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Theory of screening of the phonon-modulated spin-orbit interaction in metals
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We investigate the long-wavelength limit of the phonon-modulated spin-orbit interaction in the self-
consistent Hartree approximation. Within the jellium model we show that the screening is provided by the
spin-other-orbits term in the electron-electron interaction. In the case of a discrete-lattice model, the modifi-
cations in the electronic wave functions induced by the spin-orbit coupling of the electrons to the ions give rise
to spin-mixed matrix elements of the Coulomb electron-electron interaction. This is able to provide a further
screening mechanism to the phonon-modulated spin-orbit interaction. Our self-consistent treatment of the
screening justifiesa posteriori the results of previous theories based on an already screened lattice potential.
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I. INTRODUCTION

The spin-orbit coupling of the conduction electrons to t
lattice potential can be modulated by lattice vibrations. T
leads to an interaction in which the spin of the electron
coupled to the quantum of the lattice vibrations~phonon!.
This phonon-modulated spin-orbit interaction~PMSOI! in-
fluences the lifetime of the electron-spin orientation, and
consequences for spin-polarized transport; a field which
recently gained great interest because of possible de
applications.1

The important role of spin-orbit interaction in electro
phonon scattering in metals was pointed out in 1953
Overhauser,2 who made use of a simple jellium model in h
calculations. A new approach to this problem was introdu
one year later by Elliott,3 who used a more realistic set o
electronic wave functions than simple plane waves. B
procedures, however, showed a strong model depende
leading, for example, to different temperature dependen
of the calculated spin-relaxation times of the electrons.
1963, Yafet4 was able to reconcile the previous approach
in a single theory by making use of simple theorems on
spin symmetry of the Hamiltonian. The main consequence
his theory is that the matrix element of the spin-reversal
teraction due to lattice vibrations,M k↑,k2q↓

l , is proportional
to q2 for small momentum transferq. This determines the
low-temperature behavior of the inverse of the longitudi
electron spin-relaxation timeT1

21, which results to be pro-
portional toT5 for temperatures well below the Debye tem
peratureTD . On the other hand forT@TD the details of the
matrix element are not essential, andT1

21}T. Therefore, the
calculated temperature dependence ofT1

21 is very similar to
the one observed in the resistivityr. This led to the estab
lishment of a simple relation known as the Elliott-Yaf
formula:3,4 T1

21}(Dg)2r, whereDg is the shift of theg
factor due to the spin-orbit coupling of the electrons to
lattice potential.

Experimentally, at low temperatures, aT5 dependence o
550163-1829/97/55~23!/15523~8!/$10.00
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T1
21 is observed in many metals by making use of differe

techniques,5 and the behavior predicted by the Elliott-Yaf
formula was confirmed for a wide range of temperatures.
the other hand, all the theoretical results were based on
assumption of ana priori screened lattice potential. Wha
remained unclear is the physical process of screening of
PMSOI and the main purpose of this paper is to clear up
point. Indeed, screening of the PMSOI should be conside
separately from the one occurring in the ordinary electr
phonon interaction~EPI!. If we start from bare EPI and
PMSOI matrix elements, then corresponding screened qu
tities are obtained by considering the response of the con
tion electrons to the lattice distortion. It is straightforward
show that, when the electron-electron interaction is giv
just by the Coulomb repulsion, the conduction electro
screen the EPI, while the PMSOI remains unscreened. T
is due to the fact that the Coulomb interaction conserves
electron-spin orientation, whereas the PMSOI is a sp
dependent interaction. However, the PMSOI is a relativis
effect, and it is plausible to search for the mechanism of
screening by considering the relativistic corrections to
electron-electron interaction. This is done in Sec. II, whe
we calculate the bare PMSOI matrix element for the jelliu
model and determine, in the Hartree approximation, the c
responding screened matrix element. In Sec. III we ext
our analysis to a more realistic model in which the latti
structure is taken into account.

II. JELLIUM MODEL

A. Hartree approximation

In the jellium model, the discrete nature of the lattice
replaced by a continuum of positive charge in which t
electrons are embedded. The infinite electrostatic poten
given by a uniform distribution of the positive charge is ca
celed by the electrostatic contribution of the electrons in
der to preserve the charge neutrality of the system. Fluc
tions of the positive charge density lead to the followi
change in the electrostatic potential:
15 523 © 1997 The American Physical Society
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dW~r !52Zce
2noE d3r 8

¹•u~r 8!

ur2r 8u
, ~1!

whereZceno is the charge density of a unit cell, andu(r ) is
the displacement vector. The spin-orbit interaction associa
with the potential~1! is given by

dWs-o~r !5
\

4m2c2
“ rdW~r !3p•s. ~2!

Herem is the mass of the electron, andc is the speed of
light. p52 i\“ and s are the electronic momentum an
spin operators, respectively. Whenu(r ) is expressed in nor
mal coordinates, Eqs.~1! and ~2! give rise to the usual bar
EPI and the bare PMSOI, respectively.

Until here, the potentials in Eqs.~1! and~2! have been the
bare ones. In order to include screening, we have to cons
also the electron-electron interaction. Therefore we introd
the following electronic Hamiltonian:

H5(
i

F pi22m1dW~r i !1dWs-o~r i !G1 1
2(
iÞ j

Vi , j
e-e . ~3!

