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Composite-fermion Hall conductance atn5 1
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We show that in the limit of vanishing bare electron mass, and in the presence of particle-hole symmetric
disorder~which can be of vanishing strength!, the composite-fermion Hall conductance is constrained to be
2

1
2e

2/h. We discuss the implications of this result for the existence and nature of a composite Fermi liquid in
the lowest Landau level.@S0163-1829~97!00824-2#
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The observation of a seemingly metallic d
magnetotransport1 and the subsequent discovery of an aco
tic wave anomaly2 nearn51/2, opened a new chapter in th
studies of quantum Hall effects.~Heren[f0r̄/B, wherer̄ is
the mean electron density,f05hc/e, andB is the externally
applied magnetic field.! A very intriguing idea, the
composite-fermion theory, has been put forward to expl
these phenomena.3,4 In this theory, each electron is repre
sented as a composite fermion5 carrying two quanta of ficti-
tious magnetic flux which pierce the physical plane in t
direction opposite to that of the real magnetic flux. Forma
this transformation maps the problem of electrons in a str
magnetic field onto a system of ‘‘composite fermions’’ mo
ing in the same external field while interacting with a flu
tuating ‘‘statistical’’ gauge field governed by a Cher
Simons action.6

In the absence of disorder, the ground-state electron den
sity is uniform. Thus at themean-fieldlevel, the averaged

statistical magnetic field,b̄52f0r̄5uBu, cancels the exter
nal one, and the composite fermions see no net field. W
one tries to improve upon the mean-field theory~MFT! by
including the fluctuations of the statistical magnetic fie
one encounters divergences.3 Attempts to sum these diver
gences have led to suggestive, but so far inconclus
results.7–11 Despite this difficulty, it has beenconjectured
that the full effect of statistical-gauge-field fluctuations is
renormalize the parameters~perhaps in a singular way! of a
zero field ‘‘composite Fermi liquid.’’

At this point it is useful to differentiate two concepts. Th
first is the composite-fermion approach, and the second is
composite Fermi-liquid theory. The former is simply an e
act reformulation of the original problem, but the latter is
conjecture about the final solution. It is also worth pointi
out that although the magnetic field is canceled out at
mean-field level in the composite-fermion approach, ther
no symmetry reason to expectsxy

f 50 since the full
composite-fermion action lacks time reversal symmetry. I
our understanding, however, that the composite Fermi-liqu
conjecture requires thatsxy

f 50.
In any case, it has been argued that the transport pro

ties of the electrons nearn51/2 simply reflect the underlying
550163-1829/97/55~23!/15552~10!/$10.00
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Fermi-liquid ~or, possibly, the marginal Fermi liquid! behav-
ior of the composite fermions inzeromagnetic field. This
intriguing picture acquired further support when Ferm
surface-like features were observed in recent experimen12

The principal purpose of the present paper is to reexam
the Fermi-liquid picture when there is a finite~but possibly
arbitrarily small! amount of disorder. In the presence of di
order, the ground-state electron density is no longer unifo
In the regions of high electron density, the statistical ma
netic flux overcompensates the external one, and in the
density region it undercompensates. Thus from the viewp
of the composite fermions, the plane is divided into regio
with net effective fields opposite to each other. Nominally
the average field is zero, one would expect a vanishing H
conductance for composite fermion~i.e.,sxy

f 50). This naive
expectation isincorrect because of thecorrelation between
the composite-fermion density~which is equal to the electron
density! and the effective magnetic field. Thus even if the
are as many regions with the positive and negative net m
netic field, one expects the composite-fermion Hall cond
tance to be negative~i.e.,sxy

f ,0), since there are more fer
mions seeing the negative than the positive field. T
existence of this correlation between the flux and charge
raises questions concerning the validity of models
composite-fermion transport in which this correlation
ignored.4

Here, we shall concentrate on a particular limit~the limit
where the bare electron massmb is vanishingly small, and
the disorder potential is particle-hole symmetric13!, where we
will show that atn51/2 theelectronHall conductivity is

sxy5
1

2

e2

h
. ~1!

The electron resistivity tensor is related to thecomposite-
fermionresistivity tensor by a ‘‘connection formula’’~which
will be discussed below!,

rxx5rxx
f ,
15 552 © 1997 The American Physical Society
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2

ryx52
h

e2
1ryx

f ; ~2!

combining this expression with Eq.~1!, we will show that, so
long assxxÞ0, it follows that

sxy
f 52

1

2

e2

h
, ~3!

independent of the strength of the disorder or whether
temperature is zero or finite.

Disorder~or some other interaction which breaks Galile
invariance! is essentialto establish the above constraint o
sxy
f . Galilean invariance requires theelectronresistivity ten-

sor to be

rxx50,

ryx52
h

e2
. ~4!

The above result combined with the connection formula
~4! implies that

rxx
f 5ryx

f 50. ~5!

In this latter case the composite-fermion resistivity tenso
noninvertable. Therefore, our conclusions concerningsxy

f

apply in the limit that the disorder tends to zero, but may
apply in the absence of disorder.

