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Electrical-conductivity calculation in ab initio simulations of metals:
Application to liquid sodium
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We describe a calculation of the electrical conductivity inab initio simulations of liquid sodium, using the
Kubo-Greenwood formula for the optical conductivity and the molecular-dynamics scheme based on finite-
temperature density functional theory. The effect of different Brillouin-zone samplings and that of the finite
size of the system have been extensively studied at different temperatures. Close to the melting point, even
with an adequate sampling of the Brillouin zone, our results exhibit a large discrepancy between theory and
experiment. This is much reduced at higher temperatures. The possible reasons for this behavior are discussed.
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I. INTRODUCTION

As the temperature of a metal approaches the mel
point Tm , its electrical resistivityr rises approximately lin-
early; atTm , r increases abruptly, and then continues to r
approximately linearly in the liquid state.1 Many calculations
of r and its temperature dependence have been repo
particularly in alkali metals.2–7 In all these calculations the
Ziman approach has been used.

The theory of Ziman8 is based on a quasi-free-electro
approximation and makes use of the Boltzmann approac
transport. The crucial ingredients of the theory are the st
structure factorS(k) and the pseudopotentials. On the who
the Ziman method has been rather successful in descri
the conductivity of many liquid metals close to the melti
point. However, recent attempts7 at calculating the high-
temperature conductivity proved partially unsuccessful. T
results were particularly unsatisfactory for Na, Al, and P
Since both pseudopotentials and structure factor are a
rately known for these elements, the discrepancy with
experimental values can be attributed to the use of the w
scattering approximation, which becomes more and more
valid as the temperature is raised. The limitation of the
man formula can in principle be circumvented by present
developments ofab initiomolecular dynamics~MD!.9 In this
approach the interactions are computed from first-princip
calculations performed on the fly as the simulation procee
This gives access to the electronic excitation spectrum.
ing this information the electrical conductivity can be calc
lated from the Kubo-Greenwood formula.10 This in principle
straightforward procedure allows one to transcend the we
scattering limit of the Ziman formula.

Theab initio simulation of metals poses a variety of tec
nical problems for which different solutions have be
proposed.11 Here we shall follow the approach of Alav
550163-1829/97/55~23!/15515~8!/$10.00
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et al.,12,13which is based on a new formulation of the finit
temperature Mermin density functional theory~DFT!.14 We
will examine various problems connected with the use
finite simulation cell and make a complete analysis of
k-point sampling of the Brillouin zone~BZ!. As is well
known, in small cells a poork-point sampling induces the
appearance of artificial energy gaps, as large as 1 eV, c
to the Fermi level. Since the electrical conductivity crucia
depends on the density of states at the Fermi surface,
point has to be carefully examined. By performing simu
tions, at various temperatures, with differentk-point grids
and different sizes of the supercell, we show that a suita
choice of thek-point sampling can significantly reduce th
computational cost. In fact reasonable estimates of the e
trical conductivity can be obtained using relatively small s
percells. Finally, we compare our results with the experim
tal data and we comment on the discrepancy obser
between simulation and experiment.

II. COMPUTATIONAL SCHEME

Simulations have been performed using the method ofab
initio MD based on the finite-temperature density function
theory of Alavi et al.12,13,15 This technique is particularly
suitable for studying electronic properties of metallic sy
tems since a self-consistent electronic-structure calculatio
performed at each MD step and the effect of thermal el
tronic excitations is consistently incorporated using fractio
ally occupied states.

Most of the simulations have been carried out in a pe
odically repeated simple cubic box containingN590 sodium
atoms. With this value ofN, using theG point only to sample
the BZ, the Fermi level is located in the middle of a quasid
generate set of energy levels. Therefore no large, unphys
energy gap is present between conduction and valence ba
15 515 © 1997 The American Physical Society



