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Spectral functions of the one-dimensional Hubbard model in thdJ — + o limit:
How to use the factorized wave function
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We give the details of the calculation of the spectral functions of the one-dimensional Hubbard model using
the spin-charge factorized wave function for several versions ofJthe+ « limit. The spectral functions are
expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these
correlation functions very accurately for large systems is developed, and analytical results are presented for the
low-energy region. These results are fully consistent with the conformal field theory. We also propose a direct
method of extracting the exponents from the matrix elements in more general[SEE&3-18207)02423-5

I. INTRODUCTION
Alk,w) =2 [(f.N+1[af JON)P5(w—E" T+ Eg),
After the recent photoemission experimériton quasi- ho
one-dimensional materials, the need of understanding the dyvhile B(k,w) is measured in the angular resolved photo-
namical spectral functions of strongly correlated electroremission experiments and is given by
systems has arisen. While the low-energy behavior is usually
well described within the framework of the Luttinger liquid
theory®™® the experimentally relevant higher energies
(=100 me\j can be calculated, for example, by diagonaliz-
ing small clusterdor by quantum Monte Carlo calculatiohs. HereN is the number of electron$,denotes the final states,
Unfortunately, both methods have limitations given either byand a, , destroys an electron with momentuknand spin
the small size of the system or by statistical errors and use af. If the spectral functions are known, the time-ordered
analytic continuation. Even for the Bethe ansatz solvablgsreen’s function can be obtained from
models, where the excitation spectra can be calculated, the
problematic part of calculating the matrix elements remains: .\ +°°d , Ak,@") " 4o B(k,®")
The wave functions are required and they are simply too C(K'@)= s Yo tio ] .Y o—w —is
complicated. There is, however, a special class of models, )
where the evaluation of the matrix elements is made possible
through a relatively simple factorized form of the wave func- The special models for which the matrix elements can be
tion, and some results were already published by Sorella anchlculated ardi) the Hubbard model, defined as usual:
ParollZ for the insulating half-filled case and by the present
author$''® away from half filling.
The dynamical, zero-temperature one-particle spectral

functions can be defined as the imaginary parts of the time-
ordered Green’s function in the limit U/t— +«; (ii) the anisotropid¢-J model

B(k,w)=2>, |(f,N—1|a, ,JON)?8(w—EJ+E} D).
f,o

H=—ti2 (aiT+1’Uai,U+H.c.)+UZ iy, (2

1 Hy=—t> (3, aj41,+H.C)
Alk,w)=ImG(k,w) foro>p, R L

+2 X JNSSY 1 —i. Ny, ()

i a=xy,z
B(k,w)=—£ImG(k,w) foro<pu. -
™ in the limit J*— 0, wherea, , are the usual projected opera-
tors (actually, the Hubbard model in the larggelimit can be
A(k,w) is measured in angular resolved inverse photoemismapped onto a strong-coupling model usually identified as
sion experiments and can be calculated from the Lehmantihe t-J model plus three-site terms using a canonical
representation transformatior:'*?> where J=4t?/U is smal); and (iii) an
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extension of thet-J model proposed by Xiang and theU— +« limit can be constructed as a product of a spin-
d’Ambrumenil?® defined by the Hamiltonian less fermion wave functiofy) and a squeezed spin wave
function | x). This can be alternatively seen using perturba-
M= —tz & 3 FHe) tional f'zlrg-jumenl"’é1 and then extended_ to thel mode_l in the

“ A hoitle T T J—0 limit. Moreover, the wave function of the excited states
' are also factorizef?’

a QU 1 -
t2 2, VSIS RnPy, () IN) =14 T ® XN (Q. T o). (5)
where Pi,j:H}r_zll(l—niﬂ') in the exchange part of the The spinle_ss fermion wave functiq|np> de_scribe:_; the
Hamiltonian ensures that two spins interact as long as thergharges and is an eigenfunctionfnoninteracting spinless
is no other spin between them. The motivation to study thidérmions onL sites with momenta
model is that, unlike the infinite} Hubbard model, there is a kL=27T +Q 6)
finite energyJ associated with spin fluctuations, and this will ] ! '
give us useful indications about the finiteHubbard model. where the Z; are integer quantum numbers and
From the models defined above, the Hubbard model is th¢=1,2, ... N. The charge part is not fully decoupled from
most relevant one. It plays a central role as the generic modghe spin wave functiony), as the momentun®=2=J/N
of strongly correlated electron systems. Even though it i 7=0,1,...N—1) of the spin wave function imposes a
comparatively simple, it is very difficult to solve, except for twisted boundary condition on the spinless fermion wave
the one-dimensional case, where it is solvable by the Bethfunction (each fermion hopping from site— 1 to site 0 will
ansatz:* Unfortunately, the Bethe ansatz solution is not con-acquire a phase'?) to ensure periodic boundary conditions
venient for direct computation of spectral functions; there-for the original problem. The energy of the charge part is
fore, an alternative approach was needed. In the limit of
small U one can use the renormalization gréum show N
that the Hubbard model belongs to the universality class of Ec= _ZtZl Cos; @)
the Tomonaga-Luttinger mod#,usually referred to as the =
Luttinger liquid’ The Luttinger liquids are characterized by and the momentum reacﬂQ‘ZEJ—N:lkj or, using Eq.(6),
power-law decay of correlation functions and nonexistence
of quasiparticles® The underlying conformal field theory N 2T N 2 O
can be used to relate the exponents to finite-size corrections Pe —Tz I+ [Q: T 21 Li+J|. ®
of the energy and momentut®.?? This gives consistent re- I~
sults not only with the renormalization group in the weak-  On the other hand, the spin wave functiqns are char-
coupling regimé’® but also with the special case of acterized by the number of down spiNs, the total momen-

U/t— +o, where the exponents of the static correlatlonstum Q, and the quantum numbgrQ within the subspace of

. . . —26
could be obtained using a factorlze_d wave funcﬁ‘br?_. momentumQ. They are eigenfunctions of the Heisenberg
Actually, the spin-charge factorized wave function alSOHamiItonian

describes the excited states as f&lnd it can be used to
calculate the dynamical spectral functions as well. The spec- N

tral functions obtained in this way are very educative and, in He= >, JNS*SH 1~ 564.2), 9
some sense, unexpected. For example, it turns out that the =1 a=xy,z

spectrum contains remnants of batfdsrossing the Fermi
energy at &g: the so-called shadow bands. Also it gives
information on the applicability of the power-law Luttinger

