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We show that in the limit of vanishing bare electron mass, and in the presence of particle-hole symmetric
disorder(which can be of vanishing strengttthe composite-fermion Hall conductance is constrained to be
- %ezlh. We discuss the implications of this result for the existence and nature of a composite Fermi liquid in
the lowest Landau leve]S0163-18207)00824-7

The observation of a seemingly metallic dc Fermi-liquid(or, possibly, the marginal Fermi liquidbehav-
magnetotransporand the subsequent discovery of an acousior of the composite fermions imero magnetic field. This
tic wave anomal§nearv=1/2, opened a new chapter in the intriguing picture acquired further support when Fermi-
studies of quantum Hall effectédere v= ¢op/B, wherep is  surface-like features were observed in recent experinténts.
the mean electron densitpo=hc/e, andB is the externally The principal purpose of the present paper is to reexamine
applied magnetic field. A very intriguing idea, the the Fermi-liquid picture when there is a finifeut possibly
composite-fermion theory, has been put forward to exmam’irbltrarlly smal) amount of disorder. I_n the presence 0f_d|s-
these phenomerid In this theory, each electron is repre- order, the .ground—s_tate electron dens_lty is no Ionge_r uniform.
sented as a composite fermforarrying two quanta of ficti- In t_he regions of high electron density, the stat|st|_cal mag-
tious magnetic flux which pierce the physical plane in thenetlc.flux oyergompensates the external one, and In the I‘.JW
direction opposite to that of the real magnetic flux. Formally,denSIty region .'t underpompensates. T_hus_ ffom the wewpomt
this transformation maps the problem of electrons in a stron Of. the composite f_erm|ons, th_e plane is divided Into regions
I ; . o Yith net effective fields opposite to each other. Nominally, if
magnetlc s system of c_om_posne fermpns MOV~ the average field is zero, one would expect a vanishing Hall
ng In thf same e>iternal f'eld. while interacting with a fluc- conductance for composite fermi(ire.,criy= 0). This naive
tqatlng stgustlcal gauge field governed by a Chern- expectation igncorrect because of theorrelation between
Simons actiof?. , the composite-fermion densityhich is equal to the electron
_In the absence of disordethe ground-state electron den- gensity and the effective magnetic field. Thus even if there
sity is uniform. Thus at thenean-fieldievel, the averaged are as many regions with the positive and negative net mag-
statistical magnetic fieldp =2¢yp=|B|, cancels the exter- netic field, one expects the composite-fermion Hall conduc-
nal one, and the composite fermions see no net field. Whetance to be negativé.e., O'I(y< 0), since there are more fer-
one tries to improve upon the mean-field theGMFT) by  mions seeing the negative than the positive field. The
including the fluctuations of the statistical magnetic field, existence of this correlation between the flux and charge also
one encounters divergencettempts to sum these diver- raises questions conceming the validity of models of
gences have led to suggestive, but so far inconclusiveomposite-fermion transport in which this correlation is
results!~** Despite this difficulty, it has beenonjectured ignored?
that the full effect of statistical-gauge-field fluctuations is to Here, we shall concentrate on a particular liftite limit
renormalize the parametefiserhaps in a singular wayf a  where the bare electron mass, is vanishingly small, and
zero field “composite Fermi liquid.” the disorder potential is particle-hole symmétficwhere we

At this point it is useful to differentiate two concepts. The will show that atv=1/2 theelectronHall conductivity is
first is the composite-fermion approach, and the second is the

composite Fermi-liquid theory. The former is simply an ex-
act reformulation of the original problem, but the latter is a 1 e?
conjecture about the final solution. It is also worth pointing TxyTo ey
out that although the magnetic field is canceled out at the
mean-field level in the composite-fermion approach, there is
no symmetry reason to expeqi-;yzo since the full The electronresistivity tensor is related to theomposite-
composite-fermion action lacks time reversal symmetry. It isfermionresistivity tensor by a “connection formulafiwhich
our understandinghowever, that the composite Fermi-liquid Will be discussed beloyy
conjecture requires thazt; =0.
In any case, it has been argued that the transport proper- ‘
ties of the electrons near=1/2 simply reflect the underlying Pxx= Pxxs
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h . THE HALL CONDUCTANCE AT »=1/2 IN THE LIMIT
=2 +pyx; 2 OF VANISHING BAND MASS

A. Intuitive discussion: Particle-hole symmetry

combining this expression with E€), we will show that, so in the lowest Landau level

long aso,,#0, it follows that In the limit of smallm,, or equivalently when the cyclo-
tron frequencyw.=B/m, is the largest energy in the prob-
5 lem, we expect that the low-lying eigenstates#et1 can be
of = — 1 e &) constructed out of states lying entirely in the lowest Landau-
level plus perturbative effects of Landau-level mixing. It is
easy to se¥ that even in the presence of electron-electron
independent of the strength of the disorder or whether thgtergctm_ns and. particle-hole symmetric _disortferthe .
t - . amiltonian projected onto the lowest Landau level is
emperature is zero or finite. : : o .
particle-hole symmetric. This is roughly, but not quite, ad-

