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Spectral functions of the one-dimensional Hubbard model in theU˜1` limit:
How to use the factorized wave function
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We give the details of the calculation of the spectral functions of the one-dimensional Hubbard model using
the spin-charge factorized wave function for several versions of theU→1` limit. The spectral functions are
expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these
correlation functions very accurately for large systems is developed, and analytical results are presented for the
low-energy region. These results are fully consistent with the conformal field theory. We also propose a direct
method of extracting the exponents from the matrix elements in more general cases.@S0163-1829~97!02423-5#
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I. INTRODUCTION

After the recent photoemission experiments1,2 on quasi-
one-dimensional materials, the need of understanding the
namical spectral functions of strongly correlated elect
systems has arisen. While the low-energy behavior is usu
well described within the framework of the Luttinger liqu
theory,3–5 the experimentally relevant higher energi
('100 meV! can be calculated, for example, by diagonal
ing small clusters6 or by quantum Monte Carlo calculations7

Unfortunately, both methods have limitations given either
the small size of the system or by statistical errors and us
analytic continuation. Even for the Bethe ansatz solva
models, where the excitation spectra can be calculated
problematic part of calculating the matrix elements rema
The wave functions are required and they are simply
complicated. There is, however, a special class of mod
where the evaluation of the matrix elements is made poss
through a relatively simple factorized form of the wave fun
tion, and some results were already published by Sorella
Parolla8 for the insulating half-filled case and by the prese
authors9,10 away from half filling.

The dynamical, zero-temperature one-particle spec
functions can be defined as the imaginary parts of the ti
ordered Green’s function

A~k,v!5
1

p
ImG~k,v! for v.m,

B~k,v!52
1

p
ImG~k,v! for v,m.

A(k,v) is measured in angular resolved inverse photoem
sion experiments and can be calculated from the Lehm
representation
550163-1829/97/55~23!/15475~14!/$10.00
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A~k,v!5(
f ,s

z^ f ,N11uak,s
† u0,N& z2d~v2Ef

N111E0
N!,

while B(k,v) is measured in the angular resolved pho
emission experiments and is given by

B~k,v!5(
f ,s

z^ f ,N21uak,su0,N& z2d~v2E0
N1Ef

N21!.

HereN is the number of electrons,f denotes the final states
and ak,s destroys an electron with momentumk and spin
s. If the spectral functions are known, the time-order
Green’s function can be obtained from

G~k,v!5E
m

1`

dv8
A~k,v8!

v2v81 id
1E

2`

m

dv8
B~k,v8!

v2v82 id
.

~1!

The special models for which the matrix elements can
calculated are~i! the Hubbard model, defined as usual:

H52t(
i ,s

~ai11,s
† ai ,s1H.c.!1U(

i
ni ,↑ni ,↓ , ~2!

in the limit U/t→1`; ~ii ! the anisotropict-J model

HtJ52t(
i ,s

~ ã i ,s
† ã i11,s1H.c.!

1(
i

(
a5x,y,z

Ja~Si
aSi11

a 2 1
4da,znini11!, ~3!

in the limit Ja→0, whereã i ,s are the usual projected opera
tors ~actually, the Hubbard model in the large-U limit can be
mapped onto a strong-coupling model usually identified
the t-J model plus three-site terms using a canoni
transformation,11,12 where J54t2/U is small!; and ~iii ! an
15 475 © 1997 The American Physical Society
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extension of the t-J model proposed by Xiang an
d’Ambrumenil,13 defined by the Hamiltonian

H52t(
i ,s

~ ã i ,s
† ã i11,s1H.c.!

1(
i. j

(
a5x,y,z

Ja~Si
aSi1 j

a 2 1
4da,znini1 j !Pi , j , ~4!

where Pi , j5) j 851
j21 (12ni1 j 8) in the exchange part of th

Hamiltonian ensures that two spins interact as long as th
is no other spin between them. The motivation to study t
model is that, unlike the infinite-U Hubbard model, there is a
finite energyJ associated with spin fluctuations, and this w
give us useful indications about the finite-U Hubbard model.

From the models defined above, the Hubbard model is
most relevant one. It plays a central role as the generic m
of strongly correlated electron systems. Even though i
comparatively simple, it is very difficult to solve, except f
the one-dimensional case, where it is solvable by the Be
ansatz.14 Unfortunately, the Bethe ansatz solution is not co
venient for direct computation of spectral functions; the
fore, an alternative approach was needed. In the limit
small U one can use the renormalization group15 to show
that the Hubbard model belongs to the universality class
the Tomonaga-Luttinger model,16 usually referred to as the
Luttinger liquid.17 The Luttinger liquids are characterized b
power-law decay of correlation functions and nonexiste
of quasiparticles.18 The underlying conformal field theor
can be used to relate the exponents to finite-size correct
of the energy and momentum.19–22This gives consistent re
sults not only with the renormalization group in the wea
coupling regime,23 but also with the special case o
U/t→1`, where the exponents of the static correlatio
could be obtained using a factorized wave function.24–26

Actually, the spin-charge factorized wave function al
describes the excited states as well,27 and it can be used to
calculate the dynamical spectral functions as well. The sp
tral functions obtained in this way are very educative and
some sense, unexpected. For example, it turns out tha
spectrum contains remnants of bands10 crossing the Ferm
energy at 3kF : the so-called shadow bands. Also it giv
information on the applicability of the power-law Luttinge
liquid correlation function.9 The aim of this paper is not only
to give the details of the calculation, which can be useful
other correlation functions, but also to present some res
on the low-energy behavior of the charge and spin part~both
for the isotropic Heisenberg and theXY spin model!.