HereVi , j
e-e is the electron-electron interaction potential. Wh

Vi , j
e-e is given just by the Coulomb repulsionVi , j

c 5e2/r i j with
r i j5ur i2r j u, then the response of the electrons to poten
~1! leads to a screened electron-jellium interaction,dŴ(r ),
and the associated EPI becomes short ranged.6 In Ref. 2, the
screened spin-orbit potential,dŴs-o(r ), was obtained by re-
placing in Eq. ~2! the baredW(r ) by the screened on
dŴ(r ).7 However, when we follow a self-consistent trea
ment of the electronic response to the perturbation~2!, we
find that the PMSOI remains unscreened. This is due to
fact that, unlikedW(r ), the spin-orbit potential~2! does not
couple to the electron density because of the presence o
spin operator. This can be readily seen when we employ
Hartree approximation. In this case, Eq.~3! reduces to the
one-electron Hamiltonian

HH5
p2

2m
1dW~r !1dWs-o~r !1VH

c ~r !, ~4!

whereVH
c (r ) is the Coulomb potential in the Hartree a

proximation,

VH
c ~r !5e2E d3r 8

r~r 8!

ur2r 8u
. ~5!

In the above equation,r(r )5(k,s
~occ.!uck,s(r )u2 is the elec-

tronic density~the summation is performed over the occ
pied states!, andck,s(r ) is the single-electron eigenfunctio
solution of Eq.~4!.

We follow the common procedure6 in evaluating the re-
sponse of the electrons to the perturbation potentialsdW(r )
and dWs-o(r ). For a homogeneous positive charge dens
the potentialsdW(r ) and dWs-o(r ) are zero and the elec
tronic density isr0(r )5(k,s

~occ.!ufk,s(r )u2, wherefk,s(r ) is a
plane wave with eigenvaluesek . In the presence of the per
turbation potentialsdW(r ) anddWs-o(r ) the electronic wave
ed

er
e

l

e

he
e

,

functions are modified asck,s(r )5fk,s(r )1dfk,s(r ) and
consequently the electronic density takes the fo
r(r )5r0(r )1dr(r ), where

dr~r !5 (
k,s

~occ.!

@dfk,s* ~r !fk,s~r !1fk,s* ~r !dfk,s~r !#. ~6!

The Hamiltonian~4! can therefore be written as

HH5
p2

2m
1dW~r !1dWs-o~r !1VH0

c ~r !1dVH
c ~r !. ~7!

HereVH0
c (r ) is the potential given by Eq.~5!, wherer(r )

has to be replaced by the unperturbed electronic den
r0(r ), anddVH

c (r ) is the following potential:

dVH
c ~r !5e2E d3r 8

dr~r 8!

ur2r 8u
. ~8!

Now, following Ref. 6, the effective electron-jellium poten
tial dŴ(r ) is given by

dŴ~r !5dW~r !1dVH
c ~r !5dW~r !1e2E d3r 8

dr~r 8!

ur2r 8u
,

~9!

whereas the spin-orbit potentialdWs-o(r ) remains unaffected
by the electronic response. Therefore the inclusion of just
Coulomb repulsion leads to a screened short-range EPI w
the PMSOI continues to be long ranged. This means that
replacement ofdW(r ) by dŴ(r ) in Eq. ~2!, as done in Ref.
2, is not justified, and the screening mechanism of
PMSOI remains undetermined.

On the other hand,dWs-o(r ) is of ordera
2, wherea is the

fine-structure constant. Therefore, we should consider in
electron-electron interactionVi , j

e-e also the first relativistic
corrections to ordera2. These are given by several intera
tion terms,8 among which we identified the so-called spi
other-orbits potentialVi , j

s-o as the one responsible for th
screening of the PMSOI. Following Slater,8 this relativistic
interaction has the following form:

Vi , j
s-o5

e2\

4m2c2 F S“ i

1

r i j
D3pi•si1S“ j

1

r i j
D3pj•sj G .

~10!

In our analysis, we are interested only on the mechanis
responsible for the screening of the EPI and the PMSOI.
this end, we consider the Hamiltonian~3! in which the
electron-electron interaction is now given b
Vi , j
e-e5Vi , j

c 1Vi , j
s-o , where all the other relativistic correction

are neglected. In the following we show that, within the se
consistent Hartree approximation, the spin-other-orbits
tentialVi , j

s-o together with the Coulomb repulsion in fact pro
vides the correct screening to the PMSOI. The one-elec
Hamiltonian is now

HH5
p2

2m
1dW~r !1dWs-o~r !1VH

c ~r !1VH
s-o~r !. ~11!

HereVH
c (r ) is still given by Eq.~5!, andVH

s-o(r ) is the spin-
other-orbits potential in the Hartree approximation:
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VH
s-o~r !5

e2\

4m2c2 H F“ rE d3r 8
r~r 8!

ur2r 8uG3p•s

1 (
k8,s8

E d3r 8ck8,s8
* ~r 8!S“ r8

1

ur2r 8u D
3p8•sck8,s8~r 8!J . ~12!