The remainder of the paper is organized as follows:
Sec. I we derive Eq.~1!. In Sec. II, we show how Eq.~3!
follows from Eq. ~1!. In the remainder of the paper, we a
tempt to understand the implications of this result on
fundamental character of the physical state atn51/2. Sec-
tion III contains some discussion of the nature of the grou
state in the presence of disorder in themb→0 limit. In Sec.
IV, we examine the problem of computingsxy

f in the ab-
sence of disorder, but including the perturbative effects
fluctuations about the mean-field state. We find that, at le
to the lowest order, the mean-field resultsxy

f 50 is un-
changed. We also discuss our reasons for believing that,
though the present results are derived in a way that dep
critically on the existence of a disorder potential, they ra
important questions concerning the nature of the ground s
in the lowest Landau level~LLL ! at n51/2, even in the
absence of disorder. Section V is a discussion of some o
perturbative results in the absence of disorder; formally
section is a digression from the main thrust of the pap
except in that it sheds some light on the nature of
composite-Fermion ground state atn51/2. Section VI con-
tains a discussion of results, some speculations concer
their possible implications, and a discussion of their poss
relevance to experiment. For the remainder of the paper
adopt units in whiche/c5kB5\51.
e
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I. THE HALL CONDUCTANCE AT n51/2 IN THE LIMIT
OF VANISHING BAND MASS

A. Intuitive discussion: Particle-hole symmetry
in the lowest Landau level

In the limit of smallmb , or equivalently when the cyclo
tron frequency,vc5B/mb is the largest energy in the prob
lem, we expect that the low-lying eigenstates forn<1 can be
constructed out of states lying entirely in the lowest Land
level plus perturbative effects of Landau-level mixing. It
easy to see14 that even in the presence of electron-electr
interactions and particle-hole symmetric disorder,13 the
Hamiltonian projected onto the lowest Landau level
particle-hole symmetric. This is roughly, but not quite, a
equate for our present purposes. What we seek to investi
is the nature of this symmetry for the full problem, in th
physically meaningful limitmb→0; intuitively, this limit is
related to Landau-level projection, but there are effects
Landau-level mixing which survive in this limit,15 especially
when the current operator is involved.

Nonetheless, we will start our discussion by assuming t
particle-hole symmetry is an exact low-energy symmet
and discuss its consequences.~In the following subsections
we will demonstrate that, subject to some reasonable
sumptions, the inferences we have made can be subst
ated.!

Since the ground state atn51 is unique, it can play the
role of a reference vacuum equally well as the state with
electrons. What this means is that a system with elect
concentrationn,1 can be viewed, equivalently, as a syste
of holes with concentration 12n. The corresponding con
ductivity tensor as a function of filling factor can be e
pressed in either electron or hole language as

s~n!5s~1!1sh~12n!, ~6!

wheresh(12n) is the hole conductivity tensor at hole con
centration 12n ~electron concentrationn). Particle-hole
symmetry, in turn, implies that

sxx~n!5sxx
h ~n! ~7!

and

sxy~n!52sxy
h ~n!. ~8!

From these equations, we can exactly relate the Hall cond
tivity at n51/2 to the Hall conductivity atn51:

sxy~n51/2!5~1/2!sxy~n51!. ~9!

Sincesxy(n51)5(e2/2p), Eq. ~9! implies Eq.~1!.
Equation~9! is a strong result, and it applies not only

the dc conductivity, but to finite frequency,v, finite wave
number,kW , and finite temperature,T, to the extent that none
of these are large enough to imply substantial Landau-le
mixing and hence breaking of the particle-hole symmet
indeed, we expect corrections due to finite temperature
finite frequency to vanish in thevc→` limit, and finite k
corrections to go like (kl)2, where l5AB is the magnetic
length.
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B. Particle-hole symmetry at zero temperature

In this subsection, we show that in the limitmb→0 and in
the presence of particle-hole symmetric disorder,13 the
T50 andukW u50 electronic Hall conductivity is given by Eq
~1!, if the following conditions are fulfilled.~i! As a function
of mb there are no nonanalytic contributions to the Hall co
ductivity which survive in themb→0 limit, and ~ii ! there is
no spontaneous particle-hole symmetry breaking.

The general expression for the Hall conductivity is giv
by the Kubo formula

sxy~v!5
A

vE dteivtu~ t !^^g@U#u@Jx~ t !,Jy~0!#ug@U#&&dis,

~10!

whereA is the total area,u(t) is the Heaviside function, and
Ja , the averaged current density, is given by

Ja5
e

AE d2r
1

2mb
FC†~r !S ]a

i
2AaDC~r !1H.c.G . ~11!

In the following we shall considerv!vc . In Eq. ~10!
ug@U#& is the ground state for a given external potent
U(r ), and ^ &dis denotes the disorder average.@To simplify
the notation, we shall henceforth leave implicit the dep
dence of eigenstates onU(r ).# Next we choose the eigen
states of the kinetic energy operator as a basis and ex
C(r )5(nkcnk(r )ank , whereank annihilates an electron in
the state

cnk5
1

~Ll !1/2
eikyxnS x2kl2

l D . ~12!