N

with eigenenergie€,. J¢ depends on the actual charge
wave function|y). In the case of thdJ— +c Hubbard

liquid correlation functior?. The aim of this paper is not only model,

to give the details of the calculation, which can be useful for 221

other correlation functions, but also to present some results J= TN > (ylninis s bl snibi sy, (10)

on the low-energy behavior of the charge and spin (@oth ho==x1

for the isotropic Heisenberg and the spin mode). whereb! andb; are the operators of spinless fermions at site

The paper is organized as follows. In Sec. Il we review. . ~a
the factorized wave function and in Sec. Il we show how thel :. 0" .the ground - state| ‘pe_% It .reads J —.n(4t2/
spectral functions can be given as a convolution of spin anaJ)[l—sm(an)/(ZTrn)], wheren=N/L is the density.
charge parts. Sections IV and V are devoted to the detailed For thet-J model
analysis of the charge and spin parts. The relation to the
results obtained from the finite-size corrections and confor- Je=39 (ylniniy il ¥, (11
mal field theory is discussed in Sec. VI. Finally, in Sec. VII !

we present our conclusions. and for the ground statd “=J*n[ 1—sir?(zn)/(mn)?]. For

the model of Xiang and d’Ambrumeni “=nJ* and is in-
dependent of the charge part. The energy of the factorized

It has been showf{?” by using the Bethe ansatz solution, Wave function is then given as the sum of the charge and
that the ground-state wave function of the Hubbard model irspin energies, with the assumption that the cordect cho-

Il. THE FACTORIZED WAVE FUNCTION
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sen. IfU— +o or J—0, then the spectrum collapses and we

can assume that all the spin states are degenerate, simplify- A(k,w)sz LKfN+1|aj,,

ing considerably some of the calculations to be presented 7

later. X 8y pN+1_pN
Furthermore, we choosH to be of the form 4+2 (I o 0

intege) when the ground state is unique. Then in the groundand

state the spinless fermion wave functiaf" 5 is described

by the quantum numbe®=m and {Z}={—N/2,... N/2 B(k,w)= > Lf,N—1|ag,|ON)Ps(w—EN+ENY)

—2,N/2—1}, so that the distribution of thigj’s is symmetric f.o ’

around the origin and we choose the spin part as the ground

state of the Heisenberg model according to Ogata and Shi-

ba’s prescriptiorf# This choice of the spin wave function

makes the difference betweeh- +e andU =+ (the so- already pointed out, the addition of an electron to the ground

calledt mode) limits. . . ; .
: . . _state can result in a final state with or without a doubly
The price we have to pay for such a simple wave function

. . . : i . ingly, th | function h
is that the representation of real fermion opera&f@m the occupied state. Correspondingly, the spectral function has

. : ' _contributions from the upper and lower Hubbard bands:
new basis becomes complicated. As a first step, we can W”tﬁ(k 0)=A"B(Kk )+ A"E(k ). We will now consider

aj , asaf = a;o(l—nj;)JrajT’(,nj;, \{vhereajT o(1=Nj0) A8 (K, ) only. From Eqgs(5) and(12) we get the follow-
creates a fermion at an unoccupied site andeihg; ;-adds  ing convolution as a consequence of the wave function fac-
a fermion at an already occupied site, thus creating a doublyyization:

occupied site.c means the spin state opposite do This
latter process gives contributions to the spectral functions in
the upper Hubbard band“"8(k,w), which can be calcu-

ON)PS(w—ENTT+ED)

X O pN_pN-1
k'PO Pf ’

where the momenta of the final states &B'. As we

AMB(Kw)= 2 C,(Q o )Agkw—w'), (13

lated in a similar way, but we will not address this issue in o Qole
the present paper. and similarly forB(k, w):
Next, we define the operatoR , andZ; , acting on the
spin part of the wave functiorZ] , adds a spino to the B(k,w)= > D,(Q")Bgkw—w'). (14
beginning of the spin wave functidpm) if i=0, orinserts a Qo'

spin o after skipping the firsi spins, and makes iN+1  Ag(k,w) andBqg(k,») depend on the spinless fermion wave
long, e.9..25,|11)=|o11) andZ} |1 1)=|1a]). TheZ; ,  function only,
is defined as the adjoint operator &f,, i.e., it removes a

spin from sitei. Ag(k,w) =L Kyl st I byl 29
Then, to create a fermion at the empty gite0, we need {1}

to create one spinless fermion with operatbér:imd to add a X 8(w—ENI 1+ ENs,) 5kvaN,c+1*Pgs,c’
spin o to the spin wave function with operatrzélg:

5 Bo(k,w)=L N LI [bo| e CS P

ag,g(l_no,;)zzagbg- (12) Q( U)) % |<¢L,Q ({ })| O|¢L,ﬂ-s>|
N N—-1

The apparent simplicity is lost foal . Then, apart from X 8(0—EgsctEfc ) dipl, —pN-L, (19

creating a spinless fermion Wiltflr in the charge part, we
have to consider the following two possibilities: either the
j=0 site is empty, and witfa’{yg we create a spin at the
beginning of the spin wave function Wiﬁfm, or it is occu-
pied, and we insert a spin between the first and second spin
in |x) with Z{ .. So we end up with

and they are discussed in more detail in Sec. IV.
On the other handC,(Q,w) and D_(Q,w) are deter-
mined by the spin wave function only,

Co(Q0)=2 [(xns+1(Q, T Z8 XSS
fq

~ ~ _ eN+1 N
al (1-ny)=[(1—ng)Z{ ,+neZl bl X 8(w—Efs +Egss) Do(Q,®)

Obviously we choose thg=0 in further calculations for its =2 [xn-1(Q, T )| Zo ol xR
simplicity. However, one can show that the final result does fo
not dgpend on this special choice and th(_a translational invari- X S(w— Egs 4 E:(\l;l , (16)
ance is preserved even for these complicated operators. S ,
and are analyzed in Sec. V. Although we do not present it
. . . B
Il SPECTRAL FUNCTIONS here, a similar analysis can be madeA_HH (ko).
In Egs.(13) and(14) the simple addition of the spin and
To use the factorized wave functions in the calculation ofcharge energies is assumed. Strictly speaking, this is only
the spectral function it is more convenient to transfer khe valid for the U— +«, J—0 and the model of Xiang and

dependence from tmﬂﬂ operator to the final state: d’Ambrumenil for anyJ. In the other cases the dependence
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of J on the charge wave function should be explicitly taken( g 5 ({1})[bj|4"g
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L.or)» Where the two states have different

into account. Still, it is a reasonable approximation, as théyoundary conditions. In the ground st&@é= , but we will
important matrix elements will come from exciting a few not specifyQ’ yet. To calculate these matrix elements, we
particle-hole excitations only, which will give finite-size cor- need the anticommutation relation

rections toJ in the thermodynamic limit. Furthermore, we

are neglecting thet?/U corrections to the effective
operator¥’ and to the wave functions.