th

v
e
in

th
e
te
e

e

a
to

ul
lid
e
e
to
ly
te
os
um

ca
th
a
e

ity
nc

e,

f

nal
-

l
u-
onic
on

od
is

s,
s-
of
a.u.
en
c
nce
the
ntly

t of

or-

op-

er,
ron
nt,
p-
ot
ve
the
ve
ct

l
i-

p
f
o

15 516 55SILVESTRELLI, ALAVI, AND PARRINELLO
The size of the cubic box has been varied to reproduce
experimental densities16 of liquid sodium at five different
temperatures above the melting point (Tm5371 K!, namely,
T5400, 550, 700, 850, and 1000 K. finite-size effects ha
been studied by AtT5400 and 700 K finite-size effects hav
been studied by performing simulations with an increas
number of sodium atoms. Again, the values ofN
(N546,60,90,138,206) have been chosen in such a way
using theG-point sampling, the Fermi level is placed in th
middle of a quasidegenerate set of energy levels. The in
action between ions and valence electrons has been mod
using the Topp-Hopfield17 ~TH! pseudopotential

VTH~r !5HV0 cos~ar !1b, r<r c

21/r , r.r c ,
~1!

where the numerical values~in a.u.! of the parameters ar
V050.179,a51.224,b520.179, andr c53.0 .VTH(r ) is a
local potential, which correctly reproduces the ground st
and the lowest excitation energy of the isolated sodium a
in a Hartree-Fock calculation. The pseudopotential of Eq.~1!
is not state of the art, however, it has been successf
used17,18to study structural and dynamical properties of so
sodium. Furthermore it has the advantage of being a v
smooth potential, so that the electronic orbitals can be
panded in plane waves using a relatively low energy cu
of ;5 Ry. This feature allowed us to simulate relative
large systems at a reduced computer cost. Preliminary
have been performed to check the adequacy of the ch
pseudopotential. In Table I we have reported the equilibri
distance and vibrational frequency of the Na2 molecule,
computed using the Topp-Hopfield pseudopotential. As
be seen, by increasing the energy cutoff from 5 to 8 Ry
results have not appreciably changed. Moreover the comp
son with other pseudopotential calculations and experim
appears to be satisfactory.

For a given configuration of ions, the electronic dens
n(r ) has been computed by minimizing the free energy fu
tional F of the electron gas. This is defined as

F5V1mNe1EII , ~2!

where

TABLE I. Equilibrium distanced and vibrational frequencyv
of Na2, as obtained by computer simulation, using the Top
Hopfield pseudopotential, and the plane-wave energy cutoff o
and 8 Ry, respectively. Comparison is made with the results
otherab initio simulations~based on different pseudopotentials! and
the experiment.

d ~a.u.! v ~cm21)

Topp-Hopfield~5 Ry! 5.87 145
Topp-Hopfield~8 Ry! 5.87 146
Reference 19 5.48 173
Reference 20 5.56 163
Experimenta 5.82 159

aReference 21.
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V@n~r !#52
2

b
ln det~11e2b~H2m!!

2E dr n~r !S f~r !

2
1

dVxc

dn~r ! D1Vxc , ~3!

where b51/(kBTel) is the inverse electronic temperatur
m is the chemical potential,Ne is the total number of valence
electrons,H52(1/2)¹21V(r ) is the one-electron Hamil-
tonian with the effective potential V(r )5( IVeI(r
2RI)1f(r )1dVxc /dn(r ), f(r ) is the Hartree potential o
an electron gas of densityn(r ), Vxc the exchange-correlation
energy in the local-density approximation~LDA !, and EII
the classical Coulomb energy of the ions. The functio
Vxc is approximated by itsTel50 expression, since its finite
temperature corrections are negligible22 at the temperatures
and the electronic densities of our system.F reproduces the
exact finite-temperature density of the Mermin functiona14

and was self-consistently optimized, for each ionic config
ration, using as the electronic temperature the average i
temperature. Efficient diagonalization of the one-electr
Hamiltonian has been performed by means of a variant23 of
the Lanczos algorithm, which allows optimal use of a go
guess of the initial wave function. The electronic density
expressed in terms of the single-particle orbitals

n~r !5(
i
f i uc i~r !u2, ~4!