Here we have chosen the gaugeAW 5(0,Hx); L is the size of
the system in they direction ~Fig. 1! and

xn~x!5~2nn!p1/2!21/2Hn~x!e2x2/2, ~13!

whereHn(x) are the Hermit polynomials. After some trivia
algebra we obtain

Jx5
e

iAmbl
(
n,k

Xn@ank
† an11k2an11k

† ank#, ~14!

whereXn5*dxxn(x)]xxn11(x). Similarly,

Jy52
e

Ambl
(
n,k

Yn@ank
† an11k1an11k

† ank#, ~15!

FIG. 1. The geometry for the quantum Hall system.
-

l

-

nd

whereYn5*dxxxn(x)xn11(x). Note thatJW is purely off di-
agonal in the Landau-level index, but has nonzero ma
elements only between neighboring Landau levels. In p
ticular, for our purposes, we need to know only the mat
elements,X05Y051/A2.

Now let us consider the correlation function

I ~@U#;t !5^gu@Jx~ t !,Jy~0!#ug&

5(
a

$e2 i ~Ea2Eg!t^guJx~0!ua&^auJy~0!ug&2c.c.%,

~16!

whereua& are the true many-body eigenstates of the sys
in the presence of external disorder potentialU(r ). To pro-
ceed, let us perform a canonical transformation

uc8&5eiTuc&, ~17!

so that the transformed Hamiltonian

H85eiTHe2 iT5H211H01••• ~18!

has no matrix element connecting pure LLL states with th
with a higher Landau-level component.15,16 The Hermitian
operatorT can be constructed as a series inmb @which actu-
ally is an expansion in powers of the ratio of the Landa
level mixing matrix element tovc ~Ref. 17!#, as follows:

T5 (
k51

`

~mb!
kTk . ~19!

Thus in Eq.~18! Hk5O(mb
k). The transformed current op

erator has the expansion

JW85eiTJWe2 iT5JW 211JW01•••, ~20!

whereJW 215JW .
After the transformation, the eigenstates separate into

groups: one group$ua l&% lies entirely in the LLL, and the
other $uah&% contains higher Landau-level components.~By
assumption,ug&P$ua l&%.! By construction, the lowest group
{ ua l&} are an eigenstates of the projected Hamiltoni
HL5PLH8PL , wherePL is the operator that projects ont
the subspace spanned by states in the LLL. ToO(mb

0)

HL5mE d2rrL~r !1
1

2E d2rd2r 8v~r2r 8!:rL~r !rL~r 8!:

1E d2rU ~r !rL~r !. ~21!

Here rL(r )5cL
1(r )cL(r ), with cL(r )[(kc0k(r )a0k , and

U and v are the disorder and interaction potential, resp
tively.

Consider first the contribution to Eq.~16! due to inter-
Landau-level excitations:

I 1~@U#;t !5(
ah

$e2 i ~Eah
2Eg!t^guJx8~0!uah&

3^ahuJy8~0!ug&2c.c.%. ~22!

Sinceug& lies entirely in the lowest Landau level,
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2

^ahuJx8ug&5
eX0
iAmbl

^ahuK1ug&1O~mb
0!,

^ahuJy8ug&52
eY0
Ambl

^ahuK1ug&1O~mb
0!, ~23!

where

K1[(
k
a1k
† a0k . ~24!

Thus the corresponding contribution tosxy is

sxy
~1!~ @U#;v!5

A

vE dtu~ t !eivtI 1~ t !

5
e2

A~mbl !
2(

ah

^guKuah&^ahuK1ug&
~Eah

2Eg!
22v2 1O~mb!.

~25!

Let us write

Ea2Eg[vc1Da ; ~26!

to the lowest order inmb , we can approximateDa by 0 in
Eq. ~25!. Thus, the leading order contribution tosxy

(1) in the
mb→0 limit is

sxy
~1!5

e2

AB
^gu(

k
a0k

1 a0kug&, ~27!

where we have used the fact that (mblvc)
25B.

Next we look at the contribution tosxy due to intra-
Landau-levels excitations:

sxy
~2!~ @U#;v!5

A

vE dtu~ t !eivtI 2~ t !, ~28!

where

I 2~@U#;t !5(
a l

$^guJx8~ t !ua l&^a l uJy8~0!ug&2^guJy8~0!ua l&

3^a l uJx8~ t !ug&%. ~29!

To O(mb
0), we can replaceJW8 in Eq. ~29! by

JW9[PL~JW 211JW0!PL5PL~JW0!PL . ~30!

Thus,

I 2@U#5^gu@Jx9~ t !,Jy9~0!#ug&1O~mb!, ~31!

andJa95(1/A)*d2r j a9 (r ), where
16

j a9 ~r !5PL j a~r !
1

\vcN̂/22ĤK

~12PL!VPL

1PLV~12PL!
1

\vcN̂/22ĤK

j a~r !PL . ~32!