The paper is organized as follows. In Sec. II we revi
the factorized wave function and in Sec. III we show how t
spectral functions can be given as a convolution of spin
charge parts. Sections IV and V are devoted to the deta
analysis of the charge and spin parts. The relation to
results obtained from the finite-size corrections and con
mal field theory is discussed in Sec. VI. Finally, in Sec. V
we present our conclusions.

II. THE FACTORIZED WAVE FUNCTION

It has been shown,24,27by using the Bethe ansatz solutio
that the ground-state wave function of the Hubbard mode
re
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theU→1` limit can be constructed as a product of a sp
less fermion wave functionuc& and a squeezed spin wav
function ux&. This can be alternatively seen using perturb
tional arguments24 and then extended to thet-J model in the
J→0 limit. Moreover, the wave function of the excited stat
are also factorized:8,27

uN&5ucL,Q
N ~$I%!& ^ uxN

N↓~Q, f̃ Q!&. ~5!

The spinless fermion wave functionuc& describes the
charges and is an eigenfunction ofN noninteracting spinless
fermions onL sites with momenta

kjL52pIj1Q, ~6!

where the Ij are integer quantum numbers an
j51,2, . . . ,N. The charge part is not fully decoupled from
the spin wave functionux&, as the momentumQ52pJ/N
(J50,1, . . . ,N21) of the spin wave function imposes
twisted boundary condition on the spinless fermion wa
function ~each fermion hopping from siteL21 to site 0 will
acquire a phaseeiQ) to ensure periodic boundary condition
for the original problem. The energy of the charge part is

Ec
N522t(

j51

N

coskj ~7!

and the momentum readsPc
N5( j51

N kj or, using Eq.~6!,

Pc
N5

2p

L (
j51

N

Ij1
N

L
Q5

2p

L S (
j51

N

Ij1JD . ~8!

On the other hand, the spin wave functionsux& are char-
acterized by the number of down spinsN↓ , the total momen-
tumQ, and the quantum numberf̃ Q within the subspace o
momentumQ. They are eigenfunctions of the Heisenbe
Hamiltonian

Hs5(
i51

N

(
a5x,y,z

J̃a~Si
aSi11

a 2 1
4da,z!, ~9!

with eigenenergiesEs . J̃a depends on the actual charg
wave function uc&. In the case of theU→1` Hubbard
model,

J̃5
2t2

U

1

N (
i ,d561

^cunini1d2bi1d
† nibi2duc&, ~10!

wherebj
† andbj are the operators of spinless fermions at s

j . For the ground stateucGS& it reads J̃a5n(4t2/
U)@12sin(2pn)/(2pn)#, wheren5N/L is the density.

For thet-J model

J̃a5Ja(
i

^cunini1 j uc&, ~11!

and for the ground stateJ̃a5Jan@12sin2(pn)/(pn)2#. For
the model of Xiang and d’AmbrumenilJ̃a5nJa and is in-
dependent of the charge part. The energy of the factori
wave function is then given as the sum of the charge
spin energies, with the assumption that the correctJ̃ is cho-
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sen. IfU→1` or J→0, then the spectrum collapses and w
can assume that all the spin states are degenerate, sim
ing considerably some of the calculations to be presen
later.

Furthermore, we chooseN to be of the form 4l12 (l
integer! when the ground state is unique. Then in the grou
state the spinless fermion wave functionucL

N,GS& is described
by the quantum numbersQ5p and $I%5$2N/2, . . . ,N/2
22,N/221%, so that the distribution of thekj ’s is symmetric
around the origin and we choose the spin part as the gro
state of the Heisenberg model according to Ogata and
ba’s prescription.24 This choice of the spin wave functio
makes the difference betweenU→1` andU51` ~the so-
called t model! limits.

The price we have to pay for such a simple wave funct
is that the representation of real fermion operatorsaj ,s

† in the
new basis becomes complicated. As a first step, we can w
aj ,s
† asaj ,s

† 5aj ,s
† (12nj ,s̄)1aj ,s

† nj ,s̄ , whereaj ,s
† (12nj ,s̄)

creates a fermion at an unoccupied site and theaj ,s
† nj ,s̄ adds

a fermion at an already occupied site, thus creating a dou
occupied site.s̄ means the spin state opposite tos. This
latter process gives contributions to the spectral function
the upper Hubbard bandAUHB(k,v), which can be calcu-
lated in a similar way, but we will not address this issue
the present paper.

Next, we define the operatorsẐi ,s
† and Ẑi ,s acting on the

spin part of the wave function:Ẑi ,s
† adds a spins to the

beginning of the spin wave functionuxN& if i50, or inserts a
spin s after skipping the firsti spins, and makes itN11
long, e.g.,Ẑ0,s

† u↑↓&5us↑↓& and Ẑ1,s† u↑↓&5u↑s↓&. The Ẑi ,s
is defined as the adjoint operator ofẐi ,s

† , i.e., it removes a
spin from sitei .

Then, to create a fermion at the empty sitej50, we need
to create one spinless fermion with operatorb0

† and to add a

spins to the spin wave function with operatorẐ0,s
† :

a0,s
† ~12n0,s̄ !5Ẑ0,s

† b0
† . ~12!

The apparent simplicity is lost fora1,s
† . Then, apart from

creating a spinless fermion withb1
† in the charge part, we

have to consider the following two possibilities: either t
j50 site is empty, and witha1,s

† we create a spin at th

beginning of the spin wave function withẐ0,s
† , or it is occu-

pied, and we insert a spin between the first and second
in ux& with Ẑ1,s

† . So we end up with

a1,s
† ~12n1,s̄ !5@~12n0!Ẑ0,s

† 1n0Ẑ1,s
† #b1

† .