The momentum distribution function,=(a/a,) can be
calculated from the spectral function ag=[B(k,w)dw,

leading to a similar expression as used by Pruschke and

Shiba?®

nkzg Bo(k)D(Q), (17)

where Bg(k)=/Bqg(k,w)de and
/D(Q,w)dw.

The local spectral functiomA(w)=(1/L)ZA(k,w) is
given by

similarly D(Q)=

Aw)= 2 Cu(Q,u)Ag(w—w'), (18)

Qoo

where Ag(w) = (1/L) 2 Aq(k,w). A similar equation holds
for B(w).

IV. Ag(K,w) AND Bo(K,w)
To calculateAq(k,w) andBqg(k,w) defined in Eq.(15),

T v o
{bl’ 1bk}: Ez elk ! lkJ{bJT/ 1bj}
i
le—i(k’—k)/zei(Q’—Q)/ZSin([Q,_Q]/Z)
sin([k' —k]/2) ’

wherek andk’ are wave vectors with phase shiffgL and
Q'/L, respectively; see E@6). ForQ—Q’ the anticommu-
tation relation is the usual one@bl, by} = S kv, While for
Q#Q’ the overall phase shiftf—Q’)/L due to momentum
transferQ—Q’ to the spin degrees of freedom gives rise to
the Anderson’s orthogonality catastroptieThen a typical
overlap<0|ka- . 'bkzbklblibl{ . -bl&|0>, where |0) is the

vacuum state, is given by the determinant

{bi ) Pk iyt {bys
{biy iy {0y iyt {b e}
bkt bk kot {by/, kgt

Replacing the anticommutator, the determinant above be-

we need to evaluate matrix elements like comes
ki—k ki—k ki—k
sin”! 12 1 sint 12 2 sinfl—l2 N
k—ky ki—k, kg
o o Q'—Q| sin > sin > sin 5
L~ Ngi@ —Q)N/ZH e ik —kplgjN
i 2
o kymke o ki—k, Ky ky
sin 5 sin 5 sin 5
|
This determinant is very similar to the Cauchy determinant_|¢ N1 71)|p]| 4N S32
[there the elements are kA k’)iipgtead of 1/sirK—k’)] and Koo (D OML’QSH
it can be expressed as a prodticso for the overlap we get + 2
=12 (Wl (Dlbg vy
. Q-Qr _iw ‘
iL—Nel(Q/_Q)N/ZSinN 5 H e—l(kj—kj)/Z , K —k KK
. =L*2Nsin2NQ QH sift———]] sit—-—=—
<1 sirt=—]1 sirt=—]] sin"*——, ,
=i 2 = 2 9 2 ki —k;
XH sin™“——, (19
[

where the sign+ is for N=1,45,8,9,... and— for
N=2,3,6,7,....
Now we return to theAg(k,w). The matrix elements in

Eq. (15) are

whereq’ is a wave vector with phase shid’/L. Here we
have used that
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! /N+1 k—q' 2 TABLE I. Sum rule[Eq. (20)] for Q=0 including one-, two-
2 gla'2 H sm— H sin™ lT and three-particle—hole excitations, with=L/2.
i"=1
1 p-h 1+2 p-h 1+2+3 p-h
.. ,Q'-Q
=L“sin 5 4 0.50000000 0.50000000 0.50000000
12 0.46477280 0.49989083 0.49999999
holds, independently of the actual quantum numik&fsand 20 0.43436168 0.49933463 0.49999968
{Z'}. Similarly, for the matrix elements iBo(k,w) we get 28 0.41165708 0.49844924 0.49999808
36 0.39388871 0.49738700 0.49999428
44 0.37941227 0.49623473 0.49998778
N,GS: 2 52 0.36725942 0.49504054 0.49997842
LGy g ({11 bol Qs>| 60 0.35682437 0.49383182 0.49996622

I

=L 2N+ 2gjPN- 2Q H sln2 'H sir? '

j>i j>i

where we took into account up to one-, two- and three-
particle—hole excitations. We can see that the missing weight

I ki —k; is really small in the approximation that includes up to three-
Xli__[ st particle—hole excitations in the final state. So, if we restrict
! ourselves to a finite number of particle-hole excitations and
introduce the function

We are now ready to calculate the spectral functions nu-
merically. One has to generate the quantum numbgesd
evaluate the energy, momentum, and the expressions above.
From now on, we will conside®’ = . L

First of all, it turns out that the following sum rules are g@= 1[I SIHZE(I—T)
satisfied for everyQ: T'=-N2

N/2

IT'+T

N/2—1 Q-
x [I sin2 [I—I”] +=——|, (1
=N 2L

f n f " do Ag(k,w)=1
. 20 i o Q( ,(l))— n,
the calculation of the spectral weight becomes simple. The

dk (= weight of the peak corresponding to a one-particle—hole ex-
j_ﬂ 2 j_xdw Bo(k,w)=n. (20 Gitation can be given as

In the absence of the Anderson orthogonality catastrophe,

when Q=Q' =1, the contribution to the spectral functions ) 1

comes from one-particle—hole excitations only and the spec- Ag(ZP, 1M = AS?, (22
tral functions are nothing but the familiaf(w+ 2tco). 9(Z? Sin2([zh_z1n]z>

This is not true any more when we consid@# 7. In that L

case we get contributions from many particle-hole excita-

tions as well. The largest weight comes from the one-
particle—hole excitations, and increasing the number of ex/here we have removed the quantum numiBethole) from

cited holes, the additional weight decreases rapldlyand added® (particlg) to the sef{7} of the ground state of

