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Tests of a density-based local pseudopotential for sixteen simple metals
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A comprehensive study of the lattice dynamics, elastic moduli, and liquid metal resistivities for 16 simple
metals in the bcc and fcc crystal structures is made using a density-based local pseudopotential. The phonon
frequencies exhibit excellent agreement with both experiment and nonlocal pseudopotential theory. The bulk
modulus is evaluated by the long wave and homogeneous deformation methods, which agree after a correction
is applied to the former. Calculated bulk and Voigt shear moduli are insensitive to crystal structure, and
long-wavelength soft modes are found in certain cases. Resistivity calculations confirm that electrons scatter
off the whole Kohn-Sham potential, including its exchange-correlation part as well as its Hartree part. All of
these results are found in second-order pseudopotential perturbation theory. However, the effect of a nonper-
turbative treatment on the calculated lattice constant is not negligible, showing that higher-order contributions
have been subsumed into the pseudopotential by construction. For bcc sodium, the band structures of local and
nonlocal pseudopotentials are found to be almost identical.@S0163-1829~97!01321-0#
n
in
rb
or
i
c

a
ia

hi

ry
ti

-
te

ty
e

s
a-
th

to
gy,
lo-
r-
ry

less
al

ith
the
e-
ic
the

ties
nly
id

n
k of
o-
ce
as.
ld
eld
ere
and

o
e
t-
tal
INTRODUCTION AND SUMMARY

The pseudopotential formalism,1,2 in which a weak effec-
tive interaction is set up between atomic cores and vale
electrons, does an unexpectedly good job of reproduc
properties of close-packed metals in second-order pertu
tion theory.3 A recently developed local pseudopotential f
simple metals4 has been constructed specifically to be used
second-order ground-state energy calculations. This lo
pseudopotential, which we shall calldensity based, is tested
here in a systematic study on a large class of metals.

To understand the spirit behind this density-based form
ism, it is helpful to compare two different pseudopotent
constructions. Conventional norm-conserving5 pseudopoten-
tials are constructed for a free-atom reference state, in w
the nonlocal pseudopotentialw(r,r8) reproduces low-lying
valence-electron Kohn-Sham orbitalsC i„r … outside the core.
Our density-based pseudopotential is constructed for a c
talline reference state, in which the local pseudopoten
w(r ) reproduces key features of the electron densityr„r …
outside the core. More precisely~in atomic units with
e25\5m51)

w~r !5
2z

r
1wR~a,R;r !, ~1!

wherez is the valence. The core repulsionwR depends ana
lytically upon r , the distance from the electron to the cen
of the ion, and decays likee2r /R as r→`. The two param-
etersa andR reproduce the all-electron interstitial densi
and the observed equilibrium lattice constant, where the d
sity r(r ) is computed to first order and the total energyE to
second order in the pseudopotential, using the local den
approximation~LDA ! for exchange and correlation. The p
rameterR turns out to be essentially the decay length of
highest-occupied core orbital ofs or p symmetry.
550163-1829/97/55~23!/15544~8!/$10.00
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In previous work4 this local pseudopotential was shown
give a good account of crystal structure, bulk binding ener
and bulk modulus for the simple metals. Advantages of
cality include computational simplicity, physical transpa
ency, and suitability for use with density-functional theo
~which in principle requires a local external potential!. A
disadvantage is that local pseudopotentials are
transferable6 to nonreference environments than nonloc
ones.

Comprehensive unified studies of several metals w
pseudopotentials are surprisingly rare, even though
simple metals justify use of a single, simple model to d
scribe them. Rose and Shore7 delineated trends in the elast
constants for both simple and transition metals, stressing
importance of interstitial density. Moriarty8 calculated lattice
dynamics, cohesive energies, and liquid metal resistivi
using a nonlocal pseudopotential. Our work entails not o
the lattice dynamics, but also the elastic moduli and liqu
metal resistivities for 16 metals~Li, Na, K, Rb, Cs, Ba, Be,
Mg, Ca, Sr, Al, Ga, In, Tl, Sn, Pb!.

