of th
products ofX operators with up to four factors were alrea
calculated in Ref. 25, but now we develop a more gene
procedure. All the quantities~B2! can be written in the form

X12•••n
~n! 5 (

s1 , . . . ,sn
^X1

ss1X2
s1s2

•••Xn
sns

&. ~B4!

To proceed, we collect all the spinlikeX operators in one
matrix
e

al

X j5S Xj
↑↑ Xj

↓↑

Xj
↑↓ Xj

↓↓D 5S 1

2
1Sj

z Sj
2

Sj
1 1

2
2Sj

z
D . ~B5!

Equivalently, one may write

X j5
1

2
I1s¢SW j , ~B6!

with the unity matrixI and the Pauli spin matricess¢ . This
has the advantage that we can write Eq.~B4! as the trace
over a product of spin matrices

X12•••n
~n! 5

1

2
TrK S 12 I1s¢SW 1D •••S 12 I1s¢SW nD L . ~B7!
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Using the well-known algebra of spin matrices and the s
rotational symmetry~which leads tô Si

z&50 and so on! one
can simplify all the expectation values~B2!. One finds, for
instance,

X1234
~4! 5

1

16
1
1

4 (
i , jP~1,2,3,4!

P

^SW iSW j&1S1234
~4! , ~B8!

whereP means the sum over all possibilities to choose n
equali and j from the set (1,2,3,4)~six terms!. In the same
way we obtain for a product of fiveX operators

X12345
~5! 5

1

32
1
1

8 (
i , jP~1,2,3,4,5!

P

^SW iSW j&1 (
i , j ,k,lP~1,2,3,4,5!

P

Si jkl
~4! ,

~B9!

with

S1234
~4! 5

1

2
Trsasbsgsd^S1

aS2
bS3

gS4
d&. ~B10!

Here we assume that the summation over doubled indice
implied. Expression~B10! can also be written as

Si ,i1a,i1b,i1c
~4! 5Sabc2Sbac1Scab , ~B11!

with

Sabc5^~SW i•SW i1a!~SW i1b•SW i1c!&. ~B12!

In the present calculation we approximate the last four-po
spin correlation function in terms of two-point spin
correlations, decoupling them as in a linear spin wa
theory:29

Sabc5SaSc2b1
1

3
SbSc2a1

1

3
ScSb2a . ~B13!

So the complete matrixTab(k) can be expressed in terms
two-point spin correlationsSa5^SW i•SW i1a&.

APPENDIX C

In the main text it was stated that the damping of Q
states at the top of the band possesses a threshold char
The threshold energy depends on the parameterstn
(n51,2,3) andJ, but in the simplest approximation for th
form of a QP dispersion adopted below this energy is eq
to 2J.

Quite generally the Green’s function~3.7! can be written
as

G~kW ,v!5
Zk

v2E~kW !1 ih
1G~ inc!~kW ,v!, ~C1!

where a QP pole positionE(kW ) is the solution to

E~kW !5«~kW !1ReS„kW ,E~kW !…. ~C2!

Since there is no low-energy incoherent part of the hole sp
trum, a QP may scatter only into lower QP states with em
ting a magnon, which is given by the damping
n

-

is

t

e

ter.

al

c-
t-

G~kW !52
1

p
ImS„kW ,E~kW !…

5(
q

M2~kW ,qW !Zk2qd„E~kW !2E~kW2qW !2vq….

~C3!

The numerical solutions of Eq.~C2! presented in Sec. IV
are fitted well with E(kW )5l1gk

21l2(gk
2)21l0, where

gk
25(1/2)(coskx2cosky) and l1.l2.0. The simplest ap-

proximation consists in neglecting a dispersion along
boundary of AFM BZ by settingl250. This is rather remi-
niscent of the QP dispersion law in the puret-J model,
where one obtainsl2!l1.2J. Instead we write

E~kW !5Wgk
21E0 , ~C4!

where the bandwidthW is assumed to be an arbitrary param
eter that tends to increase from below,W<2J, to a higher
valueW.2J. The advantage of this approximation is th
the dampingG(kW ) can now be calculated analytically to th
end.

According to Eq. ~C4!, the top of the QP band is a
kW05(0,0) or (6p,6p) with E(kW0)2E05W,
E(k02q)2E05Wgq

2 , and

M2~kW0 ,qW !5
z2t2

2N
A12gq

2~12A12gq
2![

z2t2

2N
L~gq!.

~C5!

We introduce also the density of states functi
r(e)5N21(qd(e2gq) and take into account a weak depe
dence of the QP weight on a momentumZk.Z0.J/t, as it
follows from numerical computations. Hence the dampi
G(kW0) can now be expressed as

G~kW0!5Z0
z2t2

2WE
21

11

de r~e!L~e!

3dXA12e2SA12e22
2J

W D C. ~C6!

The d function variable possesses two rootse1,2561 for
any ratio 2J/W and two additional roots
e3,456A12(2J/W)2 if 2J/W,1. BecauseL(61)50, the
first two roots do not contribute toG(kW0). A dramatic in-
crease ofG(kW0) appears, however, whenW crosses the value
2J from below. The damping becomes

G~kW0!5
z2t

2 S 2JW D 2rXA12S 2JW D 2CA122J/W

112J/W
. ~C7!
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Near the crossing, when 0,122J/W5a!1

G~kW0!.z2t
A2
p2Aa ln

2

Aa
. ~C8!
-

le

ys

o

.

v.

,

So the damping strongly increases to become of the orde
t if W.2J. As a result, the QP states at the top of the ba
cannot survive anymore and become part of the incohe
spectrum.
v.

ev.

m-

hys.
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