Although from Eq.(19) we can calculate the matrix elements N 1 fermions, so that the momentum of the final state is
=kP—k"+ PRt and the energy isEfTl=ERS?

numerically for all the excitations of the final state, its appl|- )%

cation is limited to small system sizéypically L<30). It is —2t005kp+2t‘305kh where the PN+1_(N+1)Q/|— is the

due to the fact that the time required to generate all thenomentum of the ground state. Furthermo{ség0 9 is the

possible statesquantum numberq) is growing exponen- overlap between thal-electron ground state with boundary

tially. Therefore, in some of the calculations we take intocondition = and the {(+1)-electron ground state with

account up to three-particle—hole excitations only. In Table boundary conditiorQ and will be discussed later.

we give the total sum rule for small sizes in a calculation Similarly, for the two-particle—hole excitations we get

—AGY. (23
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with energy and momentum The f(Q) is an even function o), f(7)=1, and it sat-
isfies the second-order recurrence equation

f(Q+2mf(Q—2m) (#°—Q%?

PN*1=kD+ k§— k] — K5+ PRS . f2(Q) 16

ENT1=ENI - 2t(cokP + cokb— cok! — cokD),

The corresponding equations for three- or more-particle-which can be reduced to
hole excitations are similar to those above, but since they are
long, we do not give them here. f(Q+m) T*Q/2m) 20/
A typical plot of Ag(k, ) is shown in Fig. 1. We choose f(Q—m) :1“2(_Q/277) e
Q==/2, which is halfway between the symmetfc=0 and ) )
the trivial Q= = case. In the figure we can see the singularity@nd it follows thatf(3), f(5), etc., are zero. In the inter-
near the Fermi energy; furthermore, the weights are distribval from Q=0 to = it can be approximated as
uted on a cosine-like band. To make it more clear, in Fig. 2 5 4
We.show the support ohq(k,w) and the distribution of the Inf(Q)~ —0.3047% 0.3248(22—0.0201Q—4
weights. ™ ™

) with accuracy 0.0001. Furthermore f(@)=—0.304 637.
A. Weight of the lowest peak

Now, what can we say abok{?, the weight of the B. Low-energy behavior
lowest peak? In the ground state the quantum numigers As we can see in Fig. 2, for low energidg,(k,») has
andZj are densely packed, and from Hg9) we get so-called towers of excitations centered at momenta
k=(N+1)(Q+2pm)/L, wherep is an integer. The largest

A(o,O):COSZN(Q/Z)ﬁ sz ™ 2NFL-2] weights are for the peaks in the tower with=0, the next
Q LNy L with p=—1 (if Q>0) or p=1 (if Q<0), and so on. The
N lowest excitation in towep corresponds to a set of densely

'n2(2j —1)7+Q packed quantum numbef shifted byp. From the defini-

Xjﬂl S 2L tion of the moment; , this is equivalent to imposing a twist

. of wave vector Q+2ps. Therefore, we can introduce

><sin2(21 —Dm-QP Nt Q=Q+2pw, whereQ is not restricted to be in the Brillouin

2L zone, but for p#0 it has values outside. We define

Ag(k,w) to describe thepth tower, so thatAq(k,w) has
From this we can conclude tha{y"” is an even function contributions from each of the towersAg(k,)

of Q andA®?=1. We are not able to give a closed formula = =,Az(k, o).

for the sum. However, very useful information can be ob- Furthermore, we enumerate the peaks in a given tower

tained by noticing that with indicesi andi’, so that the energy and momentum of

the peaks are, from Eq&)—(8):

.n22]7T—Q
AL00 NS 2L T 62 2mUe
ﬁ:]—[ —o Ejin=Egstect 5 Ue 1+ — |+ — (i+i"), (26)
Q—m =1 .
sir? T 5
T
and in the thermodynamic limit, Piir=ka+ f+ T(I—I ), (27

where we have neglected tl¥ 1/L2) finite-size corrections.
: Heree .= —2tcosmn is the “Fermi energy,”u.= 2tsinmn is

the “Fermi (charge velocity,” and kazn@ is the “Fermi

straightforward to get the size and filling dependence of .
A(o,(l)?. W g 'z ting dep By Ag" ) we denote the weight of the peaks, and for conve-
Q .

nience we also introduce the relative weights
a%" ):A%" )/Ag)‘o). The weight of the first few lowest-lying
peaks can be calculated explicitly by E¢®1)—(23), as they
are given by a finite number of particle-hole excitations. The

AGLEAS % (m=QY?[  2m ~
(AD9)7 ~ (2Lsinany| 1~ T OO

oo 1(Q

Q T (Lsinmn)%a

T
1- aQZCOtTrn-i- O(LZ)}, (24

where degeneracy of each peak grows witlandi’. Here we as-
1/0\% 1 sumed that the dispersion relation is linear near the Fermi
aQ:_( _) -z (25) level with velocityu.. Clearly, this picture is valid for en-
2\m) 2 ergies small compared to the bandwidth.
Equation(24) is also valid forBY?, apart from the sign in From Eq.(22) we get the relative welghta%" ) eq.
the 1L correction. ad%is given as

Q
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(] [ .
0,2) (1,1) (2,0)
AQ AQ AQ

Aq(k,m)

L L ]
{0,1) (1,0)
2t AQ AQ

L )
©00)
AQ

FIG. 1. Ag(k,w) for Q=487/97 (~m/2) andN=96 electrons otk T
on L=192 sites. We can see the power-law singularitkatm/4 . ) L
and that the weight is accumulated along a cosinelike bandlike - kg=27n 0 Ky T
structure. K
_ 7T+'(j  [wN+ FIG. 2. Schematic plot of the support 8f(k,w) (abovee)
sir? 50 sir? L ) andBg(—k,w) (belowe;) for N/L=1/3 andQ= /2. The domi-
ad9— L nant tower p=0) atk=Kkg and the subdominant towep & —1) at
Q o\ [ 2aN+ 7+ Q k=kgo—2mn are shown. The weight mostly follows the solid lines
sir? L sir? BT and the shadowing represent the intensity. Although there are exci-

tations above the dashed line fag(k, w) as well, the weight as-
Introducing w;= (Q/m+])?4, the relative weights in the sociated with them is negligible. The low-energy partgj(k,w)
thermodynamic limit simplify so that neark=Kg is enlarged in the inset, where the discrete states in the
tower of excitations are shown.