Disorder(or some other interaction which breaks Galilean to f ¢ What Ko fiaat
invariance is essentialto establish the above constraint on equate for our present purposes. atwe seek 1o Investigate

f X . : . e is the nature of this symmetry for the full problem, in the
oy - Galilean invariance requires tiegectronresistivity ten- hvsicall inaful limi Cintuitively. this imit i
sor to be physically meaningfu |m|tmp—>p, intuitively, this limit is
related to Landau-level projection, but there are effects of
Landau-level mixing which survive in this liml especially
0, when the current operator is involved.
Nonetheless, we will start our discussion by assuming that
particle-hole symmetry is an exact low-energy symmetry,
h and discuss its consequenc@s. the following subsections
2 (49 we will demonstrate that, subject to some reasonable as-
sumptions, the inferences we have made can be substanti-
ated
The above result combined with the connection formula Eg. Si)nce the ground state at=1 is unique, it can play the
(4) implies that role of a reference vacuum equally well as the state with no
electrons. What this means is that a system with electron
i f concentratiorv<<1 can be viewed, equivalently, as a system
P Pyx=0. (5 of holes with concentration 4. The corresponding con-
ductivity tensor as a function of filling factor can be ex-
In this latter case the composite-fermion resistivity tensor ioressed in either electron or hole language as
noninvertable. Therefore, our conclusions concernﬁ‘fg
apply in the limit that the disorder tends to zero, but may not o(v)=o(1)+o"(1-v), (6)

apply in the absence of disorder. h . .
The remainder of the paper is organized as follows: Invhereca"(1—v) is the hole conductivity tensor at hole con-

Sec. | we derive Eq(1). In Sec. Il, we show how Eq3)  centration v (el_ectr(_)n concentratiorv). Particle-hole
follows from Eq.(1). In the remainder of the paper, we at- Symmetry, in turn, implies that

tempt to understand the implications of this result on the

fundamental character of the physical statevatl/2. Sec- O V)=01(V) (7)

tion 1l contains some discussion of the nature of the ground

state in the presence of disorder in thg—0 limit. In Sec. ~and

IV, we examine the problem of computinng)f(y in the ab-

sence of disorder, but including the perturbative effects of Tyy(V)=— 0oy (V). (8)
fluctuations about the mean-field state. We find that, at least .

to the lowest order, the mean-field resuﬂf(y=0 is un- Frpm these equations, we can exa_ct_ly relate the Hall conduc-
changed. We also discuss our reasons for believing that, evéfyity at »=1/2 to the Hall conductivity av=1:

though the present results are derived in a way that depends

critically on the existence of a disorder potential, they raise Oxy(v=1/12)=(112) 0oy (v=1). 9)
important questions concerning the nature of the ground state ) o

in the lowest Landau levelLLL) at v=1/2, even in the Sinceoy,(v=1)=(e"/2m), Eq.(9) implies Eq.(1).

absence of disorder. Section V is a discussion of some other Eduation(9) is a strong result, and it applies not only to
perturbative results in the absence of disorder; formally thighe dc conductivity, but to finite frequenc, finite wave
section is a digression from the main thrust of the papernumberk, and finite temperaturd;, to the extent that none
except in that it sheds some light on the nature of theof these are large enough to imply substantial Landau-level
composite-Fermion ground state &t 1/2. Section VI con- mixing and hence breaking of the particle-hole symmetry;
tains a discussion of results, some speculations concernirigdeed, we expect corrections due to finite temperature and
their possible implications, and a discussion of their possibldinite frequency to vanish in the.—« limit, and finite k
relevance to experiment. For the remainder of the paper, weorrections to go like KI)?, wherel= B is the magnetic
adopt units in whicte/c=kg=7%=1. length.

Pxx=

Pyx=— 26 .
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whereY,,= [dxxyn(X) xns1(X). Note that] is purely off di-
agonal in the Landau-level index, but has nonzero matrix
elements only between neighboring Landau levels. In par-
ticular, for our purposes, we need to know only the matrix
elementsXo=Y,=1/12.

L Now let us consider the correlation function

I([UT:0)=(g|[I«(1).3,(0)]|g)

=2 {7 "B (g|3,(0)] a)(a|3y(0)|g) —c.c},
FIG. 1. The geometry for the quantum Hall system. ¢ 16
where|a) are the true many-body eigenstates of the system
In this subsection, we show that in the limit,—0 and in  in the presence of external disorder potentigl). To pro-
the presence of particle-hole symmetric disordethe  ceed, let us perform a canonical transformation
T=0 and|k|=0 electronic Hall conductivity is given by Eq. 1) =eT| ) (17)
(1), if the following conditions are fulfilled(i) As a function '
of m, there are no nonanalytic contributions to the Hall con-so that the transformed Hamiltonian
ductivity which survive in them,—0 limit, and (ii) there is

