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Theory of screening of the phonon-modulated spin-orbit interaction in metals
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We investigate the long-wavelength limit of the phonon-modulated spin-orbit interaction in the self-
consistent Hartree approximation. Within the jellium model we show that the screening is provided by the
spin-other-orbits term in the electron-electron interaction. In the case of a discrete-lattice model, the modifi-
cations in the electronic wave functions induced by the spin-orbit coupling of the electrons to the ions give rise
to spin-mixed matrix elements of the Coulomb electron-electron interaction. This is able to provide a further
screening mechanism to the phonon-modulated spin-orbit interaction. Our self-consistent treatment of the
screening justifieq posteriorithe results of previous theories based on an already screened lattice potential.
[S0163-182607)04520-1

I. INTRODUCTION T, ' is observed in many metals by making use of different
techniques, and the behavior predicted by the Elliott-Yafet
The spin-orbit coupling of the conduction electrons to theformula was confirmed for a wide range of temperatures. On
lattice potential can be modulated by lattice vibrations. Thisthe other hand, all the theoretical results were based on the
leads to an interaction in which the spin of the electron isassumption of ara priori screened lattice potential. What
coupled to the quantum of the lattice vibratiofhonon. remained unclear is the physical process of screening of the
This phonon-modulated spin-orbit interactidRMSOl) in- ~ PMSOI and the main purpose of this paper is to clear up this
fluences the lifetime of the electron-spin orientation, and ha®0int. Indeed, screening of the PMSOI should be considered
consequences for spin-polarized transport; a field which hageparately from the one occurring in the ordinary electron-

recently gained great interest because of possible devidd'onon interactionEP). If we start from bare EPI and
applications: PMSOI matrix elements, then corresponding screened quan-

The important role of spin-orbit interaction in electron- t?ties are obtained by co.nsid(-?ring .the response of the conduc-
phonon scattering in metals was pointed out in 1953 b)}mn electrons to the lattice distortion. It is straightforward to

Overhause? who made use of a simole iellium model in his show that, when the electron-electron interaction is given
' pie) just by the Coulomb repulsion, the conduction electrons

calculations. A new approach to this problem was introduce creen the EPI. while the PMSOI remains unscreened. This

one year later by Elllqﬁ,who useq a more realistic set of is due to the fact that the Coulomb interaction conserves the
electronic wave functions than simple plane waves. BOtfblectron-spin orientation, whereas the PMSOI is a spin-
procedures, however, showed a strong model dependenGgnendent interaction. However, the PMSOI is a relativistic

leading, for example, to different temperature dependencegect and it is plausible to search for the mechanism of its
of the calculated spin-relaxation times of the electrons. INycreening by considering the relativistic corrections to the
;963,_Yafe‘i was able to reconcile the previous approachesjactron-electron interaction. This is done in Sec. I, where

in a single theory by making use of simple theorems on the, e c5icylate the bare PMSOI matrix element for the jellium

spin symmetry of the Hamiltonian. The main consequence of,qe| and determine, in the Hartree approximation, the cor-
his theory is that the matrix glemept of the spin-reversal inyeqnhonding screened matrix element. In Sec. Ill we extend
teraction due to lattice vibrationly; \_q, , is proportional o analysis to a more realistic model in which the lattice

to g2 for small momentum transfey. This determines the structure is taken into account.

low-temperature behavior of the inverse of the longitudinal

electron spin-relaxation timél_l, which results to be pro- Il. JELLIUM MODEL

portional toT® for temperatures well below the Debye tem- o

peratureTy . On the other hand fof > T, the details of the A. Hartree approximation

matrix element are not essential, ahgd"oT. Therefore, the In the jellium model, the discrete nature of the lattice is

calculated temperature dependencd pf is very similar to  replaced by a continuum of positive charge in which the

the one observed in the resistivipy This led to the estab- electrons are embedded. The infinite electrostatic potential

lishment of a simple relation known as the Elliott-Yafet given by a uniform distribution of the positive charge is can-

formula* T, *<(Ag)?p, where Ag is the shift of theg  celed by the electrostatic contribution of the electrons in or-

factor due to the spin-orbit coupling of the electrons to theder to preserve the charge neutrality of the system. Fluctua-

lattice potential. tions of the positive charge density lead to the following
Experimentally, at low temperaturesTa dependence of change in the electrostatic potential:
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_ ) 3 ,Veu(r’) functions are modified agy ,(r)= ¢y ,(r)+ oy ,(r) and
OW(r)=—Z.e"n, | d°r =’ consequently the electronic density takes the form
p(r)=po(r) + ép(r), where