(0,0 (1,0 20_ L
ag =1, agm=wi, ag"=5Wi(W_; W), which is a reasonable approximation apart from the0
D peak. Then, it follows thaa%"’) has a power-law behavior
ag  T=W-_1Wy,
A AP o, i ~ Bori! _ B_0o
and alsoa%" )=a(_'5") holds. Note that some peaks are de- a%" )+ 12+ Bgl2)ell + 12 B-g/2) e (31)
generate and therefore they are a sum of more contributions. F(Ba+DI(B-5+1)
Now, it takes only one step to get the general formula, which . ) )
reads(including the finite-size corrections Note that the exponentg in Eq. (24) is also given by
ag=pBs+B-5+1. _ _ _
i (1+B3)(2+Bg)---(i+B3) We can clearly see the manifestation of the underlying
ag = il conformal field theory{i) The finite-size corrections to the
energy and momenturfEgs. (26) and (27)] of the lowest-
(1+B_3)(2+B_g)---(I"+B-3) lying peak in the tower determine the exponents of the cor-
X i relation functions andii) the weights in the towers are given
by theT function3!
(i+im—(i—i"H0 The spectral functionAg(k,) in the thermodynamic
x| 1+ 3 cotmrn+0O(L~?)|, limit is given by
(28) .
where Ag(kw)=2 A5 S(w—Ei)dp, . (32
1,1
~ \2
8 NI(} +g) 1 (29 and collecting everything togethgEqgs.(24), (31), and(32)],
RT\27 27 for the low-energy behavior oAq(k,w) we get

It can also be expressed with the help of th&unction since

_ _ Aoko)=S f(Q)®(w—uclk—kg|)
(1+B3)(2+By)---(i+By) _ I'(i+Bg+1) Q@ v 4musin(mn)T(Bz+ 1T (B 5+1)
i! T(i+1)T(Bz+1)

w—&c+Uc(k—kg)]#Q
The asymptotic expansion of tiéfunction gives 4qucsinmn
(i+B3+1) ©—e—U(k—kg)|F-2

~(i+1/2+ B5/2) 43, (30) (33

ri+1) 4qucsin(arn)
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It is also worth mentioning the symmetry property
Ag(k,0)=A_no(—k,w). The whole calculation can be re-
peated for the spectral functiddy(k, w):

o) =S, —(QOdktkgl—w)

p 4mucsin(mn)[(Bg+1)I'(B-_5+1)
gc— w—Ug(k+kg)]P-Q
47rucsinmn

gc— w+Ug(k+kg)]PQ

4rucsinTn

(39

We should note, however, that these expressions are ri
stricted for the weights far from the edges of the towers,
where the asymptotic expansion of thefunction, Eq.(30),
is valid. This is especially true wheQ— 7, where the cor-
rect result isA_(k,w)=8(w—e,—uk—mn]). In other
words, for the exponents close tol there can be a consid-

erable deviation from the power-law behavior and the spec

tral weight accumulates along the edges of the towers. Thi
behavior can be observed in Fig. 1, where the exponents a
B+o=—7/16 andB_qo=—15/16.

1. Local spectral functions

For the local k-averaged spectral functionAz(w) the
weight of thejth peak, denoted bp&%), is
()
AQ

The summation gives

1 T(l+agti) 00

LT (1+ag)T(1+)) ©

77772_

X|1+jT

)
Ag

52
2+6200t77n+ O(Lz)l .
ar

If we put it together with Eqs(24) and (26) and neglect the
1/L corrections, the local spectral function in the- o limit
reads

1 f(é) / wW—E&¢

27U T (ag+ 1)\ 27ucsinan

aQ
Ag(w)=2, ) . (35

P
For Bo(w) the o—e. should be replaced by o+e.. We
showAq(w) for some selected values Qf in Fig. 3.
2. Momentum distribution function

Here we make some statements at®y(k) in Eq. (17).
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0.7 . —
0.6 Q=0 — :':'i
Q=m2 --- 3
05 | Q=r ---- i .
:
~ 04 R i
§, r|‘ i 1
s |\
< B ks

1.5t

05t

FIG. 3. Ag(w) for Q=0, #/2, and = for quarter filling
(L=300, N=150). ForQ=0 the Van Hove singularity is sup-
pressed and the weight is mainly near the Fermi eneQyy.m is
équivalent to the free-fermion case. The dotted line shows the low-
Ehergy approximatiofi3s).

not valid any more. However, the largest contributions come
from the low-energy regions and the error is not very large.
We do not want to get precise values, but rather some quali-
tative results. Neglecting th®(1/L) corrections, the sum
gives, forl=0,

BQ)~ F(—aa)l“(1+|+,8,5)
C T(-B gl (1+B 5T(-Bs)

and for <0 thel and Q@ should be replaced by and

—Q. Again, we can use the asymptotic expansion ofthe
function to get
) aa

(36)

whereB_5 for k>kg and Bg for k<<kgz should be taken in
the argument of the sine. It is interesting that, although the
exponent of the singularityrg is the same fok>kg and
k<kg, there is a strong asymmetry due to the prefactor
similar observation was made by Frahm and Kor&irin

Fig. 4 this behavior is clearly observed. FQr 7r the cor-
rect result ofB (k) =0 (k,.—Kk)®(k,+K) is recovered.

[k—kal

2asinmn

(- ag)

B(k)~f(Q)———sin(— wﬁia(

V. THE SPIN PART

To calculateC,(Q,w) andD ,(Q,w) given by Eqs(16),
we need to know the energies and wave functions of the spin

A naive calculation in the low-energy region is to sum up thepart. They can be calculated from the usual spideisen-

weights neakg,

if 1=0

(I+i,D)
BQ

(i,-1+0)
BQ if 1<O0.

berg Hamiltonian[see Eg.(9)] taking N and N*=1 sites
(spins.