The first root of our interest in the calculation of phono
frequencies and elastic constants goes back to the wor
Rasolt and Taylor.9,10 They constructed nonlocal pseudop
tentials which, in first-order perturbation theory, reprodu
the electron density around an ion in a uniform electron g
Perdew and Vosko11 showed that the same procedure cou
be applied to construct local pseudopotentials, which yi
realistic phonon frequencies to second order for Li, wh
the pseudopotential is expected to be both nonlocal
strong; similar calculations have been made for Al~Refs.
12–14! and Mg.15 In our present study, although we n
longer invoke an ion in an electron gas, we still follow th
primary directive of this earlier work: make the density ou
side the core correct to first-order in order to make the to
energy correct in a second-order calculation.
15 544 © 1997 The American Physical Society
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55 15 545TESTS OF A DENSITY-BASED LOCAL . . .
The second root of our interest lies in the systematic c
culations of simple-metal elastic constants by Ling a
Gelatt.16 They used a local pseudopotential constructed fr
the bulk stability condition alone to identify chemical tren
in the bulk and shear moduli for 19 metals. The loc
pseudopotential we use here is more realistic4 in its descrip-
tion of band-structure~second-order! effects, but still recog-
nizes the key role played by the bulk equilibrium or zer
pressure condition. Except for the metals Be, Ca, Sr, and
where pseudopotential nonlocality can be especially imp
tant, our calculated phonon frequencies and elastic cons
are in satisfactory agreement with experiment.

While phonon frequencies and elastic constants can
related directly to the total energy, the electrical resistiv
cannot. Thus, we do not expect and do not find that our lo
pseudopotential is as accurate for the latter as for the form
Nevertheless, our calculated resistivities are sufficiently re
istic to discriminate between proper and improper screen
of the electron-ion interaction, as we show later in this
ticle.

Since our local pseudopotential is constructed in and
second-order perturbation theory, it is not necessarily o
mal for a nonperturbative treatment, as we show by calcu
ing lattice constants both ways with the same pseudopo
tial. However, its two principles of construction~matching to
both the all-electron interstitial density and the observed
tice constant! can also be used to find new parametersa and
R in Eq. ~1! that are appropriate for a nonperturbative tre
ment. We have done this for sodium, and find that the res
ing band structure is almost identical to that of a nor
conserving nonlocal pseudopotential. This nonperturba
approach should also permit the extension of our lo
pseudopotential to a broader class of materials, including
and Ge.

LATTICE DYNAMICS

To obtain phonon frequencies for cubic crystals, we u
the diagonal form11 of the dynamical matrix for phonon
wave vectorsq pointing in the three high-symmetry direc
tions:

v2~q,ê!5vd
2~q,ê!2ve

2~q,ê!, ~2!

where

vd
2~q,ê!5vp

2F ~ ê•q!2

q2
1 (

GÞ0
S @ ê•~q1G!#2

~q1G!2
e2~q1G!2/4h

2
@ ê•G#2

G2 e2G2/4hD G , ~3!

ve
2~q,ê!5vp

2F ~ ê•q!2

q2
F~q!1 (

GÞ0
S @ ê•~q1G!#2

~q1G!2
F~q1G!

2
@ ê•G#2

G2 F~G! D G , ~4!

F~Q!5
2x0~Q!

~kF /p
2!

w~Q!

~kF
2/3!e~Q!

w~Q!

4pz/V0Q
2 , ~5!
l-
d

l

-
a,
r-
nts

e

al
r.
l-
g
-

r
i-
t-
n-

t-

-
lt-
-
e
l
Si

e

and

vp
254pz2/~V0M !, ~6!

wherevp is the plasma frequency,V05z4pr s
3/3 is the equi-

librium volume per ion, andM is the atomic mass. The po
larization is ê andG represents a reciprocal-lattice vecto
Analytic expressions for the noninteracting linear-respo
functionx0(Q), the dielectric functione(Q), and the Fourier
transform of the pseudopotentialw(Q), can be found in Ref.
4. The convergence parameterh→` is defined below.

The interpretation of Eq.~2! is straightforward. The first
term,vd

2 , accounts for the motion of positive point ions em
bedded in a rigid, uniform negative background. The n
term,ve

2 , accounts for electrons which are no longer rig
screening the effects of the moving ions. Reasonable res
for vd

2 are impossible to obtain directly since the singular
of the Coulomb potential prevents the convergence of su
over reciprocal-lattice vectors. The solution1 is to multiply
each summation by the decaying exponential shown in
~3!, sometimes called a Gaussian compensating cap on
ion, in order to make the series converge. The parameter
controls convergence ish, and we let 1/h go to zero at the
end.