whereZ.en, is the charge density of a unit cell, andr) is

the displacement vector. The spin-orbit interaction associated ()

with the potentia](l) is given by 5p(l’)= % [5¢;,o(r)¢k|a(r)+¢’kc,a(r)5¢k,o-(r)]- (6)
3 The Hamiltonian(4) can therefore be written as
&NS_O(I')=WVr5\N(I’)Xp'O'. (2) pZ
Hy=75=—+ OW(r)+ dWgo(r)+ Vi o(r)+ 8Vi(r). (7)
Herem is the mass of the electron, amdis the speed of 2m

light. p=—iAV and o are the electronic momentum and
spin operators, respectively. Whefr) is expressed in nor-

mal coordinates, Eq$1) and(2) give rise to the usual bare
EPI and the bare PMSOI, respectively.

Here V},,(r) is the potential given by Eq5), wherep(r)
has to be replaced by the unperturbed electronic density
po(r), and 8V (r) is the following potential:

Until here, the potentials in Eq&l) and(2) have been the Sp(r')
bare ones. In order to include screening, we have to consider SV (1) =e2f d3r’ - (8
also the electron-electron interaction. Therefore we introduce r=r’|
the following electronic Hamiltonian: Now, following Ref. 6, the effective electron-jellium poten-

) tial SW(r) is given by

Pi -
H=> $+5W(ri)+5ws_o(ri) +32 VR (9 N Sp(r")
' 7 5\N(r)=5W(r)+5Vﬁ,(r)=5W(r)+e2f d3r’—|r_r,|
HereV? is the electron-electron interaction potential. When (9)
VF7 is given just by the Coulomb repulsiaff ;= e?/r;; with

rij=|ri—rjl, then the response of the electrons to potentlaﬁly the electronic response. Therefore the inclusion of just the

(1) leads to a screened electron-jellium interactié®/(r),  Coulomb repulsion leads to a screened short-range EPI while
and the associated EPI becomes short rafigeRef. 2, the  the PMSOI continues to be long ranged. This means that the

screened spin-orbit potentiadW, ,(r), was obtained by re- replacement oBW(r) by 3W(r) in Eq. (2), as done in Ref.
placing in Eq.(2) the baresW(r) by the screened one 2 is not justified, and the screening mechanism of the
SW(r).” However, when we follow a self-consistent treat- PMSOI remains undetermined.

ment of the electronic response to the perturbat@n we On the other hand§W_o(r) is of ordera?, wherea is the

find that the PMSOI remains unscreened. This is due to théne-structure constant. Therefore, we should consider in the
fact that, unlikesW(r), the spin-orbit potential2) does not  electron-electron interactioV* also the first relativistic
couple to the electron density because of the presence of th@rrections to ordern?. These are given by several interac-
spin operator. This can be readily seen when we employ thgion terms® among which we identified the so-called spin-

Hartree approximation. In this case, H@) reduces to the other-orbits potentiaV;? as the one responsible for the

hereas the spin-orbit potenti&iV,_,(r) remains unaffected

one-electron Hamiltonian screening of the PMSOI. Following Slatéthis relativistic
) interaction has the following form:
HH=2p—m+5W(r)+5WS_O(r)+Vﬁ(r), (4) v € 1 1
Vi,j :mz (Vla Xpi-a'i+(ij ijﬂl}
where V,(r) is the Coulomb potential in the Hartree ap- (10
proximation,

In our analysis, we are interested only on the mechanisms
, responsible for the screening of the EPI and the PMSOI. To
°(r)=ezf d3r p(r’) _ (5) this end, we consider the Hamiltoniai®) in which the
H [r—r’| electron-electron  interaction is now given by
_ < (oc) , ViF=V{;+V;7, where all the other relativistic corrections
In the above equationp(r) =270 ¢ .(r)[* is the elec-  grg neglected. In the following we show that, within the self-
tronic density(the summation is performed over the occu-consistent Hartree approximation, the spin-other-orbits po-
pied statel and i ,(r) is the single-electron eigenfunction tentia| v/ together with the Coulomb repulsion in fact pro-

solution of Eq.(4). _ _ vides the correct screening to the PMSOI. The one-electron
We follow the common proceduftén evaluating the re- Hamiltonian is now

sponse of the electrons to the perturbation potentisi§r)

and 6W,_o(r). For a homogeneous positive charge density, p?