Obviously we choose thej50 in further calculations for its
simplicity. However, one can show that the final result do
not depend on this special choice and the translational inv
ance is preserved even for these complicated operators.

III. SPECTRAL FUNCTIONS

To use the factorized wave functions in the calculation
the spectral function it is more convenient to transfer thk
dependence from theak,s

† operator to the final state:
ify-
d

d

nd
i-

n

ite

ly

in

in

s
ri-

f

A~k,v!5(
f ,s

L z^ f ,N11ua0,s
† u0,N& z2d~v2Ef

N111E0
N!

3dk,P
f
N112P

0
N

and

B~k,v!5(
f ,s

L z^ f ,N21ua0,su0,N& z2d~v2E0
N1Ef

N21!

3dk,P
0
N2P

f
N21,

where the momenta of the final states arePf
N61 . As we

already pointed out, the addition of an electron to the grou
state can result in a final state with or without a doub
occupied state. Correspondingly, the spectral function
contributions from the upper and lower Hubbard ban
A(k,v)5AUHB(k,v)1ALHB(k,v). We will now consider
ALHB(k,v) only. From Eqs.~5! and ~12! we get the follow-
ing convolution as a consequence of the wave function f
torization:

ALHB~k,v!5 (
Q,v8,s

Cs~Q,v8!AQ~k,v2v8!, ~13!

and similarly forB(k,v):

B~k,v!5 (
Q,v8,s

Ds~Q,v8!BQ~k,v2v8!. ~14!

AQ(k,v) andBQ(k,v) depend on the spinless fermion wav
function only,

AQ~k,v!5L(
$I %

z^cL,Q
N11~$I %!ub0

†ucL,p
N,GS& z2

3d~v2Ef ,c
N111EGS,c

N !dk,P
f ,c
N112P

GS,c
N ,

BQ~k,v!5L(
$I %

z^cL,Q
N21~$I %!ub0ucL,p

N,GS& z2

3d~v2EGS,c
N 1Ef ,c

N21!dk,P
GS,c
N 2P

f ,c
N21, ~15!

and they are discussed in more detail in Sec. IV.
On the other hand,Cs(Q,v) and Ds(Q,v) are deter-

mined by the spin wave function only,

Cs~Q,v!5(
f̃ Q

z^xN11~Q, f̃ Q!uẐ0,s
† uxN

GS& z2

3d~v2Ef ,s
N111EGS,s

N !,Ds~Q,v!

5(
f̃ Q

z^xN21~Q, f̃ Q!uẐ0,suxN
GS& z2

3d~v2EGS,s
N 1Ef ,s

N21!, ~16!

and are analyzed in Sec. V. Although we do not presen
here, a similar analysis can be made forAUHB(k,v).

In Eqs.~13! and ~14! the simple addition of the spin an
charge energies is assumed. Strictly speaking, this is o
valid for theU→1`, J→0 and the model of Xiang and
d’Ambrumenil for anyJ. In the other cases the dependen
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of J̃ on the charge wave function should be explicitly tak
into account. Still, it is a reasonable approximation, as
important matrix elements will come from exciting a fe
particle-hole excitations only, which will give finite-size co
rections to J̃ in the thermodynamic limit. Furthermore, w
are neglecting the t2/U corrections to the effective
operators12 and to the wave functions.

The momentum distribution functionnk5^ak
†ak& can be

calculated from the spectral function asnk5*B(k,v)dv,
leading to a similar expression as used by Pruschke
Shiba:28

nk5(
Q

BQ~k!D~Q!, ~17!

where BQ(k)5*BQ(k,v)dv and similarly D(Q)5
*D(Q,v)dv.

The local spectral functionA(v)5(1/L)(kA(k,v) is
given by

A~v!5 (
Q,v8,s

Cs~Q,v8!AQ~v2v8!, ~18!

whereAQ(v)5(1/L)(kAQ(k,v). A similar equation holds
for B(v).

IV. AQ„K,v… AND BQ„K,v…

To calculateAQ(k,v) andBQ(k,v) defined in Eq.~15!,
we need to evaluate matrix elements li
an

t

e

nd

^cL,Q
N11($I %)ub0

†ucL,Q8
N,GS&, where the two states have differe

boundary conditions. In the ground stateQ85p, but we will
not specifyQ8 yet. To calculate these matrix elements, w
need the anticommutation relation

$bk8
† ,bk%5

1

L(j , j 8
eik8 j 82 ik j$bj 8

† ,bj%

5
1

L
e2 i ~k82k!/2ei ~Q82Q!/2

sin~@Q82Q#/2!

sin~@k82k#/2!
,

wherek andk8 are wave vectors with phase shiftsQ/L and
Q8/L, respectively; see Eq.~6!. ForQ→Q8 the anticommu-
tation relation is the usual one:$bk8

† ,bk%5dk,k8, while for
QÞQ8 the overall phase shift (Q2Q8)/L due to momentum
transferQ2Q8 to the spin degrees of freedom gives rise
the Anderson’s orthogonality catastrophe.29 Then a typical
overlap ^0ubkN•••bk2bk1bk18

†
bk

28
†
•••bk

N8
† u0&, where u0& is the

vacuum state, is given by the determinant

U $bk
18 ,k1

% $bk
18 ,k2

%
•••

$bk
18 ,kN

%

$bk
28 ,k1

% $bk
28 ,k2

%
•••

$bk
28 ,kN

%

A A A

$bk
N8 ,k1

% $bk
N8 ,k2

% . . . $bk
N8 ,kN

%

U .
Replacing the anticommutator, the determinant above
comes
L2Nei ~Q82Q!N/2)
j
e2 i ~kj82kj !/2sinN

Q82Q

2 U sin21
k182k1
2

sin21
k182k2
2

••• sin21
k182kN
2

sin21
k282k1
2

sin21
k282k2
2

••• sin21
k282kN
2

A A A

sin21
kN8 2k1
2

sin21
kN8 2k2
2

••• sin21
kN8 2kN

2

U .