For the J—0 case the excitation spectrum of the spins
collapse, and then we can use the loealintegrated func-
tions C,(Q)=2,C,(Qw) and D,(Q)=2,D,(Q,w).
They are related to the spin transfer functiep _; ,, de-

Of course, one is aware that the summation includes higl,eq by Ogata and Shi4,as initially noticed by Sorella

energies as well, where the equivalentlﬁt%, of Eq. (28) is

and Parol&. The spin transfer function gives the amplitude



Q=0 —
Q=461/91 ----
Q=90m/91

Aq(k)

2r/3 n
4 T T T T T T T T
Q=0 —
Q=447/89 ----
Q=88m/89 -
3r i
3
5 2f 1
1]
1 p
0 . .
- 2n/3 T

FIG. 4. (8 Ag(k) for Q=0, 46m/91 (=~/2), and 9Gr/91
(=) and (b) Bo(—k) for Q=0, 447/89 (~=/2), and 88:/89
(=) for L=270 andN=90. The evolution of the weight and
shape can be followed from the symmetf@=0 case with the
singularities atk=0 and k==*2=/3 through the asymmetric
Q=m/2 case with singularities &= /6 and — 7/2 to the “nor-
mal” distribution atQ= .

of removing a spinr at sitej’ (here we choos¢’=0) and
inserting it at sitgf and can be given as

®oj o={XN1Pj -1 |51,050,56|Xﬁs>!

where the operatdiaI 1=
sitesi andi+1. ThenC(,(Q) andD ,(Q) read

N—1
Col Q=g 1+ 2, &0 Mooy,
N—2
(T(Q)_N 1]_ el(Q+ﬂ—)JwOH]—,U' (37)
In particular, wg_.o,=N,/N, and it follows that

$0C,(Q)=1 andSD,(Q) =N, /N.
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We are interested in these quantities for two particular
cases: the isotropic Heisenberg model, because it is physi-
cally relevant, and th&XY model, because it allows analyti-
cal calculations. We first consider te' model because the
simplicity of that case makes it more convenient to introduce
the basic ideas.

A. The XY model

In this special case the spin problem can be mapped to
noninteracting spinless fermions using the Wigner-Jordan
transformation. This means that the eigenenergies and wave
functions are known and we can calculdde,(Q,w) and
C.(Q,w) analytically. We are facing a similar problem—the
orthogonality catastrophe—to when we calculated the
Ag(w,k), but now it comes from the overlaps between states
with different number of sites. For convenience, we choose

the spinless fermions to represent th_espins, so that the

operatorZ{ . (Zo,) only adds(removes a site and does not
change the number of fermions, which we fix to Ne-
Then we have to evaluate matrix elements such as

<XN+1|ZOU|XNS> and (xn-1Zoo| XK, where in the[x§)

the 0 site is unoccupied and the fermions are on sites
I=1,...Nand from sitd =1 they hop td =N, skipping the

I =0 site. For simplicity, we consider cases when the number
of spin-up and- down fermions is oddil(is even, so that we

do not have to worry about extra phases arising from the
Jordan-Wigner transformation. Then the momentum of the
ground statdys>) is Pgs= 7. Let us denote bk’ the mo-
menta of fermions on a&N*=1 site lattice, quantized as
ki=27J;/(N=1); by k the momenta of fermions on M

site Iattlce quantized ds=277; /N, where J andj-’ are
integers {(=1,... N3), and byf andf’r the operators of the
spinless fermions The energy and momentum of the state
are

No
E=Jxy>, cosk/, (38)

i=1

No
P=> kK . (39

=1

To calculate the matrix element i€,(Q,w) [see Eq.
(16)] we need the anti-commutation relation

M =z
M =z

{fT, fk}: 1 ik'|’—ik|{f'f', fl}
T IN(N+ D) = "
1 sink'2)
_ aiki2_ )
UN(N+1)  sin([k—k"]/2)
and the matrix element [(xni1({T NIZ8 xS

t ot
=|(0ffy, - .szfklfk:’lfké' . k’,\‘0'|0>|2 is again given by a
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Cauchy determinant, which can be expressed as a product

[N(N+1)]"N ||crsm2 JH sm2
2355
k/

x]] ssz—H

P>i

(40)
Similarly, in the case oD ,(Q,w), the anticommutator is

sin(k/2)
sin([k' —

—ik'/2

M fd= k]/2)

1
\mKN—De

and the matrix elemerixn_1({7'})|Zo, xJDI? is equal to

[N(N=1)]" NT[oS|n2 'H sm2

275

—k;
x]] smz'—]_[ sm*2 '.

i>i

(41)

As soon as we have the product representation, it is straight-
forward to analyze the low-energy behavior and also to ob-

tain numericallyD(Q,w) and C(Q,w) for larger system
sizes.

1. Low-energy behavior

The low-energy spectra @ ,(Q,w) andC,(Q,w) con-
sist of towers centered at momer@a ,=2rmwu,, where
r=1/2,3/2.
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. m(1+N+Ny)
sif——————
o N—1
dl/ZU_
S _N—l
. m(1+N+Ny)
SiP ———————
2(N°—N)
. m(1+N—N;+2NN;)
sir? >
2(N°—N)
XW«N+Nﬂﬁwm
R2(N+N;=1)/2)’
where
No’ 1 7l 7TJ
R(l)= HO Sm(N(N 1)

and the othed!'}") are similar. In the thermodynamic limit

N— o, the weightd{%") simplifies to

2
difsh = —+%§)[L+OUmJLH. (46)

Neglecting the finite-size corrections, for general () and
r we get

Ti+y,,+1) D' +y,+1)
F('}’;O.'i‘ DHI(i+1) F('yra_y DG’ +1) )

dry’= (47

- Toanalyze the low-energy behavior in the where the exponenty;, are defined in Eq(44) and the

tower labeled by we can proceed analogously to the chargeweights again follow the prescription of the conformal

the tower of
d(" 'DY can be calcu-

part:
C(I i"—

The weights in
C(I i )C(OO) and D(I i _

Iated from Eqs(40) and(41) The energy and momentum of

the state i,i’) can be calculated from Eq$38) and (39)
and, neglecting th©(1/N?) corrections, they read

(Nx1)_ -+ Z + - 2_7T Y
Ei,i’,r _EGS_80+NuU’(’YI’,O'+’yr,0'+2)+ N ua(|+| )v
(42
+ _ 277 i .,
PO Y= Qg (e Vo) + (=1, (43)
where
2
%;=<%§ir)—1, (44)

and the Fermi energy and the velocity of the spins are

1
£,= JXY( MU COST g — ;Sim‘r,u,ﬁ , Ug=JdxySinTu,,

(45)
and u,=N;7N.