the potentialséW(r) and 6W,,(r) are zero and the elec- HH:%+5W(f)+5Ws-o(r)+Vﬁ|(f)+Vi[°(r)- (11)
tronic density iSpO(r)=2f<‘?§°')| br.o(1)]?, whereg, ,(r) is a

plane wave with eigenvalues . In the presence of the per- HereVy(r) is still given by Eq.(5), andV}°(r) is the spin-
turbation potential$W(r) and §Wg(r) the electronic wave other-orbits potential in the Hartree approximation:
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given in Egs.(9) and (15). The variationdp(r) of the elec-
xp-o tronic density is calculated by means of E@), where
Oy (1) is the variation of the wave function in the pres-

e’fi p(r')
S-0 — 37
VE(N= 5o Hvrfdr ]

, ence of the screened potentia®V(r) and SWg(r). To
+k,2, &' g (1 )( |r—r’|> lowest order we obtain
(s 7| SW(T) + 5We.o(1)| i )
Xp, ’ o-l/lk’,(r'(r,)] . (12) 5¢k,o’(r):k’z€' €x— € ¢kr’07(r).

(17

Here 1//k -(r) is now the single-electron eigenfunction of Eq.
(11.°

In Eq. (12), V;;°(r) is given by two terms, of which only
the first one contributes significantly to the screening of the OW(r)=dW(r)+e? E .
PMSOL. In fact, it can be shown that the second term on the ko Sk
right-hand side of Eq(12) gives corrections of higher order
in a2. Therefore, we shall include iw$°(r) only the first X{bw,ol 77 |r ] | bt o) (18)
term of Eq.(12).

We follow the same procedure as above. The response of ()= 68W. (r)
the electron to the perturbation potential®N(r) and OWso o
SWg ,(r) leads to the following expression:

In this way, Egs(9) and(15) become

<¢k’ o’| 5W(r)|¢k a'>

202 Z <¢>kf ol WD) b )
p2 kkl
H =2—+5W(r)+6wso(r)+v o(r)+ 8VE(r) +Via(r) 1 "
X{ ol Vi—o7 b ) XV, 0, (19
+OVEO(r). (13) Ir—r'| i

wheren, is the occupation number of stdte The first equa-

tion describes the screening effect of the conduction elec-
trons on the modified jellium potential, while the second one
gives the screening of the associated spin-orbit interaction.

HereVy,o(r) andV{o(r) are the potentials given by Eq®)
and (12), respectively, wherep(r) has to be replaced by
po(r). SV (r) is still given by Eq.(8) whereassVy°(r)

reads As already pointed out, when we neglect the spin-other-
e2h Sp(r") orbits two-particle interaction, Eq10), the second term of
5Vi‘;°(r)=4mzc f d3r’ —r] Xp-o. (14  the right-hand side of Eq19) becomes zero and the spin-

orbit potential remains unscreened, ie.,
The effective electron-jellium interaction is still given for- SWg (1) = 6Ws(r).

mally by Eq.(9). But now, because of the presence of the In order to obtain the matrix elements of the EPI and
spin-other-orbit interaction, we find that also the spin-orbitPMSOI, we must express the displacement vea(@) ap-

potential SW,o(r) is modified by the response of the elec- pearing in Eqs(1) and(2) in terms of the normal coordinates
trons:

W) = OWs o(1) + 8VE(1) (=2 Ageee'®". (20

e’h Sp(r’)
S\NS-O(r)+W|:Vrf d3r’ |r_

HereA is the amplitude of thef mode, andAsq is the corre-

TIXP-o. . . . . .
r'| sponding polarization vector. In this way the expectation val-
(15) ues of the bare electron-jellium potential and the associated
spin-orbit contribution are given by
Making use of the definition of the ba@W,(r) given in
Eq. (2) and of the screened electron-jellium potential in Eq. <¢k,a|5W(r)|¢k—q,a>: MaAq, (2D
(9), we can rewrite Eq(15) in the following way:
<¢k,,8|5ws-o(r)|¢k—q,a>=Mkﬁ,k—quqv (22
SWeo(1) :%V SW(r)Xp- . (16) respectively. In order to obtain an explicit expression for the
4m bare matrix elementdl, and Myg 4., We identify the

This result therefore states that, in order to obtain theéVave furlwkc'?onf \/ﬁsk B(hr) with thplane wavets _I'_ﬁ
screened spin-orbit potentiabW,(r), the replacement P (1) =€ X p where x; is the spinor vector. This

