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The reduction of the three-bamdd model for the CuQ plane in cuprates with the standard set of param-
eters as derived by Hybertsen al. [Phys. Rev. B41, 11 068(1990] to an effectivet-t’-t"-J model with a
three-site hopping term is discussed in detail in the framework of the cell-perturbation method. The reduction
procedure is formulated to avoid any ambiguity in obtaining the correct signs of the hopping parameters in the
effective model, and the contributions of first and second order resulting from the intercell hopping are
distinguished. Based on the so-defined extertdéanodel, the dispersion of a single hole in an antiferromag-
netic background is calculated both by a variational ansatz and within the self-consistent Born approximation
(SCBA). An extension of the variational method allows us to investigate the influence of a three-site hopping
term both on the mean-field level and beyond this approximation. The latter corrections are shown to be small.
Both methods give the coinciding result that the additional hopping terms lead to a more isotropic minimum of
the dispersion at the pointi{2,7/2) in k space and to a slightly increased bandwidth in comparison to the
puret-J model. These results are compared with recent photoemission measuremensCto®£1, [Wells
et al, Phys. Rev. Lett74, 964(1995], showing an improvement against the pti& model, but no complete
agreement. In particular, a small anisotropy in the calculated effective masses remains. The lifetime of the hole
quasiparticles is investigated within the SCBA, and it is shown that the upper part of the hole spectrum loses
its quasiparticle character due to a strong increase of damping if the bare hole bandwidth exceeds a certain
threshold value of roughly 2 [S0163-182807)02623-4

[. INTRODUCTION firmed in main features the results by Welgt al. for
Sr,CuO,Cl,, but revealed a noticeable dispersion anisot-
Recent angle-resolved photoemission spectroscopsopy near the minimum.

(ARPES measurementsf the insulating, antiferromagnetic Usually, first-principle calculations are understood as to
compound SyCuO,Cl, provided a good test for several start with the determination of the band structure within the
theories of the electronic structure of cuprate superconductecal-density approximationLDA). These LDA calcula-
ors. For the first time it was possible to measure a valenceions, however, have severe difficulties in describing the
band dispersion in an undoped compound, which correelectronic structure of SCuO,Cl, or similar compounds
sponds to the well-defined theoretical problem of the onesuch as LaCuQ,, for instance''*?In this approach a me-
hole motion in an antiferromagnetic background. Thetallic behavior is predicted for the undoped compound where
position of the dispersion minimum at the point/@,7/2)  the bandwidth and the shape of the band crossing the Fermi
(in the notation of the two-dimensional square laftie@d level differ substantially from the ones obtained in the
the measured bandwidth, which is roughly twice the value ofARPES experiment.The reason consists in the insufficient
the exchange integrdl, are in good agreement with predic- treatment of the strong electron correlations in the LDA cal-
tions of theories based on the purd model?~® However, culations. So the question arises if there is any chance to
large deviations from these predictions have been found igalculate the one-hole dispersion in,6u0,Cl, in a “first-
the shape of the dispersion, especially along the line (0,0)principle” sense. A possible solution for that problem can be
(7,0). Also in contrast to theé-J model, the experimeht proposed in two steps. As the first s#pne has to construct
indicated that the dispersion near the minimum is highly iso-an effective many-band Hubbard-like Hamiltoniésuch as
tropic. Subsequent theoretical investigatiofishave shown the p-d mode) whose parameters are determined by a con-
that better agreement with the experiment could be obtainestrained density-functional calculation. That has been carried
if one extends thé-J model by taking into account a second through, for instance, for L#CuO,.** Band-structure calcu-
hopping integral, (or t’ in other notatioh to next nearest lations for SLCuO,Cl, show only few differences: the ad-
neighbor$ and the so-called three-site hopping tétfUp to  ditional Cl atoms influence only the states far away from the
now, the additional hopping parameters are treated usually &sermi level'! Therefore, we will assume here that the pa-
phenomenological ones. So a further justification both for theameters for LaCuQO, are representative for SCuO,Cl, as
form of the extended-J model and for the numerical values well. The second steB deals with the dispersion of one hole
of its parameters is strongly required from first-principle cal-in the valence band. Since we are interested in the low-
culations. That is especially important in the light of more energy electronic excitations, the high-lying orbitals should
recent ARPES measurements by Schneidal,'® who con-  be eliminated. So it is reasonable first to reduce the derived
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multiband model to an effective-J-like Hamiltonian and we adapt the variational approach in such a way that it al-
then to calculate the dispersion for this one-band Hamiltodows us to investigate the influence of a three-site hopping
operator which is restricted to the low-energy physics only.term. This term appears naturally in the effective Hamil-
In the present paper we adopt the solution for gegs it tonian as the second-order correction in the reduction proce-
was presented in Ref. 13 and elaborate &dp great detail dure and describes also, beyond the mean-field approxima-
and with all the necessary accuracy. We will address twdion, a hole propagation accompanied by a spin-flip
points, namely, the reduction of the three-band model to fluctuation. This kind of a hole motion would manifest itself

an effectivet-J-like Hamiltonian and the calculation of the as & higher-order magnon process not included usually in the
one-hole motion characteristics in this extendeti model. ~ conventional SCBA. On the other hand, the variational ap-
There exist already publications that deal with one part of th@roach can hardly be applied at lower valued aind ignores
problem, either with the reduction procedtfré®or with the also the quasiparticle lifetime effects, both of which can be
calculation of the one-hole dispersion using phenomenologidone, however, within the SCBA. _
cal parameters from the comparison with the ARPES data for The variational ansatz is proposddand widely
Sr,CuO,Cl,.”? Here we concentrate on the connection be-uséd™“"“to describe the propagation of a hole as a spin
tween these two parts, providing a microscopical derivatiorPolaron of minimal size, a limit that makes the problem trac-
of the extended-J model and its direct comparison with table analytically. That ansatz is constructed here assuming
experiment. the singlet ground state of the spin part of the Hamiltonian
Following the original paper by Zhang and Ri¢ea sys- (Helsenberg modegl We.compare in detail the spin polaron
tematic reduction scheme from the underlyimgl model to dispersions corresponding to the first and second order of the
the effective Hamiltonian describing the low-energy elec-"éduction procedure, showing reasonable convergence. An-
tronic properties of the Cu@plane was proposed indepen- o_ther_|mpor_tant qyestlon concerns the ba_ndW|dth (_)f the qua-
dently by three groups of authé?s!” and developed further SiParticle dispersion. Recently it was claimed, using also a
in Refs. 18 and 19. The advantage of this derivation based oyariational wave function, that the inclusion of additional
the cell-perturbation method is that it allows one to take intd@PPIng terms with the realistic range of the pargfmeters
account exactly all the intracell electron correlations and prol€2ds to an increase of the bandwidth up to a factor ofAl.
vides a good convergence in treating the intercell interactesult like that would contradict the experimental findirig.
tions. In the present work we turn again to this probleee contrast, we will show in Sec. Il that a correct application of
Sec. 1) and present in a short manner a derivation oftthe the variational ansatz leads only to a moderate increase of the
t’-t"-J Hamiltonian from the three-bargtd model contain-  C@lculated bandwidth in comparison to the pt&model.
ing the complete set of parameters as given by Hybertsen, Be!ng restricted to a minimal size of the spin polaron, the
Stechel, Schiier, and Jennisol Here we pursue several variational ansatz is not applicable for smallFor this more
aims. The first one is to give the reader a compressed set &falistic case we therefore use a complementary method, the
formulas connecting the parameters of the effectivé-t”- SCBA. In distinction to Refs. 7 (_amd 8_ we take values tfpr
J model with that of the underlying-d model. For a par- andt, that are calculated from “first principles.” Both meth-
ticular choice of the latter parameters the former ones cafdS (the SCBA and variational ansatshow reasonable
now be easily estimated by a numerical procedure. As for thédreement for the calculated hole dlsperslon despite the fact
parameter regime where the reduction is valid we refer th&hat the SCBA uses a leetype two-sublattice ground state,
reader to more extensive pap&#<?Second, a careful analy- whereas the variational ansatz does not break the spin rota-
sis shows that the two versions of the reduction schemdional symmetry. Like in the variational approach, the band-
while being very similar to each other as they were presentetith calculated in the SCBA is not substantially increased
originally, for instance, in Ref. 15 or in Refs. 16 and 18 due to the additional hopping integrals. Instead, a feature not
contain a subtle difference. The essence of this differenc¥iSible in the pure-J model occurs. Actually, we investigate
remains to be discussed below. Here we notice only thall® question of the quasiparticle damping due to the presence
within the second approach developed in Refs. 16 and 18 orff additional hopping integraléi.e., due to the bare hole
encounters an ambiguity in obtaining the correct sign for thelispersion and show that this damping possesses a threshold
transfer-matrix elements in the effective Hamiltonian, whichcharacter. Namely, if the bandwidth of the bare dispersion
may lead to an incorrect band dispersi¢&ee also the dis- excegds a certain threshold value the upper parts _of the qua-
cussion in Ref. 20.Here we use the first approath?! siparticle hole spectrum become overdamped, which results
which is free from this drawback. We have also deliberatelyn the disappearance of quasiparticle states in some part of
chosen notation close to the one used in Refs. 18 and 2@¢ Brillouin zone.
which makes it easier to compare directly between the two