where f i are the Fermi-Dirac occupation number
f i5(eb(Ei2m)11)21, and the ionic forces are calculated u
ing the Hellmann-Feynman theorem. The ionic degrees
freedom have been integrated using a time step of 50
(;1.2 fs!. The starting potential for each time step has be
calculated ~see Appendix! from the converged electroni
charge density of the previous time step plus the differe
between a superposition of atomiclike charge densities at
current and previous times. This procedure has significa
reduced~typically from 5–10 to 2–3! the number of itera-
tions required to achieve self-consistency. In the first par
each simulation the system has been equilibrated, for;1 ps,
at a given average ionic temperature, starting from a dis
dered initial configuration. Then a production run of;1 ps
has been performed in which structural and electronic pr
erties of the system have been computed. TheG point only
was used to sample the BZ of the MD supercell. Howev
for a selected set of ionic configurations, the one-elect
Hamiltonian has been also diagonalized using differe
more thorough,k-point samplings, according to the prescri
tion of Monkhorst and Pack.24 In these cases we have n
performed a full self-consistent optimization, but we ha
used the converged electronic density obtained by
G-point sampling. This is a good approximation, as we ha
explicitly checked for some ionic configurations: the effe
on the free energy is negligible~the relative error being of
the order of;1024) and the relative error in the electrica
conductivity is;1%, which is a value smaller than the typ
cal statistical errors of this quantity.

As in otherab initio simulations13,25 we have computed
the electrical conductivitys by extrapolating to zero fre-

-
5
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55 15 517ELECTRICAL-CONDUCTIVITY CALCULATION IN . . .
quency the results obtained by the Kubo-Greenwo
formula10 for the optical conductivity:

s5s~0!5 lim
v→0

s~v!, ~5!

with s(v) computed as a configurational average of

s~v,RI !5
2pe2

3m2v

1

Vb
(
i , j

~ f i2 f j !z^c i u p̂uc j& z2

3d~Ej2Ei2\v!, ~6!

wheree andm are the electronic charge and mass,Vb5L3 is
the simulation box volume,p̂ is the momentum operator an
c i , Ei , are the electronic DFT eigenstates and eigenval
calculated for the ionic configuration$RI%, at a singlek point
~for instance, theG point! of the BZ. The generalization o
Eq. ~6! to more than onek vector is straightforward:

s~v,RI !5(
k

s~v,RI ,k!•W~k!, ~7!

wheres(v,RI ,k) is defined by Eq.~6!, with the eigenstates
and the eigenvalues computed atk, andW(k) is the weight
of the pointk. Of course, the use of the single-particle DF
states and eigenvalues, instead of the true many-body ei
functions and eigenvalues, introduces an approximation
the calculation ofs. Due to the finite-size discretization o
the eigenvalue spectrum, in practical applicationss(v,RI) is
computed for a finite set of frequencie
(v1 ,v2 , . . . ,v l , . . . ) by averaging over a small frequenc
rangeDv:

s~v l ,RI !'
1

DvEv l2Dv/2

v l1Dv/2

s~v,RI !dv. ~8!

The value ofDv must be carefully chosen. In fact it has
be large enough to assure that a sufficient number of e
tronic levels contribute, and, at the same time, small eno
to allow a good resolution. We have found thatDv50.05
eV is adequate for our system. Since our computeds(v)
curves are smooth functions, we have estimated the dc

FIG. 1. Static structure factorS(k) of liquid sodium (N590) at
different temperatures. The curves have been obtained by avera
over the configurations of the MD simulation.
d

s,

n-
in

c-
h

n-

ductivity by a simple linear extrapolation, using the averag
values ofs(v) calculated at the two lowest frequencie
Notice thats(v) must obey a sum rule10 that can be easily
obtained as a generalization of the sum rule of the oscilla
strength:

S5
2mVb
pe2Ne

E
0

`

dvs~v!51. ~9!

In actual calculationsS is expected to be smaller than 1
since only a finite, limited number of excited states can
taken into account in the evaluation of Eq.~6!.

III. RESULTS AND DISCUSSION

In Figs. 1 and 2 we have plotted the static structure fac
S(k) and the pair correlation functiong(r ) of liquid sodium,
at different temperatures. The curves have been obtaine
averaging over the ionic configurations of the MD simu
tions, performed withN590. The effect of increasing the

ing
FIG. 2. Pair correlation functiong(r ) of liquid sodium

(N590) at different temperatures. The curves have been obta
by averaging over the configurations of the MD simulation.