This determinant is very similar to the Cauchy determin
@there the elements are 1/(k2k8) instead of 1/sin(k2k8)# and
it can be expressed as a product,30 so for the overlap we ge

6L2Nei ~Q82Q!N/2sinN
Q82Q

2 )
j
e2 i ~kj82kj !/2

3)
j. i

sin
kj2ki
2 )

j. i
sin
kj82ki8

2 )
i , j

sin21
ki82kj
2

,

where the sign1 is for N51,4,5,8,9, . . . and2 for
N52,3,6,7,. . . .

Now we return to theAQ(k,v). The matrix elements in
Eq. ~15! are
tL z^cL,Q
N11~$I%!ub0

†ucL,Q8
N,GS& z2

5U(
q8

^cL,Q
N11~$I%!ubq8

† ucL,Q8
N,GS&U2

5L22Nsin2N
Q82Q

2 )
j. i

sin2
kj2ki
2 )

j. i
sin2

kj82ki8

2

3)
i , j

sin22
ki82kj
2

, ~19!

whereq8 is a wave vector with phase shiftQ8/L. Here we
have used that
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U(
q8

eiq8/2)
i 851

N

sin
ki 8
8 2q8

2 )
i51

N11

sin21
ki2q8

2 U2
5L2sin22

Q82Q

2

holds, independently of the actual quantum numbers$I% and
$I8%. Similarly, for the matrix elements inBQ(k,v) we get

L z^cL,Q
N21~$I %!ub0ucL,Q8

N,GS& z2

5L22N12sin2N22
Q82Q

2 )
j. i

sin2
kj2ki
2 )

j. i
sin2

kj82ki8

2

3)
i , j

sin22
ki82kj
2

.

We are now ready to calculate the spectral functions
merically. One has to generate the quantum numbersIj and
evaluate the energy, momentum, and the expressions ab
From now on, we will considerQ85p.

First of all, it turns out that the following sum rules a
satisfied for everyQ:

E
2p

p dk

2p E
2`

`

dv AQ~k,v!512n,

E
2p

p dk

2p E
2`

`

dv BQ~k,v!5n. ~20!

In the absence of the Anderson orthogonality catastrop
whenQ5Q85p, the contribution to the spectral function
comes from one-particle–hole excitations only and the sp
tral functions are nothing but the familiard(v12tcosk).
This is not true any more when we considerQÞp. In that
case we get contributions from many particle-hole exc
tions as well. The largest weight comes from the on
particle–hole excitations, and increasing the number of
cited holes, the additional weight decreases rapid
Although from Eq.~19! we can calculate the matrix elemen
numerically for all the excitations of the final state, its app
cation is limited to small system sizes~typically L,30). It is
due to the fact that the time required to generate all
possible states~quantum numbersI) is growing exponen-
tially. Therefore, in some of the calculations we take in
account up to three-particle–hole excitations only. In Tab
we give the total sum rule for small sizes in a calculati
-

ve.

e,

c-

-
-
x-
.

e

I

where we took into account up to one-, two- and thre
particle–hole excitations. We can see that the missing we
is really small in the approximation that includes up to thre
particle–hole excitations in the final state. So, if we restr
ourselves to a finite number of particle-hole excitations a
introduce the function

g~I!5 )
I852N/2
I8ÞI

N/2

sin2
p

L
~I2I8!

3 )
I952N/2

N/221

sin22S @I2I9#
p

L
1
Q2p

2L D , ~21!

the calculation of the spectral weight becomes simple. T
weight of the peak corresponding to a one-particle–hole
citation can be given as

AQ~Ip,Ih!5
g~Ip!
g~Ih!

1

sin2S @Ih2Ip#
p

L D AQ
~0,0! , ~22!

where we have removed the quantum numberIh ~hole! from
and addedIp ~particle! to the set$I% of the ground state of
N61 fermions, so that the momentum of the final state
Pf
N115kp2kh1PGS

N11 and the energy isEf
N115EGS

N11

22tcoskp12tcoskh, where thePGS
N115(N11)Q/L is the

momentum of the ground state. Furthermore,AQ
(0,0) is the

overlap between theN-electron ground state with boundar
condition p and the (N11)-electron ground state with
boundary conditionQ and will be discussed later.

Similarly, for the two-particle–hole excitations we get

TABLE I. Sum rule @Eq. ~20!# for Q50 including one-, two-
and three-particle–hole excitations, withN5L/2.

L 1 p-h 112 p-h 11213 p-h

4 0.50000000 0.50000000 0.50000000
12 0.46477280 0.49989083 0.49999999
20 0.43436168 0.49933463 0.49999968
28 0.41165708 0.49844924 0.49999808
36 0.39388871 0.49738700 0.49999428
44 0.37941227 0.49623473 0.49998778
52 0.36725942 0.49504054 0.49997842
60 0.35682437 0.49383182 0.49996622
AQ~I1p ,I2p ,I1h ,I2h!5
g~I1p!g~I2p!
g~I1h!g~I2h!

sin2S @I1h2I2h#
p

L D sin2S @I1p2I2p#
p

L D
sin2S @I1p2I1h#

p

L D sin2S @I1p2I2h#
p

L D sin2S @I2p2I1h#
p

L D sin2S @I2p2I2h#
p

L D AQ
~0,0! , ~23!
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with energy and momentum

EN115EGS
N1122t~cosk1

p1cosk2
p2cosk1

h2cosk2
h!,

PN115k1
p1k2

p2k1
h2k2

h1PGS
N11 .