We studied each of the metals in both the body-center
cubic ~bcc! and face-centered-cubic~fcc! crystal structures,
obtaining phonon frequencies for all 32 cases. In Table
calculated phonon frequencies on the Brillouin-zone bou
ary are compared to experiment, where available, with
root-mean-square~RMS! relative error of 19%. We find tha
our local pseudopotential yields comparable accuracy to
nonlocal one of Moriarty8 ~also applied to second-order!, for
which the RMS relative error is 21%. Calculated frequenc
for Li, Al, and Pb are too high, and for Li we do not achiev
the crossover of the transverse (T) and longitudinal (L)
branches in the@100# direction, an effect discussed by Senet
al.17 The alkali metals, excluding Li, show excellent agre
ment with experiment.

ELASTIC MODULI AND SOFT MODES

Cubic crystals have three independent elas
constants18,19 (C11, C12, andC44); they determine the bulk
modulus or incompressibility under hydrostatic pressure

B5~C1112C12!/3, ~7!

as well as the two shear moduli for volume-conserving p
cesses,

C85~C112C12!/2, ~8!

and C44, which measure rigidity against tetragonal a
angle-bending distortions of the unit cube, respectively. T
Voigt or directionally averaged shear modulus16

m5~2C813C44!/5 ~9!

is alsomp , the single shear modulus of a polycrystallin
sample, provided18 that the cubic single crystal is fairly iso
tropic (C8'm). Similar formulas for hexagonal close
packed crystals are Eq.~3.6! of Ref. 20 and Eq.~22! of Ref.
16.
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TABLE I. Calculated phonon frequencies~THz! on the Brillouin-zone boundary. Experimental values a
found in Ref. 8, except Cs~Ref. 53!, Ba ~Ref. 54!, Ca ~Ref. 55!, and Sr~Ref. 56!.

Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt.
bcc L@100# L@110# T1@110# T2@110#

Li 9.09 8.82 10.34 9.00 2.10 1.90 6.19 5.70
Na 3.63 3.58 4.06 3.82 0.84 0.93 2.51 2.56
K 2.15 2.21 2.42 2.40 0.52 0.55 1.46 1.50
Rb 1.30 1.39 1.45 1.50 0.31 0.34 0.89 0.96
Cs 0.93 0.90 1.04 1.07 0.23 0.22 0.64 0.58
Ba 2.04 2.15 2.27 2.30 0.13 0.75 1.49 1.53

fcc L@100# T@100# L@111# T@111#

Be 22.15 14.25 22.83 9.38
Mg 8.24 5.53 8.34 3.62
Ca 5.10 4.52 3.46 3.63 5.15 4.61 2.24 2.36
Sr 3.05 3.20 2.07 2.20 3.07 3.00 1.34 1.40
Al 11.28 9.67 6.81 5.81 11.59 9.64 4.59 4.18
Ga 4.38 2.63 4.57 1.72
In 3.30 2.03 3.42 1.36
Tl 2.05 1.27 2.13 0.82
Sn 3.52 2.16 3.77 1.39
Pb 2.40 1.86 1.48 0.89 2.52 2.19 0.93 0.89
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In a polycrystalline~macroscopically isotropic! sample,
Young’s ~stretch! modulusY and Poisson’s~strain! ratio s
are21

Y5
9B

113B/mp
, ~10!

s5
1

2S 3Bmp
22D Y S 3Bmp

11D . ~11!

The fractional volume change upon stretching
dV/V5(122s)dl /l , wheredl is the increase in length
l . Two interesting limits are the isotropic Cauchy so
(mp /B53/5 whenceY53B/2 ands51/4) and the liquid
(mp /B50 whenceY50 ands51/2). Of course the Cauch
relationC445C12 is true only for a model of pair potential
in equilibrium, not for real metals.22

The elastic constants can be found from the phonon
quenciesv(q) and their sound velocities23 ]v/]q by the
q→0 method24 of long waves~LW!. The bulk modulus de-
termined in this way from Eq.~7!, BLW , is in principle
equivalent to that found by the method of homogeneous
formation ~HD!,

B5BHD5V~]2E/]V2!N , ~12!

whereE is the total energy andV is the volume of the crys-
tal. However, the numerical resultsBLW andBHD differ25–27

when all expressions are truncated at second order in
electron-ion interaction;BHD is more realistic because it in
cludes a change in the dielectric function due to a chang
the volume per ion,17 which is missing fromBLW .

