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Tests of a density-based local pseudopotential for sixteen simple metals
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A comprehensive study of the lattice dynamics, elastic moduli, and liquid metal resistivities for 16 simple
metals in the bcc and fcc crystal structures is made using a density-based local pseudopotential. The phonon
frequencies exhibit excellent agreement with both experiment and nonlocal pseudopotential theory. The bulk
modulus is evaluated by the long wave and homogeneous deformation methods, which agree after a correction
is applied to the former. Calculated bulk and Voigt shear moduli are insensitive to crystal structure, and
long-wavelength soft modes are found in certain cases. Resistivity calculations confirm that electrons scatter
off the whole Kohn-Sham potential, including its exchange-correlation part as well as its Hartree part. All of
these results are found in second-order pseudopotential perturbation theory. However, the effect of a nonper-
turbative treatment on the calculated lattice constant is not negligible, showing that higher-order contributions
have been subsumed into the pseudopotential by construction. For bcc sodium, the band structures of local and
nonlocal pseudopotentials are found to be almost iden{i§8l163-18207)01321-0

INTRODUCTION AND SUMMARY In previous work this local pseudopotential was shown to
give a good account of crystal structure, bulk binding energy,
The pseudopotential formalisht,in which a weak effec- and bulk modulus for the simple metals. Advantages of lo-
tive interaction is set up between atomic_cores and valer_lceality include computational simplicity, physical transpar-
electrons, does an unexpectedly good job of reproducingncy, and suitability for use with density-functional theory
propertles of close-packed metals in second-order pgrturb@which in principle requires a local external potentiah
tion theory? A recently developed local pseudopotential for gisadvantage is that local pseudopotentials are less
simple metalShas been constructed specifically to be used ifyansferable to nonreference environments than nonlocal
second-order ground-state energy calculations. This locgjpes.
pseudopotential, which we shall calénsity baseds tested Comprehensive unified studies of several metals with
here in a systematic study on a large class of metals. ; o
g ; ) ) pseudopotentials are surprisingly rare, even though the
e s oo e STl meals Uty use of  single simle model © e
’ nelp np P P scribe them. Rose and Shéwelineated trends in the elastic
constructions. Conventional norm-conservipgeudopoten- ) - i
ﬁonstants for both simple and transition metals, stressing the

tials are constructed for a free-atom reference state, in whicIm ftan f interstitial density. Moriafhcalculated lati
the nonlocal pseudopotential(r,r’) reproduces low-lying portance ot interstitial density. Vioriartgaiculated fattice
dynamics, cohesive energies, and liquid metal resistivities

valence-electron Kohn-Sham orbitals(r) outside the core. . local q ol O K i I
Our density-based pseudopotential is constructed for a cryé’-s'ng a nonlocal pseu opotential. Our wor enta_u S not_on_y
talline reference state, in which the local pseudopotentiail® lattice dynamics, but also the elastic moduli and liquid

w(r) reproduces key features of the electron dengits) metal resistivities for 16 metald.i, Na, K, Rb, Cs, Ba, Be,

outside the core. More preciselfin atomic units with Mg, Ca, Sr, Al, Ga, In, Tl, Sn, Pb _
e?=f=m=1) The first root of our interest in the calculation of phonon

frequencies and elastic constants goes back to the work of
—z Rasolt and Taylof:!° They constructed nonlocal pseudopo-
w(r)=——+wr(a,Rir), (1) tentials which, in first-order perturbation theory, reproduce
the electron density around an ion in a uniform electron gas.
wherez is the valence. The core repulsiary depends ana- Perdew and VosKd showed that the same procedure could
lytically uponr, the distance from the electron to the centerbe applied to construct local pseudopotentials, which yield
of the ion, and decays like "'R asr—. The two param- realistic phonon frequencies to second order for Li, where
etersa and R reproduce the all-electron interstitial density the pseudopotential is expected to be both nonlocal and
and the observed equilibrium lattice constant, where the derstrong; similar calculations have been made for (Refs.
sity p(r) is computed to first order and the total enefjyo ~ 12—14 and Mg® In our present study, although we no
second order in the pseudopotential, using the local densitpnger invoke an ion in an electron gas, we still follow the
approximation(LDA) for exchange and correlation. The pa- primary directive of this earlier work: make the density out-
rameterR turns out to be essentially the decay length of theside the core correct to first-order in order to make the total
highest-occupied core orbital sfor p symmetry. energy correct in a second-order calculation.
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The second root of our interest lies in the systematic caland
culations of simple-metal elastic constants by Ling and ) )
Gelatt!® They used a local pseudopotential constructed from wp=41z(QM), (6)