Hereck,s(r ) is now the single-electron eigenfunction of E
~11!.9

In Eq. ~12!, VH
s-o(r ) is given by two terms, of which only

the first one contributes significantly to the screening of
PMSOI. In fact, it can be shown that the second term on
right-hand side of Eq.~12! gives corrections of higher orde
in a2. Therefore, we shall include inVH

s-o(r ) only the first
term of Eq.~12!.

We follow the same procedure as above. The respons
the electron to the perturbation potentialsdW(r ) and
dWs-o(r ) leads to the following expression:

HH5
p2

2m
1dW~r !1dWs-o~r !1VH0

c ~r !1dVH
c ~r !1VH0

s-o~r !

1dVH
s-o~r !. ~13!

HereVH0
c (r ) andVH0

s-o(r ) are the potentials given by Eqs.~5!
and ~12!, respectively, wherer(r ) has to be replaced b
r0(r ). dVH

c (r ) is still given by Eq. ~8! whereasdVH
s-o(r )

reads

dVH
s-o~r !5

e2\

4m2c2 F“ rE d3r 8
dr~r 8!

ur2r 8u G3p•s. ~14!

The effective electron-jellium interaction is still given fo
mally by Eq. ~9!. But now, because of the presence of t
spin-other-orbit interaction, we find that also the spin-or
potentialdWs-o(r ) is modified by the response of the ele
trons:

dŴs-o~r !5dWs-o~r !1dVH
s-o~r !

5dWs-o~r !1
e2\

4m2c2 F“ rE d3r 8
dr~r 8!

ur2r 8u G3p•s.

~15!

Making use of the definition of the baredWs-o(r ) given in
Eq. ~2! and of the screened electron-jellium potential in E
~9!, we can rewrite Eq.~15! in the following way:

dŴs-o~r !5
\

4m2c2
“ rdŴ~r !3p•s. ~16!

This result therefore states that, in order to obtain
screened spin-orbit potentialdŴs-o(r ), the replacemen
dW(r )→dŴ(r ) is justified only when the spin-other-orbit
interaction is taken into account.

B. PMSOI matrix element

An explicit expression of the effective PMSOI matrix e
ement requires the solution of the self-consistent equat
e
e

of

t

.

e

ns

given in Eqs.~9! and ~15!. The variationdr(r ) of the elec-
tronic density is calculated by means of Eq.~6!, where
dfk,s(r ) is the variation of the wave function in the pre
ence of the screened potentialsdŴ(r ) and dŴs-o(r ). To
lowest order we obtain

dfk,s~r !5 (
k8,s8

^fk8,s8udŴ~r !1dŴs-o~r !ufk,s&
ek2ek8

fk8,s8~r !.

~17!

In this way, Eqs.~9! and ~15! become

dŴ~r !5dW~r !1e2 (
kk8,s

nk2nk8
ek2ek8

^fk8,sudŴ~r !ufk,s&

3^fk,su
1

ur2r 8u
ufk8,s&, ~18!

dŴs-o~r !5dWs-o~r !

1
e2\

4m2c2 (
kk8,s

nk2nk8
ek2ek8

^fk8,sudŴ~r !ufk,s&

3^fk,su“ r

1

ur2r 8u
ufk8,s&3

\

i
“ r•s, ~19!

wherenk is the occupation number of statek. The first equa-
tion describes the screening effect of the conduction e
trons on the modified jellium potential, while the second o
gives the screening of the associated spin-orbit interact
As already pointed out, when we neglect the spin-oth
orbits two-particle interaction, Eq.~10!, the second term of
the right-hand side of Eq.~19! becomes zero and the spin
orbit potential remains unscreened, i.e
dŴs-o(r )5dWs-o(r ).

In order to obtain the matrix elements of the EPI a
PMSOI, we must express the displacement vectoru(r ) ap-
pearing in Eqs.~1! and~2! in terms of the normal coordinate

u~r !5(
q
Aqêqe

iq•r. ~20!

HereAq is the amplitude of theq mode, andêq is the corre-
sponding polarization vector. In this way the expectation v
ues of the bare electron-jellium potential and the associa
spin-orbit contribution are given by

^fk,audW~r !ufk2q,a&5MqAq , ~21!

^fk,budWs-o~r !ufk2q,a&5M kb,k2qaAq , ~22!

respectively. In order to obtain an explicit expression for t
bare matrix elementsMq and M kb,k2qa , we identify the
wave functions fk,b(r ) with plane waves, i.e.,
fk,b(r )5eik•rxb /AV, wherexb is the spinor vector. This
leads to

Mq52 i êq•q
Zce

2n0
q2

, ~23!

M kb,k2qa5 i
\2

4m2c2
~q3k•sba!Mq . ~24!



e

p-

en

f

er
c
un
e

’s
s
tri
us

ta
n
r

b-

ia-
lf-
.
PI
on-
are
d
nts,
the
ec-
on

tion

nd
the
on
sion,
in-
trix
I is
the
reek

15 526 55CLAUDIO GRIMALDI AND PETER FULDE
In the above equationsba is a short notation forxb
1sxa .