B. Particle-hole symmetry at zero temperature

I — QT =T
no spontaneous particle-hole symmetry breaking. H'=e"He "=H j+Ho+- - (18)
The general expression for the Hall conductivity is givenhas no matrix element connecting pure LLL states with those
by the Kubo formula with a higher Landau-level componefit:® The Hermitian

operatorT can be constructed as a seriesrig [which actu-

A ) . S .
- j ot _ ally is an expansion in powers of the ratio of the Landau-
T @) wf dte 0OV IO NGV T s level mixing matrix element ta, (Ref. 17], as follows:
(10)

whereA is the total aread(t) is the Heaviside function, and T= 2 (mMy) Ty (19
J,, the averaged current density, is given by k=1

Thus in Eq.(18) Hk=O(m'g). The transformed current op-

e 1 dy :
J :_f d2r— vi(r)| =2 —-A,|¥(r)+H.c|. (11 erator has the expansion
“ A 2my [ “«

F @l Tia—iT_ 3 3
In the following we shall considew<w.. In Eq. (10) Ji=elJe "=Joatdot -, (20

|[g[U]) is the ground state for a given external potentialwherej_lzj_

U(r), and( )q;s denotes the disorder averag&o simplify After the transformation, the eigenstates separate into two
the notation, we shall henceforth leave implicit the depen—groups: one groug|a;)} lies entirely in the LLL, and the
dence of eigenstates dn(r).] Next we choose _the eigen- other{|ay)} contains higher Landau-level componen®y
states of the kinetic energy operator as a basis and e’fpa'?ﬂ;sumptionlg) e{|e)}.) By construction, the lowest group
W(r)=2nhni(r)ank, wherean annihilates an electron in 1|, )1 are an eigenstates of the projected Hamiltonian
the state H =P H'P_, whereP,_ is the operator that projects onto
x—kl2> the subspace spanned by states in the LLLO{on])

12

1 )
wnk:WeIKan T
(Lh I ) 10, 5
) Hﬁ//«f drp (r)+ 5[ drdr'v(r—r")p (r)p(r'):
Here we have chosen the gaulye (O,HX); L is the size of
the system in the direction (Fig. 1) and )
+ | drU(r)p.(r). (21
2
Xn(X¥)= (2"t art2) 12, (x) e, (13) .
" " Here pi(r) =y (1) (r), with ¢ (1)=2o(r)ae, and
whereH(x) are the Hermit polynomials. After some trivial U andv are the disorder and interaction potential, respec-
algebra we obtain tively.
Consider first the contribution to E¢16) due to inter-

e Landau-level excitations:

iAmgl

X

nEkxn[azkamk—aleank], (14)

) — ~i(Eq,~Eg)t /
whereX, = [ dxxn(X)dyxns 1(X). Similarly, FURIRY ;h {e 9(g|x(0)]ap)

e X (an|Jy(0)[g)—c.c}. (22

J,=- Yolahans it ah, and, 15 : _ o
y Amblnz:‘( nl @nidnt i+ 8n - 1ic@nkd (19 Since|g) lies entirely in the lowest Landau level,
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tial (disordej and the two-body interaction part of the

(an|lg)= A, |<ah|K+|g>+O(mb) Hamiltonian. The time dependent operaift) is related to
J3(0) via
(anlF0)= ~ oK Iy +O(MY, (23 . -
“hiSyl19)= 7 Ay Ll 19 b): J1(t) =€ty (0)etHL, (33
h
where Given Eq.(32) we perform the integration over spatand
. obtain
K+E§k: a5 @ok - (24
e
Thus the corresponding contribution &g, is J;‘,:KJ dzr{pL(r)ayU(r)ﬂLJ dzrlpL(r)pL(rl)ayv(r—rl)
(1) — ot
([U] C!)) Jdt& t)e |1(t) _l_j dzrlpL(rl)PL(r)ayU(rl_r)} (34)
e <g|K|ah><ah|K+|g>
+0O(m
A(mbI)ZE (Eah_Eg)z ( b) and
(25 , e , ,
Let us write Jy:_KJ d r[PL(f)ﬁxU(r)—J dripL(r)pL(ry)dyw
E,—Eg=w.+A,; (26)

X(r—rl)—f dzrlpL(rl)pL(r)&xv(rl—r)]- (35
to the lowest order inm,, we can approximatd , by 0 in

Eq. (25). Thus, the leading order contribution &) in the

my—0 limit is At v=1/2, and whenfd?rU(r)=0, the value ofu is
, such thatH, [U]—H [ —U] under thelLLL p-h transforma-
e tion,
7y =ap(9> ac@ol9). (27
+
where we have used the fact that v )?=B. )= (r). (36
Next we look at the contribution ter,, due to intra- }
Landau-levels excitations: Equation(36) amounts to the change
A . t
o3 ([UTw)=— f dione i, (29 B0 0k 37
where and complex conjugation of the basis wave function. Under

this transformatior{since complex conjugation is equivalent
to the transformatioly— —y),