the bulk stability condition alone to identify chemical trends . : .
in the bulk and shear moduli for 19 metals. The localWNeréep is the plasma frequencg)o=z4mrJ/3 is the equi-

pseudopotential we use here is more realflstidts descrip- librium vqurpe per ion, and is the atomic mass. The po-
tion of band-structurgésecond-ordéreffects, but still recog- larization ise and G represents a reciprocal-lattice vector.
nizes the key role played by the bulk equilibrium or zero-Analytic expressions for the noninteracting linear-response
pressure condition. Except for the metals Be, Ca, Sr, and Baunction x(Q), the dielectric functiore(Q), and the Fourier
where pseudopotential nonlocality can be especially importransform of the pseudopotentia(Q), can be found in Ref.
tant, our calculated phonon frequencies and elastic constards The convergence parametgr« is defined below.
are in satisfactory agreement with experiment. The interpretation of Eq(2) is straightforward. The first
While phonon frequencies and elastic constants can b@rm,wﬁ, accounts for the motion of positive point ions em-
related directly to the total energy, the electrical resistivitybedded in a rigid, uniform negative background. The next
cannot. Thus, we do not expect and do not find that our localerm, »2, accounts for electrons which are no longer rigid,
pseudopotential is as accurate for the latter as for the formescreening the effects of the moving ions. Reasonable results
Nevertheless, our calculated resistivities are sufficiently realfor wﬁ are impossible to obtain directly since the singularity
istic to discriminate between proper and improper screeningf the Coulomb potential prevents the convergence of sums
of the electron-ion interaction, as we show later in this ar-over reciprocal-lattice vectors. The solutlois to multiply
ticle. each summation by the decaying exponential shown in Eq.
Since our local pseudopotential is constructed in and f0(3), sometimes called a Gaussian compensating cap on the
second-order perturbation theory, it is not necessarily optiion, in order to make the series converge. The parameter that
mal for a nonperturbative treatment, as we show by calculatcontrols convergence i, and we let 14 go to zero at the
ing lattice constants both ways with the same pseudopoterend.
tial. However, its two principles of constructigmatching to We studied each of the metals in both the body-centered-
both the all-electron interstitial density and the observed latcybic (bco and face-centered-cubiécc) crystal structures,
tice constantcan also be used to find new parametrand  obtaining phonon frequencies for all 32 cases. In Table |,
Rin Eq. (1) that are appropriate for a nonperturbative treat-calculated phonon frequencies on the Brillouin-zone bound-
ment. We have done this for sodium, and find that the resultary are compared to experiment, where available, with a
ing band structure is almost identical to that of a norm-root-mean-squaréRMS) relative error of 19%. We find that
conserving nonlocal pseudopotential. This nonperturbativeur local pseudopotential yields comparable accuracy to the
approach should also permit the extension of our locahonlocal one of Moriarty (also applied to second-ordefor
pseudopotential to a broader class of materials, including Sihich the RMS relative error is 21%. Calculated frequencies
and Ge. for Li, Al, and Pb are too high, and for Li we do not achieve
the crossover of the transvers&)(and longitudinal [)
LATTICE DYNAMICS branches in th€100] direction, an effect discussed by Sen
al.l’ The alkali metals, excluding Li, show excellent agree-

To obtain phonon frequencies for cubic crystals, we us§nant with experiment.