The relative weightsd("!") can be calculated from Eq.

(41), e.g.,

excitations theory, with strong logarithmic finite-size corrections how-

ever. A similar analysis can be done 18f(Q, ). From the
above and Eq(16) we obtain

DU(Q,w>~Z 9(r,u)le,—0+Uu(Q—Q, )17

X[&,— 0—Uy(Q—Q )]

X®(80_w+u0'|Q_Qr,0'|) (48)
and
Co(Qu)~3 9N ) 0=yt U (Q—Q )]
X[0—8,~U(Q=Qr )]
x®(w_8cr_uo'|Q_Qr,0'|)v (49)

whereg(r,u,) are numbers that can be determined numeri-
cally.
We immediately see that the (Q) andD,(Q) are sin-

gular atQ=Qy ,:
CO’(Q)iDU(Q)OC|Q—Qr,O'| ”r,g,

with exponent

Moo= Yot Yrot L,
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1.8 . — T = — 0.75 ' T ,
u.oo11; . :; g i 2'0006 JEUUEE: i
16} A:8884A~0001 A 0008 }2‘00105 1 07t (a) ‘E_____m" o]
| o A 0008 0003 ~ 065 | _,m-"m-_ R ,--"‘_
1.4 20003 3 A 0777 g_ *+.E’B'B 'e'_,_,o
4 X - + .-
12 ¢ @ A 0794 3 0.6 et o,"’"—o Ao g,
@ 1r "o S 08 . e c:e.o; o
w A.0835 © : 4o g
L 08T = o el e d®2 o
w-o6 | L 30 0.45 - ‘
0.4 | &~ 04 bt S -
| S=1/2 a O o35t
02 S=3/2 ¢ o
of S=52 O 1 03 e
X 1443 IR S A
_02 I I i 025 1 1 I 1 1
0 w4 w2 34 n 0 0.02 0.04 0.06 0.08 0.1
Q 1/N
0.55 . : T :
FIG. 5. Support and weights & ,(Q,w) for the N=18 spin b
Heisenberg model. The symbols represent the excitations of th " ® e ol
final states(19 sping, where the total spin is also indicated. The — | .. gaa o Er e
numbers near the solid triangles give the weight of that particula g 05 r
state. Due to selection rule the matrix elements are zero, with highe 2
spin states denoted by open symbols. The dotted lines are a guide u"o a.
the eye and show the=1/2 andr = — 3/2 towers. — o045 | .
o
. = -
and they are strongly asymmetric arou@d ,, as we can s e
conclude from the analog of E¢36). For the nonmagnetic = a "
. o S 04} A [MOgeN2 g 4
case u,= u,=1/2), the singularity is af), = /2 for all the <, S
towers and the exponents of the main singularity: (/2) — ’ [c@Ogap12 5
are y;,=—15/16 and 1y;,=—7/16; furthermore,
g— 035 1 I 1 1 I
712~ — 3/8. 0 0002 0004 0006 0008 001
1/N?

B. Heisenberg model

Although the Heisenberg model is solvable by a Bethe FIG. 6. (a) Relative weightsc®?, ¢(®2, d9 andd?? as a
ansatz and in principle the wave functions are known, it isfunction of the system size calculated by exact diagonalization
too involved to give the matrix elements &f (Q,w) and  (squares and trianglesand by DMRG (crosses for the r=1/2
D,(Q,w). The simplest alternative way is exact diagonaliza-tower. ~The dashed line represents a fit to the
tion of small clusters and density matrix renormalization@*a1/N+aIn(N)/N form and it is reasonably close to the theo-
group”3 (DMRG) extended to dynamical properti%‘bWe retlcal_valu_es 0.5 and _0.37_5 in the Fhermodynaml_c lirtd. The
have used both methods to calculate the weights for systeﬁ\opos'te sign of logarithmic corrections cancels if we make the

; _ _ : : ot products] c©9d(197Y2 gnd[c(02¢(2071/2
sizes up tdN=24 andN=42, respectively. A typical distri-
bution of the weights foC ,(Q,w) for zero magnetization is
given in Fig. 5. There are several features to be obsefied: ergy are know® ~*°and they are also given by Eqd2) and
Due to selection rules, the nonzero matrix elements are witkd3) apart from InN)/N corrections, with
the S=1/2 final states only(ii) the weight is concentrated
along the lower edge of the excitation spectra in the interval o )
7/2=Q= , and(iii) there are two, almost overlapping tow- vE :(&+§r> 1 (50)
ers visible corresponding to=1/2 andr = — 3/2. Our inter- ne
pretation of the spectrum is that the weight mostly follows
the dispersion of the spinon of Faddeev and Takhtian, o . ~
since the final states have an odd number of spins; thus thef®" 2€ro magnetization the velocity, readsmJ/2, the en-
can be a single spinon in the spectrum and it has a cosinelik@@y is &,=—JIn2 and £=1/J2, and the exponents are
dispersion. It is also surprising that f&,(Q,w) more than  ¥1,= —1 andy;,= —1/2, very close to th&Y exponents
97% and foD ,(Q, w) more than 99% of the total weight are (—15/16 and— 7/16, respectively For arbitrary magnetiza-
found in this spinon branch. This behavior is similar to thattion u,, &,, and £ are to be calculated from integral
discussed by Talstra, Strong, and Ander&mho added equations’®
two spins to the spin wave function. Also, we check if Eq(47) is satisfied for the = 1/2 tower

We can also try to analyze the low-energy behavior fromin Fig. 6. Namely, it tells us that®Y=d9=1/2 and
the conformal field theory point of view. Namely, from the c¢(®2=d(?9=3/8, apart from finite-size corrections, which
Bethe ansatz solutions the finite-size corrections to the erwe assumed to be of the same form as in the case of the