1([UT) =2 {(gl35(t)]ar){a|3;(0)|g)—(g|J;(0)] ;)
a
J(U)——=J(—V),

X{ |35 (1)]9)}- (29
0 31 j ” "
To O(m,), we can replacd’ in Eq. (29) by I(U)—J(—U). (39)
=P (J_1+Jg)P =P (Jo)P, . CUN
Thus,
" Uph— -U ’ 39
L[UI=(al3}().3(0)]lg)+O(my), (3D 19:U])=lgel L) 39
andJ” = (1/A) fd?rj"(r), wheré® (i.e., if there is no spontaneous particle-hole symmetry
breaking, then(sinceX,[1]=AB/ ¢o=AB/27)
1
Ja(N=PLjo(r) ——=———=—(1-P)VP_ o2
hwN2—H
‘ “ oy [U]= 5=l -],
1
hw:N/2—H
v o2[U]= o[- U]. (40)

HereN andl:lK are the particle number operator and kinetic
energy operator, respectively, aWds the sum of the poten- Therefore
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Txy={ o[ Uais= f D[UIP[U](o3y[Ul+ a3 [U]) X

e2 1 2
-5 | prutPLI- Ul 0T~y

2 e, VOt -t

e
:z‘f D[UIP[—U]oy[ U]

o2 FIG. 2. An example where an impurity averaged irreducible
:__j D[U]P[U]o[U] bubble diagram does not appear after averaging the irreducible

2w Y bubble diagrams for specific disorders.

2 2
_ Il. IMPLICATIONS FOR THE COMPOSITE-FERMION

=-—= UDgs=ss—— . 41

27 (O0lUDas= 5~ oy (41) CONDUCTIVITY

In the above equation we have used the fact that the disorder An important ingredient of the composite-fermion ap-

is particle-hole symmetric, i.e., proach is the relation between the electron and composite-
fermion correlation functions. It is the nature of the mapping
PlU]=P[-U]. (42)  that the density of composite fermions equals that of the

electrons, but the relation between current operators is more
complicated. To compute the electron current-current corre-
lation function, we need to string together the composite-

C. Particle-hole symmetry at nonzero temperature fermion “irreducible bubbles®® using the Chern-Simons

The derivation presented above can be generalized to Bare gauge propagator. As shown in Refs. 3, 19, dhdhes
finite temperature. In that ca$g|[Jx(t),Jy(O)]|g> in Egs. results in the relation Eq2) between the resistivity tensor of

After restoring# Eq. (41) is equivalent to Eq(1).

(10) and (16) is replaced by the thermal average, i.e., electrons,p,g, and that of the composite fermiong;;.
Physically, this expresses the fact that associated with the
Tr{e’BH[JX(t),Jy(O)]} composite-fermion current, there is a statistical flux current,
(gl[3x(1),3,(0)]|g)— Tr{e P} . (43 which produces a corresponding electromagnetic field

(EMF) proportional to the statistical flux carried by each
By making the same assumptions as in the above, we see thamposite fermion times the electrical current. Whﬁ;ﬁ;
in the my,— 0 limit, we can evaluate the trace over states in#0, the resistivity tensor can be inverted with the conse-

the LLL. Thus Eq.(22) is replace by guence that Eq(2) is equivalent to
1 - BE —i(Eq —Eg)t ' ¢’ 2 2
|1[U]: Z—lz e a|2 {e a, T <a||JX(O)|ah> . ez ZO’Xy_Z(U'XX'i‘ O'Xy)
| h TvTon e? Z1
X(ah|J}',(0)|a|>—C.C.}, (44) 40’§X+ Z_Zny)
where
e2
2 5 - Oxx
_ e 2
2= e . (45) ol = s ,. (48)
a O e
40’XX+ E_Z(Txy

To the lowest order im,, we again replacd’ by J in Eq.
(44). Again, as we did in Eq.26), we make the replacement, In the aboveo,, and oy are theimpurity averagecconduc-

valid to O(mg), (Eah—Eal)HwC. Then tivity tensor of the electronsrix,o)f(y are the conductivity
deduced from thémpurity averagedbubble diagrams that
’ . , . . -
e’ 1 - are irreducible with respect to cutting a statistical-gauge
g %/):ﬁ Z_|2 e’ E“'<0f||§k: ag@ok] ) (46) propagator. Here we stress that the lattends necessarily
“ equal to first taking the statistical-gauge-propagator-
Finally, Eq.(31) is replaced by irreducible bubble in fixed disorder, and then averaging over

the disorder realization. For example, the diagram shown in
1 Fig. 2 belongs to the former, while not the latter. By substi-
[[U]= ZTF'{efﬁHL[JQ(t),J;(O)]}- (47 tuting o,y = e%/4 into Eq.(48), we obtain
2\ 2
Here Tr{}=%,(a|...|a;) denotes the partial trace over of :(e_) 1
the LLL eigenstates only. At a finite temperature the condi- > \Am
tion of no particle-hole symmetry breaking is generalized to
the statement that we may use E43) without including in of = € (49)
H an infinitesimal symmetry-breaking field. Xy Aa’