the diagonal forrt of the dynamical matrix for phonon

wave vectorsg pointing in the three high-symmetry direc- ELASTIC MODULI AND SOFT MODES

tions:
, .~ .~ Cubic crystals have three independent elastic
(0, €) = 0y(q,€) — we(a,€), (20 constant®'(C,;, Cyp, andC,y); they determine the bulk
modulus or incompressibility under hydrostatic pressure
where
R - B=(C11+2C4»)/3, (7
2~ (€0 [e(a+O 1 162 . _
wy(d, €)= —qr+G§0 We as well as the two shear moduli for volume-conserving pro-
cesses,
A.G 2 ’
_[er] 662,4,7)} 3) C'=(Cy;—Cyy)/2, (8)
and C,4, which measure rigidity against tetragonal and
(e q)2 [ (q+G)]? angle-bending distortions of the unit cube, respectively. The
wi(q,%)=wﬁ e ‘I’(Q)JFG;O ((q+—G)2q)(q+ G) Voigt or directionally averaged shear moddfus
u=(2C"+3C44)/5 9)

[e-G]°
——gz 2@, (4)  is alsou,, the single shear modulus of a polycrystalline
sample, providel that the cubic single crystal is fairly iso-

tropic (C'~w). Similar formulas for hexagonal close-

_TXxQ W@ wQ ked | 6 of Ref. 20 and Eq(22) of Ref
q)(Q)_(kF/wz) (23 e(Q) An7 0,02 (5) Egc ed crystals are E(3.6) of Ref. 20 and Eq(22) of Ref.
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TABLE I. Calculated phonon frequenci€EHz) on the Brillouin-zone boundary. Experimental values are
found in Ref. 8, except C&Ref. 53, Ba (Ref. 59, Ca(Ref. 55, and Sr(Ref. 56.

Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt.
bce L[100] L[110] T1[110] T2[110]
Li 9.09 8.82 10.34 9.00 2.10 1.90 6.19 5.70
Na 3.63 3.58 4.06 3.82 0.84 0.93 251 2.56
K 2.15 2.21 2.42 2.40 0.52 0.55 1.46 1.50
Rb 1.30 1.39 1.45 1.50 0.31 0.34 0.89 0.96
Cs 0.93 0.90 1.04 1.07 0.23 0.22 0.64 0.58
Ba 2.04 2.15 2.27 2.30 0.13 0.75 1.49 1.53
fcc L[100] T[100] L[111] T[117]
Be 22.15 14.25 22.83 9.38
Mg 8.24 5.53 8.34 3.62
Ca 5.10 4,52 3.46 3.63 5.15 4.61 2.24 2.36
Sr 3.05 3.20 2.07 2.20 3.07 3.00 1.34 1.40
Al 11.28 9.67 6.81 5.81 11.59 9.64 4.59 4.18
Ga 4.38 2.63 4.57 1.72
In 3.30 2.03 3.42 1.36
Tl 2.05 1.27 2.13 0.82
Sn 3.52 2.16 3.77 1.39
Pb 2.40 1.86 1.48 0.89 2.52 2.19 0.93 0.89

In a polycrystalline(macroscopically isotropjcsample,

Yc(;ung's (stretch modulusY and Poisson’sstrain ratio o
1

A~(Buyp—BLw), except in some of the higher-valence met-
als for which our LW result is probably somewhat in error

ar due to the delicate cancellation between ionic and electron
9B contributions to the phonon frequencies. Addigto B,y

Y= (100  also brings the calculated LW bulk modulus much closer to
1+3B/up experiment, with a root-mean-square relative error of only

11%. Jones argued thatA/(B,y + A)should not be large

o }( 3B _2) / 3B (11 for the alkalis(we find it is roughly 30% but might be

2\ up Mp ' significant for the polyvalentéwhere we find that it varies

. . . from 2% for Ga to 107% for Be
The fractional volume change upon stretching

SNVIN=(1-20)8/1/, where §/ is the increase in length
/. Two interesting limits are the isotropic Cauchy solid

(up/B=3/5 whenceY=3B/2 and o=1/4) and the liquid

(up/B=0 whenceY =0 ando = 1/2). Of course the Cauchy
relationC,,=C;5 is true only for a model of pair potentials

in equilibrium, not for real metal&

The elastic constants can be found from the phonon fre-

quenciesw(q) and their sound velocitié$ dw/dq by the
q—0 method* of long waves(LW). The bulk modulus de-
termined in this way from Eq(7), B,y is in principle

equivalent to that found by the method of homogeneous d

formation (HD),
B=Byp=V(d°E/V?)y, (12)

whereE is the total energy an¥l is the volume of the crys-
tal. However, the numerical resulB y andBp differ?®=2’