HereN̂ andĤK are the particle number operator and kine
energy operator, respectively, andV is the sum of the poten
tial ~disorder! and the two-body interaction part of th
Hamiltonian. The time dependent operatorJx9(t) is related to
Jx9(0) via

Jx9~ t !5eitHLJx9~0!e2 i tHL. ~33!

Given Eq.~32! we perform the integration over space18 and
obtain

Jx95
e

AE d2r H rL~r !]yU~r !1E d2r 1rL~r !rL~r 1!]yv~r2r 1!

1E d2r 1rL~r 1!rL~r !]yv~r 12r !J ~34!

and

Jy952
e

AE d2r H rL~r !]xU~r !2E d2r 1rL~r !rL~r 1!]xv

3~r2r 1!2E d2r 1rL~r 1!rL~r !]xv~r 12r !J . ~35!

At n51/2, and when*d2rU (r )50, the value ofm is
such thatHL@U#→HL@2U# under theLLL p-h transforma-
tion,

cL~r !→cL
1~r !. ~36!

Equation~36! amounts to the change

a0k→a0k
† , ~37!

and complex conjugation of the basis wave function. Un
this transformation~since complex conjugation is equivale
to the transformationy→2y),

Jx9~U !→2Jx9~2U !,

Jy9~U !→Jy9~2U !. ~38!

If

ugp@U#&→ugP@2U#&, ~39!

~i.e., if there is no spontaneous particle-hole symme
breaking!, then~since(k@1#5AB/f05AB/2p)

sxy
~1!@U#5

e2

2p
2sxy

~1!@2U#,

sxy
~2!@U#52sxy

~2!@2U#. ~40!

Therefore
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sxy[^sxy@U#&dis5E D@U#P@U#~sxy
~1!@U#1sxy

~2!@U# !

5
e2

2p
2E D@U#P@U#$sxy

~1!@2U#1sxy
~2!@2U#%

5
e2

2p
2E D@U#P@2U#sxy@U#

5
e2

2p
2E D@U#P@U#sxy@U#

5
e2

2p
2^sxy@U#&dis[

e2

2p
2sxy . ~41!

In the above equation we have used the fact that the diso
is particle-hole symmetric, i.e.,

P@U#5P@2U#. ~42!

After restoring\ Eq. ~41! is equivalent to Eq.~1!.

C. Particle-hole symmetry at nonzero temperature

The derivation presented above can be generalized
finite temperature. In that case^gu@Jx(t),Jy(0)#ug& in Eqs.
~10! and ~16! is replaced by the thermal average, i.e.,

^gu@Jx~ t !,Jy~0!#ug&→
Tr$e2bH@Jx~ t !,Jy~0!#%

Tr$e2bH%
. ~43!

By making the same assumptions as in the above, we see
in themb→0 limit, we can evaluate the trace over states
the LLL. Thus Eq.~22! is replace by

I 1@U#5
1

Zl
(
a l

e2bEa l(
ah

$e2 i ~Eah
2Ea l

!t^a l uJx8~0!uah&

3^ahuJy8~0!ua l&2c.c.%, ~44!

where

Zl[(
a l

e2bEa l. ~45!

To the lowest order inmb , we again replaceJW8 by JW in Eq.
~44!. Again, as we did in Eq.~26!, we make the replacemen
valid toO(mb

0), (Eah
2Ea l

)→vc . Then

sxy
~1!5

e2

AB

1

Zl
(
a l

e2bEa l^a l u(
k
a0k

1 a0kua l&. ~46!

Finally, Eq. ~31! is replaced by

I 2@U#5
1

Zl
Tr8$e2bHL@Jx9~ t !,Jy9~0!#%. ~47!

Here Tr8$ %[(a l
^a l u . . . ua l& denotes the partial trace ove

the LLL eigenstates only. At a finite temperature the con
tion of no particle-hole symmetry breaking is generalized
the statement that we may use Eq.~43! without including in
H an infinitesimal symmetry-breaking field.
er

a

hat

i-
o

II. IMPLICATIONS FOR THE COMPOSITE-FERMION
CONDUCTIVITY

An important ingredient of the composite-fermion a
proach is the relation between the electron and compos
fermion correlation functions. It is the nature of the mappi
that the density of composite fermions equals that of
electrons, but the relation between current operators is m
complicated. To compute the electron current-current co
lation function, we need to string together the compos
fermion ‘‘irreducible bubbles’’19 using the Chern-Simons
bare gauge propagator. As shown in Refs. 3, 19, and 6b, this
results in the relation Eq.~2! between the resistivity tensor o
electrons,rab , and that of the composite fermions,rab

f .
Physically, this expresses the fact that associated with
composite-fermion current, there is a statistical flux curre
which produces a corresponding electromagnetic fi
~EMF! proportional to the statistical flux carried by eac
composite fermion times the electrical current. Whenrxx

f

Þ0, the resistivity tensor can be inverted with the con
quence that Eq.~2! is equivalent to

sxy
f 5

e2

2p

e2

2p
sxy22~sxx

2 1sxy
2 !

4sxx
2 1S e22p

22sxyD 2 ,

sxx
f 5

e2

2p

e2

2p
sxx

4sxx
2 1S e22p

22sxyD 2 . ~48!