The corresponding screened matrix elementsM̂q and
M̂ kb,k2qa are obtained by usingdŴ(r ) anddŴs-o(r ) instead
of dW(r ) and dWs-o(r ), respectively. In terms of the bar
and dressed matrix elements, Eqs.~18! and ~19! can be re-
written as

M̂q5Mq1
4pe2

q2
2(

k8

nk82q2nk8
ek82q2ek8

M̂q , ~25!

M̂ kb,k2qa5M kb,k2qa1
\2

4m2c2
i ~q3k•sba!

3
4pe2

q2
2(

k8

nk82q2nk8
ek82q2ek8

M̂q . ~26!

Equation~25! can be rewritten in the form

M̂q5
Mq

114pe2x~q!/q2
, ~27!

wherex(q) is the static limit of the density-density susce
tibility in the Lindhard approximation,

x~q!522(
k

nk2q2nk
ek2q2ek

. ~28!

This permits us to write the dressed PMSOI matrix elem
in the following way:

M̂ kb,k2qa5M kb,k2qa2
\2

4m2c2
i ~q3k•sba!

4pe2

q2
x~q!M̂q .

~29!

By making use of Eqs.~24! and ~27!, we find

M̂ kb,k2qa5
M kb,k2qa

114pe2x~q!/q2
. ~30!

For small momentum transfer 4pe2x(q)5ks
2 whereks is the

Thomas-Fermi screening momentum,10 and in this limit
M̂ kb,k2qa}(q/ks)

2. This result agrees formally with that o
Refs. 2 and 3. However, we would like to stress that Eq.~30!
is the result of taking into account the relativistic spin-oth
orbits interaction in the calculation of the screening effe
When this interaction is neglected, the PMSOI remains
screened, and its matrix element is equal to the bare on
Eq. ~24!.

C. Hartree approximation in the diagrammatic language

We find it useful to translate our result into Feynman
diagrammatic language. This permits us to single out the
of contributions which leads to the screened PMSOI ma
element~30!. Moreover, the use of diagrams will enable
to extend easily the present results for the jellium case
those of lattice systems. To this end, we write the to
HamiltonianH as the sum of the free-particle Hamiltonia
H0 and contributions arising from the bare EPI, the ba
PMSOI, the Coulomb repulsionHC and the spin-other-orbits
potentialHs-o . In the second quantization formalism, we o
tain the following interacting Hamiltonians:
t

-
t.
-
in

et
x

to
l

e

HEPI5 (
pq,a

S \

2MNvq
D 1/2Mqck,a

† ck2q,a~bq1b2q
† !,

~31!

HPMSOI5 (
pq,ab

S \

2MNvq
D 1/2M kb,k2qack,b

† ck2q,a

3~bq1b2q
† !, ~32!

HC5 1
2 (
kk8q,ab

4pe2

q2
ck,a
† ck8,b

† ck81q,bck2q,a , ~33!

Hs-o5 i
e2\2

4m2c2 (
kk8q,abg

4pe2

q2
~q3k•sba!

3ck,b
† ck8,g

† ck81q,gck2q,a . ~34!

Hereck,a
† (ck,a) is the creation~annihilation! electron opera-

tor for wave numberk and spin statea,bq
†(bq) is the creation

~annihilation! operator for phonons with momentumq and
frequencyvq . In Eqs.~31! and ~32!, Mq andM ka,k2qb are
the bare EPI and PMSOI matrix elements given by Eqs.~23!
and ~24!, respectively.

Making use of perturbation theory, we can draw the d
grams which in the static approximation lead to the se
consistent equations~25! and ~26!. These are shown in Fig
1, which define a random-phase approximation for the E
and PMSOI in the presence of the spin-other-orbits electr
electron interaction. The rules for constructing diagrams
the usual ones,11 and in our notation the full circles an
semicircles are the bare EPI and PMSOI matrix eleme
respectively, while the dressed quantities are depicted by
corresponding empty symbols. The solid lines refer to el
tronic Green’s functions, and the wavy lines to phon
propagators. The Coulomb interaction 4pe2/q2 is repre-
sented by a dashed line, and the spin-other-orbits interac

FIG. 1. Dyson equations for the screening of the EPI a
PMSOI in the random-phase approximation. Solid lines are
Green’s functions for the electron, the wavy lines are phon
propagators. The dashed lines represent the Coulomb repul
while a dashed line with a black triangle at one vertex is the sp
other-orbits electron-electron interaction. The dressed EPI ma
element is represented by an open circle while the bare EP
indicated with a black circle. The empty and full semicircles are
dressed and bare PMSOI matrix elements, respectively. The G
letters indicate spin indices.



b
ex

e
e
I,
1
O

nd

m
er
de
in
by
I
o
d

-

is

th

ne
lity

es

to

io

ur

th

f
nd

n

n

tial

the
ap-
o-

t

n

Let
the

55 15 527THEORY OF SCREENING OF THE PHONON-MODULATED . . .
is composed by a dashed line~which represents the Coulom
interaction! and a black triangle which represent the vert
i (e2\2/4m2c2)(q3k•sba).