As shown in Table Il, the bulk modulus is insensitive to
the difference between the bcc and fcc structures. This result
is not unexpected, since Wigner and S&it? successfully
calculated bulk moduli from a model in which the polyhedral
Wigner-Seitz cell was replaced with a sphere of the same
volume. Table Il also shows our calculated long-wave shear
moduli C" and u, which require no correction since they
describe volume-conserving distortions. As anticipated by
Ling and Gelatt® 4 turns out to be relatively insensitive to
the difference between bcc and fcc structures; howeévers
equite sensitive to crystal structure. In view of the substantial
differences betwee@’ andu, with C' < u, we have tried to
report only single-crystaland not polycrystalling experi-
mental values for comparison with the results of our calcu-
lations.

Our resultC’' <0 means that the cubic structure is un-
stable against tetragonal distortion, under which bcc can be

when all expressions are truncated at second order in theansformed continuously to f¢é:33We find this instability
electron-ion interactionBy is more realistic because it in- in the bcc structure of all our metals witt®=2, consistent
cludes a change in the dielectric function due to a change iwith the finding of Fiolhaiset al* that fcc has a lower cal-

the volume per ioft! which is missing fromB,, .
Using our local pseudopotential, we evaluatBg,,,
Bup. and an independent expressioff2°for their differ-

culated total energy than bcc for these metals. Additionally,
our C’' <0 result is always associated with long-wavelength
phonon soft mode$,which for bcc occur in thelT1[110]

enceA. Table Il compares these results. We indeed findoranch. For Ca, Sr, and Ba we also fi@d<O0 for the fcc
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TABLE II. The bulk modulus,B(=By+A), and the shear moduli andC’; values (18° dyn/cn¥)
have been calculated for bcc and fcc crystal structures. Experimental numbers are for the observed structures,
which are fcc or bee as shown in the first line of each metal, except fgh&#, Mg (hcp), In (tetragonal for
B, hcp for i), Tl (hcp and Sn(tetragonal forB). All experimental numbers are taken from Ref. 57 unless
noted. Experimental numbers in parentheses indicate polycrystalline data taken from Ref. 21; experimental
numbers for Ca, Sr, and Ba are from Refs. 55, 56, and 54, respectively.

B o C’
A Bup—Buw  Theor. Expt. Theor. Expt. Theor. Expt.
Li bce -8.3 -8.2 13.8 133 8.1 6.9 15 1.2
fcc -8.3 -8.3 14.0 8.1 17
Na bcc 2.3 -2.2 7.0 7.3 3.7 3.7 0.6 0.7
fcc -2.2 -2.3 7.1 3.6 0.8
K bcc -1.1 1.1 3.4 3.7 1.7 1.9 0.3 0.4
fcc -1.1 -1.1 3.4 1.7 0.3
Rb bce -0.7 -0.7 2.6 3.1 13 14 0.2 0.3
fcc -0.7 -0.7 2.6 13 0.2
Cs bcc -0.5 -0.5 2.0 2.3 1.0 1.0 0.2 0.2
fcc -0.5 -0.5 2.0 0.9 0.2
Ba bcc -3.1 -3.1 10.4 9.4 5.5 7.8 -0.1 4.2
fcc -1.9 2.1 11.0 4.6 -0.6
Be fcc  -100.1 -103.1 93.5 115.6 52.3 153.1 4.6
bcc  -104.1 -104.3 84.9 55.9 -10.2
Mg fcc -11.1 -11.9 32.7 36.9 15.3 19.4 0.6
bce -13.4 -13.5 30.5 17.1 -1.7
Ca fcc -4.1 -4.5 17.0 21.4 7.5 117 -1.5 4.8
bce -6.5 -6.5 15.9 9.2 -0.2
Sr fcc -2.6 -2.8 12.5 12.0 5.4 8.3 -1.1 2.7
bcc -4.3 -4.3 11.7 6.7 -0.1
Al fcc -40.1 -43.9 79.1 79.4 38.5 29.0 21.6 26.1
bce -33.2 -34.7 79.2 33.0 -16.8
Ga fcc 11 -2.9 516 (56.8 13.8 (37.9 5.7
bce 0.3 -1.8 51.2 13.8 -4.6
In fcc -0.6 -3.2 39.0 41.6 125 6.7 6.1
bce -0.3 -1.7 38.6 11.8 -4.6
Tl fcc 4.6 2.0 33.0 38.2 8.2 7.6 3.4
bce 3.9 2.5 32.4 8.4 -1.8
Sn fcc -14 -6.1 53.1 57.9 141 (2049 4.7
bce 0.2 -2.3 52.2 12.3 -11.5
Pb fcc 2.6 -1.6 44.7 48.8 10.8 13.7 3.4 5.1
bce 17 -0.6 43.7 111 -3.1