FIG. 3. Electron-ion pair correlation functiongei(r ) of liquid
sodium (N590) at different temperatures. The curves have be
obtained by averaging over the configurations of the MD simu
tion.
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15 518 55SILVESTRELLI, ALAVI, AND PARRINELLO
temperature is evident. The peaks become flatter
broader. In particular the height of the first peak decrea
gradually whereas its width increases on raising the temp
ture. Our computedS(k) and g(r ) functions are in good
agreement with the results obtained by experiments26 and
theoretical models.7 The success of this and previousab ini-
tio simulations27 of liquid sodium can be taken as an indic
tion of the adequacy of theG-point sampling for the evalu
ation of the structural properties. This conclusion
strengthened by the observed insensitivity of theg(r ) to the
cell size.

The same is true for the electronic density, as we h
already pointed out in Sec. II. In Fig. 3 we have plotted t
electron-ion pair correlation functiongei(r ) of liquid sodium
(N590) at different temperatures. This function describ
the correlation between the local density of the valence e
trons and the local density of the ions. As in Ref. 28 we ha
computedgei(r ) according to

gei~r !5
1

4pr 2n0N
K (

I

N E dr 8 n~r 8!d~ ur 82RI u2r !L ,
~10!

wheren0 is the averaged density of electrons and the ang
brackets indicate temporal average. Ourgei(r ) curve, com-
puted at 400 K, is in good agreement with the same func
calculated, at 373 K, by Ishitobi and Chihara,29 using the
hypernetted-chain approximation. As can be seen, the p
ability that the valence electronic charge is close to a gi
ion increases as the temperature rises. This reflects an
creased electron charge localization. It is very hard to as
whether this indicates that the system is approaching

FIG. 4. Electronic density of statesN(E) of a single MD con-
figuration of liquid sodium (N590) at 700 K, obtained by using
increasingly large sets ofk vectors to sample the BZ:~a! G point,
~b! 8 k points,~c! 18k points,~d! 48k points. The curves have bee
averaged over energy intervals of width 0.1 eV.
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metal-insulator transition since LDA has well-known pro
lems in describing such a transition, characterized by a c
plicated interplay between disorder and electron interac
effects.30

While, atN590, theG-point sampling appears to be ad
equate in describing the structural properties and the vale
charge distribution of the system, it is significantly less a
curate in reproducing the electronic density of states~EDOS!
and in the computation of the electrical conductivitys.
These conclusions will be made evident by the followi
detailed analysis.

In Fig. 4 we have reported the EDOS corresponding t
single MD configuration of liquid sodium (N590) at 700 K,
that is just in the middle of the range of temperatures
have considered. The EDOS actually displayed have b
averaged over energy intervals of width 0.1 eV, and th
have been obtained using differentk-point samplings. As can
be seen, theG-point sampling gives a poor representation
the EDOS, which, in our system, is expected to be nea
free-electron-like. The situation clearly improves by increa
ing the number ofk points that are used. In particular,
k-point sampling consisting of the 8 point
(61/4,61/4,61/4)p/L turns out to be already sufficient t
obtain a reasonable EDOS behavior. The same is true for
MD configurations sampled at the other temperatures
have considered.

A similar conclusion can be drawn by considering t
calculation of the electrical conductivity, for which a mo
quantitative analysis can be performed. In Fig. 5 we rep
the behavior of the free energyF, the dc conductivitys, and
the value ofS, as a function of the number ofk vectors used

FIG. 5. Convergence of electronic properties of liquid sodiu
(N590), for a single MD configuration at 400 K, as a function
the number ofk points used in the sampling of the BZ:~a! free
energy F, ~b! dc conductivity s, ~c! S52mVb /
(pe2Ne)*0

`dvs(v). Symbols indicate computed values, while th
lines are just a guide for the eye.
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55 15 519ELECTRICAL-CONDUCTIVITY CALCULATION IN . . .
in the sampling of the BZ. In this case we have considere
single MD configuration at 400 K, since we expect that,
low temperature, the convergence of the electronic prope
is slower than at high temperature. In fact, by increasing
temperature, the resulting broadening of the Fermi funct
lowers the energy resolution needed and therefore a coa
k-point sampling is sufficient. As can be seen, 8k vectors
give reasonably converged results. We also note that, u
theG-point only sampling, we obtainS.1. Such a violation
of the sum rule is not a result of the numerical approximat
used but is instead a consequence of the poork-point sam-
pling. For largerk-point samplingsS51 is not exactly sat-
isfied but it isS,1 that is to be ascribed, as discussed e
lier, to a truncated summation over the excited states.