Using our local pseudopotential, we evaluatedBLW ,
BHD , and an independent expression25,28,29 for their differ-
enceD. Table II compares these results. We indeed fi
-

e-

he

in

d

D'(BHD2BLW), except in some of the higher-valence me
als for which our LW result is probably somewhat in err
due to the delicate cancellation between ionic and elec
contributions to the phonon frequencies. AddingD to BLW

also brings the calculated LW bulk modulus much closer
experiment, with a root-mean-square relative error of o
11%. Jones27 argued thatD/(BLW1D)should not be large
for the alkalis ~we find it is roughly 30%!, but might be
significant for the polyvalents~where we find that it varies
from 2% for Ga to 107% for Be!.

As shown in Table II, the bulk modulus is insensitive
the difference between the bcc and fcc structures. This re
is not unexpected, since Wigner and Seitz30,31 successfully
calculated bulk moduli from a model in which the polyhedr
Wigner-Seitz cell was replaced with a sphere of the sa
volume. Table II also shows our calculated long-wave sh
moduli C8 and m, which require no correction since the
describe volume-conserving distortions. As anticipated
Ling and Gelatt,16 m turns out to be relatively insensitive t
the difference between bcc and fcc structures; however,C8 is
quite sensitive to crystal structure. In view of the substan
differences betweenC8 andm, with C8!m, we have tried to
report only single-crystal~and not polycrystalline! experi-
mental values for comparison with the results of our cal
lations.

Our resultC8,0 means that the cubic structure is u
stable against tetragonal distortion, under which bcc can
transformed continuously to fcc.32,33We find this instability
in the bcc structure of all our metals withz>2, consistent
with the finding of Fiolhaiset al.4 that fcc has a lower cal-
culated total energy than bcc for these metals. Additiona
our C8,0 result is always associated with long-waveleng
phonon soft modes,8 which for bcc occur in theT1@110#
branch. For Ca, Sr, and Ba we also findC8,0 for the fcc
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TABLE II. The bulk modulus,B(5BLW1D), and the shear modulim andC8; values (1010 dyn/cm2)
have been calculated for bcc and fcc crystal structures. Experimental numbers are for the observed st
which are fcc or bcc as shown in the first line of each metal, except for Be~hcp!, Mg ~hcp!, In ~tetragonal for
B, hcp form), Tl ~hcp! and Sn~tetragonal forB). All experimental numbers are taken from Ref. 57 unle
noted. Experimental numbers in parentheses indicate polycrystalline data taken from Ref. 21; exper
numbers for Ca, Sr, and Ba are from Refs. 55, 56, and 54, respectively.

B m C8
D BHD2BLW Theor. Expt. Theor. Expt. Theor. Expt.