structure, consistent with the finding of Fiolhaisal? that
the hexagonal close-packed structihep has the lowest
calculated total energy for these metals. This result is o
course a failure of pseudopotential locafit}; since Ca and

TABLE lll. Fraction of the equilibrium volume Q) at which
%he bcc phonon soft modes of thd [110] branch disappear.

Sr are really fcc while Ba is really bcc. Metal 2/
As shown in Table Ill, all our bcc phonon soft modes Be 0.75
disappear under pressure when the volutheer ion is re- Mg 0.87
duced far enough. This is consistent with the observation Al 0.25
that Mg transforms to the bcc structure under pressure. For Ga 0.28
Ca, Sr, and Ba, the calculated bcc soft modes disappear un- In 0.35
der very slight compression. Recently Milstein and Rd8ky Tl 0.41
have shown that the bcc structure of the alkalis can go un- Sn 0'.06
stable under pressure, wity <0. Pb 0.09
RESISTIVITY Ca 0.97

Sr 0.98

As a more sensitive test of our density-based local Ba 0.97

pseudopotential, we have evaluated the electrical resistivities
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TABLE IV. Liquid metal electrical resistivityp (in Q) cm) at TABLE V. Equilibrium lattice constantgbohr for three simple
the melting point. The resistivitp has been calculated for the ob- metals. For bcc sodium and fcc aluminium, the lattice constant is
served valence and density parameteg, using our local pseudo- the cube side. For hcp magnesium, it is the hexagon radiudere
potential and three different choices of dielectric function, as de+the ratioc/a is fixed at its experimental value 1.625. Each theoret-
scribed in the text; the most correct choice is LDA/LDA. Lacking ical lattice constant was found by minimizing the total energy in a
an experimental value for Be, we have listed the value calculatetonperturbative calculation. The local pseudopotential is the one
from the nonlocal pseudopotential in Ref. 8. The atomic unit ofused in our perturbative calculation of phonon frequencies and elas-

resistivity is 21.7u) cm. tic constants, while the nonlocasd) one is Hamann'sRef. 48.

Results for the locas-electron part of Hamann's potential are also
P shown.
z r  Har/Har Har/LDA LDA/LDA Expt? Local Hamann Hamann

Li 1 3.33 4 2 7 o5 Metal (unrevised s spd Expt.

Na 1 405 ! 2 12 10 Na 8.11 7.42 7.50 7.98

K1 501 ! L 14 13 Mg 6.38 5.94 5.90 6.05

Rb 1 531 8 1 15 22 Al 8.48 7.88 7.48 7.64

Cs 1 5.83 9 0 20 36

Be 2 1.94 6 4 8 (77)

Mg 2 2.74 10 6 15 27 Other choices fok(Q), corresponding to other position-

Ca 2 3.48 16 9 27 28 ings of the local field factoGy-(Q) in Eq. (3.7) of Ref. 4,

Sr 2 3.78 18 10 33 8 are sometimes encountered in the literature, but are expected

Ba 2 3.83 18 9 33 134  to yield less satisfactory resistivities, as shown in Table IV.