In Fig. 6 the optical conductivity curves, obtained at d
ferent temperatures, averaging over 10 uncorrelated io
configurations of the MD simulation, have been plotted. T
statistical error bars have been omitted for clarity, typi
relative errors being of the order of 5–10%. Table II repo
the corresponding values ofS. As can be seen there is
remarkable difference between the results obtained using
G point and the 8-k-vector sampling. As expected, the di
crepancy reduces by increasing the temperature, howe
even at 1000 K,S is larger than 1 with theG-point sampling.
In nearly-free-electron metals the optical conductivity sho
exhibit a Drude-like behavior. Therefore we have tried to
our computeds(v) data of Fig. 6 to the Drude function

s~v!5
Nee

2t

Vm

1

11v2t2
. ~11!

FIG. 6. Optical conductivitys(v) of liquid sodium (N590),
computed at different temperatures, averaging over 10 uncorre
configurations of the MD simulation:~a! 400 K, ~b! 550 K, ~c! 700
K, ~d! 850 K, ~e! 1000 K. The open circles have been obtain
using theG-point sampling, while the full circles are the resul
computed by the 8-k-vector sampling. The solid and dashed lin
are just a guide for the eye.
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We have found that the curves obtained using the
k-vector sampling are reproduced by a Drude function mu
better than those computed with theG-point sampling. This
can represent a further indication that theG-point approxi-
mation is not adequate to describe the electronic prope
of the system. In Table II the estimated values of the Dru
relaxation timet are shown. As expectedt decreases by
increasing the temperature.

Finite-size effects have been studied by performing sim
lations of liquid sodium, atT5400 and 700 K, with different
values ofN, in the range 46–206, using theG-point sam-
pling. In all the cases the Fermi level was located in t
middle of a quasidegenerate set of levels. In Figs. 7 and 8
have reported the behavior ofS ands as a function ofN, for
T5400 and 700 K, respectively. It is evident that, by i
creasing the size of the system, the convergence of th
quantities is quite slow, particularly atT5400 K. In fact, in
this case, even using a large supercell containing 206 ato
the conductivity value appears to be far from conv

ed

TABLE II. Values ofS52mVb /(pe
2Ne)*0

`dvs(v), averaged
over 10 uncorrelated MD configurations of liquid sodiu
(N590), at different temperatures, obtained using theG-point sam-
pling,S(G), and the 8-k-point sampling,S(8k). Statistical errors, in
the last digit, are given in parentheses.t(8k) are the relaxation
times calculated by fitting Drude curves to thes(v) data~see Fig.
6!, obtained by the 8-k-point sampling.

T ~K! S (G) S (8k) t (8k) (10215 sec!

400 3.55~8! 0.59 ~2! 7.0
550 2.92~9! 0.82 ~3! 6.9
700 2.29~9! 0.91 ~3! 5.1
850 2.12~5! 0.91 ~1! 4.9
1000 1.86~6! 0.92 ~1! 4.5

FIG. 7. Finite-size effects in liquid sodium. Convergence ofs
~upper panel! andS ~lower panel!, at 400 K, as a function ofN, the
number of sodium atoms used in the simulation. The BZ has b
sampled using theG point only. Circles indicate computed value
~averaging over 10 uncorrelated configurations of the MD simu
tion!, while the lines are just a guide for the eye. Statistical errors
S are of the same size as the symbols.
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15 520 55SILVESTRELLI, ALAVI, AND PARRINELLO
gence, as indicated by the fact that the sum rule is not s
fied. Instead, atT5700 K, withN5206 the value ofS is not
much larger than 1, suggesting thats is approaching the
converged value. Therefore we can conclude that, using
G-point sampling, a simulation box containing at least 2
sodium atoms is necessary in order to obtain reasonably
verged conductivity values, atT5700 K. For lower tempera-
tures our results indicate that a considerably larger supe
is required. Notice that, in the case ofT5700 K, our s
computed atN5206 is very close to the value obtained
N590, using the 8-k-vector sampling. This interesting resu
is confirmed by analysis of Fig. 9, where we compare