The diagrammatic equations in Fig. 1 permit us to gen
alize the theory of screening of the PMSOI also to the cas
a discrete lattice model. In fact, as we shall see in Sec. II
slightly different reinterpretation of the symbols in Fig.
will be sufficient in order to obtain the screened PMS
matrix element for the lattice model.

III. LATTICE MODEL

A. Bare PMSOI matrix element

An important difference between the jellium model a
any other model in which the discrete nature of the lattice
taken into account is the fact that, even for the equilibriu
configuration of the lattice, the conduction electrons exp
ence a spin-orbit interaction with the ions. Its strength
pends on the penetration of the electronic wave function
side the core region of the ion. As first pointed out
Elliott,3 this gives rise to an extra contribution to the PMSO
As we shall see in the following, the screening mechanism
the so-called Elliott’s mechanism differs from the one stu
ied in Sec. II.

If we denote withW(r ,$R%) the bare electron-ion poten
tial for the equilibrium configuration$R% of the ion’s posi-
tion, then the periodic part of the electronic Hamiltonian4

H05
p2

2m
1U~r ,$R%!, ~35!

where

U~r ,$R%!5W~r ,$R%!1
\

4m2c2
“ rW~r ,$R%!3p•s.

~36!

The second term on the right-hand side of Eq.~36! is the
spin-orbit coupling between the conduction electrons and
ions. Because of this term, the eigenfunctions ofH0 are lin-
ear combinations of Bloch states of different spins and,
glecting the band index, they can be written in full genera
as follows:3,4

ck↑~r !5
1

AV(
Q

~ak1Qx↑1bk1Qx↓!e
i ~k1Q!•r. ~37!

Here x↑ and x↓ are the spinor vectors with eigenvalu
11 and21 along a given direction andQ is a vector of the
reciprocal lattice. The set of thebk1Q functions is propor-
tional to the spin-orbit coupling and it is usually referred
as the small spin component, whereas the coefficientsak1Q
give rise to the large component. We label the wave funct
in Eq. ~37! with a spinlike quantum number↑, but, because
of the spin-orbit coupling, it does not correspond to a p
spin state.

The properties of the wave function~37! depend on the
symmetry of the Hamiltonian~35!. In particular,H0 is in-
variant under the time-reversal transformationK which
changes the sign of the momentum and spin, leaving
positionr unchanged. Given a statef, thenKf is called the
Kramer conjugate off. Two important properties of the
r-
of
a

I

is

i-
-
-

.
f
-

e

-

n

e

e

time-reversal operator are thatK2521 and, given any two
statesf and c,^fuc&5^KcuKf&. It is straightforward to
show that the scalar product between any statef and its
Kramer conjugate Kf is zero. In fact, ^fuKf&
5^K2fuKf&52^fuKf&. Therefore iff is an eigenstate o
H0, then Kf is also one and the two are degenerate a
orthogonal.

For lattices with inversion symmetry, the Hamiltonia
~35! is invariant under a transformationJ which transform
r into 2r andp into 2p, leaving the spins unchanged. In
the following we assume thatH0 commutes withJ.

Another important transformation is that of conjugatio
C defined byC5KJ5JK. The effect ofC is therefore to
change the signs ofs and r . Also in this case the Hamil-
tonian H0 remains invariant~provided that @H0 ,J#50).
MoreoverCfk,↑}fk,↓ and ^fk↑ ,Cfk↑&50 because, as in
the case ofK,C2521 and^fuc&5^CcuCf&. This can be
explicitly seen by applying the operationC on Eq.~37!:12

ck↓~r !5
1

AV(
Q

~ak1Q* x↓2bk1Q* x↑!e
i ~k1Q!•r. ~38!

Small deviationsu(R) from the equilibrium lattice configu-
ration lead to a modulation of both the electron-ion poten
and the associated spin-orbit coupling:

He-i5(
R

u~R!•“RU~r ,$R%!. ~39!

Because we are interested in the long-range behavior of
unscreened electron-lattice interaction, it is a reasonable
proximation to consider a rigid-ion model for the lattice p
tential. Therefore we defineW(r ,$R%)5(RV(r2R), where
V(r2R) is the potential at positionr generated by the ion a
siteR. Equation~39! therefore becomes

He-i52(
R

u~R!•“RFV~r2R!

1
\

4m2c2
“ rV~r2R!3p•sG . ~40!

Making use of the set of electronic wave functions~37! and
~38!, and expanding the displacement vectoru(R) in normal
coordinates,He-i may be written in the second-quantizatio
representation as follows:

He-i5HEPI1HPMSOI

5 (
k,q,l

(
a

S \

2MNvq,l
D 1/2M k,k2q

l ck,a
† ck2q,a

3~bq,l1b2q,l
† !1 (

k,q,l
(
a,b

S \

2MNvq,l
D 1/2

3M ka,k2qb
l ck,a

† ck2q,b~bq,l1b2q,l
† !. ~41!

Here a and b are spinlike states indices, whilel is the
phonon polarization. Furthermore,M k,k2q

l andM ka,k2qb
l are

the bare EPI and PMSOI matrix elements, respectively.
us restrict our analysis to the transverse component of
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PMSOI matrix element, which results from a scattering p
cess in which the electron changes its dominant spin s
from ↓ to ↑:

M k↑,k2q↓
l 52(

R
eiq•R^ck↑u êq,l•“RFV~r2R!1

\

4m2c2

3“ rV~r2R!3p•sG uck2q↓&. ~42!