In the abovesxx andsxy are theimpurity averagedconduc-
tivity tensor of the electrons.sxx

f ,sxy
f are the conductivity

deduced from theimpurity averagedbubble diagrams tha
are irreducible with respect to cutting a statistical-gau
propagator. Here we stress that the latter isnot necessarily
equal to first taking the statistical-gauge-propagat
irreducible bubble in fixed disorder, and then averaging o
the disorder realization. For example, the diagram shown
Fig. 2 belongs to the former, while not the latter. By subs
tuting sxy5e2/4p into Eq. ~48!, we obtain

sxx
f 5S e24p D 2 1

sxx
,

sxy
f 52

e2

4p
. ~49!

FIG. 2. An example where an impurity averaged irreducib
bubble diagram does not appear after averaging the irreduc
bubble diagrams for specific disorders.
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The above is valid so long asrxxÞ0 and when the particle
hole symmetry is maintained, so it applies with or witho
electron-electron interactions, for finite or infinite system
and at zero or nonzero temperature.

III. WHAT IS THE CORRECT STATE IN THE LIMIT
OF ZERO BAND MASS IN THE PRESENCE

OF DISORDER?

Now the remaining question is ‘‘what is the correct sta
in the limit of mb→0 when there is a nonzero amount
particle-hole symmetric disorder?’’ For that purpose let
consider the composite-boson representation where the
trons are viewed as composite bosons carrying one quan
of fictitious magnetic flux each~i.e., theu51 boson Chern-
Simons theory!. Here we recall that in this representation, t
Bose superfluid phase corresponds to then51 quantum Hall
liquid, and the Bose insulator~or the vortex superfluid! phase
corresponds to the electron insulator. In between we
have a particular situation where the bosons and vortices
in the same state. The latter is marked by the so-calle19

‘‘self-duality condition’’ where

~rxx
b !21~ryx

b !25
1

~sxx
b !21~sxy

b !2
5S 2p

e2 D 2. ~50!

To translate this condition into a statement concerning
electronic response, we use the connection formula betw
the electron and composite boson resistivity tensor,19

rxx5rxx
b ,

ryx5
2p

e2
1ryx

b . ~51!

With this identity, it is easy to see that Eq.~50! is equivalent
to Eq. ~1!. Thus the particle-hole symmetric conditio
sxy5(e2/4p) is equivalent to the statement of self-duality20

One example of the self-duality of theu51 boson Chern-
Simons theory is the critical point of then50 to n51 pla-
teau transition.19 For the latter, it was argued that

sxy
b 50,

sxx
b 5

e2

2p
. ~52!

We note that Eq.~52! constitutes a special solution to E
~50!. Values of the conductivity consistent with Eq.~52!
were found for both particle-hole symmetric and nonsy
metric disorder in numerical studies of noninteracting el
trons at this transition.21 Recently, experiments have bee
performed which dramatically support the notion that there
a universal resistivity tensor at the critical point, with me
sured values in all cases consistent with the conjectured
ues of the composite-boson conductivities@Eq. ~52!#.22,23

The plateau transition@Eq. ~52!#, being a critical point,
obviously is infrared unstable with respect to a single per
bation@which turns out to besxy2(e2/4p)#. The fact that it
is experimentally observable, implies that given the co
straint thatsxy5e2/4p, it is infrared stable. There are infi
nitely many other possible solutions to Eq.~50!,24 with all of
t
,

s
ec-
m

n
re

e
en

-
-

s
-
l-

r-

-

them consistent withsxy5(e2/h); the question is whethe
any of them corresponds to an infrared stable fixed poin
the presence of disorder~which, again, can be vanishingl
small!. If the answer is no, then even in the limit of vanis
ing disorder, the ground state of the system atn51/2 is
asymptotically equivalent to the critical state at the 0→1
plateau transition. If the answer is yes, much new phys
remains to be explored.

IV. PERTURBATIVE RESULTS
FOR COMPOSITE-FERMION HALL CONDUCTIVITY

IN THE ABSENCE OF DISORDER

In this part of our paper we address the case where th
is no disorder. As we stressed earlier, in that case the
thatsxy5(e2/4p) does not uniquely determine the value
sxy
f . For example, so long assxx

f 5`, sxy
f can have any

finite value. In particular,sxx
f 5` andsxy

f 50 is a perfectly
legitimate solution.