approaches mentioned. In distinction to the former widrk, Il. PROPER REDUCTION SCHEME
we find from_ the reduction proceqlure that one has to include AND THE EEFECTIVE HAMILTONIAN
also a hopping terny; (or t”) to third nearest neighbors.
After calculating the parameters of the extendehlike We start with the three-bang-d model for the copper

Hamiltonian, the dispersion relation of one hole will be de-oxygen plane with the same parameters as those estimated by
termined here by two different methods. The first one isHybertsenet al!® for the La,CuO, compound. To be spe-
based on a variational ansatz for the wave function of oneific, we use the Cu-O and O-O hopping integreid=1.3

hole (Sec. 1)) and the second one is the self-consistent BorreV andtPP=0.65 eV, respectively, the charge-transfer en-
approximatio? (SCBA) (Sec. I\). Both of them have sev- ergyA=e,—e4=3.6 eV, and the Coulomb repulsions given
eral advantages such that they complement each other. Helog U4=10.5 eV,U,=4 eV, andU4=1.2 eV. An effect of
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TABLE I. Coefficients of the oxygen Wannier orbitals. tributions coming fromU 4 andU, are much smaller than
— those fromtPY andtPP terms. So, concerning the coefficients
=] A M v ¢iij and £y;j, we need onlygy = ¢ and & = &, which
0 0.958 1454 0.0 can be fou_nd to bey=0.918 and§01—0.211.. The sum rules
% 014 0546 _0.266 > (#i)(ﬁlii_z_?bo and2| (¢i)§|“i—§_§.o will also be used.

Further details of the cell-perturbation procedure are con-

X+y —0.02 0.244 0.0 tained in Appendix A. In essence, after performing a diago-
2X —-0.014 —-0.128 0.082 nalization of the local HamiltoniaHl .., one finds the lowest

one-hole statgif o) at a celli and with a spin projection
o=|,] that possesses mainly a copper character. In the in-
the direct Cu-O exchange that is not included into the origi-sulating, undoped compound each cell is occupied by one of
nal p-d model is discussed at the end of this section. Tothese spin states that interact antiferromagnetically. Among
proceed with the cell-perturbation method, one has to introthe two-hole states that appear due to doping the lowest one
duce the symmetric(,) and antisymmetricig;,) orthonor- is the Zhang-Rice singlet denoted in the following|&s,).
malized oxygen Wannier orbitals. The details are containedxcluding all high-energy hole states by the Schrieffer-Wolff
in Appendix A and in Refs. 15, 16, 18, and 19. The originaltransformation up to second order we obtain the effective

Hamiltonian can now be written as Hamiltonian
H=Hy+H,+AH, Her=HM +HZ +Hj,
HozsdiE nida'+8pi2 (pi-rapia'_{—’ﬁi‘ra"ﬁio’)—i_udg nidTnidlv Hgl):i; tijxi(:l’fo—xjfo—'(:l,
’ ' (2.1 : 2.2
Ht:2tpdi; )\ij(diTapjzr'FH-C-)_tppi; [1ij (PP} HZ=2> (X t;}‘jrxfl’faxjfff'ClNi

g’

-t~ t =
—PisPjo) — Vij(PisPjs+H.C), s 1fayfBcl, = &

| | 2t XX 0 S
AH:UdeZ ¢|ijn|dp;rapja+upk|2_ fklijpETplTpiTlpjl o o
e b HJ:E (‘]IJSiSJ+Y|JN|NJ)

+AH'. {in

HereX®'"=lic,)(if o is a projection operator and the den-

From now on any site indeixon a square lattice labels a cell. _. . ;
sity and spin operators are given as

In Eq (21) the CoefﬁCientS)\ij, Mij» Vij ¢Iij , and gklij
follow from the Wannier transformation and fall off rapidly A .
with the relative distance between cells. The largest values N;=> Xfofe  xfofo' <|if g)(if o
for some of these coefficients are presented in Table I. This 7

gives us the opportunity to develop a perturbative approach:

3

The local intracell interactions given by all relevant terms in Szzlz oxfofo S{rzxfa,fF 2.3
Eqg. (2.1) with coinciding lattice indices, which we denote '25 S '
hereafter asd,;, are taken into account exactly, while the — -
remaining intercell interactionsip,,, are treated perturba- with o=+ (1), — (]) ando=—0.In EQ.(2.2 og, are
tively. matrix elements of Pauli matrices.

In Eqg. (2.1) the termAH’ has minor importance for the The results presented in Appendix A specify the param-

low-energy physics. Actually, this contribution is generated®t€rs of the effective Hamiltorgli?n. Namely, the first-order
by the Coulomb repulsions , andU ,4 as well, but formed transfer matrix elements; in H;™’ are given by Eq(A10)

by antisymmetric operators,,. Hence only some high- and_ln the framework of the-t’-t”"-J model we have_to
energy hole states are entangled in it. In the following we'etain only the largest onds, t,, andts for the I(.)WGSt sin-
take into account exactly the local contributions contained inglet hopplng between th? first, secopd, and third nelghbors,
the two explicitly written Coulomb terms iAH, while the respect_wely. _ The re_sultmg three-site trans_fer—m?tnx ele-
corrections due to the intercell static interactions, as well a§ents including a spin-dependent hopphﬁ'@? in H® are

due toAH’, will be involved in a mean-field manner at the given by Eq.(A14). Again we keep only the largest contri-
final stage of our derivation. It is shown below that thesebutions with the obvious notationty’ =t ., .,
corrections are important to reproduce a reliable value fortheg”s=tj,j+x,j+2x. Finally, the parameters of the exchange
superexchange constat but less significant for the effec- partH; are presented by E¢A16). Using the parameters of
tive hopping parameters andt”. Some residual Coulomb the p-d model in accordance with Hybertsenal,** we ob-
effects, not accounted here, lead to a further generalization déin the values of the above parameters as given in Table II.
the t-J model involving residual interactions between dopedBecause the exchange between more distant cells is small,
holes (forming Zhang-Rice singletson neighboring cells. we restrict ourselves to the nearest neighkigrs J.