In his work, Overhauser2 studied only the contribution due t
the last term of Eq.~42!, whereas Elliott3 realized that also
the first term, the ordinary electron-lattice interaction, c
give spin-flip by way of connecting the large and small co
ponents of the two spinors@see Eqs.~37! and ~38!#. Yafet
embodied both approaches by analyzing both terms in
~42!. Unlike our approach, he treated the single-ion poten
V(r ) as an already screened short-ranged potential. In
case the Fourier components of V~r ! are finite at smallq, and
it is possible to perform a Taylor expansion ofV(q) in power
of q. Following this procedure, Yafet was able to demo
strate that the first two terms of the seri
M k↑,k2q↓

l 5M k↑,k↓
l 1“M k↑,k↓

l
•q1••• vanish. But in our

analysis, the potentialV(r ) is the bare one; therefore its Fou
rier transform behaves likeV(q);1/q2 for small momentum
transfer, and a Taylor expansion ofV(q) in powers ofq is
not possible. On the other hand, we still can follow to so
extent Yafet’s elegant procedure by isolating the long-ra
part ofV(r ). To this end we write the Fourier transform o
V(r ) as follows:

V~r !5(
q
V~q!eiq•r5(

q
8(
G

V~q1G!ei ~q1G!•r,

~43!

whereG is a vector of the reciprocal lattice, and the prim
means that the summation overq has to be restricted to th
first Brillouin zone. We defineV5VL1VS, where

VL~r !5(
q

8V~q!eiq•r, ~44!

VS~r !5(
q

8 (
GÞ0

V~q1G!ei ~q1G!•r. ~45!

While VL behaves as 1/r for long distances,VS goes faster to
zero asr→`. We shall see that the latter term satisfies
requirements for the use of Yafet’s procedure, whereasVL

leads to a matrix element which can be easily evalua
Before starting the calculations, we note that in terms of
definitions ofVL and VS, the periodic part of the Hamil-
tonian, Eqs.~35! and ~36!, becomes

H05
p2

2m
1US~r ,$R%!, ~46!

US~r ,$R%!5(
R

FVS~r2R!1
\

4m2c2
“ rV

S~r2R!3p•sG .
~47!

In writing Eq. ~46!, we have left out the infinite constan
NV(0)5 limq→0NV(q). In fact, because of the charge ne
-
te

n
-

q.
l
is

-

e
e

e

d.
e

trality of the system, this term is canceled by a contributi
opposite in sign due to the infinite electrostatic potential g
erated by the electrons.

By means of Eqs.~44! and ~45!, the bare PMSOI matrix
element can be written asM5MS1ML, where

M k↑,k2q↓
l,S~L ! 52(

R
eiq•R^ck↑u êq,l•“RFVS~L !~r2R!

1
\

4m2c2
“ rV

S~L !~r2R!3p•sG uck2q↓&.

~48!

Let us first consider the termMS. If we restrict the momenta
transferq to the first Brillouin zone~we are interested in the
limit of small q only!, it is straightforward to show that

M k↑,k2q↓
l,S 5 iN (

GÞ0
êq,l•~q1G!V~q1G!^ck↑uei ~q1G!•r

3F11
i\

4m2c2
~q1G!3p•sG uck2q↓&. ~49!

The summation over the reciprocal-lattice vectorsG does not
include the valueG50, and therefore the divergency o
V(q) for q→0 is removed, andMS is well defined in the
limit of zero momentum transfer. As pointed out previous
we can apply Yafet’s method to this term. We therefore p
form the q→0 limit and transform the result back to rea
space. In this way we obtain

M k↑,k↓
l,S 52^ck↑u êq,l•(

R
“RFVS~r2R!1

\

4m2c2

3“ rV
S~r2R!3p•sG uck↓&

52^ck↑u êq,l•“ rU
S~r ,$R%!uck↓&, ~50!

whereUS(r ,$R%) is given by Eq.~47!. The last equality in
the above equation comes from the translational invarian
With the help of Eq.~46!, we can therefore write

M k↑,k↓
l,S 52

i

\
^ck↑u êq,l•@p,H0#uck↓&. ~51!

If we denote withS the operator inside the brackets, an
realize thatCSC215S, whereC is the conjugation operator
then it follows that ^ck↑uSck↓&5^ck↑uSCck↑&
5^CSCck↑uck↑&52^ck↑uSck↓&. ThereforeM k↑,k↓

l,S 50. By
a further application of Yafet’s analysis, it is also possible
show thatM k↑,k2q↓

l,S is actually proportional to the secon
power ofq, and, as we shall see in the following, in the sm
momentum transfer limit this term can be neglected w
respect toM k↑,k2q↓

l,L .
Next we make use of the expression ofVL given by Eq.