- T . . leads to
SW(r)— 6W(r) is justified only when the spin-other-orbits
interaction is taken into account. ~  Z£ng
Mq——leq q—qz— (23)
B. PMSOI matrix element
2
An explicit expression of the effective PMSOI matrix el- . h
: . : . Mg k—ga=17—2=(qXk- Mg. 24
ement requires the solution of the self-consistent equations K.k~ qa 4m202(q Tpa)Mg 24
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In the above equatiom, is a short notation fop(g OXy- kq

~ k-q k-q k'-q
The corresponding screened matrix elememts, and
Mg k- qo @re obtained by usingW(r) andsWe (r) instead = + -
of 6W(r) and 6W,(r), respectively. In terms of the bare ’ ’ A
%

and dressed matrix elements, E¢B8) and (19) can be re-
written as

k-qo k-g o k- o K'-q
- 41re? N —q— Nir ~
quMq+ 77'26 22 k q_ k qu (25) = >\A +><:>N
q k' €k'—q~ €k’
kp kp Kp K
A 2
Migk-ga=Migk—gat 4m202'(q><k’“'ﬂa) FIG. 1. Dyson equations for the screening of the EPI and
PMSOI in the random-phase approximation. Solid lines are the
41re? nk/—q_nk/'\f\ Green’s functions for the electron, the wavy lines are phonon
q2 % Ek,_q_ek,"/lq- (26) propagators. The dashed lines represent the Coulomb repulsion,
while a dashed line with a black triangle at one vertex is the spin-
Equation(25) can be rewritten in the form other-orbits electron-electron interaction. The dressed EPI matrix
element is represented by an open circle while the bare EPI is
N Mg indicated with a black circle. The empty and full semicircles are the
MQ:WX((})IQZ’ (27) dressed and bare PMSOI matrix elements, respectively. The Greek

letters indicate spin indices.
where x(q) is the static limit of the density-density suscep-

tibility in the Lindhard approximation, 4 12
Hep= O, (—) MoCl Ck_qal(bgt bl ),
(q)=—23, Hea 28 T e \BMNay TR
X K €—q~ €k (31)
This permits us to write the dressed PMSOI matrix element A 172 :
in the following way: Hpmsor= pq%/a m) Mg k- qaCk,sCk—g,a
A 72 47e? n t
- B = X
Micg.k-aa = Mig a0~ gzcz! (AXK- 0pa) ==X (A)Mg. (bg+b=g), (32
(29 ,
) ) N 4me” .
By making use of Eqs(24) and(27), we find He=3 2 ?ck,ack,’ﬁcquﬁck_q,a, (33
kk'q,aB
- Mg k- qa
Mkﬁyk*qa_1+4ﬂ-e x(@)/g* (30 ~e?h? Ame?
) . Hso=1 722 > —(gxk-og,)
For small momentum transfere?x(q) =k wherek, is the Kk’ q,aBy
Thomas-Fermi screening momentd?hand in this limit
9 A XCE,BCI’,ka'+q,7Ck*q,a' (34)

I\A/Ikﬁ,k,qaoc(q/ks)z. This result agrees formally with that of
Refs. 2 and 3. However, we would like to stress that(B6) + . . P
is the result of taking into account the relativistic spin-other-HerfeCkva(ck'“) 'Sbths crzathr(annlhllzgrlol? e'Iec:]ron opera-
orbits interaction in the calculation of the screening effect lOf for wave numbek and spin stater,bq(by) is the creation
When this interaction is neglected, the PMSOI remains un{@nnihilation operator for phonons with momentuqand

screened, and its matrix element is equal to the bare one fieduencywq. In Egs.(31) and(32), Mg andM —qp are
Eq. (24). the bare EPI and PMSOI matrix elements given by E2{3)

and(24), respectively.

Making use of perturbation theory, we can draw the dia-
grams which in the static approximation lead to the self-
We find it useful to translate our result into Feynman’s consistent equation®5) and (26). These are shown in Fig.
diagrammatic language. This permits us to single out the set, which define a random-phase approximation for the EPI
of contributions which leads to the screened PMSOI matrixand PMSOI in the presence of the spin-other-orbits electron-
element(30). Moreover, the use of diagrams will enable us electron interaction. The rules for constructing diagrams are

to extend easily the present results for the jellium case téhe usual one&' and in our notation the full circles and
those of lattice systems. To this end, we write the totalsemicircles are the bare EPI and PMSOI matrix elements,
HamiltonianH as the sum of the free-particle Hamiltonian respectively, while the dressed quantities are depicted by the
Ho and contributions arising from the bare EPI, the barecorresponding empty symbols. The solid lines refer to elec-
PMSOI, the Coulomb repulsiod - and the spin-other-orbits tronic Green’s functions, and the wavy lines to phonon
potentialHg, . In the second quantization formalism, we ob- propagators. The Coulomb interactionrd®/q? is repre-

tain the following interacting Hamiltonians: sented by a dashed line, and the spin-other-orbits interaction