In the following we shall computesxy
f perturbatively. The

starting point of our subsequent analysis is the compos
fermion Euclidean Lagrangian:

L@ c̄ ,c,a#5E d2xc̄ ~]01 ieA02 ia0!c

2
1

2mb
E d2xc̄ ~¹W 1 iAW 2 iaW !2c1La@a#,

~53!

where

La5
1

8p2u2E d2xd2x8@b~x,t !2 b̄ #v~x2x8!@b~x8,t !2 b̄ #

1
i

4puE d2xemnlam]nal . ~54!

c̄ andc are the Grassmann fields associated with the co
posite fermions;Am andam are the external and statistica
gauge fields, respectively;b5¹W 3aW ; v(x2x8) is the bare
interaction between electrons;b̄[2pur̄ is the averaged sta
tistical magnetic field. Moreover, we have made use of
Chern-Simons constraint thatb(x,t)52pur(x,t). By res-
caling space, time, and the fermion fields, so th
x→kFx,t→tkF

2/mb , and c,c̄→kF
21c,kF

21c̄ ~here kF
[Ar̄/p) one can easily prove that in Eqs.~53! and~54! the
only dimensionless parameters areu, a[\vc /Ec , and
r̄u/2pB, whereEc5e2/2eAr̄/p is the typical strength of the
Coulomb interaction. Here, we will consider only the case
which the magnetic field satisfies the commensurability c
dition 2pr̄u/B51, so that at the mean-field level the n
effective magnetic field seen by the composite fermions
zero.

Within the class of models described by Eqs.~53! and
~54!, the problem of physical interest corresponds tou52,
while the problem is simple in the limitu→0 with a fixed.
In that limit, the composite fermions are the bare electro
and the MFT is exact.7 The question we are trying to addre
is ‘‘what are the fluctuation corrections to this mean-fie
picture?’’ In carrying out the calculations, we choose to wo
in Coulomb gauge, in which the gauge-field propagat
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Di j , is a 232 matrix, with j50,1 representing the time an
space components, respectively.

We have calculatedsxy
f perturbatively by evaluating the

Feynman diagrams shown in Fig. 3. In that figure the wa
line represents the mixed gauge propagatorD01 and D10.
The open triangle, solid triangle, and square represent
density, current, and the diamagnetic vertices, respectiv
To the lowest order inu anda we can use the bare gaug
propagator, D00(q0 ,qW )5V(qW ), D1150, and D10(q0 ,qW )
5D01(q0 ,qW )5 i2pu/uqu, whereV(q) is the Fourier trans-
form of v(rW). In this case, sinceD01 does not depend on
frequency, the integration can be easily done. Letv andqW be
the external frequency and momentum, respectively.
have looked at two limits:~i! uqW u→0 first andv→0 second
~this is the canonical limit for defining the conductivities!,
and ~ii ! v→0 first and uqW u→0 second. In case~i! all the
individual graphs shown in Figs. 1~a!–1~d! are zero. In case
~ii ! the contributions tosxy

f from Figs. 1~a!, 1~b!, and 1~c!,
1~d! are6ue2/16p, respectively; thus the net result is aga
zero. ~We note that for this case we found that the char
teristic momentum carried by the gauge line is of ord
kF .) SinceuqW uÞ0 breaks Galilean invariance, we regard t
value ofsxy

f in case~ii ! as a more stringent test of wheth
the time reversal symmetry of composite fermions is
stored.

Therefore to this order we obtainsxy
f 50. This result is

consistentwith the notion of a composite Fermi liquid i
zero magnetic field.If this were true to all orders, i.e
sxy
f 50 in the absence of disorder, we would be left with t

following situation: In the limit ofmb→0, the composite-
fermion Hall conductance in the presence of particle-h
symmetric disorder of vanishing strength would differ
2e2/4p from its value in the absence of disorder. The s
gular behavior in the limit of zero disorder is, of course, n
unprecedented; For noninteracting electrons in two dim
sions, the zero-temperature conductivity is infinite in the
sence of disorder, and 0~due to localization! for arbitrarily
small disorder. However, this behavior is due to a sub

FIG. 3. Feynman diagrams forsxy
f . For q→0,v→0, while

v@q, each individual graphs in ~a!–~d! vanishes. For
q→0,v→0, whilev!q, the diagrams~a!, ~b! cancel diagrams~c!,
~d!. The diagrams corresponding to self-energy insertions va
due to symmetry.
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infrared instability of the Fermi-liquid fixed point in two
dimensions, and can be circumvented by considering a fi
size system, or a system at finite temperature, in which c
the zero disorder and vanishing disorder results coinc
The situation for the composite fermions is, we believe, fu
damentally different. This is because the fact that partic
hole symmetry impliessxy5(e2/4p) does not rely on either
the zero temperature or the thermodynamic limits; the f
that sxy

f Þ0 is not a delicate infrared phenomenon. For th
reason,we believe~without proof! that the results in the pres
ence of weak disorder are pertinent to understanding
properties of the system in the absence of disorder.

V. DIGRESSION: OTHER PERTURBATIVE RESULTS

In this section we report some other perturbative res
that we have obtained. These results do not directly add
the question ofsxy

f in the pure system, but do shed som
light on other properties of this system.

We shall concentrate on the density-density and curre
current correlation functions. The effects of the bareD00 are
identical to those of a static Coulomb interaction. As is cu
tomary in this case, a random phase approximation~RPA!
resummation is performed to screenD00 and D11. If one
uses the renormalizedD00 andD11 to compute the one-loop
corrections to the composite-fermion self-energy,S(q0 ,qW ),
the contribution from longitudinal fluctuations, i.e., tho
which involveD00, diverges logaritmically with the size o
the system for fixedq0 andqW .