~44!, and evaluate the matrix elementM k↑,k2q↓
l,L . Performing

the summation overR, we obtain
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M k↑,k2q↓
l,L 5 iN êq,l•qV~q!F ^ck↑ueiq•ruck2q↓&

1
i\

4m2c2
^ck↑ueiq•rq3p•suck2q↓&G . ~52!

Making use of the electronic wave functions~37! and ~38!,
we can evaluate the two terms within the brackets in the li
q→0. Since the second term is already proportional to
small quantitya2, we consider only the contributions com
ing from the large spin components in the electronic wa
functions. This leads to the result

^ck↑ueiq•rq3p•suck2q↓&5^ck↑uq3p•suck↓&

5\(
Q

~ak1Q* !2@q3~k1Q!#1 .

~53!

Here we used the notation@v#15vx2 ivy , wherev is an
arbitrary vector, andvx andvy are its components along th
x and y axes. For small momentum transfer, the first te
within brackets in Eq.~52! also makes a linear contributio
in q. In terms of the representations~37! and ~38! for the
wave functions, this becomes

^ck↑ueiq•ruck2q↓&5(
Q

~bk1Q* ak2q1Q* 2ak1Q* bk2q1Q* !

;Dk•q, ~54!

where

Dk5(
Q

~ak1Q* “kbk1Q* 2bk1Q* “kak1Q* !. ~55!

By collecting the results given in Eqs.~52!–~55!, we finally
obtain the general expression for the transverse compo
of the bare PMSOI matrix element:

M k↑,k2q↓
l 5M k↑,k2q↓

l,L 1M k↑,k2q↓
l,S

5 iN êq,l•qV~q!FDk•q1
i\2

4m2c2(Q ~ak1Q* !2

3@q3~k1Q!#1G1O~q2!. ~56!

BecauseV(q);1/q2, MS vanishes faster thanML for
q→0, and in the range ofq values of interest for us, we ca
neglect this contribution. We note moreover, th
limq→0M k↑,k2q↓

l Þ0. Qualitatively the same result was o
tained in Sec. II for the bare PMSOI matrix element in t
jellium model @see Eq.~24!#.

B. Screening

Once we have obtained an expression for the bare PM
matrix element which includes Elliott’s and Overhause
mechanisms@the first and second terms within the bracke
in Eq. ~56!, respectively#, we have to consider the modifica
tions induced by the screening effect of the conduction e
trons. From the results obtained in the analysis of the jelli
it
e

e

nt

t

OI

c-

model, it is clear that the screening of the Overhauser par
the PMSOI~which has the same physical origin of the PM
SOI in the jellium model! can be achieved by considering th
spin-other-orbits electron-electron interaction. We evalu
therefore the matrix element of the potential in Eq.~10! by
making use of the electronic wave functions~37! and ~38!.
Within second quantization, the spin-other-orbit interacti
takes the form

i
\2

4m2c2 (
kk8q,g

4pe2

q2 (
Q

~ak1Q* !2@q3~k1Q!#1

3ck,↑
† ck8,g

† ck81q,gck2q,↓ . ~57!

Here we have considered only the contribution in which
electron changes its dominant spin state from↓ to ↑, as in
the spin-flip transition appearing in Eq.~56!. The above re-
sult was obtained in the limit of long wavelength, and w
have dropped all the terms proportional to the small s
component, because to leading order this expression is
ready of ordera2.

The spin-other-orbits interaction is able to provide for t
screening of the Overhauser part of the PMSOI. But
screening of Elliott’s mechanism is of different origin. Be
cause this contribution to the PMSOI comes from a mixi
of the small and large spin components of the electro
wave functions, we expect that a similar mixing can be p
vided by the Coulomb repulsion when wave functions~37!
and ~38! are used in the calculation of the Coulomb mat
element. This leads to an additional interaction, which in f
can provide the screening of Elliott’s term in the PMSO
The use of wave functions~37! and ~38! also leads to terms
in which both electrons change their dominant spin sta
However, we shall neglect these terms because they do
lead to screening. We therefore consider only terms in wh
one electron changes its dominant spin state. In the limi
small momentum transferq, and making use of
(Q(uak1Qu21ubk1Qu2)51 ~normalization condition!, we ob-
tain the following result:

(
kk8q,g

Dk•q
4pe2

q2
ck,↑
† ck8,g

† ck81q,gck2q,↓ , ~58!

where the vectorDk is defined in Eq.~55!. We write down a
generalized spin-other-orbits interaction Hamiltonian,Hs-o

e-e ,
which is defined as the sum of the terms appearing in E
~57! and ~58!:

Hs-o
e-e5 (

kk8q,g
Vs-o~k↑,k8g;k2q↓,k81qg!

3ck,↑
† ck8,g

† ck81q,gck2q,↓ , ~59!

where

Vs-o~k↑,k8g;k2q↓,k81qg!

5
4pe2

q2 FDk•q1 i
\2

4m2c2(Q ~ak1Q* !2@q3~k1Q!#1G .
~60!