C. Hartree approximation in the diagrammatic language
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is composed by a dashed lifwhich represents the Coulomb time-reversal operator are th€=—1 and, given any two

interaction and a black triangle which represent the vertexstates¢ and ,(¢|¢)=(Ky|K ). It is straightforward to

i(e2h%/14m?c?) (gX K- op,). show that the scalar product between any statand its
The diagrammatic equations in Fig. 1 permit us to generKramer conjugate K¢ is zero. In fact, (¢|K¢)

alize the theory of screening of the PMSOI also to the case of (K2¢|K ¢) = —( p|K ¢). Therefore if¢ is an eigenstate of

a discrete lattice model. In fact, as we shall see in Sec. Ill, &,, then K¢ is also one and the two are degenerate and

slightly different reinterpretation of the symbols in Fig. 1 orthogonal.

will be sufficient in order to obtain the screened PMSOI  For lattices with inversion symmetry, the Hamiltonian

matrix element for the lattice model. (35) is invariant under a transformatiah which transform
r into —r andp into —p, leaving the spino- unchanged. In
ll. LATTICE MODEL the following we assume th&t, commutes with].

Another important transformation is that of conjugation
C defined byC=KJ=JK. The effect ofC is therefore to

An important difference between the jellium model andchange the signs ofr andr. Also in this case the Hamil-
any other model in which the discrete nature of the lattice igonian H, remains invariant(provided that[H,,J]=0).
taken into account is the fact that, even for the equilibriumMoreover C¢y ¢y | and(y;,Cey;)=0 because, as in
configuration of the lattice, the conduction electrons experithe case oK,C?=—1 and({¢|¢)=(Cy|Ce). This can be
ence a spin-orbit interaction with the ions. Its strength deexplicitly seen by applying the operatid® on Eq.(37):12
pends on the penetration of the electronic wave function in-
side the core region of the ion. As first pointed out by 1 '
Elliott,® this gives rise to an extra contribution to the PMSOI. G (N=—=> (&l ox |~ bl ox)e QT (39
As we shall see in the following, the screening mechanism of WQ
the so-called Elliott's mechanism differs from the one stud-
ied in Sec. Il.

If we denote withw(r,{R}) the bare electron-ion poten-
tial for the equilibrium configuratiodR} of the ion’s posi-
tion, then the periodic part of the electronic Hamiltoniah is

o? He.i=; u(R)- VgU(r,{R}). (39

Ho=%+U(r,{R}), (35

A. Bare PMSOI matrix element

Small deviationau(R) from the equilibrium lattice configu-
ration lead to a modulation of both the electron-ion potential
and the associated spin-orbit coupling:

Because we are interested in the long-range behavior of the
where unscreened electron-lattice interaction, it is a reasonable ap-
proximation to consider a rigid-ion model for the lattice po-
tential. Therefore we defin@/(r,{R})=2gV(r—R), where
V(r—R) is the potential at position generated by the ion at
(36) site R. Equation(39) therefore becomes

h
U(r{Rp)=W(r{R})+ WVrWU,{R})XD' o.

The second term on the right-hand side of E8p) is the

spin-orbit coupling between the conduction electrons and the Hei=— 2, U(R)-Vg
ions. Because of this term, the eigenfunctiondigfare lin- R

ear combinations of Bloch states of different spins and, ne- A

glecting the band index, they can be written in full generality +—=V,V(r—R)Xp- o
as follows>* 4m-c

V(r—R)

) (40

1 Making use of the set of electronic wave functiq3) and
r=— a +b )elk+Qr (37) (39), a_md expanding the dlsplacgment veaifR) in nor.mall
Yial \/Vg (BcroxrF Beroxy coordinatesH.; may be written in the second-quantization

. . . representation as follows:
Here x; and x, are the spinor vectors with eigenvalues

+1 and—1 along a given direction anQ is a vector of the
reciprocal lattice. The set of thi o functions is propor-
tional to the spin-orbit coupling and it is usually referred to % Ve .

as the small spin component, whereas the coefficiapts, =k =~ (m) Mk k—qCk,aCk—q.a
give rise to the large component. We label the wave function " ’