The corresponding equations for three- or more-partic
hole excitations are similar to those above, but since they
long, we do not give them here.

A typical plot ofAQ(k,v) is shown in Fig. 1. We choos
Q5p/2, which is halfway between the symmetricQ50 and
the trivialQ5p case. In the figure we can see the singular
near the Fermi energy; furthermore, the weights are dist
uted on a cosine-like band. To make it more clear, in Fig
we show the support ofAQ(k,v) and the distribution of the
weights.

A. Weight of the lowest peak

Now, what can we say aboutAQ
(0,0) , the weight of the

lowest peak? In the ground state the quantum numberIj
andIj8 are densely packed, and from Eq.~19! we get

AQ
~0,0!5

cos2N~Q/2!

L2N )
j51

N Fsin2p j

L G2N1122 j

3)
j51

N Fsin2 ~2 j21!p1Q

2L

3sin2
~2 j21!p2Q

2L G j2N21

.

From this we can conclude thatAQ
(0,0) is an even function

of Q andAp
(0,0)51. We are not able to give a closed formu

for the sum. However, very useful information can be o
tained by noticing that

AQ1p
~0,0!

AQ2p
~0,0! 5)

j51

N sin2
2 jp2Q

2L

sin2
2 jp1Q

2L

,

and in the thermodynamic limit,

AQ12p
~0,0! AQ22p

~0,0!

~AQ
~0,0!!2

5
~p22Q2!2

~2Lsinpn!4F12
2p

L
cotpn1O~L22!G .

Here theQ is extended outside the Brillouin zone. Now it
straightforward to get the size and filling dependence
AQ
(0,0) :

AQ
~0,0!5

f ~Q!

~Lsinpn!aQF12aQ

p

2L
cotpn1O~L22!G , ~24!

where

aQ5
1

2SQp D 22 1

2
. ~25!

Equation~24! is also valid forBQ
(0,0) , apart from the sign in

the 1/L correction.
–
re

y
-
2

-

f

The f (Q) is an even function ofQ, f (p)51, and it sat-
isfies the second-order recurrence equation

f ~Q12p! f ~Q22p!

f 2~Q!
5

~p22Q2!2

16
,

which can be reduced to

f ~Q1p!

f ~Q2p!
5

G2~Q/2p!

G2~2Q/2p!
p2Q/p,

and it follows thatf (3p), f (5p), etc., are zero. In the inter
val fromQ50 to p it can be approximated as

lnf ~Q!'20.304710.3248
Q2

p2 20.0201
Q4

p4

with accuracy 0.0001. Furthermore, lnf(0)520.304 637.

B. Low-energy behavior

As we can see in Fig. 2, for low energiesAQ(k,v) has
so-called towers of excitations centered at mome
k5(N11)(Q12pp)/L, wherep is an integer. The larges
weights are for the peaks in the tower withp50, the next
with p521 ~if Q.0) or p51 ~if Q,0), and so on. The
lowest excitation in towerp corresponds to a set of dense
packed quantum numbersIj shifted byp. From the defini-
tion of the momentakj , this is equivalent to imposing a twis
of wave vectorQ12pp. Therefore, we can introduc
Q̃5Q12pp, whereQ̃ is not restricted to be in the Brillouin
zone, but for pÞ0 it has values outside. We defin
AQ̃(k,v) to describe thepth tower, so thatAQ(k,v) has
contributions from each of the towers:AQ(k,v)
5(pAQ̃(k,v).

Furthermore, we enumerate the peaks in a given to
with indices i and i 8, so that the energy and momentum
the peaks are, from Eqs.~6!–~8!:

Ei ,i 85EGS
N 1«c1

p

2L
ucS 11

Q̃2

p2D 1
2puc
L

~ i1 i 8!, ~26!

Pi ,i 85kQ̃1
Q̃

L
1
2p

L
~ i2 i 8!, ~27!

where we have neglected theO(1/L2) finite-size corrections.
Here«c522tcospn is the ‘‘Fermi energy,’’uc52tsinpn is
the ‘‘Fermi ~charge! velocity,’’ and kQ̃5nQ̃ is the ‘‘Fermi
momentum’’ of spinless fermions representing the charg

By AQ̃
( i ,i 8) we denote the weight of the peaks, and for conv

nience we also introduce the relative weigh

aQ̃
( i ,i 8)5AQ̃

( i ,i 8)/AQ̃
(0,0) . The weight of the first few lowest-lying

peaks can be calculated explicitly by Eqs.~21!–~23!, as they
are given by a finite number of particle-hole excitations. T
degeneracy of each peak grows withi and i 8. Here we as-
sumed that the dispersion relation is linear near the Fe
level with velocityuc . Clearly, this picture is valid for en-
ergies small compared to the bandwidth.

From Eq. ~22! we get the relative weightsaQ̃
( i ,i 8) , e.g.

aQ̃
(1,0) is given as
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aQ̃
~1,0!

5

sin2S p1Q̃

2L
D sin2S pN1p

L D
sin2S p

L D sin2S 2pN1p1Q̃

2L
D .