These interactions discussed in details in Ref. 19 are irrel- Though the form of the Hamiltonia(2.2) coincides with
evant for the present purpose of investigating a single Zhanghe one derived in Refs. 18 and 20 the values of its param-
Rice singlet dispersion. Moreover, the effective hopping coneters calculated with the same parameters of the underlying
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TABLE II. Hopping and exchange parameters in first and sec-which we therefore neglect in the following. Similar effects

ond order of the reduction procedure. of suppression of the superexchange due to the intersite Cou-
: : : lomb interaction in the charge-transfer system was recently

Parameter i=1 =2 =3 discussed by Edeet al?® The Coulomb exchange between

t, (meV) 498 m 77 neldgrits))olrlng(;j cells;}nduced élwp and _con5|dered in Refs. 18

3, (meV) 235 —02 4 an eads to the secon corzectlon

'[iN (meV) 25 12 ] ) A‘]p: —2&w Up- ) (2.5

t5 (meV) _58 _58 The third correction stems from the direct Cu-O exchange
, , , Hg=—2K>, S9.5P, (2.6)

p-d model may be different. The difference reduces mainly (i

to a sign problem. Actually, as an intermediate step of th'?/vhereK=O.18 eV (Refs. 13 and 27and the spin operators
present derivation we define the action of the original opera-

3(d) <(P) ] i iqi
torsA;,=dis, Pig» andﬁigwithin the “new” one-cell basis S :imdes, - are» deimed in terms of _th? orlgm_allig and_
|a) (see Appendix Aas pis (I =1 +X/2, I+ y/2) operator;. This mteractlon, not in-
cluded in the originalp-d model, is considered by several
authorst>2"28 Within the reduction procedure developed
, here the correction to the exchange constant is

Aip= 2 (a'|A]ayxi (2.9
. a'a _ _ _ AJg=—4¢,u%v%K. 2.7
and then substitute these expansions into the intercell )
part of the HamiltoniarH,,,,. Because the coefficients in In Egs. (2.9 and(2.7) £,=0.06 and¢,=0.243 are coeffi-
Eq. (2.4) are unambiguously connected with the matrix ele-cients of the Wannier transformation amdand v are the
ments of unitary transformationgA8) as (a'|A,a)  components of th&; matrix (A8). So for the present param-
=3, (a'|v'}v'|A,|v)(v|a) and the decomposition &%,  eters, the calculation givesAJ,=—-33 meV and
given by(v'|A,|v) within the “old” basis|v) is unique, the AJx=—34 meV. Thus we can confirm the observation of
Stechel and Jennisbt?’ that the inclusion of the direct
Cu-O exchangé€2.6) leads to a considerable reduction of the
gvalue ofJ. Taking into account that the exchan&6) di-
minishes the energy distance between the bare singlet and
triplet state§see Eq(A6)] by an amount b2 K leads to an
additional correction of-5 meV. The resulting superex-
é:_hange constant then becomks 130 meV, which is close
to the one usually reported for copper oxides and coincides
with the estimation obtained by Hybertsenal*®

two-site matrix elements; andTiw in Eq. (A9) are also
obtained in a unique fashion. In another apprd&thone
first defines a set of two-cell wave functions as direct pro
ucts such agia,jb)=|ia)®|jb). As it was pointed out in
Ref. 20 an evaluation of the matrix elements
(ia’,jb’|Hpedia,jb) within this basis contains an uncer-
tainty in the signs for these elements, which requires a sp
cial subtle convention to fix the signs.

Further, to define properly the exchange consfargach
pair of sites(ij) enters into the summation id; [Eq. (2.2)]
only once, which explains why the calculated value of IIl. VARIATIONAL ANSATZ
J=235meV is twice as large as the one presented in Ref. 18. FOR THE ONE-HOLE MOTION

Our estimation so far is nearly the same as the one reported Now we use the Hamiltoniaf2.2) with the parameters
in Ref. 19 and significantly larger than the accepted experigiyen in Table 11 to calculate the dispersion of one hole in
mental value for copper oxides. Several corrections of thgne antiferromagnetic state of the Heisenberg Hamiltonian

ppposite(ferromagnetib:sign toJd, hovyever, should. be taken H, (with only nearest-neighbor exchang€or that purpose
into account. Two sorts of corrections are mainly due to

intercell Coulomb interactions presented by the off-site parwe may set the density operafy equal to unity. From_ now

of AH in Eq. (2.1) where one has to distinguish between the®" \ive. neglect also the constant gnergy sh|ft.result|ng from
density-density and the spin-dependent exchange #Brms.theN; in H; [Eq. (2.2)]. For convenience we write the three-
The former one, as well as the residél’, we treat in a  Site termH{® in a more spin rotational invariant form and
mean-field manner as presented at the end of Appendix Aind

The procedure that is explained there leads to a substantial D@ o s . ~ 0rue0

reduction of the nearest-neighbor exchange constaot a Hy '+ H " =K+T , K=i§, tpXi "Xy, (3D
value of 202 meV. The other parameters of Table Il are only fad

slightly changed f, to a value of—36 meV, for instance  with

t,=t; if b isanearest-neighbor vector
~ T,=t,+2(ty—t52) if b is a second-nearest-neighbor vector 32
b— —_ .
t3=t3+(t§‘—t5/2) if b is athird-nearest-neighbor vector

0 otherwise,
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where we replac&*7=X" to simplify the notation. So

theK term involves, on the mean-field level, also the three-
site hopping term. With the parameters presented in Table I

the effective hopping integrals, andt 5 take the values

t,=66 meV, t3=118 meV. (3.3

The remaining par of the three-site term has the form

T=ts El,faZX?”lx-‘””fX-" 20 (3.9

) i+a;Vi+a;+ay’
i,ay,a5,01,02

with tS=t5=t5 as given in Table Il, where the sum over
a,,a, goes over next nearest neighbors a?gq,_az is zero

if a;=—a, and equal to unity in all the other cases. The
term involves contributions to a hole propagation that are
beyond the mean-field approximation. Actually, in the slave-
fermion linear spin-wave representation developed in Sec.
IV, this term corresponds to two-magnon scattering pro-
cesses that couple to the moving hole. It requires some ex-
tension of the conventional SCBA to take this kind of pro-
cess into accourt.