Hei=HgptHpuso

in Eq. (37) with a spinlike quantum number, but, because : h 12
of the spin-orbit coupling, it does not correspond to a pure X(bq,x+b—q,x)+k2 Z MNo.+
. AN a,B Wq,\
spin state.
The properties of the wave functiq®7) depend on the X Mﬁa'k,qﬁclyack,qﬁ(bqy)ﬁrbiq')\). (41

symmetry of the Hamiltoniar35). In particular,H, is in-

variant under the time-reversal transformatih which  Here @ and B8 are spinlike states indices, while is the
changes the sign of the momentum and spin, leaving thphonon polarization. Furthermor‘nteflﬁ‘k,q andM{;a’k,qB are
positionr unchanged. Given a staifg thenK ¢ is called the the bare EPI and PMSOI matrix elements, respectively. Let
Kramer conjugate of¢. Two important properties of the us restrict our analysis to the transverse component of the
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PMSOI matrix element, which results from a scattering pro-trality of the system, this term is canceled by a contribution
cess in which the electron changes its dominant spin statepposite in sign due to the infinite electrostatic potential gen-
from | to 7: erated by the electrons.

By means of Eqs(44) and (45), the bare PMSOI matrix

ia. ~ h element can be written a8d =MS5+ M"%, where
M k—q = _ER: e' 4R (Y| €gn- VR V(r—R)+ am2c2
NS(L) iq-R P S(L)(r—
XV V(r=R)Xp-o||¢y_q)- (42) Micdica ; e Wl €an VR[V (r=R)
In his work, Overhauséstudied only the contribution due to h S(L) }
' ) X + A\ r—R)Xp- —_al)-
the last term of Eq(42), whereas Elliott realized that also amdc2 '’ ( )Xp- o || al)
the first term, the ordinary electron-lattice interaction, can (48)

give spin-flip by way of connecting the large and small com-

ponents of the two spinorisee Eqs(37) and (38)]. Yafet | ot s first consider the tertd S, If we restrict the momenta

embodie_d both approaches by analyzing .bOth terms in E ransferq to the first Brillouin zongwe are interested in the
(42). Unlike our approach, he treated the smgle-|on. pOtem'a,imit of small g only), it is straightforward to show that
V(r) as an already screened short-ranged potential. In this

case the Fourier components ofrYare finite at smalg, and

it is possible to perform a Taylor expansion\ifq) in power MMS —iN e - (d+G)\V(g+G el@+G)r
of q. Following this procedure, Yafet was able to demon- kT.k=al ;o ax- (AT GIV(A+C) (i

strate that the first two terms of the series

MR k—qi =Mk + VMR -G+ -+ vanish. But in our %
analysis, the potentif(r) is the bare one; therefore its Fou-

rier transform behaves liKé(q) ~ 1/g? for small momentum

transfer, and a Taylor expansion \g{q) in powers ofq is ~ The summation over the reciprocal-lattice vect@rdoes not
not possible. On the other hand, we still can follow to someinclude the valueG=0, and therefore the divergency of
extent Yafet's elegant procedure by isolating the long-rang&/(d) for g—0 is removed, andV” is well defined in the

part of V(r). To this end we write the Fourier transform of limit of zero momentum transfer. As pointed out previously,
V(r) as follows: we can apply Yafet's method to this term. We therefore per-

form the g—0 limit and transform the result back to real
space. In this way we obtain

if
1+ m(quG)xp- o||_q). (49

V(n=2, V(q)e'd=> '% V(g+G)el@+orr,
q q
(43)

whereG is a vector of the reciprocal lattice, and the prime
means that the summation owgthas to be restricted to the
: M o\l S

first Brillouin zone. We defind/=V*-+V>, where XV, VS(r—R)Xp- U}WKO

vs(r—R)+—2—2ﬁ
4m-c

M, = _<‘//kT|;q,)\‘; Vg

VHD =2 'V(ge, (44 = — (il eqn- V. USHL{RD v ), (50)

, whereUS(r {R}) is given by Eq.(47). The last equality in
V() =2, ' >, V(gq+G)e'a+err, (45)  the above equation comes from the translational invariance.
g ©G#0 With the help of Eq(46), we can therefore write

While V- behaves as iLfor long distancesy® goes faster to
zero asr —», We shall see that the latter term satisfies the i .

requirements for the use of Yafet's procedure, wheidas M, =— g<¢k¢|€q,x'[p,Ho]|l/fk1>- (51
leads to a matrix element which can be easily evaluated.