Introducing wj5(Q̃/p1 j )2/4, the relative weights in the
thermodynamic limit simplify so that

aQ̃
~0,0!

51, aQ̃
~1,0!

5w1 , aQ̃
~2,0!

5
1

22
w1~w211w3!,

aQ̃
~1,1!

5w21w1 ,

and alsoaQ̃
( i ,i 8)5a

2Q̃
( i 8,i ) holds. Note that some peaks are d

generate and therefore they are a sum of more contributi
Now, it takes only one step to get the general formula, wh
reads~including the finite-size corrections!

aQ̃
~ i ,i 8!

5
~11bQ̃!~21bQ̃!•••~ i1bQ̃!

i !

3
~11b2Q̃!~21b2Q̃!•••~ i 81b2Q̃!

i 8!

3F11
~ i1 i 8!p2~ i2 i 8!Q̃

L
cotpn1O~L22!G ,

~28!

where

b6Q̃5S 1
2

6
Q̃

2p
D 221. ~29!

It can also be expressed with the help of theG function since

~11bQ̃!~21bQ̃!•••~ i1bQ̃!

i !
5

G~ i1bQ̃11!

G~ i11!G~bQ̃11!
.

The asymptotic expansion of theG function gives

G~ i1bQ̃11!

G~ i11!
'~ i11/21bQ̃/2!bQ̃, ~30!

FIG. 1. AQ(k,v) for Q548p/97 ('p/2) andN596 electrons
on L5192 sites. We can see the power-law singularity atk5p/4
and that the weight is accumulated along a cosinelike band
structure.
-
s.
h

which is a reasonable approximation apart from thei50

peak. Then, it follows thataQ̃
( i ,i 8) has a power-law behavior

aQ̃
~ i ,i 8!

5
~ i11/21bQ̃/2!bQ̃~ i 811/21b2Q̃/2!b2Q̃

G~bQ̃11!G~b2Q̃11!
. ~31!

Note that the exponentaQ̃ in Eq. ~24! is also given by
aQ̃5bQ̃1b2Q̃11.

We can clearly see the manifestation of the underly
conformal field theory:~i! The finite-size corrections to th
energy and momentum@Eqs. ~26! and ~27!# of the lowest-
lying peak in the tower determine the exponents of the c
relation functions and~ii ! the weights in the towers are give
by theG function.31

The spectral functionAQ̃(k,v) in the thermodynamic
limit is given by

AQ̃~k,v!5(
i ,i 8

AQ̃
~ i ,i 8!d~v2Ei ,i 8!dk,Pi ,i 8 , ~32!

and collecting everything together@Eqs.~24!, ~31!, and~32!#,
for the low-energy behavior ofAQ(k,v) we get

AQ~k,v!5(
p

f ~Q̃!Q~v2ucuk2kQ̃u!

4pucsin~pn!G~bQ̃11!G~b2Q̃11!

3Fv2«c1uc~k2kQ̃!

4pucsinpn
GbQ̃

3Fv2«c2uc~k2kQ̃!

4pucsin~pn! Gb2Q̃

. ~33!

e

FIG. 2. Schematic plot of the support ofAQ(k,v) ~above«c)
andBQ(2k,v) ~below «c) for N/L51/3 andQ5p/2. The domi-
nant tower (p50) atk5kQ and the subdominant tower (p521) at
k5kQ22pn are shown. The weight mostly follows the solid line
and the shadowing represent the intensity. Although there are e
tations above the dashed line forAQ(k,v) as well, the weight as-
sociated with them is negligible. The low-energy part ofAQ(k,v)
neark5kQ is enlarged in the inset, where the discrete states in
tower of excitations are shown.
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It is also worth mentioning the symmetry proper
AQ(k,v)5A2Q(2k,v). The whole calculation can be re
peated for the spectral functionBQ(k,v):

BQ~k,v!5(
p

f ~Q̃!Q~ucuk1kQ̃u2v!

4pucsin~pn!G~bQ̃11!G~b2Q̃11!

3F«c2v2uc~k1kQ̃!

4pucsinpn
Gb2Q̃

3F«c2v1uc~k1kQ̃!

4pucsinpn
GbQ̃

. ~34!

We should note, however, that these expressions are
stricted for the weights far from the edges of the towe
where the asymptotic expansion of theG function, Eq.~30!,
is valid. This is especially true whenQ→p, where the cor-
rect result isAp(k,v)5d(v2«c2uc@k2pn#). In other
words, for the exponents close to21 there can be a consid
erable deviation from the power-law behavior and the sp
tral weight accumulates along the edges of the towers. T
behavior can be observed in Fig. 1, where the exponents
b1Q527/16 andb2Q5215/16.

1. Local spectral functions

For the local (k-averaged! spectral functionAQ̃(v) the
weight of thej th peak, denoted byAQ̃

( j ) , is

AQ̃
~ j !

5
1

L (
j 850

j

AQ̃
~ j 8, j2 j 8!.

The summation gives

AQ̃
~ j !

5
1

L

G~11aQ̃1 j !

G~11aQ̃!G~11 j !
AQ̃

~0,0!

3F11 j
p

L

p22Q̃2

p21Q̃2
cotpn1O~L22!G .

If we put it together with Eqs.~24! and~26! and neglect the
1/L corrections, the local spectral function in theL→` limit
reads

AQ~v!'(
p

1

2puc

f ~Q̃!

G~aQ̃11!
S v2«c
2pucsinpn

D aQ̃

. ~35!

For BQ(v) thev2«c should be replaced by2v1«c . We
showAQ(v) for some selected values ofQ in Fig. 3.