Li bcc -8.3 -8.2 13.8 13.3 8.1 6.9 1.5 1.2
fcc -8.3 -8.3 14.0 8.1 1.7

Na bcc 2.3 -2.2 7.0 7.3 3.7 3.7 0.6 0.7
fcc -2.2 -2.3 7.1 3.6 0.8

K bcc -1.1 -1.1 3.4 3.7 1.7 1.9 0.3 0.4
fcc -1.1 -1.1 3.4 1.7 0.3

Rb bcc -0.7 -0.7 2.6 3.1 1.3 1.4 0.2 0.3
fcc -0.7 -0.7 2.6 1.3 0.2

Cs bcc -0.5 -0.5 2.0 2.3 1.0 1.0 0.2 0.2
fcc -0.5 -0.5 2.0 0.9 0.2

Ba bcc -3.1 -3.1 10.4 9.4 5.5 7.8 -0.1 4.2
fcc -1.9 -2.1 11.0 4.6 -0.6

Be fcc -100.1 -103.1 93.5 115.6 52.3 153.1 4.6
bcc -104.1 -104.3 84.9 55.9 -10.2

Mg fcc -11.1 -11.9 32.7 36.9 15.3 19.4 0.6
bcc -13.4 -13.5 30.5 17.1 -1.7

Ca fcc -4.1 -4.5 17.0 21.4 7.5 11.7 -1.5 4.8
bcc -6.5 -6.5 15.9 9.2 -0.2

Sr fcc -2.6 -2.8 12.5 12.0 5.4 8.3 -1.1 2.7
bcc -4.3 -4.3 11.7 6.7 -0.1

Al fcc -40.1 -43.9 79.1 79.4 38.5 29.0 21.6 26.1
bcc -33.2 -34.7 79.2 33.0 -16.8

Ga fcc 1.1 -2.9 51.6 ~56.8! 13.8 ~37.4! 5.7
bcc 0.3 -1.8 51.2 13.8 -4.6

In fcc -0.6 -3.2 39.0 41.6 12.5 6.7 6.1
bcc -0.3 -1.7 38.6 11.8 -4.6

Tl fcc 4.6 2.0 33.0 38.2 8.2 7.6 3.4
bcc 3.9 2.5 32.4 8.4 -1.8

Sn fcc -1.4 -6.1 53.1 57.9 14.1 ~20.4! 4.7
bcc 0.2 -2.3 52.2 12.3 -11.5

Pb fcc 2.6 -1.6 44.7 48.8 10.8 13.7 3.4 5.1
bcc 1.7 -0.6 43.7 11.1 -3.1
o
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structure, consistent with the finding of Fiolhaiset al.4 that
the hexagonal close-packed structure~hcp! has the lowest
calculated total energy for these metals. This result is
course a failure of pseudopotential locality,8,34 since Ca and
Sr are really fcc while Ba is really bcc.

As shown in Table III, all our bcc phonon soft mode
disappear under pressure when the volumeV per ion is re-
duced far enough. This is consistent with the observatio35

that Mg transforms to the bcc structure under pressure.
Ca, Sr, and Ba, the calculated bcc soft modes disappea
der very slight compression. Recently Milstein and Rask36

have shown that the bcc structure of the alkalis can go
stable under pressure, withC8,0.

RESISTIVITY

As a more sensitive test of our density-based lo
pseudopotential, we have evaluated the electrical resistiv
f

or
n-

n-

l
es

TABLE III. Fraction of the equilibrium volume (V0) at which
the bcc phonon soft modes of theT1 @110# branch disappear.

Metal V/V0

Be 0.75
Mg 0.87
Al 0.25
Ga 0.28
In 0.35
Tl 0.41
Sn 0.06
Pb 0.09
Ca 0.97
Sr 0.98
Ba 0.97
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of the liquid metals from the Ziman formula37–39

r5
4p

zkF
3E

0

2kF dQ

Q
S~Q!F w~Q!

~4p/Q2!e~Q!G
2

. ~13!

HereS(Q) is the ion-ion structure factor, for which we us
the hard-sphere model of Ref. 38, with packing fraction 0.

Table IV compares theory and experiment38,40at the melt-
ing point, and shows the experimental density parameter s
for that temperature. When the dielectric functione(Q) is
properly treated in the local density approximati
(rLDA/LDA in Table IV!, reasonable agreement with expe
ment is found for most of the simple metals, but not for tho
in which the pseudopotential should be strongly nonlocal~Li,
Be, and the alkaline earths!. For the latter metals, the nonlo
cal pseudopotential calculation of Moriarty8 gives signifi-
cantly more realistic resistivities.

The Ziman formula, Eq.~13!, is highly sensitive41 to all of
its inputs S(Q), w(Q), and e(Q). The correct dielectric
function e(Q) is42 the same one that appears in our calcu
tion of phonon frequencies and total energies: Eq.~3.7! of
Ref. 4, which corresponds to electrons scattering off fluct
tions of the self-consistent Kohn-Sham potential in the lo
density approximation~LDA !, with the electron-density re
sponse also evaluated in LDA. The results of this treatm
are labeledrLDA/LDA in Table IV, and are virtually identica
to resistivities that we calculated with the ‘‘exact’’~beyond
LDA ! local field factor.43

TABLE IV. Liquid metal electrical resistivityr ~in mV cm! at
the melting point. The resistivityr has been calculated for the ob
served valencez and density parameterr s , using our local pseudo
potential and three different choices of dielectric function, as
scribed in the text; the most correct choice is LDA/LDA. Lackin
an experimental value for Be, we have listed the value calcula
from the nonlocal pseudopotential in Ref. 8. The atomic unit
resistivity is 21.7mV cm.