3 The contribution from trans-
verse fluctuations, i.e., those involvingD11, are regular in
the system size, but contribute a logarithmically divergi
correction to the effective mass.3

In the following we shall prove that to the same level
approximation in the density-density and current-current c
relation functions~see Fig. 4!, thedivergentcontribution to
the self-energy from longitudinal gauge-field fluctuations
exactly canceled by the corresponding vertex correction
all qW andv. However, a logarithmic singularity from trans

h FIG. 4. Feynman diagrams forP(q0 ,qW ). For logitudinal gauge
fluctuations, diagrams~d! and ~e! are absent.
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verse gauge fluctuations stays in these response funct
but only at wave vectorq52kF .

10,11

To begin with, let us recall the origin of the diverge
contribution to the composite-fermion self-energy.3 Since the
divergence originates from the high-energy, small mom
tum region (v@q), we can use the following expression fo
the RPA screenedD00:

D00~q!5
2pu

q2
q0
2vc

q0
21vc

2 . ~55!

Substituting this expression into the formula for the low
order self-energy correction, we obtain

S~k!52E d3q

~2p!3
G0~k2q!D00~q!. ~56!

From Eq.~56! a singular term can be extracted:

S~k!5
vcu

2
ln~qmaxL !

«k2 ik0
vc1sgn~«k!~«k2k0!

. ~57!

Now let us consider the analogous contribution to
density-density correlation function,^rr&. To the lowest or-
der ^rr& is given by the sum of three diagrams Figs. 4~a!,
4~b!, 4~c!. The corresponding analytic expressions are

P152E d3p

~2p!3
G0~p!G0

2~p1q!S~p1q!, ~58!

P252E d3p

~2p!3
G0
2~p!G0~p1q!S~p!, ~59!

P352E d3p

~2p!3
G0~p!G0~p1q!G~p,p1q!, ~60!

where the dressed vertexG is given by

G~p,p1q!52E d3k

~2p!3
G0~p1q1k!G0~p1k!D00~k!.

~61!

It is straightforward to show that the following relation hold
between the divergent contributions toS andG:

G~p,p1q!5
S~p!2S~p1q!

iq02«p1q1«p
. ~62!

Substituting this expression into Eqs.~58!–~60!, and using
the identity

G0~p!G0~p1q!5
G0~p!2G0~p1q!

iq02«p1q1«p
, ~63!

one can show that

P5(
i51

3

P i52E d3p

~2p!3
G0
2~p!S~p!2G0

2~p1q!S~p1q!

iq02«p1q1«p
.

~64!

The above expression vanishes after integration overp0 due
to the analytic structure of the integrand, that is because
poles ofG0(p) andS(p) are on the same side of the re
axis.
ns,

-

t

e

he

Now we turn to the current-current correlation functio
Pab5^ j a j b&. To get P1

ab ,P2
ab ,P3

ab associated with the
diagrams in Figs. 4~a!, 4~b!, 4~c!, we need to insert curren
vertices pa(p1q)b , pa(p1q)b into Eqs. ~58!, ~59!, and
(p1k)a(p1q)b5pa(p1q)b1ka(p1q)b into Eq. ~61!.
Since theka(p1q)b term in the last expression does n
produce any divergence, it can be neglected. Therefor
obtain the singular contributions toP1

ab ,P2
ab ,P3

ab , all we
need to do is to multiply the integrands in Eqs.~58!–~60! by
the factorpa(p1q)b . Since the last operation does not a
fect the pole structure; the proof goes through as before
the singular contribution again vanishes.

Now, we turn to the contributions to these correlati
functions from the transverse gauge-field fluctuations, wh
the singular contributions from the self-energy and ver
corrections do not cancel foruqW u52kF . ~They do cancel at
otheruqW u.10,11,25! The graphs used in that calculation are su
marized in Fig. 4. The result for the 2kF density-density
correlation function is given by

DP~v,2kF!/DP0~v,2kF!511uaC1lnF EF

uvuG . ~65!

Here P(v,q)[*d2xdtei (vt2qW •xW )^T@r(x,t)r(0,0)#& with
P0 being the density-density correlation function of fre
electrons,DP(v,q)5P(v,q)2P(0,q), and C152(1/p)
C152~1/p!@141 ln(au/2)]. The above result shows tha
smalla, hencestrongLandau-level mixing, tends to stabiliz
the composite-fermion mean-field theory against diverg
corrections arising from the transverse gauge-field fluct
tions.

To summarize, the perturbative results for the pure sys
are consistent with the existence of time reversal symm
in the long wavelength low-energy properties of the comp
ite fermions. The only sign of non-Fermi-liquid behavior
Eq. ~65!. Whether this singularity signals a true asympto
state that lacks time reversal symmetry, cannot be de
mined on the basis of our results. However, along these lin
we would like to point out apossibleimplication of Eq.~65!,
i.e., that at finite Landau-level mixing, there exists a cro
over temperature scale,Tcr , above which all divergent cor
rections to composite Fermi-liquid behavior are numerica
insignificant.10 If this interpretation is correct, then Eq.~65!
suggests that this temperature is exponentially small in
limit of a large amount of Landau-level mixing, so the
would exist a broad temperature range,Tcr!T!vc , in
which Fermi-liquid behavior would be observable.