Before starting the calculations, we note that in terms of th
definitions of V- and VS, the periodic part of the Hamil-
tonian, Eqs(35) and(36), becomes

St we denote withS the operator inside the brackets, and
realize thalCSC~ 1=, whereC is the conjugation operator,
then it follows that (ii|Sth;)=(ti;|SCis)
p? =(CSClu:| Y1) = — (¥ | S, ). ThereforeM};5 =0. By
Hozﬁ +US(r,{R}), (46)  afurther application of Yafet's analysis, it is also possible to
show thatMﬁ’T’Sk_ql is actually proportional to the second
power ofq, and, as we shall see in the following, in the small

h R :
Us(r,{R})=2 VS (r—R)+—=V,VS(r—R)Xp-o|. momentum transfer limit this term can be neglected with
R 4m-c AL
respect toM ;g -
(47) Next we make use of the expression\df given by Eq.

In writing Eq. (46), we have left out the infinite constant (44), and evaluate the matrix eIemdm)tk,ql. Performing
NV(0)=limy_oNV(q). In fact, because of the charge neu- the summation oveR, we obtain
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. , model, it is clear that the screening of the Overhauser part of
Miki g1 = IN€gx - aV(a)| (s [€" [ h—q) the PMSOI(which has the same physical origin of the PM-
SOl in the jellium modelcan be achieved by considering the
if . spin-other-orbits electron-electron interaction. We evaluate
+ m(wkﬂe'q'rqx P-oly_q)|- (52 therefore the matrix element of the potential in E40) by
making use of the electronic wave functio(®’) and (38).
Making use of the electronic wave functio(®7) and(38),  Within second quantization, the spin-other-orbit interaction
we can evaluate the two terms within the brackets in the limitakes the form
g—0. Since the second term is already proportional to the
small quantitya?, we consider only the contributions com- B2 2 477322 X 2o (Kt
ing from the large spin components in the electronic wave 4m?c? ) (@@ Tax (k+ Q)1+
functions. This leads to the result

Clqy 9

T oot
X Cy,1Cys ,Ck’ +q,yCk—q,] - (57)

eITgXp- ol Yy_q )= Xp-o
(el <P oliic—q)) = (1A P- 1) Here we have considered only the contribution in which an

B x 2 electron changes its dominant spin state froprto 7, as in
_ﬁ% (A ) Tax (k+Q)]+ . the spin-flip transition appearing in E(p6). The above re-
sult was obtained in the limit of long wavelength, and we
(53 have dropped all the terms proportional to the small spin
Here we used the notatiofv], =v,—iv,, wherev is an component, because to leading order this expression is al-
arbitrary vector, and, andv, are its components along the ready of qrderaz. o o _
x andy axes. For small momentum transfer, the first term The spin-other-orbits interaction is able to provide for the
within brackets in Eq(52) also makes a linear contribution Screening of the Overhauser part of the PMSOI. But the

in g. In terms of the representatiori87) and (38) for the screening of Elliott’s mechanism is of different origin. Be-
wave functions, this becomes cause this contribution to the PMSOI comes from a mixing

of the small and large spin components of the electronic
, wave functions, we expect that a similar mixing can be pro-
(U | €9 [ q) =2 (B4 0aF— v 0~ AF+ oDE_qs0) vided by the Coulomb repulsion when wave functid8g)
Q and (38) are used in the calculation of the Coulomb matrix
~Dy-q, (54) element. This leads to an additional interaction, which in fact
can provide the screening of Elliott’s term in the PMSOI.
where The use of wave function87) and(38) also leads to terms
in which both electrons change their dominant spin state.
D, = * * o p* * oy However, we shall neglect these terms because they do not
« EQ: (3c-QV kb~ Pics Vi) 59 lead to screening. We therefore consider only terms in which
one electron changes its dominant spin state. In the limit of
{nall momentum transferq, and making use of
o(lak+ol?+ by ol?) =1 (normalization conditio)) we ob-
tain the following result:

By collecting the results given in Eq&2)—(55), we finally
obtain the general expression for the transverse compone
of the bare PMSOI matrix element:

M k=1 =Mii kg MkiS-q1 4me® .

E Dk'QTCk,TCkr,yck'Jrq,ka—q,L, (58)
kk'q,y
where the vectob, is defined in Eq(55). We write down a
generalized spin-other-orbits interaction Hamiltoniaff;c,
+0O(g?). (56)  which is defined as the sum of the terms appearing in Egs.