r

z rs
a Har/Har Har/LDA LDA/LDA Expt.a

Li 1 3.33 4 2 7 25
Na 1 4.05 7 2 12 10
K 1 5.01 7 1 14 13
Rb 1 5.31 8 1 15 22
Cs 1 5.83 9 0 20 36
Be 2 1.94 6 4 8 ~77!
Mg 2 2.74 10 6 15 27
Ca 2 3.40b 16 9 27 23b

Sr 2 3.70b 18 10 33 87b

Ba 2 3.83 18 9 33 134
Al 3 2.16 12 9 17 24
Ga 3 2.17 16 11 23 26
In 3 2.44 16 10 25 33
Tl 3 2.51 29 18 46 73
Sn 4 2.27 23 15 34 48
Pb 4 2.37 34 22 52 95

aReference 38.
bReference 40.
.

e

-

-
l

nt

Other choices fore(Q), corresponding to other position
ings of the local field factorGXC(Q) in Eq. ~3.7! of Ref. 4,
are sometimes encountered in the literature, but are expe
to yield less satisfactory resistivities, as shown in Table
Neglect of the local field factor, i.e., use of the Lindhard41

e(Q), corresponds to electrons scattering off the Hart
self-consistent potential, with the electron-density respo
also evaluated in the Hartree approximation, yieldi
rHar/Har. A different way39 of inserting the local field factor
corresponds to electrons scattering off the Hartree poten
with the electron-density response evaluated in LDA, yie
ing rHar/LDA . Our results of Table IV, especially those for th
large-r s metals, indicate that electrons scatter off thewhole
Kohn-Sham potential, including its exchange-correlation p
as well as its Hartree part.

BEYOND PERTURBATION THEORY:
LATTICE CONSTANT AND BAND STRUCTURE

We have seen that our density-based local pseudopo
tial, applied in second-order perturbation theory, yields a
alistic description of the phonon frequencies and elastic c
stants of most simple metals. However, as we will sh
below, this does not mean that the pseudopotential is
weak that higher-order contributions to the energy are co
pletely negligible. The correct interpretation11,44 is that these
higher-order contributions have been to some extent fol
into a low-order calculation by the perturbative method us
to fix the parameters of the pseudopotential. The same
servation presumably applies to the two-parameter lo
pseudopotential of Rasky and Milstein,45 which has been ap
plied recently36,46to calculate the pressure dependence of
elastic constants for the alkali metals.

In support of this position, Table V reports equilibrium
lattice constants for bcc Na, hcp Mg, and fcc Al. Theoretic
values were constructed by minimizing the total energies.
second order, the evanescent core pseudopotential re
duces the experimental values by construction. Howe
when these local pseudopotentials are applied nonpertu
tively, the predicted lattice constants are too large by 1.
for Na, 5.5% for Mg, and 11.0% for Al. Table V also show
that lattice constants predicted by the more realistic Ham
norm-conserving nonlocal pseudopotentials are too smal

-

d
f

TABLE V. Equilibrium lattice constants~bohr! for three simple
metals. For bcc sodium and fcc aluminium, the lattice constan
the cube side. For hcp magnesium, it is the hexagon radiusa, where
the ratioc/a is fixed at its experimental value 1.625. Each theor
ical lattice constant was found by minimizing the total energy in
nonperturbative calculation. The local pseudopotential is the
used in our perturbative calculation of phonon frequencies and e
tic constants, while the nonlocal (spd) one is Hamann’s~Ref. 48!.
Results for the locals-electron part of Hamann’s potential are als
shown.

Local Hamann Hamann
Metal ~unrevised! s spd Expt.

Na 8.11 7.42 7.50 7.98
Mg 6.38 5.94 5.90 6.05
Al 8.48 7.88 7.48 7.64
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55 15 549TESTS OF A DENSITY-BASED LOCAL . . .
6.0% for Na, 2.5% for Mg, and 2.1% for Al; this underest
mation is principally due to the tendency of the local dens
approximation to exaggerate binding. All nonperturbati
calculations were made within a plane-wave expansion,47 us-
ing a 40 Ry energy cutoff.

The two parameters of the local evanescent core pseu
potential may be revised for use in a nonperturbative cal
lation, as Nogueiraet al.6 have done for Na. The revise
potentials have a stronger and more short-ranged~harder!
core repulsion, as Fig. 1 shows.