1
Oxx
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The above is valid so long as,# 0 and when the particle- them consistent Withfxy:(ezlh); the question is whether
hole symmetry is maintained, so it applies with or withoutany of them corresponds to an infrared stable fixe_d p_oint in
electron-electron interactions, for finite or infinite systems,the presence of disordéwhich, again, can be vanishingly

and at zero or nonzero temperature. smal)). If the answer is no, then even in the limit of vanish-
ing disorder, the ground state of the systemvatl/2 is
. WHAT IS THE CORRECT STATE IN THE LIMIT asymptotically equivalent to the critical state at the>@
OF ZERO BAND MASS IN THE PRESENCE plateau transition. If the answer is yes, much new physics
OF DISORDER? remains to be explored.

Now the remaining question is “what is the correct state IV. PERTURBATIVE RESULTS
in the limit of my;—0 when there is a nonzero amount of FOR COMPOSITE-FERMION HALL CONDUCTIVITY
particle-hole symmetric disorder?” For that purpose let us IN THE ABSENCE OF DISORDER

consider the composite-boson representation where the elec-
trons are viewed as composite bosons carrying one quantum
of fictitious magnetic flux eacli.e., thed=1 boson Chern-

In this part of our paper we address the case where there
IS no disorder. As we stressed earlier, in that case the fact

Simons theory. Here we recall that in this representation, thethat ay= (€*/4m) does not umquely dete?rmme the value of
Bose superfluid phase corresponds tosthel quantum Hall a5y For example, so Ior:g asxx_o"'f" y can have any
liquid, and the Bose insulatdor the vortex superfluidohase f|n|te value. In particularg,, = andoy,=0 is a perfectly
corresponds to the electron insulator. In between we calfditimate solution.

have a particular situation where the bosons and vortices are In the following we shall computer,,, perturbatively. The

in the same state. The latter is marked by the so-cilled starting point of our subsequent analysis is the composite-

“self-duality condition” where fermion Euclidean Lagrangian:
(02 )2+ (2 ) 2= —r :(2_77)2 (50 L[W,a]=f dx( o+ ieAg—iag)
T B2, b2 :
XX yX (O_XX)2+ (ny)z e2
To translate this condition into a statement concerning the f d2xy(V+iA—ia)2y+L[a],
electronic response, we use the connection formula between 2mb
the electron and composite boson resistivity ter€or, (53)
pxx:pgx' where
27 L= zf d2xd®'[b(x,t)— bJv(x—x")[b(x',t)—b]
Pyx= o2 +pyx (51 " 8mg
i
With this identity, it is easy to see that E®O) is equivalent + yp f dzx»s"”"aﬂ(?paA . (54

to Eq. (1). Thus the particle-hole symmetric condition
oxy=(e%/4m) is equivalent to the statement of self-duafity. 3 andy are the Grassmann fields associated with the com-
One example of the self-duality of thée=1 boson Chern-  posite fermionsA, anda,, are the external and statistical-

Simons theory is the critical point of the=0 to v=1 pla- gauge fields, respectivelyq=ﬁx5; v(x—x') is the bare

. 9 . - oV
teau transitiort” For the latter, it was argued that interaction between electrons=26p is the averaged sta-

o =0 tistical magnetic field. Moreover, we have made use of the
o Chern-Simons constraint thét(x,t)=2m6p(x,t). By res-

o2 caling space, time, and me fermion jelds, so that
ai’gﬁ. (520  x—kpx,t—tk3/m,, and ¢, p—k-1yk=ty  (here ke

= Jp/m) one can easily prove that in Eq&3) and(54) the
We note that Eq(52) constitutes a special solution to Eq. only dimensionless parameters ate a=fw /E., and
(50). Values of the conductivity consistent with Ep2)  p6/27B, whereE.=e?/2¢\/p/ is the typical strength of the
were found for both particle-hole symmetric and nonsym-Coulomb interaction. Here, we will consider only the case in
metric disorder in numerical studies of noninteracting elecwhich the magnetic field satisfies the commensurability con-
trons at this transitioA® Recently, experiments have been dition 27p6/B=1, so that at the mean-field level the net
performed which dramatically support the notion that there isffective magnetic field seen by the composite fermions is
a universal resistivity tensor at the critical point, with mea-zero.
sured values in all cases consistent with the conjectured val- Within the class of models described by E¢S3) and
ues of the composite-boson conductivitj&s. (52)].22% (54), the problem of physical interest correspondsgte2,
The plateau transitiofiEq. (52)], being a critical point, while the problem is simple in the lim#— 0 with « fixed.
obviously is infrared unstable with respect to a single perturin that limit, the composite fermions are the bare electrons,
bation[which turns out to ber,,— (e?/4m)]. The fact that it  and the MFT is exactThe question we are trying to address
is experimentally observable, implies that given the conds “what are the fluctuation corrections to this mean-field
straint thato,,= e?/4m, it is infrared stable. There are infi- picture?” In carrying out the calculations, we choose to work
nitely many other possible solutions to E§0),2*with all of ~ in Coulomb gauge, in which the gauge-field propagator,
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Dy
L
D
(@
(a) ©
. @
D
S (b)
D
(b) d) 10
O
FIG. 3. Feynman diagrams fonr;y. For g—0,0—0, while (©)

w>(q, each individual graphs in(a—(d) vanishes. For
g—0,0—0, while w<(q, the diagramsa), (b) cancel diagram¢c),