15 486 PENC. HALLBERG, MILA, AND SHIBA 55

XY model in Eq.(46). We believe that this method can also 7 .
be used to determine exponents in a more general cases
well. sl @ : 1
Another interesting point is that the exponepf,=—1 — N=16 4 & o
already indicates that'*® vanishes, in agreement with the € 5| N=20 v v . |
selection rules. However, there is still some weight for © :fgg i ‘.
c(29), which comes fronS=1/2 bound states of spinons. We 2 4 N=32 o * ]
do not know the finite-size scaling of that weight, i.e., = M
whether or not it disappears in the thermodynamic limit. % 3l 4
Now, if we recall thatD ,(Q)=2 D ,(Q,w), then it fol- o OQE'V
lows[see Eq(36)] that the contribution t® for Q> 7/2 is T o2f 20 O -
strongly suppressed, and we see essentially the contributiol £ s
from the r=3/2 tower. Since the contribution t6(Q,w) 1t ‘p,'
andD(Q, ) comes mostly from the lower edge of excitation remee® T ~,
spectrum, we can use the approximations olEsyEn 2 Elweme @0 - Semere
0 /4 w2 3n/4 n
Co(Q0)=C,(Q)é(w—es~eq), Q
D,(Q,0)=Dy(Q)&(w—es+eq), ? o | ' '
18}
whereeq, is the des Cloizeaux-Pearson disperéion (b)
i )
T~ . ~ - a
SQZEJlsm(Q_ 77/2)|' 9:) e -: %WAED‘” @ovooan®m B aOvecDow
T 12f v 1
P4 A
TheC,(Q) andD,(Q) can be calculated numerically for = 1} . 1
small clustergtypically up toN=26 with exact diagonaliza- % 08 L '-‘ Net6 &4 |
tion andN=70 with DMRG) for the nonmagnetic cafgee =~ O ~ 1** " N220 o v
Refs. 8 and 8 The N+1)C,(Q) and N—1)D,(Q) seem g 0.6 N=24 om ]

to have a small finite-size effect, as follows from Eg7), 04 k N=28 o«

and the singularity in the nonmagnetic case is given by N=32 oe

71,= — 1/2, as already noticed by Sorella and Pafola.
We have also calculated, (Q) andD ,(Q) for the sys- 0 F@OGDOLTD | s 868064010y SB-SS 70— —— S5 6-B ove—

tem with finite magnetizatio | /N=1/4 (see Fig. J. There 0 A w2 34 "

Q;=3wl/4, Q,=m/4, and the exponents are Q

712, = —0.58+0.03 andzy;, | = —0.25+0.03. These expo-

nents are consistent with=0.87+0.02 and in surprisingly FIG. 7. (@ C4(Q) andD(Q) and(b) C|(Q) andD (Q) for

good agreement with the simple formula given by Frahm andinite magnetizatiorN; /N=3/4 with singularity atQ=3w/4 and

Korepin,32 é~1—u /2, which is valid in a large magnetic Q= /4, respectively. The solid symbols stands fo(Q) and

02

field. open symbols foC(Q).
VI. THE GREEN'S FUNCTION AND THE COMPARISON (26), while the spin velocity isus=u,/n, whereu, was
WITH THE CONFORMAL FIELD THEORY defined in Eq(42). The Green’s function has singularities at

_ different momenta, depending on the actual quantum num-
The real space Green’s function can be calculated fronhersp andr; see Table Il for details.

the spectral functions as On the other hand, according to the conformal field
_ . theory?>??a correlation functior ¢(x,t) ¢(0,0)) reads
G(x,t)=J dkf dwe Ak, w)

- —© CD b e*2i[DckT+(Dc+Ds)kl]X
for t>0 and A(k,») should be replaced b®(k,w) for = e = = e
t<0, as follows from Eq(1). Then, from Eqs(13), (33) and De.Ds (X—Uct)“Ze (X+Uct) e (X—Ugt) s (X+Ugt) s
(49) it follows that

TABLE Il. Same momenta for which the Green’s function

C. e IQxNIL G,(x,t>0) is singular.
G t>0)~3 ——
Pr (X—Ut)P™H(X+ uct) P~ r p=—1 p=0 p=1
L -
x . —, (y 3P S P
(X_ust)'yr +1(X+ uct)yr +1 —-1/2 _kg' kg+2k;
~ 1/2 —k,—2ks Ko
where Q, was defined a®Q,+2xp; furthermore,c,, are 372 ko= 2Ky 3K,

numbers. The charge velocity. is the same one as in Eq.
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TABLE Ill. Correspondence between the Bethe ansatz quantum

numbers ang andr.

o D, Ds AN, ANg
T p+r -r 1 0
l p r 1 1
T —p-r r -1 0
! -p -r -1 -1

where the exponents

ZsAN—Z ANg 2
2deZ '

2A§=(ZCCDC+ Zs Do+

. ZecAN—Zs AN\ 2
2As—=(ZCSDC+ Z D+ —= stezs °) (52)
are related to the finite-size corrections
27 N A . _
E—E0=WUC(AC +Ac)+ Wus(As +As), (53)

2w _ N B

P—Py=2Dck;+2(D + Dok, + W(AC —A;+AJ—AD)
(59

and Cp,.,p, are numbers. The quantum numbébg, Dg,
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Z..=1,
Zsc:,“i )

Z:,s=0,
Zs=é,

where¢ can be obtained solving an integral equation. For the
nonmagnetic casg | =1/2 andé= 1/\/2. Then we are ready
to identify the exponents B:g,T1= 2A; and

¥, +1=2A; and in this way we can directly see the valid-
ity of the conformal field thery in the large- limit. In the
case of thé-Jyy model no Bethe ansatz result is known, but
using the analogy with the isotropic case, the exponents are
readily obtained using the substitutiog.,—1, Z.c—0,
Zse— ), andZgg—1.

VIl. CONCLUSION

To conclude, we have shown that for some special cases
the spectral functions of the 1D Hubbard can be calculated
using the spin-charge factorized wave function, which im-
plies that the spectral functions are given as a convolution
involving the charge and spin parts. Analytical calculations
are possible for the charge part and for the spin part in the
case of theX'Y model. The low-energy behavior turns out to
be fully consistent with the predictions of the conformal field
theory, i.e., the exponents are given by the finite-size correc-
tions to the energy and momentum, and the weights are
given by thel” function. Based on this, we propose a way to
determine the exponents of the correlation functions. Fur-

AN¢,, andANg characterize the excitations and are related tahermore, we argue that when the exponents of the correla-

p andr as given in Table Ill. Th&’s are the elements of the

tion functions are close to integers, the Luttinger liquid

so-called dressed charge matrix. It can be calculated frorpower-law behavior of the correlation functions should be
Bethe ansatz solution of the Hubbard model, and in thd¢aken with care, as it comes from the asymptotic expansion

largeU limit they read

of theI" function.
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