At this point we have all the ingredients for the evaluation
the screened PMSOI matrix element in the long-wavelen
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limit. We can make use of the Dyson equation for the
sponse of the electrons to the PMSOI and EPI shown
grammatically in Fig. 1. This equation was obtained for t
jellium model but, with a different reinterpretation of th
symbols appearing in Fig. 1, we can also extend its valid
to the present case. The full semicircle in Fig. 1 now rep
sents the bare PMSOI matrix element, including both
Overhauser and Elliott terms@Eq. ~56!#. The dashed line is
still the Coulomb repulsion 4pe2/q2, whereas the dashe
line attached to a solid triangle represents the general
spin-other-orbits interaction given by Eq.~60!. Therefore, in
the static limit the screened PMSOI matrix eleme
M̂ k↑,k2q↓

l satisfies the following equation

M̂ k↑,k2q↓
l 5M k↑,k2q↓

l 1(
k8g

nk82q2nk8
ek82q2ek8

3Vs-o~k↑,k8g;k2q↓,k81qg!M̂ k8,k82q
l ,

~61!

where M̂ k,k2q
l is the screened EPI matrix element. In t

long-wavelength limit, it depends only on the momentu
transferq, and it is formally given by Eq.~27!, with the bare
EPI matrix element approximated by6

M k,k2q
l .Mq

l5 iN êq,l•qV~q!. ~62!

By making use of Eq.~60! and the expression for the ba
PMSOI given in Eq.~56!, from Eq. ~61! we obtain

M̂ k↑,k2q↓
l 5

M k↑,k2q↓
l

114pe2x~q!/q2
. ~63!

The above result demonstrates that for the lattice case
screening of the PMSOI is given by two mechanisms. T
Overhauser contribution is screened by the spin-other-or
interaction, whereas Elliott’s term of the PMSOI is screen
by considering the spin-mixing matrix element of th
t t
-
a-

y
-
e

ed

t

he
e
its
d

electron-electron Coulomb potential. Moreover, in acc
dance with Yafet’s result,4 we find that in the limitq→0 the
resulting screened PMSOI matrix element, Eq.~63!, is pro-
portional to q2. Because the small spin component of t
electronic wave function is of orderDg, the quantityDk in
Eq. ~55! is of orderDg/kF , where is the Fermi momentum.

3

Therefore, for materials in whichDg is larger than the fine-
structure constant, we can neglect the Overhauser contr
tion and retain only Elliott’s part of the PMSOI. In this wa
Eq. ~63! can be rewritten as

M̂ k↑,k2q↓
l 5M̂q

lDk•q.~Dg!M̂q
l
q

kF
, ~64!

where we have neglected the angular dependence. The a
expression can be used to estimate the PMSOI contribu
to T1

21 and it gives a result in accordance with the Ellio
Yafet expression.

IV. CONCLUSIONS

The nature of the screening of the phonon-modula
spin-orbit interaction in metals has been investigated wit
the Hartree approximation. We have found that the inclus
of relativistic corrections to the electron-electron interacti
can provide for a screening of the PMSOI. In particular, t
spin-other-orbits interaction is responsible for the screen
of Overhauser’s term while the screening of the Elliott p
of the PMSOI is obtained from the spin-mixing terms in t
matrix element of the Coulomb electron-electron repulsi
Finally we have obtained an explicit expression for t
screened PMSOI matrix element in the long-wavelength
proximation. This is in qualitative agreement with the res
of previous theories, which were based on ana priori
screened lattice potential.4 Our work provides, therefore, a
justification of the already known results and confirms, fro
a theoretical point of view, the validity of the Elliott-Yafe
formula for the electron-spin-relaxation time.
and
rac-

tisfy
1G. A. Prinz, Phys. Today48 ~4!, 58 ~1995!.
2A. W. Overhauser, Phys. Rev.89, 689 ~1953!.
3R. J. Elliott, Phys. Rev.96, 266 ~1954!.
4Y. Yafet, Solid State Phys.14, 1 ~1963!.
5T. Griswold, A. F. Kip, and C. Kittel, Phys. Rev.88, 337~1952!;
G. Feher and A. F. Kip,ibid. 98, 337 ~1955!; S. Schultz and C.
Latham, Phys. Rev. Lett.15, 148~1965!; S. Schultz, G. Dunifer,
and C. Latham, Phys. Lett.23, 192 ~1966!; D. Lubzens, M. R.
Shanabarger, and S. Schultz, Phys. Rev. Lett.29, 1387~1972!;
D. C. Vier and S. Schultz, Phys. Lett.98A, 283 ~1983!; M.
Johnson and R. H. Silsbee, Phys. Rev. Lett.55, 1790~1985!.

6L. J. Sham and J. M. Ziman, Solid State Phys.15, 221 ~1963!.
7In the case of a lattice model, this procedure is equivalen
 o

making use of ana priori screened lattice potential.
8J. C. Slater,Quantum Theory of Atomic Structure~McGraw-Hill,
New York, 1960!, Vol. 2.

9We continue to use the same notations for the wave functions
the energy as for the case in which the spin-other-orbits inte
tion is neglected.

10N. W. Ashcroft and N. D. Mermin,Solid State Physics~Saunders,
Philadelphia, 1976!.

11G. Rickayzen,Green’s Functions and Condensed Matter~Aca-
demic, London, 1980!.

12For convenience, we have chosen wave functions which sa
ck↓(r )5Cck↑(r ). See also Ref. 4.