Below we adapt the variational ans#t? in a form that
allows us to calculate the influence of the teiin detail.
The variational ansatz is qonStrUCted W'_th the Spin smglet FIG. 1. Quasiparticle dispersion within the variational ansatz for
ground statgWo) of the Heisenberg Hamiltonian. The first o four sets of parameters-D, which are explained in the text,
basis funct|0+n corresponds to the creation of one hole ijng a contour plot for cas. The wave vectors are given in units
|Wo), ie., @2 | W) =X"’|W,), and the other four basis op- of (w,) (lattice constana=1).

energy (J)

(1,1) (0,0) (1,0) (1,1)
wave vector (1,0) (0,1)

erators
Therefore, we will not repeat these matrices here. The only
a_ XS X0 a=1... 4 3 new contribution, the matrix of th& term, is given in Ap-
¢ z e 39 pendix B. All the contributions to the Hamilton matrit

[Eq. (3.7)], as well as the overlap matri8, depend on the
) round statéW ) of the pure spin system due to static spin-
;ﬁg?ﬁaﬁgi;ﬁowﬁ S;-dC:rlllgtde :g;ngljt:;?ngfﬁﬁlg;hn%?ehb%?_rgpin correlation functions. Here we approximate four- and
9 9 six-point spin-spin correlation functions by decoupling them

wghvggﬁr;ﬂgﬁ:;Tgieruk;e\fvv;eethugrt]ﬁeélat::;érfoiﬁgniﬁ% o two-point spin-spin correlation functiof$.These have
9 Y. P een calculated by a self-consistent, spin rotational invariant

to a magnetic polaron of minimal length. It describes state reen’s-function technique for the Heisenberg mdfale
with a total spinS,=1/2 that are known to represent the have checked that the modified spin-wave theory of

H 4
Iovxfst s}atelstof th‘TJt'mcl)ldetthIEjh one .hOIé' fthe | ¢ Takahashi* gives essentially the same results. Once we have
hol 0 fat culate anat%/ ca yé&g) I.'Eperst'ﬁn ;'t € qvvt_es olne'determined the spin-spin correlation functions, we can calcu-
ole slate, we use In€ ans ke In the RILz varational - 510 the quasiparticle dispersion by finding the lowest eigen-
principle. This means that we determine the overlap matrix, -1 e ofHS 1

In Fig. 1 we compare the results for four sets of param-

involve a spin defect at the neighboring sitef the hole and

SEEDY (‘I’O|¢?¢}’+|\P0)eik(j") (3.6)  eters. SelA corresponds to the pute] model; in seB we
! take the additional hopping termsandt, calculated in first
and the Hamilton matrix order (Table Il); in setC we incorporate also the second-
order corrections in the mean-field approximati@rg), and
N + o . ke e _
Hab(k) =S (\If0|[¢|a,H]¢? [Woeki-h,  (3.7) in the complete case, sBt, the termT describing the three

] site hopping beyond the mean-field level is added. In all
cases we choosgé=t; (=t) since our variational ansatz is
restricted to a magnetic polaron of minimal radius and is not
applicable at smalled. For a proper treatment of the more
SO alistic case of smaller values dfone needs to extend the
H=K+T+H,;. basis(3.5). Nevertheless, it is worth discussing how the re-
The matrix elements df andH ; have already been given sults change if one retains the restricted basis even for
in Ref. 25, where the influence of doping on the spectrumJ<t. In fact, we found that the shape of the dispersion does
had been studied. The doping was simulated by temperatureot change and the bandwidth stays nearly the same as in
or a frustration term in the spin part of the Hamitonian.Fig. 1. That is in contrast to the general expectation that a

where a and b denote different basis functions
(a,b=0,...,4) and théHdamiltonian (3.7) contains the ki-
netic and exchange energies as well as the three-site ter
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decrease od/t leads to a decrease of the bandwidth. Such @he puret-J model. That is much less than what is reported
decrease is not reproduced in the present variational ansain. Ref. 20. The reason may be the difference in the varia-
The scaling of the bandwidth with the value dfis already tional ansatz.

known for the puret-J model for a long tim&?® and the

results of Sec. IV prove it also for the case with additional IV. SELF-CONSISTENT BORN APPROXIMATION

hopping terms on one sublatti¢eee also Refs. 25 and 82 . N . L
Therefore, we feel justified to present the results in Fig. 1 in A powerful method of investigating a hole dispersion in

its of £/ . imol i I I ];:m AFM background is the SCBA applied to thel-like
gmts o , suggesting a simple scaling to smaller values of | 4l in slave-fermion representation

In caseA without additional hopping terms the energies at xi‘f": fibiTU_ 4.2

(7/2,712) and (r,0) are nearly degenerate; there is very _ _ . . .
little dispersion along 4.,0)-(0r) and, consequently, a Here f; is the spinless fermion associated with the charge

; 5
highly anisotropic minimum at+#/2,7/2). These results are degrees of freedom f"md the Sc_hwmger_ boson opethO_r
consistent with former calculations for the purd@ model®~® keeps track of the spins. In the linear spin wave approxima-

In Refs. 25 and 32 we found that the variational ansatz in th(%i;g and after Fhe Fourier transformation the Hamiltonian
; : . .2) can be written as

form presented here agrees well with the exact diagonaliza-
tion data of a 4«4 cluster with periodic boundary condi-
tions. The difference in energy between, ) and (0,0) is Hgl):; S(kl)flkaka M (K, A)[fifi—qBqtH.c]+ oHY,
due to our spin rotational invariant procedure, which does i
not break the lattice translational symmetry. The bandwidth
is 2.5) and is slightly enhanced in comparison to the SCBA HP=2 e@fift oH (4.2
and the exact diagonalizatidff,which may be due to our K
limited basis. One should note that the discrepancies between
different methods is especially large at,@r), but smaller at Hy=2 wgBlBq+AES, w,=sz1-v;.
(0,0) and at the band bottom. d

In all the other casesB(-D) taking into account the de- Here the lowest-order hole-magnon vertek,q) has the
tails of the reduction procedure with increasing sophisticaform
tion we observe the common effect that the minimum at

7/2,7/2) becomes a more isotropic one. That is in agree- zty

gnent wit% the general tendency thgt is experimen%éﬂy)b%] M(k,a)= \/_N(uqyk*q“quyk)’ Yk= 5 (COosky+COKy),
served in SyCuO,Cl,. In Fig. 1 one notes a small anisot- (4.3
ropy (the ratio between effective masses in the extremal ) o ]
directions between 1.2ZcaseB) and 2(caseD). This feature  With Uq and v, being the _coeff|C|e0nf[s of the Bogoliubov
is closer to the results in Ref. 10 than to that in Ref. 1, wherdransformation for spin variabledEj is the change of the
a highly isotropic minimum was reported. Although the ap-magnetic ground-state energy due to introducing a hole into
proximate degeneracy for the hole energiesr®(w/2) and  the half-filled backgrounds=3, z=4):
(7,0) is now lifted out, our results fail to reproduce the 1
dispersionless feature along the line (0,8),q) seen in one AES=J7 1-=> J1— y2)
of the experiments. N“g a