2. Momentum distribution function

Here we make some statements aboutBQ(k) in Eq. ~17!.
A naive calculation in the low-energy region is to sum up t
weights nearkQ̃ ,

BQ̃
~ l !

5(
i50

` H BQ̃
~ l1 i ,i ! if l>0

BQ̃
~ i ,2 l1 i ! if l,0.

Of course, one is aware that the summation includes h

energies as well, where the equivalent forbi ,i 8
Q̃ of Eq. ~28! is
re-
,

c-
is
re

h

not valid any more. However, the largest contributions com
from the low-energy regions and the error is not very large
We do not want to get precise values, but rather some qua
tative results. Neglecting theO(1/L) corrections, the sum
gives, for l>0,

BQ̃
~ l !

'
G~2aQ̃!G~11 l1b2Q̃!

G~2b2Q̃!G~11b2Q̃!G~ l2bQ̃!
,

and for l,0 the l and Q̃ should be replaced by2 l and
2Q̃. Again, we can use the asymptotic expansion of theG
function to get

BQ̃~k!' f ~Q̃!
G~2aQ̃!

p
sin~2pb6Q̃!S uk2kQ̃u

2psinpnD
aQ̃

,

~36!

whereb2Q̃ for k.kQ̃ andbQ̃ for k,kQ̃ should be taken in
the argument of the sine. It is interesting that, although th
exponent of the singularityaQ̃ is the same fork.kQ̃ and
k,kQ̃ , there is a strong asymmetry due to the prefactor~a
similar observation was made by Frahm and Korepin32!. In
Fig. 4 this behavior is clearly observed. ForQ→p the cor-
rect result ofBp(k)5Q(kp2k)Q(kp1k) is recovered.

V. THE SPIN PART

To calculateCs(Q,v) andDs(Q,v) given by Eqs.~16!,
we need to know the energies and wave functions of the sp
part. They can be calculated from the usual spin-1

2 Heisen-
berg Hamiltonian@see Eq.~9!# taking N and N61 sites
~spins!.

For the J̃→0 case the excitation spectrum of the spin
collapse, and then we can use the local,v integrated func-
tions Cs(Q)5(vCs(Q,v) and Ds(Q)5(vDs(Q,v).
They are related to the spin transfer functionv j 8→ j ,s , de-
fined by Ogata and Shiba,24 as initially noticed by Sorella
and Parola.8 The spin transfer function gives the amplitude

FIG. 3. AQ(v) for Q50, p/2, and p for quarter filling
(L5300, N5150). ForQ50 the Van Hove singularity is sup-
pressed and the weight is mainly near the Fermi energy.Q5p is
equivalent to the free-fermion case. The dotted line shows the low
energy approximation~35!.
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of removing a spins at site j 8 ~here we choosej 850) and
inserting it at sitej and can be given as

v0→ j ,s5^xN
GSuP̂j , j21••• P̂1,0ds,S

0
zuxN

GS&,

where the operatorP̂i ,i1152SiSi111
1
2 permutes the spins at

sitesi and i11. ThenCs(Q) andDs(Q) read

Cs~Q!5
1

N11F11 (
j50

N21

ei ~Q1p!~ j11!v0→ j ,sG ,
Ds~Q!5

1

N21(
j50

N22

ei ~Q1p! jv0→ j ,s . ~37!

In particular, v0→0,s5Ns /N, and it follows that
(QCs(Q)51 and(QDs(Q)5Ns /N.

FIG. 4. ~a! AQ(k) for Q50, 46p/91 ('p/2), and 90p/91
('p) and ~b! BQ(2k) for Q50, 44p/89 ('p/2), and 88p/89
('p) for L5270 andN590. The evolution of the weight and
shape can be followed from the symmetricQ50 case with the
singularities at k50 and k562p/3 through the asymmetric
Q5p/2 case with singularities atk5p/6 and2p/2 to the ‘‘nor-
mal’’ distribution atQ5p.
We are interested in these quantities for two particu
cases: the isotropic Heisenberg model, because it is ph
cally relevant, and theXY model, because it allows analyt
cal calculations. We first consider theXYmodel because the
simplicity of that case makes it more convenient to introdu
the basic ideas.

A. The XY model

In this special case the spin problem can be mapped
noninteracting spinless fermions using the Wigner-Jord
transformation. This means that the eigenenergies and w
functions are known and we can calculateDs(Q,v) and
Cs(Q,v) analytically. We are facing a similar problem—th
orthogonality catastrophe—to when we calculated
AQ(v,k), but now it comes from the overlaps between sta
with different number of sites. For convenience, we choo
the spinless fermions to represent thes̄ spins, so that the
operatorẐ0,s

† (Ẑ0,s) only adds~removes! a site and does no
change the number of fermions, which we fix to beNs̄ .
Then we have to evaluate matrix elements such

^ x̃N11uẐ0,s
† u x̃N

GS& and ^ x̃N21uẐ0,su x̃N
GS&, where in theu x̃N

GS&
the 0 site is unoccupied and the fermions are on s
l51, . . .N and from sitel51 they hop tol5N, skipping the
l50 site. For simplicity, we consider cases when the num
of spin-up and- down fermions is odd (N is even!, so that we
do not have to worry about extra phases arising from
Jordan-Wigner transformation. Then the momentum of
ground stateu x̃N

GS& is PGS5p. Let us denote byk8 the mo-
menta of fermions on aN61 site lattice, quantized a
kj852pJj8/(N61); by k the momenta of fermions on aN
site lattice, quantized ask52pJj /N, whereJj andJj8 are
integers (j51, . . . ,Ns̄), and byf and f

† the operators of the
spinless fermions. The energy and momentum of the s
are

E5JXY(
j51

Ns̄

coskj8 , ~38!