FIG. 8. Finite-size effects in liquid sodium. Convergence ofs
~upper panel! andS ~lower panel!, at 700 K, as a function ofN, the
number of sodium atoms used in the simulation. The BZ has b
sampled using theG point only. Circles indicate computed value
~averaging over 10 uncorrelated configurations of the MD simu
tion!, while the lines are just a guide for the eye. Statistical errors
S are of the same size of the symbols.

FIG. 9. Optical conductivitys(v) of liquid sodium, at 700 K,
using theG-point sampling of the BZ with different values ofN
~open symbols!, and the 8-k-vector sampling withN590 ~full
circles!. Symbols indicate computed values~averaging over 10 un-
correlated configurations of the MD simulation!, while the lines are
just a guide for the eye.
is-
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0
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optical conductivity functionss(v) computed atN590,
N5138, andN5206, using theG-point sampling, with the
same quantity obtained atN590, using the 8-k-vector sam-
pling. As can be seen, the curve computed atN5206 is very
similar to that calculated atN590 with the 8-k-vector sam-
pling. This turns out to be particularly true at the lowe
frequencies, that is, just in the region that is more relevan
extrapolate the value ofs. Since the computational cost o
our ab initio simulations scales approximately asN33Nk ,
whereNk is the number of thek vectors that are taken into
account in the actual calculation (Nk54 for the 8-k-vector
sampling, due to symmetry considerations!, it is clear that,
also in our disordered system, a careful choice of
k-point sampling can be very effective in decreasing
computational effort that is required to estimate the electr
conductivity.

Finally, in Fig. 10, we have plotted our calculated elect
cal conductivitys as a function of the temperature. In th
case of the 8-k-vector sampling we have computeds in two
ways, using the standard procedure of extrapolatings(v) to
zero frequency, and by means of the Drude formula, wh
allows us to obtains from the estimate of the relaxation tim
t, s5Nee

2t/Vm. The difference between the values ofs
computed using the two methods can be taken as an esti
of the uncertainty inherent in the extrapolation ofs(v) to
zero frequency. As can be seen the difference between
two estimates is very small except in the case ofT5400 K.
By comparison with the experimental curves one can
serve that all the values computed using theG-point sam-
pling are considerably higher than the corresponding exp
mental data. With the 8-k-vector sampling our results ar
compatible with the experiment atT5850 and 1000 K, how-
ever, there is a clear disagreement at lower temperatu
Hence the temperature dependence of the electrical resi
ity is not well reproduced. This unsatisfactory result does
appear to be related to a poor sampling of the BZ or

n

-
f

FIG. 10. Electrical conductivitys of liquid sodium (N590) as
a function of the temperature. The open circles have been obta
using theG-point sampling, while the full symbols are the resu
computed by the 8-k-vector sampling. In this last cases has been
obtained both by extrapolatings(v) to zero frequency~circles!,
and using the formulas5Nee

2t/Vm with t estimated by fitting
s(v) to the Drude function~triangles!. The solid and dotted lines
connect points taken from two sets of experimental data~Ref. 31!.
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55 15 521ELECTRICAL-CONDUCTIVITY CALCULATION IN . . .
finite-size effects. In fact, as we have already discussed,
ing more than 8k points does not significantly affect th
results~see Fig. 5!. Moreover, our estimated value ofs is
clearly not compatible with the experiment even atT5700 K
andN5206, namely, in a situation in which we can assu
~see Fig. 8! that the computed conductivity is reasonab
converged with respect to the size of the simulation cell.