(d). The diagrams corresponding to self-energy insertions vanish FIG. 4. Feynman diagrams fi(qo.q). For logitudinal gauge
due to symmetry. fluctuations, diagramé&l) and(e) are absent.

Djj, is a 22 matrix, withj=0,1 representing the time and

space components, respectively. , dimensions, and can be circumvented by considering a finite
We have calculated,, perturbatively by evaluating the gjze system, or a system at finite temperature, in which case
Feynman diagrams shown in Fig. 3. In that figure the wavine zero disorder and vanishing disorder results coincide.
line represents the mixed gauge propagddgi and Dio.  The sjtuation for the composite fermions is, we believe, fun-
The open triangle, solid triangle, and square represent thgamentally different. This is because the fact that particle-
density, current, andi the diamagnetic vertices, respectivelyyg|e symmetry impliesrxyz(e2/477) does not rely on either
To the lowest order i and « we can use the bare gauge the zero temperature or the thermodynamic limits; the fact
propagator, Doo(qo,d) =V(q), D1;=0, and Dy((do.0)  thatoy,#0 is not a delicate infrared phenomenon. For this
=Doi(qo.q)=i276/|q|, whereV(q) is the Fourier trans- reasonwe believgwithout prooj that the results in the pres-
form of v(r). In this case, sinc®,; does not depend on €nce of weak disorder are pertinent to understanding the

frequency, the integration can be easily done.cheandﬁ be properties of the system in the absence of disorder.
the external frequency and momentum, respectively. We

have looked at two limitsti) |q|— O first andw—0 second
(this is the canonical limit for defining the conductivities
and (i) @—0 first and|q|—0 second. In casé) all the In this section we report some other perturbative results
individual graphs shown in Figs(d—1(d) are zero. In case that we have obtfained. These results do not directly address
(ii) the contributions tar}, from Figs. 1a), 1(b), and 1c), ~ thé question ofo,, in the pure system, but do shed some
1(d) are = #e?/16m, respectively; thus the net result is again light on other properties of this system.

zero. (We note that for this case we found that the charac- We shall concentrate on the density-density and current-
teristic momentum carried by the gauge line is of ordercurrent correlation functions. The effects of the bBig are

ke .) Since|q|#0 breaks Galilean invariance, we regard the|dent|cal to those of a static Coulomb interaction. As is cus-

value ofaf(y in case(ii) as a more stringent test of whether tomary in this case, a random phase approxima(RRA)

: . . . resummation is performed to scre@€np, and Dy4. If one
the time reversal symmetry of composite fermions is re- ;
stored. uses the renormalized,, and D, to compute the one-loop

Therefore to this order we obtaim',=0. This result is ~Corrections to the composite-fermion self-energyno.4),

consistentwith the notion of a composite Fermi liquid in the_ co_ntribution from Iongitudina_l fl_uctuatiqns, i.e.,_ those
zero magnetic fieldIf this were true to all orders, i.e., Which involve Dy, diverges logaritmically with the size of
oy,=0 in the absence of disorder, we would be left with thethe system for fixed andq.’ The contribution from trans-
following situation: In the limit ofm,—0, the composite- Verse fluctuations, i.e., those involviriy,,, are regular in
fermion Hall conductance in the presence of particle-holdhe system size, but contribute a logarithmically diverging
symmetric disorder of vanishing strength would differ by Correction to the effective mass.

—e2/44 from its value in the absence of disorder. The sin- In the following we shall prove that to the same level of
gular behavior in the limit of zero disorder is, of course, notaPproximation in the density-density and current-current cor-
unprecedented; For noninteracting electrons in two dimentelation functions(see Fig. 4, the divergentcontribution to
sions, the zero-temperature conductivity is infinite in the abhe self-energy from longitudinal gauge-field fluctuations is
sence of disorder, and @ue to localizatiop for arbitrarily ~ €xactly canceled by the corresponding vertex correction for
small disorder. However, this behavior is due to a subtleall g and w. However, a logarithmic singularity from trans-