To interpret~our result Igt us note that the additional hopWe have to define also
ping termst, (t,) andts (t3) act in such a way that they
suppress the motion in the direction of the copper-oxygen sf(l)=4t2coskxcosky+ 2tg[ cosX,+cosk,] (4.5
bond, but facilitate the motion along the diagonal. We can ) -
support the observation of Ref. 33, pointing to the impor-and &k Ntakess the same fc;rm as; with the replacement
tance of a particular combination of the additional hoppingtz—2(t2 — 3t5), ts—(t3— 3t3). The main differences of the
parameters, namely,— 2t (or, correspondinglyf,— 21 5 Hgmlltonlan(4.2) from the WeII-knqwn spin polaron model
in case<C andD). This combination is of crucial importance rising from the E‘lj)re"] m(c;giel are(i) the appearance of the
for the shape of the hole band and is responsible, for inPare dispersions;™” ande,” due to free hc:J/eS hg/%plng pro-
stance, for the dispersion along the boundary of the antifercesses of the firstt,,t3) and second {t3"~,t5"") order
romagnetic(AFM) Brillouin zone (BZ). Comparing set8 and (ii) the involvement in the hole-magnon interaction of
andC (or D), one can see that the value of the above comiwo-magnon processes, SUChféék—ql—qzﬂqlthzy which
bination does not change significantly, though th@aram-  are included in the first-ordesH{" (~t,,t;) and the
eter changes sigrt,<0, while T,>0. This explains the second-ordesH(? (~t}'S tY/S) corrections with their own
weak difference between the dispersions calculated for themore complicated vertices not written here.
B andC cases. Comparing casBsand C, we observe that The main part of the hole-magnon interactiont=t,) is
the detailed consideration of the nontrivial pdrtof the  given by the second term iH{"). As it was proved in nu-
three-site term has little influence on the calculated dispermerous investigations for the purd model, just this term is
sion relation. In cas® the bandwith is enhanced due to the responsible for the formation of a quasiparti¢l@P) hole
additional hopping terms by a factor of 1.5 as compared tgropagation with a bandwidt=2J in the wide range of

s?+s . (4.9
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J values ifJ<t. Recently Bala, Olesand Zaanéhexamined 8
an extended-J-like model and showed numerically that the k=(r/2,1/2)
two-magnon processes mentioned above are insignificant, 61
while the influence of a bare hole dispersion on the overall 3
picture resulting from the SCBA is important. Similar though ft’ 4
more restricted results were also reported by Nazarenko 2
et al.in Ref. 7 based on thiet’-J model not including three-
site hopping terms. 0 S
We addressed the same problem and calculated within the
SCBA a single holdspin polarom band dispersion based on 27
the Hamiltonian(4.2), however, withoutsH{") and 6H{?, 3 4l
i.e., higher-order magnon processes are assumed to be insig- a
nificant. We compare the results with that derived in the pure E 6|
t-J modef to highlight the effects of free hole propagation
given by a bare dispersiofi(k). We differentiate the case '8_6 4 2 0 2 4 6
where e(k)=¢(") and a more complete case where the @) ®
second-order  hopping  processes also  contribute, 1.0
e(k)=eM+e. osl
We solved numerically on the 3232 cluster the equation )
for the self-energy E 0.6¢
Z 04}
3 (k,w)=2, M2(K,q)G(k—q,0— wg) 0.2t
q
0.0
with the hole Green’s function
= -1y
N 1 b;
G(k,w)= = —. SN}
w—e(K)—3(K,) E 2
The organization of the self-consistent numerical procedure -3 ———
is the same as in Ref. 34 and the exchange integral is chosen w & 4 20 2 46

to be eitherJ=0.4t or J=t.
Let us now discuss the results of numerical calculations. FIG. 2. Spectral density and imaginary part of the self-energy

The upper panels in Figs(& and 2b) show the spectral for J=0.4, t'/t=0.13, andt"/t=0.24 ¢=1) within the SCBA at

density function A(k,w)=—7"ImG(k,w+i7) for two  (a) (w/2,7/2) and(b) (0,0).

momentaR=(w/2,w/2) andIZ=(0,0) as the most represen-

tative ones. Here we s@t=0.4 ande (k) =&+ &(?, which

corresponds to a bare bandwiditt’ =3J. One can see at > C
E=(7-r/2 7/2) a very sharp, well-pronounced peak in the came to the same conclusion. Further support of this state-

' K ol _ ment was found by taking the valde=t. In this case for any
low-energy part of the spectrum, while ket (0,0) this peak  gispersions (k) examined here, the bare bandwidth is not too
is strongly broadened. To get more insight into the pr°blemhigh,W’<1.2.J, and the well-defined QP state is found in the
we show also, in the lower panels, the imaginary part of thg,hole BZ

self-energy Ik (k,w). [Because A(k,w)=0 and The resulting dispersiofE(k) extracted from the low-
Im2 (k,w)<0 these two pieces can be easily distinguishedenergy peak positions iA(IZ,co) is shown in Figs. @) and

in the pictures| It can be seen from Fig.(@) (and we exam- 3.y for 3=t and J=0.4, respectively. Three curves are
ined it numerically that atk=(/2,7/2) in the energy in- plotted in each picture to compare the following possibilities:
terval where the low-energy peak is located¥l(k,w)=0  (g) the puret-J modele(k)=0, (b) thet-t’-t"-J model with
holds with good accuracy. So the visible broadening of thisy reduced bare dispersiar(k)=¢(", and (c) the full ver-
weII-defmgd QP pegk is due j[o the artificial val_qe sion for the bare diSperSiO&fl(k)=s(kl)+8(k2). In Fig. 3 the
7=0.008 introduced in our numerical procedure to facili- .,ntinuous thin line is reserved for cag, while the circles
tate the computations. At the same timekat(0,0) the po-  and crosses are fagb) and(c), respectively. Please note also
sition of the low-energy peak coincides with a large value ofthe agreement of the absolute values of the energies between
ImZ (k,w) and hence this peak can hardly be detached fronthe variational ansatéFig. 1) and the SCBA ford=t [Fig.

the incoherent part of the spectrum. In this way we verified3(a)]. For that it is important to include the energy shift
the existence of a QP hole state in the most part of the AFM\ Eg [Eq. (4.4)] (which was done in Fig. 3, but not in Fig).2

BZ except for the centeE=(0,0) and its nearest vicinity, Only those circlegcrossey that are connected by a thick
where the QP is not well defined. That is the effect of a bardthin) line in Fig. 3 correspond to well-defined QP states. For
dispersione (k) with a large enough bandwidi¥v’. We no-  J=0.4t [Fig. 3b)], well-defined QP states do not occur on
tice that in the purd-J model (k) =0, a well-defined QP the upper parts of the dispersions, i.e., at the center

state, though with a weight eﬁz(0,0) somewhat smaller
than atlz=(7r/2,7r/2), exists in the whole BZ. Balat al®
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the (7,0)-(0,7) direction is about twice as large as that in
E/t _ the (0,0)-@r, ) direction. So we may infer that, to a large
L J=1.0 : L ”
extent, the overall shape of the QP dispersion is insensitive
to thet’ value provided that there is a largfe parameter.

V. SUMMARY AND CONCLUSIONS

To investigate the hole band dispersion in copper oxides
we have derived the form and estimated the parameter values
for a one-band extendeel model as the low-energy limit of

' the underlying three-bang-d model for the CuQ plane®®
(n0) (om0 ©Om) The reduction procedure is based on the cell-perturbation

£ method and developed here in such a way that there is no
Lok N 4 J=04 ambiguity in the signs of the hopping integrals in the effec-

tive one-band model. In distinction to former
expectations;!® the reduction procedure pointed to the ne-
cessity to include not only a hopping to secomd) { but also
LS F 3 to third (t”) neighbors.

Further, in calculating the hole band dispersion, both
within the variational approach and the SCBA, we distin-
20 quished between two sets of parameters derived in first
(t'/t=-0.08, t"/t=0.15) and up to second order
(t'/t=0.13,t"/t=0.24). The leading effect of the so-called
() (o 0.0) @0) (Em=0)  Om three-site hopping term was shown to be provided already on
the mean-field level. Both methods and both sets of param-
eters were shown to lead to a similar shape of the hole dis-
persion.