In principle, the observed discrepancy could be attribu
to the chosen electron-ion pseudopotential. In order to ch
this possibility, we have performed some tests, for a f
selected MD configurations at 400 K, with different, norm
conserving, sodium pseudopotentials.32 However, the agree
ment with experiment has not substantially improved. W
have even considered the possibility that nonlinear c
corrections20,33might play a role. Unfortunately explicit cal
culations have shown this not to be the case.

Hence what we are left with are the approximations
volved in the calculation ofs by means of the Kubo-
Greenwood formula, particularly the use of DFT eigensta
and eigenvalues in place of the true many-body quantit
and the fact that, as the temperature decreases and the s
becomes more and more free-electron-like, the procedur
extrapolatings(v) to zero frequency is more delicate an
less reliable. Moreover another finite-size effect might
responsible for the poor performance of the theory. In fac
a small system large-wavelength ionic fluctuations are s
pressed by the periodic boundary conditions, and there
the associated contribution to the conductivity is neglecte

IV. CONCLUSIONS

In conclusion, we have presented a calculation of str
tural and electronic properties of liquid sodium using fini
temperature,ab initio MD simulation. A detailed analysis
has shown that theG-point approximation, although reliabl
to compute structural properties and ‘‘integral’’ quantitie
such as the free energy, the electron density, and
Hellmann-Feynman forces, is much less accurate in re
ducing other electronic properties, particularly the electri
conductivity. In fact reasonably converged results can be
tained using large systems only. As expected, the minim
size of the simulation cell decreases as the temperature
creases, however, even atT5700 K, a system containing a
least 200 atoms is required if theG-point approximation is
used. In contrast, by performing simulations with 90 sodi
atoms, the use of a relatively small set ofk vectors, consist-
ing of 8 points, appears to be sufficient to obtain a reason
sampling of the BZ and to substantially reduce finite-s
effects. Therefore, as to be expected, a careful choice o
k-point sampling can considerably improve the efficiency
ab initio simulations of liquid metals. By studying the beha
ior of the electrical conductivity, as a function of the tem
perature, we find that, even using a properk-point sampling,
our results are in agreement with the experimental data
temperatures higher than 700 K only. This effect is proba
related to the approximations introduced in the actual ca
lation of the optical conductivity and in the extrapolation
this quantity to zero frequency.
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APPENDIX

In our MD simulation the self-consistent optimization
the free-energy functionalF has been efficiently performe
using the following scheme.

If one assumes that a superposition of atomiclike cha
densities is a good approximation of the actual charge dis
butionn(r ), then, at the simulation timet, one can write

nt~r !.ñt~r !5(
I
nat@r2RI~ t !#5(

G
@nat~G!St~2G!#eiGr,

~A1!

wherenat(r ) and nat(G) are the atomic charge distributio
and its Fourier transform, respectively, andSt(G) is the
atomic structure factor defined asSt(G)5( Ie

iGRI (t). From
Eq. ~A1! one obtains

nt~G!.ñt~G!5nat~G!St~2G! ~A2!

and

nat~G!.nt~G!/St~2G!. ~A3!

The basic idea is to use, as the input charge density at
t1Dt, the converged, output density at timet plus the dif-
ference between the superposition of the atomic charge
sities at timet1Dt and t, respectively:

nt1Dt
inp ~r !5nt

out~r !1@ ñt1Dt~r !2ñt~r !#. ~A4!

Hence, by using Eq.~A2! and Fourier transforming, we hav

nt1Dt
inp ~G!5nt

out~G!1nat~G!@St1Dt~2G!2St~2G!#.
~A5!

Finally, we can write

nt1Dt
inp ~G!5nt

out~G!1nt
out~G!FSt1Dt~2G!

St~2G!
21G

5nt
out~G!

St1Dt~2G!

St~2G!
, ~A6!

where Eq.~A3! has been used.
We have found that this scheme significantly improv

the efficiency of the self-consistent cycle. Typically only 2
3 iterations were sufficient to achieve self-consistency
place of the 5–10 iterations required by the standard pro
dure in whichnt1Dt

inp (r )5nt
out(r ). A similar technique has

been also applied to simulations of liquid sodium by B
lander and Kleinman.27
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