Al 3 2.16 12 9 17 24 Neglect of the local field factor, i.e., use of the LindHrd

Ga 3 2.17 16 11 23 26  €(Q), corresponds to electrons scattering off the Hartree

In 3 2.44 16 10 25 33 self-consistent potential, with the electron-density response

Tl 3 2.51 29 18 46 73 also evaluated in the Hartree approximation, yielding

sn 4 297 23 15 34 48  Puanmar A different way® of inserting the local field factor

Pb 4 2.37 34 22 52 g5  corresponds to electrons scattering off the Hartree potential,
with the electron-density response evaluated in LDA, yield-

®Reference 38. iNg prarpa - Our results of Table IV, especially those for the

PReference 40. larger s metals, indicate that electrons scatter off thieole
Kohn-Sham potential, including its exchange-correlation part

of the liquid metals from the Ziman formulia® as well as its Hartree part.

A7 [2ke dQ w(Q) 2 BEYOND PERTURBATION THEORY:
=28l 03V Gmedeag) LATTICE CONSTANT AND BAND STRUCTURE

We have seen that our density-based local pseudopoten-
Here S(Q) is the ion-ion structure factor, for which we use tial, applied in second-order perturbation theory, yields a re-
the hard-sphere model of Ref. 38, with packing fraction 0.45alistic description of the phonon frequencies and elastic con-
Table IV compares theory and experim@dfat the melt-  stants of most simple metals. However, as we will show
ing point, and shows the experimental density parameter below, this does not mean that the pseudopotential is so
for that temperature. When the dielectric functiefQ) is  weak that higher-order contributions to the energy are com-
properly treated in the local density approximation pletely negligible. The correct interpretatidri*is that these
(pLpanpa I Table 1V), reasonable agreement with experi- higher-order contributions have been to some extent folded
ment is found for most of the simple metals, but not for thosento a low-order calculation by the perturbative method used
in which the pseudopotential should be strongly nonldcal  to fix the parameters of the pseudopotential. The same ob-
Be, and the alkaline earthd~or the latter metals, the nonlo- servation presumably applies to the two-parameter local
cal pseudopotential calculation of Moridftgives signifi-  pseudopotential of Rasky and Milstéihwhich has been ap-

cantly more realistic resistivities. plied recently®“®to calculate the pressure dependence of the
The Ziman formula, Eq(13), is highly sensitiv&' to all of  elastic constants for the alkali metals.
its inputs S(Q), w(Q), and €(Q). The correct dielectric In support of this position, Table V reports equilibrium

function e(Q) is*? the same one that appears in our calculadattice constants for bcc Na, hcp Mg, and fcc Al. Theoretical
tion of phonon frequencies and total energies: 847) of  values were constructed by minimizing the total energies. To
Ref. 4, which corresponds to electrons scattering off fluctuasecond order, the evanescent core pseudopotential repro-
tions of the self-consistent Kohn-Sham potential in the locaduces the experimental values by construction. However,
density approximatiofLDA), with the electron-density re- when these local pseudopotentials are applied nonperturba-
sponse also evaluated in LDA. The results of this treatmentively, the predicted lattice constants are too large by 1.6%
are labeletb, parpa in Table IV, and are virtually identical for Na, 5.5% for Mg, and 11.0% for Al. Table V also shows

to resistivities that we calculated with the “exactbeyond that lattice constants predicted by the more realistic Hamann
LDA) local field factor*® norm-conserving nonlocal pseudopotentials are too small by
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FIG. 1. Local evanescent core electron-ion pseudopotentials e, AR
w(r) for Na. The two parameters of this potential have been fixed ] ";ifimmm;* _
perturbatively in the dashed line, and nonperturbatively in the dot- 15+ ﬁ.zz“ ::i i 3i::¢ e ;;;;
ted line, to the experimental lattice constant and the all-electron | o e RSN ey
interstitial density. RIS A IS T . R
RRTHEN Rt
6.0% for Na, 2.5% for Mg, and 2.1% for Al; this underesti- B {7l oot Ty S
mation is principally due to the tendency of the local density = , | N, RESSCR
approximation to exaggerate binding. All nonperturbative BRRRRRSEE I i ERa
calculations were made within a plane-wave expan$iars- ] N, ‘w;::”‘”: Hu‘*iiz;::::::::::;f
ing a 40 Ry energy cutoff. 00 RS VAR !
The two parameters of the local evanescent core pseudc Lo '
potential may be revised for use in a nonperturbative calcu- h
lation, as Nogueiraet al® have done for Na. The revised (b)'o’Sr N H P
potentials have a stronger and more short-rattgadej
core repulsion, as Fig. 1 shows. 0 G
Only in a nonperturbative approach can one calculate ¢ 1 ,3’5“‘
meaningful Kohn-Sham band structure. Figure 2 shows the . a S
band structure calculated for bcc Nat the experimental T U
lattice constantusing(a) the realistic nonlocal pseudopoten- T T
tial of Hamanrf® (b) our local evanescent core potential with 104 ™. seeee [ T 7
revised (nonperturbative parameters, andc) the free- SO
. . & .
electron model. We find that the band structure(lof is . s R .
remarkably like that ofa), showing once again that a local '
pseudopotential fitted to the measured lattice constant an T
interstitial density is realistic. 00 Frerererrrr ™" 4
The band structure of Fig.(B) is even closer to the band
structure of the local pseudopotential seen bystedectrons