As the main result we found that the present extension of
the t-J model leads to a more isotropic minimum at
(7r/2,7/2) in comparison to the pured model. The calcu-

- , = lated dispersion between (0,0) aner,Q) does not com-
k=(0,0) and at the equivalent poinks=(+,* ) of the  petely vanish(in distinction to the dispersionless feature in
BZ, where the QP states are overdampgd fO_r bOth odBes Ref, 1 and it remains an anisotropy atr{2,7/2) between
and (c). So the resulting true QP bandwidth is estimated to] 5 and 2. It is interesting to note that also the more recent
becomeW=2J, not larger. Actually, high-energy QP states gxperiment indicated a small anisotropy around the mini-
lost their identity due to a strong scattering into hole states of,,m (w12, 712).

lower energy with emitting a magnon. This scattering pro- | et s briefly discuss the limitations imposed by our ap-
cess possesses a threshold character and becomes much Mf¥imations or in the presenit’-t"-J model itself. For in-
inter)sive if the bandwidth of QP states tends. to exceed thgtance, the higher-order magnon processes coupled to the
maximum magnon energyJ2 Some proof of this statement e propagation and generated by the additional hopping

FIG. 3. Quasiparticle dispersion within the SCBA for the pa-
rameter set#\ (thin line), B (circles and thick ling andC (crosses
and thin ling for (a) J=t and(b) J=0.4t. Only those points that are
connected by a line have a well-defined QP character.

is given in Appendix C. _ _ terms deserve to be examined more carefully in a refined
) Let us note that the effectwg h?%pmg pzirametérﬁnd SCBA. The form of the present effective model seems to be
t” can be defined as' =t,+2(t; —3t3) andt"=t3+(t3—  rather general; however, the values of its parameters, as well

%tg). Just these parameters determine a bare hole dispersieg that for thep-d model, may vary for different copper
e(k) =M+ €{? with the values estimated to #&/t=0.13  oxides. In the present paper we used parameters that were
andt”/t=0.24(Table ). Recently, Belinicher, Chernyshev, derived for LaCu0,.'® So a constrained density-functional
and Shubin reportéd the results of the SCBA calculation calculation for SECuO,Cl, is strongly desirable. In that
for the QP dispersion based on the same Hamiltoia®) case it might be helpful that we gave the formulas of the
with J/t= 0.4, but for another choice of thé andt” param-  reduction procedure explicitly.
eters:t’/t~0 andt”/t=0.25; the latter is very close to our  The experimenfst indicated also that the quasiparticle
estimate. The authors in Ref. 35 found nearly flat QP disperstates on the upper part of the hole spectrum are not so well
sion along the line (0,0)4(/2,0)-(7,0) and almost isotropic defined as at the bottom. Along with this finding, our results
dispersion near the QP band minimum. So it was claimed irisee also Ref.)8show a threshold character of this quasipar-
Ref. 35 that excellent agreement between the SCBA compuicle damping. Actually, an increase of the resulting hole
tation and ARPES results of Ref. 1 is reached. dispersion, due to the presence of a bare hole band of con-
Our SCBA computation performed with the same valuessiderable bandwidth, is inhibited by strong scattering of the
of parameterd’ andt” as in Ref. 35 andl/t=0.4 show, high-lying quasiparticle states into lower ones. That imposes
however, that the relevant QP dispersion curve depicted ian upper cutoff, roughly 2, on the resulting hole bandwidth
Fig. 3(b), case(c), only slightly changes and preserves its and leads to the disappearence of well-defined quasiparticle
main character. Namely, the QP energies af0) remain states in considerable regions of the Brillouin zone centered
nearly in the middle of the band and the effective QP mass imt (0,0) and {r, 7). On the other hand, our calculations re-



15570 V. YU. YUSHANKHAI, V. S. OUDOVENKO, AND R. HAYN 55

sult in a well-defined quasiparticle state arouadQ), where .. 1 -

it is strongly overdamped in the experiménf The above- {Nu, (i —i):NZ {N,u,v}ge D,
described mechanism of damping due to a large bare disper- d

sion would provide us with such an effect, however, only for s2 g2

unrealistic values of the parametdfsandt”. Therefore, it No=SixtSay, Mmq=8 i

seems likely that additional damping processes, not included ' ’ \g

in the SCBA, exist as well. (A3)

Vg =45q,xSq,y(Sx— Sq )/,
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AAX-6-16763-01. Besides the vacuum|iO) and one-hole states

lido)=d] |0), |ipo)=p] |0) and|ipa)=p/,|0), one has

io io

to introduce a two-hole basis for each dgfie site index is

APPENDIX A |mp||ed) as
In this appendix the main steps of the mapping from the |1)=S(d",p"[0), |rm)=T(d",p")|0),
p-d to the effectivet-t’-t”"-J model are presented. We start _—
with the definition of the symmetric and antisymmetric or- |42)=p1p}[0),

tonormalized oxygen orbitals by introducing the correspond-

_qtat
ing annihilation operatorp,, andp,,,, respectively:® |¥5)=did[|0),

(A4)

. . [%)=s(d"p"[0), [rim)=Tn(d"p"]0),
_ISax 0 _1Say (y)

pqo‘ qo qo —~ —_ —_ —
M M [92)=8(p".p NI0), [7om)=Tw(p",p H|0),
o F9=5151l0)
quz)\—‘:y pL+ )\—q(:pg,) . (A1)  where
F oty e & atptatpt
. - S(a',b")=—=(a;b;—ab;),
Here p%¥) are the Fourier-transformed original oxygen or- V2
bitals
1
Tm(a’,b") = a§b$,—2(a{b[+ajbb,ajbu (A5)
1 -
pg‘é):\/—ﬁz pfﬁ)&lz et (A2)  for m=+1,0,-1, respectively. The energies of these states
- :

are given by
.. _ egpp=eqtep—tPPuotUpado, e,~ep
wherea=Xx,y are two orthogonal unit vectors on the square

lattice with sitesi (lattice constanta=1).The coefficients ey2=2(gp—tPPuo) + U &,
Sq,« @nd A are defined below.

The p-d model originally written in terms op{®) and €y3=2eqFUg,
p®) operators (=i + a/2) can now be presented in terms of (AB)
Wannier orbitals associated with, and p;, [Eq. (2.1)] in gj1=eqtepttPPug, s71=ej
the main text. This can be done first by inverting the relation
(A1) and then performing the Fourier transformation to the E72=28p, €72=&Yp

coordinate space. This transformation generates a set of co-
efficients\;;, uij, and;; defined as g3=2(ep+tPPug).
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The three- and four-hole states do not contribute to the lowTheu andv components of the matrik, and corresponding
energy physics we are interested in. Within this basis thenergiess, for some new states are written explicitly in Eqg.
Hamiltonian can now be written ad =H,.+Hpo,, Where  (A8), while the componentg;, of the orthogonal %3 ma-
the zeroth-order Hamiltoniad . presents the intracell inter- trix T, and energies e, for the singlet states

action lc) (k=1,2,3) should be found numerically with a particu-
lar choice for the parameters of the underlyimgl model.
Hioe= 2 {8aX™ 97+ (£,— tPPug) XP7P7+1(X{7P7 The zeroth-order Hamiltonian now takes the form
1o
~ o~ _ aa
+H.C.)}+_2 (8p+tpp/.L0)XipU’pa Hloc_% gaXi ",
I,o ’
3 and for the intercell interactiorid,,, we have {# )
+>, {Z £ X R4 2L (XPH2 4 XIR H.c.)}
T k=1
Hhop:_E > [tij .(a’,alb’,b)
3 s 1,J,0 a,a’ ,b,b’
+ STX'Tm’Tm+ £ Xl// 34 ~ ’ ’
Z % ' Z kzl ot Tij »(a’,alb’,b)]X¥ 2xP"P,

tij,a(allalb,vb):thd)\ij[<a,|dl|a><b,|pa|b>+<a,|pl|a>
X(b'|d,|b)]—tPPu;(a’|p}la)
X(b'|p,|b), (A9)