infrared instability of the Fermi-liquid fixed point in two

V. DIGRESSION: OTHER PERTURBATIVE RESULTS
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verse gauge fluctuations stays in these response functions, Now we turn to the current-current correlation function
but only at wave vectog= 2k .10 11*A=(j,jg). To getlI{# 115% 115# associated with the
To begin with, let us recall the origin of the divergent diagrams in Figs. @), 4(b), 4(c), we need to insert current
contribution to the composite-fermion self-enefgince the vertices p,(p+0) s, P.(pP+0)s into Egs. (58), (59, and
divergence originates from the high—engrgy, smalll MOMEN( .+ k) (p+q) 5= Pa(P+0) s+ Ko(p+Q) s into Eq. (61).
tum region @>q), we can use the following expression for gjnce thek,(p+0); term in the last expression does not
the RPA screeneD o produce any divergence, it can be neglected. Therefore to
270 Qo obtain the singular contributions #7115”1157, all we
Do(Q)=—7 5. (55)  need to do is to multiply the integrands in E¢58)—(60) by
Q° Gotac the factorp,(p+q)z. Since the last operation does not af-
Substituting this expression into the formula for the lowestfect the pole structure; the proof goes through as before and

order Se'f-energy Correction' we Obtain the Singular Contribution again Vanishes.
Now, we turn to the contributions to these correlation

d3q functions from the transverse gauge-field fluctuations, where
2(k)=- (277)3G0(k—q)D00(q). (56)  the singular contributions from the self-energy and vertex

corrections do not cancel f¢ﬁ|=2kF. (They do cancel at

other|q|.****?J The graphs used in that calculation are sum-
w0 e—ikg marized in Fig. 4. The result for thek2 density-density
2(K)=—~In(Amal-) T p—— (57)  correlation function is given by

From Eq.(56) a singular term can be extracted:

Now let us consider the analogous contribution to the
density-density correlation functiofpp). To the lowest or-
der (pp) is given by the sum of three diagrams Fig$a)4
4(b), 4(c). The corresponding analytic expressions are

E} . (69

|o]

ATI(w,2kg)/ ATl o( 0,2kg) = 1+ 8aC4ln

d*p 2 j(wt—q-%) :
I :_J Go(p)G2(p+9)3(p+q), (59) Here II(w,q)=/d°xdté (TLp(x,t)p(0,0)]) with
! (2m)° olP)GolpFa)x(pta I1, being the density-density correlation function of free
e electrons,All(w,q) =1I(w,q) —1I(0,9), and C;=—(1/m)
P 2 Cl=—(Um[3+In(«b/2)]. The above result shows that
My=— | -3 + a
2 J (ZW)aGO(p)GO(p D=(P), 59 small @, hencestrongLandau-level mixing, tends to stabilize
5 the composite-fermion mean-field theory against divergent
d°p corrections arising from the transverse gauge-field fluctua-
H3=—fWeo(mcso(pw)r(p,mq), (60  pons J gatis
To summarize, the perturbative results for the pure system

where the dressed vertéxis given by are consistent with the existence of time reversal symmetry

d3k in the long wavelength low-energy properties of the compos-
T'(p,p+q)=— f 2—3Go(p+Q+k)Go(P+ K)Dgo(k). ite fermions. The only sign of non-Fermi-liquid behavior is
(2m) 61) Eq. (65). Whether this singularity signals a true asymptotic

state that lacks time reversal symmetry, cannot be deter-
It is straightforward to show that the following relation holds mined on the basis of our results. However, along these lines,

between the divergent contributions YoandI": we would like to point out gossibleimplication of Eq.(65),
S (p)—5( ) i.e., that at finite Landau-level mixing, there exists a cross-
p)—2(p+tq over temperature scal@,, above which all divergent cor-
Fp,pta)=——"""7— (62) P cr g

rections to composite Fermi-liquid behavior are numerically
insignificant®® If this interpretation is correct, then E¢5)
suggests that this temperature is exponentially small in the

ido—&piqte&p

Substituting this expression into Eq&8)—(60), and using

the identity limit of a large amount of Landau-level mixing, so there
would exist a broad temperature range,<T<w., Iin
— —+ r Cc
Go(p)Go(p+q)= G_O(p) GolP Q), (63  which Fermi-liquid behavior would be observable.
G0~ &p+qtep Finally, the fact that the divergent self-energy correction
one can show that from D is canceled by the vertex correction ft external
momenta leads us to the following tentative conclusion:
: d*p Go(P)X(p)—G(p+a)X(p+a) single composite-fermion excitatiori@nd by extenuation,
= E Il =— 3 — . probably any excitation with net “statistical chargedrenot
i=1 (2m) IJo—&p+qt&p

64) part of the physical spectrum. Instead, the physical excita-

tions are statistical charge-neutral particle-hole
The above expression vanishes after integration pyatue  excitations?® Of course, we have proven the consistency of
to the analytic structure of the integrand, that is because ththis viewpoint only to the lowest order in perturbation
poles of Gy(p) and > (p) are on the same side of the real theory, so at this point we can only conjecture that it remains
axis. valid more generally.
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VI. FINAL DISCUSSION is still quite noticeably temperature dependent. This result

suggests thabxy=ezl2h, i.e., particle-hole symmetry, is
more robust than the universal dissipative transfdttis is

also consistent with recent experiments on the nonlinear

'Sm%?:gt?t q:oensstlt(r)erl]ir:f hV;/\r/]:t t?)ogz tcv?ﬂi‘l‘rt:}irt]dx‘::tr'gi}zOIetransport near quantum Hall transitiéAsvhich reveal that a
y y y: form of self-duality (which for the 1-0 transition is the

should stress that although for real systems, it is not clear : .
! . same as particle-hole symmetrig observed over a much
that O'I(y= —1e?/h, but the general observation that disorder P ymmerig