in the Hamann scheme, although this potential in real spact (C)'°'5 T N H P
(Fig. 1 of Ref. § bears little resemblance to the local pseudo-
potentials in our Fig. 1. Table VI presents numerical results F|G. 2. Band structure for bcc Na, calculated usitay Ha-

for selected energy differences. mann’s nonlocal pseudopotentiéh) our local evanescent core po-
tential with revisednonperturbative parameters, an¢t) the free-
CONCLUSIONS AND FUTURE DIRECTIONS electron model. The valence band and the first ten conduction bands

are displayed.
In order to assess the strengths and weaknesses of our

density-based local pseudopotential we have calculated pho- . ) ) . ,
non frequencies, elastic moduli, liquid metal resistivities, and?0ice which produces solid-state results in agreement with
the band structure, with results summarized in the abstracPOth experiment and nonlocal pseudopotential theory.
Although the phonon frequencies and bulk moduli of Ca, Sr, In all our work, we have used the local density approxi-
and Ba are for the most part close to experiment, the spurination (LDA) for exchange and correlation. LDA is very
ous soft modes we find in these alkaline earths show that accurate for the linear response of the density of a uniform
nonlocal pseudopotential is needed to reflect the hybridizaglectron ga$? but less accurate in higher orders of perturba-
tion of low-lying d states. For most of the other simple met- tion theory. Thus we suggest that future nonperturbative cal-
als, we conclude that a local pseudopotential based on theulations be based on the generalized gradient
interstitial and average valence electron density is a goodpproximatiorf®® Such nonperturbative calculations are
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TABLE VI. Selected energy differences for the band structuresearching for a unified understanding of equilibrium crystal
of bcec sodium, in Ry. We compare our local evanescent coretructures at normal and compressed volumes, and more gen-
pseudopotential (with revised or nonperturbative paramelers erally for a universal local pseudopotential controlled by
against the nonlocak({d) Hamann potentialRef. 48 and its local only two inputs, the chemical valence and the average
s-electron part. All-electron augmented plane-w&®W) results  yalence-electron density. Third, local pseudopotentials define

(Ref. 58 are also shown. quasirealistic systems on which density-functional approxi-
mations for the exchange-correlation energy can be tested

. Local Hamann  Hamann APW  against nearly exact calculations that often yield richer and
Difference _ (revised (s) (spd  (Ref. 58 more precise information than experiments. For example, the
4T, 1.195 1.179 1.090 1.062 static linear-response function of the uniform electron gas is
N,— N 0.041 0.046 0.028 0.028 known exactly at the exchange-only Ie%le_md almost ex-
N,— N, 0.571 0.559 0.515 0.504 actly when correlation is mclqde‘ﬁ.Bgyogd linear response,
Hiys—Hyo 0.016 0.018 0.013 0.018 gquantum Monte CarIQQMC? S|mulqt|on§ produce a nearIy.
P, P, 0.086 0101 0102 0.098 exact result for systems of interacting electrons by evaluating

only a representative random sampling of the wave function.
QMC typically requires a pseudopotential and works far
more efficiently when that pseudopotential is local.
needed for the description of open crystal structures like that
of silicon or diamond. ' o ACKNOWLEDGMENTS
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