HH(XIL2 4 H.c.)}

2
+z 2 { 2 8;kxifkm, Tkm+t(xirlm,72m+ H.c)
I m | k=1

(A7) TIJ ,a'(a, 1a| b’ vb) = tppVij [<a’ | p;| a><b’ |Bo’| b> + <a, |B Z|a>
wheret=2tP9\ >0 andX!“=|iv)(i u|. Diagonalization of ,
Hi.c can be performed independently in each set of curly X(b[p,|b)].
ggtvﬂ;erilr; n%qsv/:g}hgﬁegglgsig‘sst%?; ;)gs”zl[v'i?] g)\/“)] e 1n Eq.(2.1) the termsp ;. with i # ] describe transitions
between high-lying states and hence do not contribute to the

|do) |fo) T low-energy physics. So we drop these termsljp, from the
): 1( ) 1—( ) beginning. To derive the low-energy effective Hamiltonian
Herr, the HamiltoniarH ., should be reduced further. Below

= we write down explicitly the amplitudes; , and At'ijyg for
(u): \/1 1+ |A| Reg g PP the processes that contribute i up to second order.
v 2|7 JR24 412 ' p*d Ko To first order the only hopping amplitudes for the lowest
singlet|c,) are

|po) lgor) -v u

1 = _
erg=5{(eatep=t"Puo) VAZ+4t%, tij o(c1,falfo,cy)
3 = = 2tP\;[v By~ \2uBa1][UB1— V2v Ba1]
|l//i>:k§::l Bilc,  Bik={T2}ik, (A8) 1
— 5 tPPuluBy— V2v Ba]?
8¢1 \/Et \/Et €c1 0 0 .
) =t; . (A10)
T, V2t e 0 |To,=| O en O],
Bt 0 e 0 0 e Below we denote this interaction as thE® term in H.
v3 c3 There are several kinds of processes that contribuite.gan
~ ~ second order. Namely, one kind of relevant process is given
|42) _T [c1) Ty =3 by the amplitudes
2 R
tij o(Ck.fo|fa,c1)=2tPI\;; (ayby + beas) —tPPui;byby
1 =
831’3225{(8d+38p+tpp,u,0)1\/A2+4t2}, =Ff* (k=23),
£33= €73, tij o(Tm,fo’|fa,c1)=—sgr(20)C™(o” , o) [ 2P\ (uay
( |71m>) B <|t1m>> +vby) —tPPujjub,]
—~ — 1 ]
|7,m) |tzm) = —sgr(20)C™(o” ,0)F7,

(A11)

€11=8c1, &= E&c2.
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L b, - Actually, the first-order hopping amplitudeg in H{") are

tij’,,(cl,fcr|fo,cl)=tppv” —EFicjl, given by Eq.(A10) and in the present calculations we keep
V2 only the largest ones;, t,, andt; for the lowest singlet

hopping between the first, second, and third neighbors, re-

spectively. The resulting three-site hopping amplituq\#g

in H{® are given by

Tij o(tam,fo'[fa,c1) = —sgn20)C™(0”', ) tPPy;; by

= —sg(20)C™(o" ) FLL,

where clycl ckeck FTET
/S /s i) K Nis_ W s WY
v u " ecteo—2er kK533 N ek e | €, 8a
a=——=Pitu v bk=—7=B1k—vBax: - =

K \/Eﬂlk Bk K \/Eﬂlk Bak S ctpt

N i ij’ ijrij

1 €C1—€¢1 €117 €c1

Cm(a" ,0') :E 5m‘050./‘0.7+ 6m’20.50./’0. . (A12) Where

Within the perturbation expansion that we develop here,
these amplitudes correspond to transitions between a ground-
state singletjc,) located at thej? site and an intermediate
virtual upper Mo-holg state_at a site(the trans_fer to t_he 5?1:§§2:§§3:§’§1: —1, &= gtslzl’ (A15)
states|c,) and |t,m) is forbidden. Due to a discharging 2

process of a virtual state the lowest singlet appears at anothghd80 is the energy of the vacuum cell state. The parameters

hd

J' site.This kind of second-order hopping is presented belovef the exchange patt ; have the familiar forrtf
as theH§2) term inH . The rest of the processes also giving
rise to second-order corrections lfy have the amplitudes

1 3
N
gylz_g'c\‘zz_g'c\‘az_gzlzz , gf:g{\‘lz_z,

tij'a.(Ck,f(T_|0,fO'):Sgr(20'){thd)\ij B_\/J%(_UU(,BZk
uv 5
+ Ba) | — tPPu; _E:Blk"_v Bk
=sgr(20)D,

tij. o(m,fa'[0,f ) =C™(a’,0)[ 2tP\j (vZ—Uu?)

—tpp/LijUU]ECm(O',,O')DiTj ,

cky2
[Dij’]
Sck+ 80_28f

[Dfi]?
Te,teg—2¢;

3
‘Jij:E Lek
k=1
(DY [DiH?

t 8t1+ 80_28f

+{%1 , (A16)

€31t eg— 2¢e4

where (= {z1=4 and{,={;;=—2. The value ofYj; is
given by the same formula as EGA16) with the replace-
ment{—¢¥ and =3, =—1, {Y=¢=—3/2.

Up to now only intracell Coulomb interactions have been
involved into the reduction procedure. Effects of static inter-

(A13) cell interactions can be easily accounted for in a mean-field
o v mannet®!?if one assumes that in the reference background
tij.o(c1,fo|0fo)=—sgn20)tPPy;; — each cell carries a one-hole ground stHte’). Then one
V2 finds the following shifts for the cell state energies:
=—sgr20)D{?, Asg=Up4(2— ¢o)(nP),

T ' =C"(g' PP, H=C"(g' 1

tij o(tim,fa’|0,fo)=C"(o’,0)tPPr;;u=C™(¢’,0)Dj; . Agp:Upd(2_¢O)<nd>+%Up(%_éo)<np>v
The corresponding processes lead to the superexchange in-
teraction(the H; term in H.;) between the localized spin
states|if o). At the same time the amplitude in E¢AL3)
with c,=c; provides also an additional second-order contri-
bution to the lowest singlet hopping terr{® .

Collecting all the processes with amplitudés11) and

(A13) into H' we may now write down the relevant part of
the Hamiltonian as

1
Aep=2U,4(n%+ ZUp<np),
(A17)

A8¢1=A87=A8d+ Asp, A8¢2:2A8p,

A8¢3:2A8d, Aegyi=Ae71=Agy+Asp,
H=Ho+H"+H".