Finally, the fact that the divergent self-energy correcti
from D00 is canceled by the vertex correction forall external
momenta leads us to the following tentative conclusio
single composite-fermion excitations~and by extenuation,
probably any excitation with net ‘‘statistical charge’’! arenot
part of the physical spectrum. Instead, the physical exc
tions are statistical charge-neutral particle-hole
excitations.25 Of course, we have proven the consistency
this viewpoint only to the lowest order in perturbatio
theory, so at this point we can only conjecture that it rema
valid more generally.
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VI. FINAL DISCUSSION

In this section we restoree,c,\, andkB . For real systems
there is appreciable Landau-level mixing (a;1). Thus an
important question is ‘‘what does the LLL and particle-ho
symmetry constraint have to do with reality?’’~Here we
should stress that although for real systems, it is not c
thatsxy

f 52 1
2e

2/h, but the general observation that disord
destroys flux cancellation and hence makessxy

f Þ0 should
still be generically true.!

One way to address this question, is to examine it in
light of some recent experimental results of Wong a
Jiang.26 In that study26 Wong and Jiang have attempted
map out the nature of the global, zero-temperature ph
diagram in the density-filling factor plane in the neighbo
hood ofn51/2 using gated GaAs heterojunctions with m
bilities in the rangem<23106 cm2/Vs. ~Since the mobility
is a monotone increasing function, it is useful to think
varying the density as varying the degree of disorder.! Wong
and Jiang have identified a line, which can be unambi
ously associated with the 0→1 plateau transition, on which
the full conductivity tensor~or resistivity tensor! is appar-
ently temperature independent; moreover, everywhere
this line, sxx'sxy'(1/2)e2/h, consistent with theoretica
expectations. This line lies atn'1 in the low mobility~high
disorder! limit, and approachesn51/2 as the disorder is de
creased. In the highest mobility samples, however,
boundary of then51 phase can no longer be clearly iden
fied, possibly due to finite temperature effects.~The lowest
temperature in this experiment is 50 mK.! A similar line has
been identified atn,1/2 corresponding to the 0→1/3 pla-
teau transition, on whichsxx'(1/10)e2/h and sxy
'(3/10)e2/h, independent of temperature and density. In
dition to these familiar phase boundaries, two other cha
teristic behaviors have been observed, which can be use
map out lines in the phase diagram of, as yet, undeterm
meaning. One such line is more-or-less parallel to the den
axis atn'1/2, and occurs only at relatively high mobilitie
On this line, sxy5(1/2)e2/h, independent of temperatur
and density, whilesxx varies with density, and is still tem
perature dependent, even at the lowest temperatures. A
low density end of this line,sxx approaches (1/2)h/e2 and
becomes ever more weakly temperature dependent, i.e.
line is apparently the continuation of the 0→1 phase bound-
ary. However, for high density samples, the magnitude
sxx is about (0.08)e

2/h at the lowest temperatures, where
ar
r

e
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f
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n

e

-
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is still quite noticeably temperature dependent. This res
suggests thatsxy5e2/2h, i.e., particle-hole symmetry, is
more robust than the universal dissipative transport.@This is
also consistent with recent experiments on the nonlin
transport near quantum Hall transitions20 which reveal that a
form of self-duality ~which for the 1→0 transition is the
same as particle-hole symmetry! is observed over a much
wider range of filling factors than the critical behavior, i
self.# It remains to be seen whether upon further cooli
sxx rises to the universal value~as would be expected if this
is indeed the continuation of the 0→1 phase boundary!. Fi-
nally, another line is observed on whichrxy'2h/e2, and is
approximately temperature independent.~These two lines
necessarily converge in the high mobility limit, asrxx→0.!
Along this linesxy

f 50.
In a recent preprint27 Simon, Stern, and Halperin hav

pointed out a difficulty in the mean field, and what they c
the (M )RPA, approximations for the composite Fermi-liqu
theory. They consider the limit ofmb→0, and an inhomoge-
neous external magnetic fieldB(r )5B1/21dB(r ). From the
electron point of view, due to the zero-point kinetic ener
\vc(r ), the region ofdB(r ),0 will be populated by elec-
trons while that ofdB(r ).0 will not. From the composite-
fermion point of view the same physicsis reflected in energy
associated with the zero-point composite-fermion den
fluctuation. Instead, in the spirit of Landau theory, Simo
Stern, and Halperin suggested modifying the compo
Fermi-liquid theory by attaching a magnetic moment, o
determined strength, to each composite fermion. After tak
into account the magnetization current associated with
moment, they arrived at a new approximation—theM2 RPA.
While it seems to us unlikely that this same correction w
simultaneously correct the value ofsxy

f in the presence of
disorder,28 it is possible that a similar in spirit modificatio
of the basic constituents of the composite Fermi-liqu
theory might exist that would accomplish this task.
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