) wider range of filling factors than the critical behavior, it-
destroys flux cancellation and hence makeg+0 should self] It remains to be seen whether upon further cooling
still be generically trug.

oy Mises to the universal valu@as would be expected if this

_ One way to address this question, is to examine it in thes ingeed the continuation of the-91 phase boundayyFi-
light of some recent experimental results of Wong a”dnally, another line is observed on whigh,~2h/e?, and is

2 %6 6 -
Jiang™ In that study® Wong and Jiang have attempted to approximately temperature independeffhese two lines

map out the nature of the global, zero-temperature phasg..essarilv converge in the high mobility limit —0
diagram in the density-filling factor plane in the neighbor-Along this);ine(rf :go g y  A3—0)
Xy .

hood of v=1/2 using gated GaAs heterojunctions with mo- In : ; :

S : . a recent preprif Simon, Stern, and Halperin have
_b|||t|es in trt'e rangqu=2x 1?6 crr:_zlv s_.t(_Slnce :chletmq[a!“tg fpointed out a difficulty in the mean field, and what they call
IS @ monotone Increasing function, 1t IS usetul o think ot 4, (M)RPA, approximations for the composite Fermi-liquid
varying the density as varying the degree of disojdéaiong theory. They consider the limit ah,— 0, and an inhomoge-

and Jiang have identified a line, which can be unambigu- o _
X ) " . =Byt .
ously associated with the-81 plateau transition, on which neous external magnetic fie(r) =By, + 5B(r). From the

the full conductivity tensoi(or resistivity tensoris appar- electron point of view, due to the zero-point kinetic energy
Y _ y bp fiw,(r), the region of6B(r)<0 will be populated by elec-
ently temperature independent; moreover, everywhere o

e . ! ; flons while that of5B(r)>0 will not. From the composite-
this line, o~ 0y~ (1/2)e’/h, consistent with theoretical o i point of view(th)e same physitsreflected in gnergy
sxpegtaulc_)n_s. Th'j’ line lies :t%];llr}zthe Iof\:v rg_obllgy(mgz associated with the zero-point composite-fermion density

isordey limit, an approaches=1/2 as the disorder Is de- g,,ation, Instead, in the spirit of Landau theory, Simon,
creased. Inf ;]he_h'ghESt mobility Isamples, Ihovvlev_er, t.h%tern, and Halperin suggested modifying the composite
?ochmdary .%I t ;”_1 F; ase can no ongerffbef(ét:aarly identi- Fermi-liquid theory by attaching a magnetic moment, of a
led, possibly due to finite temperature e _ec{_ e lowest  yetermined strength, to each composite fermion. After taking
temperature in this experiment is 50 mK similar line has

i - ) into account the magnetization current associated with this
been |dent|f_|<_ad av<1/2 cqrrespondlng tozthe—91/3 pla- moment, they arrived at a new approximation—khé RPA.
tfau "ag‘s'“?”’ on which oy, ~(1/10)e%/h ~and oy, \whie it seems to us unlikely that this same correction will
don 16 these famiiar phase boundariss. o other characiMUanE0usly correct the value of, in the presence of
teristic behaviors have been observed Wi’liCh can be used isorder” It Is p055|_ble that a similar in Spirit modlflc_at_lon_
map out lines in the phase diagram of' as yet undetermineq the basic constituents of the composite Fermi-liquid

X L ' ' ~theory might exist that would accomplish this task.
meaning. One such line is more-or-less parallel to the density
axis atv~1/2, and occurs only at relatively high mobilities:
On this line, axy=(1/2)e2/h, independent of temperature
and density, whiles,, varies with density, and is still tem-
perature dependent, even at the lowest temperatures. At the We acknowledge illuminating discussions with E. Frad-
low density end of this lineg,, approaches (1/&ye? and  kin, L. loffe, A. H. Casto-Neto, P. Stamp, and X.-G. Wen.
becomes ever more weakly temperature dependent, i.e., thie thank Dr. D. Khveshchenko for pointing out an error in
line is apparently the continuation of the-01 phase bound- our earlier perturbative result f@;rf(y. S.K. was supported in
ary. However, for high density samples, the magnitude ofpart by the NSF under Grant No. DMR93-12606 at UCLA,
0y IS about (0.083%/h at the lowest temperatures, where it and by the UCB.

In this section we restore,c,%, andkg . For real systems
thereis appreciable Landau-level mixingx(-1). Thus an
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