) ) ) Aejr,=Ae7,=Ae,TAep, Aeyz=2Aey,
The interactionH’ should be excluded by the Schrieffer-

Wolff transformation to give the effective-t’-t”-J model
H.r presented in the main teXEq. (2.2]. The foregoing where (n®P)=(fa|3 ,n%P|fa)=u?(v?). By putting these
formulas specify the parameters of the effective HamiltonianCoulomb corrections intdH,,. [Eq. (A7)] and performing
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the diagonalizatioriA8) one finds the renormalized energies S S S S0

e, for the cell eigenstateR). In particular, the corrected Dap= 2 (X/IXIEXZ),
energiese;, e., ande, lead to a renormalization of the e

exchange energigé16). [Note that the last two terms in Eq.

(A16) cancel each othdrA self-consistent determination of

the averaged number of holes in tlie and p orbitals Vape= 2 (XTIXTI2XE28X537),
((n%P) and, correspondingly andv) is not necessary for a $1:52:53

rough estimate of the effect of the static intercell Coulomb

interaction. Any improvement should start by going beyond

the mean-field character. Fabcd= 2 <xf’51x$152x$253x$354x,54”

i i+a”ti+b ti+c ti+d/?
$1,52,5S3:54

APPENDIX B

where the angular brackets denote the average with the
ground state ¥| |W,) of the Heisenberg model. With that
notation the matrix elements may be expressed as

Here we calculate the matrix elements of the tariEq.
(3.4)] within the variational basi§3.5),

() =3 (Wollof Tle [Wo)eki—",  (BD)
' o TO(K) =15 > 64, —a,Da, a,+a,8 3722,
wherea andb range from 0 to 4. The calculation is similar a.a
to that for the matrix elements of the kinetic eneigy[Eq.
3.1)] and of the exchange palt; [Eq. (2.2)] given in Ref. _ ‘
25. The result may be expressed in terms of static correlatio"%(k)=t5>, &, ,Z,e*@""

functions of Hubbard operators with noncoinciding lower in- a
dices s — — iK(al+
+t aza 5a1,7a25a1,7nvn,n+a1,n+al+azel (@ az),
1:942
zaZES (X75X3T ), (B2) B3
S — . — — ,
Tnm(k)zgﬁm,nelk(min)_ktsg 5a,n5a,mDa,afmelk(a7n)+tS§a: 5a,7n5a,7mDn,n+aelk(a+m)
""tsém,nﬁm,fnaz":1 5a1,7a25a1,7n5a1+a2,manal,mfneik(min)
1,92
+tsa2a 5a1,7a25a1,7n5a2,m5al+a2,mann,n+al,n+a1+a2,n+al+a27meik(al+a2)-
1:942
|
wheren,m range from 1 to 4 and,a;,a, denote nearest 1, B
neighbors. Additionally, the notatiofl, , =1— 5, ., was xIT X1 >TSS
To express the static correlation functiofi®2) in terms ] ! Sj+ ——sjz
of spin-spin correlators we use the spin rotational invariance 2
of the ground state oH;. The expectation values of the ; ;
; Equivalently, one may write
products ofX operators with up to four factors were already q y Y
calculated in Ref. 25, but now we develop a more general 1
procedure. All the quantitied2) can be written in the form Xj=>1+ (;éj , (B6)

with the unity matrixl and the Pauli spin matrices. This
X{ a= 2 (XTI X, (B4)  has the advantage that we can write E§4) as the trace
Sn over a product of spin matrices

. X(n) =—Tr
matrix 12:-n

To proceed, we collect all the spinlik€ operators in one ; <(E| +6-§1) o (%I +5'§n)>- (B7)
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Using the well-known algebra of spin matrices and the spin R 1 .
rotational symmetrywhich leads to/Sf)=0 and so opone I'(k)=— ;ImE (k,E(k))
can simplify all the expectation valu¢B2). One finds, for
instance, 0 o = . .
i =§ M2(K,0) Zy- g 8(E(K) — E(k— ) — ).
Xty 3, (88 ke @9 3

whereP means the sum over all possibilities to choose non- The numerical solutions of EGC2) presented in Sec. IV
equali andj from the set (1,2,3,4]six termg. In the same are fitted well with E(k)z)\lyﬁJr Mo(7i )2+ N, Where

way we obtain for a product of fiv¥ operators i = (1/2)(cok—cosk,) and A;>\,>0. The simplest ap-
11 P P proximation consists in neglecting a dispersion along the
X6~ 4= S&\ 4 s boundary of AFM BZ by setting.,=0. This is rather remi-
123457 39 8i,je(12,2,3,4,5 (SS) i,j,k,|e%,2,3,4,5 ikl niscent of the QP dispersion law in the purd model,
(B9)  where one obtains,<\;=2J. Instead we write
with
1 E(k)=WyZ+Ey, (C4
5(145)342ETra'a(rBO'ya}(Sf%S%Sf). (B10)
Here we assume that the summation over doubled indices Where the bandwidtkV is assumed to be an arbitrary param-
implied. Expressior{B10) can also be written as eter that tends to increase from below=2J, to a higher
value W>2J. The advantage of this approximation is that
S aitbite=Sabc— Sbact Scabs (B11)  the dampingl'(k) can now be calculated analytically to the
with end. _ |
According to Eq.(C4), the top of the QP band is at
Sanc=((5S+a)(Sp-Sivo))- B12 ko=(00) or (xmEm) with  E(k)~Eo=W,

) . _E(ko—q)—Eo=W»y2, and
In the present calculation we approximate the last four-point (ko= @)~ Eo Ya

spin correlation function in terms of two-point spin-
correlations, decoupling them as in a linear spin wave

242 242
29 I A z°t
theory: M2(Kq,q) = SN V1™ yqz(l— V1-— yqz)E o A (7a)-
1 1 (C5)
Eabc: SiScpt §Sbsc7a+ §Sch7a- (B13

So the complete matriX®°(k) can be expressed in terms of We introduce also the density of states function

two-point spin correlation,=(S- S a). p(e)=N"13,8(e— v,) and take into account a weak depen-
dence of the QP weight on a momentuty=2Z,=J/t, as it
APPENDIX C follows from numerical computations. Hence the damping

In the main text it was stated that the damping of QPF(kO) can now be expressed as
states at the top of the band possesses a threshold character.

The threshold energy depends on the parametgrs 9.2
Zt +1

(n=1,2,3) andJ, but in the simplest approximation for the ch_» 24
form of a QP dispersion adopted below this energy is equal I'(ko)=20 2W ) de p(e)Ale)
to 2J.
Quite generally the Green’s functidB.7) can be written ( — — 2_3 )
as X8\V1—€| V1 wl/ (C6)
. Zy (in0) &
G(k,w)= —w—E(E)+i +GM(k, ), (C)  The & function variable possesses two roats,=*=1 for
g any ratio 2/W and two additional roots
where a QP pole positioB(K) is the solution to €34=+\1—(2J/W)? if 2J/W<1. Because\ (+1)=0, the

first two roots do not contribute tB(IZO). A dramatic in-

. . L - crease of(lzo) appears, however, whéil crosses the value
E(k)=&(k) + ReX (k,E(K)). (C2) 23 from below. The damping becomes

\

Since there is no low-energy incoherent part of the hole spec- 5 ) p
trum, a QP may scatter only into lower QP states with emit- ) Z_t( E) (\/1_ (E) )\/1—ZJ/W
ting a magnon, which is given by the damping 0 2\w) ? w 1+23/W
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Near the crossing, when<01—2J/W=a<1 So the damping strongly increases to become of the order of
t if W>2J. As a result, the QP states at the top of the band
AR ﬁ\/—lni 8 cannot survive anymore and become part of the incoherent

0 Ve Ja' spectrum.
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