Only in a nonperturbative approach can one calculat
meaningful Kohn-Sham band structure. Figure 2 shows
band structure calculated for bcc Na~at the experimental
lattice constant! using~a! the realistic nonlocal pseudopoten
tial of Hamann,48 ~b! our local evanescent core potential wi
revised ~nonperturbative! parameters, and~c! the free-
electron model. We find that the band structure of~b! is
remarkably like that of~a!, showing once again that a loca
pseudopotential fitted to the measured lattice constant
interstitial density is realistic.

The band structure of Fig. 2~b! is even closer to the band
structure of the local pseudopotential seen by thes electrons
in the Hamann scheme, although this potential in real sp
~Fig. 1 of Ref. 6! bears little resemblance to the local pseud
potentials in our Fig. 1. Table VI presents numerical resu
for selected energy differences.

CONCLUSIONS AND FUTURE DIRECTIONS

In order to assess the strengths and weaknesses o
density-based local pseudopotential we have calculated p
non frequencies, elastic moduli, liquid metal resistivities, a
the band structure, with results summarized in the abstr
Although the phonon frequencies and bulk moduli of Ca,
and Ba are for the most part close to experiment, the sp
ous soft modes we find in these alkaline earths show th
nonlocal pseudopotential is needed to reflect the hybrid
tion of low-lying d states. For most of the other simple me
als, we conclude that a local pseudopotential based on
interstitial and average valence electron density is a g

FIG. 1. Local evanescent core electron-ion pseudopoten
w(r ) for Na. The two parameters of this potential have been fix
perturbatively in the dashed line, and nonperturbatively in the d
ted line, to the experimental lattice constant and the all-elect
interstitial density.
y
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choice which produces solid-state results in agreement w
both experiment and nonlocal pseudopotential theory.

In all our work, we have used the local density appro
mation ~LDA ! for exchange and correlation. LDA is ver
accurate for the linear response of the density of a unifo
electron gas,43 but less accurate in higher orders of perturb
tion theory. Thus we suggest that future nonperturbative
culations be based on the generalized gradi
approximation.49,50 Such nonperturbative calculations a

ls
d
t-
n

FIG. 2. Band structure for bcc Na, calculated using~a! Ha-
mann’s nonlocal pseudopotential,~b! our local evanescent core po
tential with revised~nonperturbative! parameters, and~c! the free-
electron model. The valence band and the first ten conduction b
are displayed.
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needed for the description of open crystal structures like
of silicon or diamond.

Local pseudopotentials cannot be as realistic as nonl
ones, but still have a role to play in an age of power
computers. First, for the description of disordered conden
phases such as alloys and liquid metals, both locality
suitability to low-order perturbation theory have key comp
tational advantages. Second, the simplicity of local pseu
potentials invites the discovery or explanation of chemi
trends among thesp-bonded elements. We are current

TABLE VI. Selected energy differences for the band structu
of bcc sodium, in Ry. We compare our local evanescent c
pseudopotential~with revised or nonperturbative parameter!
against the nonlocal (spd) Hamann potential~Ref. 48! and its local
s-electron part. All-electron augmented plane-wave~APW! results
~Ref. 58! are also shown.

Local Hamann Hamann APW
Difference ~revised! (s) (spd) ~Ref. 58!

G258 2G1 1.195 1.179 1.090 1.062
N12N18 0.041 0.046 0.028 0.028
N22N1 0.571 0.559 0.515 0.504
H152H12 0.016 0.018 0.013 0.018
P12P4 0.086 0.101 0.102 0.098
s

M

,

e

o

at

al
l
d
d
-
o-
l

searching for a unified understanding of equilibrium crys
structures at normal and compressed volumes, and more
erally for a universal local pseudopotential controlled b
only two inputs, the chemical valence and the avera
valence-electron density. Third, local pseudopotentials de
quasirealistic systems on which density-functional appro
mations for the exchange-correlation energy can be te
against nearly exact calculations that often yield richer a
more precise information than experiments. For example,
static linear-response function of the uniform electron ga
known exactly at the exchange-only level,51 and almost ex-
actly when correlation is included.43 Beyond linear response
quantum Monte Carlo~QMC! simulations52 produce a nearly
exact result for systems of interacting electrons by evalua
only a representative random sampling of the wave functi
QMC typically requires a pseudopotential and works
more efficiently when that pseudopotential is local.
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