(57) and (58):

N iﬁz * 2
=iN€g-AV(Q)| D 0+ zro2 2 (3eo)

X[gx(k+Q)]+

Because V(q)~1/g%>, MS vanishes faster tharM‘ for

g—0, and in the range ofj values of interest for us, we can HEe= > Vgo(kT,k'y;k—ql,k'+qy)
neglect this contribution. We note moreover, that Kk'q,y
limg_.oMp; o #0. Qualitatively the same result was ob- Tt

1g—0""k1,k—q] . . X , / _
tained in Sec. Il for the bare PMSOI matrix element in the Ck.1% Ok +arCk-aul s 59
jellium model[see Eq(24)]. where

B. Screening VS-O(kTvk,75k_qllk,+q7)

Once we have obtained an expression for the bare PMSOI 4e? - K?
matrix element which includes Elliott's and Overhauser’s g quﬂmﬁ (a0 LaX (k+Q)]4 |.
mechanismgthe first and second terms within the brackets Q 60)

in Eq. (56), respectively, we have to consider the modifica-
tions induced by the screening effect of the conduction elecAt this point we have all the ingredients for the evaluation of
trons. From the results obtained in the analysis of the jelliunthe screened PMSOI matrix element in the long-wavelength
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limit. We can make use of the Dyson equation for the re-electron-electron Coulomb potential. Moreover, in accor-
sponse of the electrons to the PMSOI and EPI shown diadance with Yafet's resuftwe find that in the limitq—0 the
grammatically in Fig. 1. This equation was obtained for theresulting screened PMSOI matrix element, E&p), is pro-
jellium model but, with a different reinterpretation of the portional to . Because the small spin component of the
symbols appearing in Fig. 1, we can also extend its validityelectronic wave function is of ordekg, the quantityD, in

to the present case. The full semicircle in Fig. 1 now repre£q. (55) is of orderAg/kg , where is the Fermi momentumn.
sents the bare PMSOI matrix element, including both theTherefore, for materials in whiclg is larger than the fine-
Overhauser and Elliott tern€q. (56)]. The dashed line is structure constant, we can neglect the Overhauser contribu-
still the Coulomb repulsion #e%/q?, whereas the dashed tion and retain only Elliott's part of the PMSOI. In this way
line attached to a solid triangle represents the generalizeBq. (63) can be rewritten as

spin-other-orbits interaction given by E@O0). Therefore, in

the static limit the screened PMSOI matrix element ~ ~ ~ d
My, k—q, Satisfies the following equation Ke

A N q— Ny where we have neglected the angular dependence. The above
MﬁT,k—qL:MﬁT,k—ql—'—z q—_ expression can be used to estimate the PMSOI contribution
Ky €k'—a™ €k to T, ' and it gives a result in accordance with the Elliott-
r o / 9 Yafet expression.
XVso(kT K vik=al k' +an My g, P
(61) IV. CONCLUSIONS

where M, is the screened EPI matrix element. In the  The nature of the screening of the phonon-modulated
long-wavelength limit, it depends only on the momentumspin-orbit interaction in metals has been investigated within
transferq, and it is formally given by Eq(27), with the bare  the Hartree approximation. We have found that the inclusion

EPI matrix element approximated by of relativistic corrections to the electron-electron interaction
N N can provide for a screening of the PMSOI. In particular, the
Mik—q=Mg=iNeg\-aVv(a). (62 spin-other-orbits interaction is responsible for the screening

of Overhauser’s term while the screening of the Elliott part
of the PMSOI is obtained from the spin-mixing terms in the
matrix element of the Coulomb electron-electron repulsion.
Finally we have obtained an explicit expression for the
(63 screened PMSOI matrix element in the long-wavelength ap-

proximation. This is in qualitative agreement with the result
The above result demonstrates that for the lattice case th&f previous theories, which were based on anpriori
screening of the PMSOI is given by two mechanisms. Thescreened lattice potentidlOur work provides, therefore, a
Overhauser contribution is screened by the spin-other-orbitgistification of the already known results and confirms, from
interaction, whereas Elliott’s term of the PMSOI is screeneda theoretical point of view, the validity of the Elliott-Yafet
by considering the spin-mixing matrix element of the formula for the electron-spin-relaxation time.

By making use of Eq(60) and the expression for the bare
PMSOI given in Eq.(56), from Eq.(61) we obtain

A
M1 k—ql

4\ —
Mict ka1 = 1+4mex(a)/q?”
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