P5(
j51

Ns̄

kj8 . ~39!

To calculate the matrix element inCs(Q,v) @see Eq.
~16!# we need the anti-commutation relation

$ f k8
† , f k%5

1

AN~N11!
(
l51

N

(
l 850

N

eik8 l 82 ikl$ f l 8
† , f l%

5
1

AN~N11!
eik/2

sin~k8/2!

sin~@k2k8#/2!
,

and the matrix element z^xN11($J8%)uẐ0,s
† uxN

GS& z2

5 z^0u f kN¯••• f k2f k1f k8
†
f k8
†
. . . f k8

†
s̄ u0& z2 is again given by a
s 1 2 N
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Cauchy determinant, which can be expressed as a prod

@N~N11!#2Ns̄)
j51

N

s̄ sin2
kj8

2)
j. i

sin2
kj2ki
2

3)
j. i

sin2
kj82ki8

2 )
i , j

sin22
ki82kj
2

. ~40!

Similarly, in the case ofDs(Q,v), the anticommutator is

$ f k8
† , f k%5

1

AN~N21!
e2 ik8/2

sin~k/2!

sin~@k82k#/2!

and the matrix elementz^xN21($J8%)uẐ0,suxN
GS& z2 is equal to

@N~N21!#2Ns̄)
j51

N

s̄ sin2
kj
2)
j. i

sin2
kj2ki
2

3)
j. i

sin2
kj82ki8

2 )
i , j

sin22
ki82kj
2

. ~41!

As soon as we have the product representation, it is strai
forward to analyze the low-energy behavior and also to
tain numericallyD(Q,v) and C(Q,v) for larger system
sizes.

1. Low-energy behavior

The low-energy spectra ofDs(Q,v) andCs(Q,v) con-
sist of towers centered at momentaQr ,s52rpms , where
r51/2,3/2, . . . . To analyze the low-energy behavior in th
tower labeled byr , we can proceed analogously to the char
part: The weights in the tower of excitation

Cr ,s
( i ,i 8)5cr ,s

( i ,i 8)Cr ,s
(0,0) and Dr ,s

( i ,i 8)5dr ,s
( i ,i 8)Dr ,s

(0,0) can be calcu-
lated from Eqs.~40! and~41!. The energy and momentum o
the state (i ,i 8) can be calculated from Eqs.~38! and ~39!
and, neglecting theO(1/N2) corrections, they read

Ei ,i 8,r
~N61!

5EGS6«s1
p

N
us~g r ,s

1 1g r ,s
2 12!1

2p

N
us~ i1 i 8!,

~42!

Pi ,i 8
~N61!

5Qr ,s6
p

N
~g r ,s

1 2g r ,s
2 !1

2p

N
~ i2 i 8!, ~43!

where

g r ,s
6 5S ms̄

2
6r D 221, ~44!

and the Fermi energy and the velocity of the spins are

«s5JXYS ms̄cospms̄2
1

p
sinpms̄ D , us5JXYsinpms̄ ,

~45!

andms̄5Ns̄ /N.

The relative weightsdr ,s
( i ,i 8) can be calculated from Eq

~41!, e.g.,
t

t-
-

e

d1/2,s
~0,1! 5

sin2
p~11N1Ns̄ !

N21

sin2
p

N21

3

sin2
p~11N1Ns̄ !

2~N22N!

sin2
p~11N2Ns̄12NNs̄ !

2~N22N!

3
R2
„~N1Ns̄11!/2…

R2
„~N1Ns̄21!/2…

,

where

R~ l !5 )
j50

Ns̄21

sinS p l

N~N21!
1

p j

N D ,
and the otherdr ,s

( i ,i 8) are similar. In the thermodynamic limi
N→`, the weightd1/2,s

(0,1) simplifies to

d1/2,s
~0,1! 5S 121

ms̄

2 D 2@11O~ lnL/L !#. ~46!

Neglecting the finite-size corrections, for general (i ,i 8) and
r we get

dr ,s
~ i ,i 8!5

G~ i1g r ,s
2 11!

G~g r ,s
2 11!G~ i11!

G~ i 81g r ,s
1 11!

G~g r ,s
1 11!G~ i 811!

, ~47!

where the exponentsg r ,s
6 are defined in Eq.~44! and the

weights again follow the prescription of the conform
theory, with strong logarithmic finite-size corrections how
ever. A similar analysis can be done forCs(Q,v). From the
above and Eq.~16! we obtain

Ds~Q,v!'(
r
g~r ,ms!@«s2v1us~Q2Qr ,s!#gr

2

3@«s2v2us~Q2Qr ,s!#gr
1

3Q~«s2v1usuQ2Qr ,su! ~48!

and

Cs~Q,v!'(
r
g~r ,ms!@v2«s1us~Q2Qr ,s!#gr

1

3@v2«s2us~Q2Qr ,s!#gr
2

3Q~v2«s2usuQ2Qr ,su!, ~49!

whereg(r ,ms) are numbers that can be determined nume
cally.

We immediately see that theCs(Q) andDs(Q) are sin-
gular atQ5Qr ,s :

Cs~Q!,Ds~Q!}uQ2Qr ,suhr ,s,

with exponent

h r ,s5g r ,s
1 1g r ,s

2 11,
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and they are strongly asymmetric aroundQr ,s , as we can
conclude from the analog of Eq.~36!. For the nonmagnetic
case (ms5ms̄51/2), the singularity is atQr5p/2 for all the
towers and the exponents of the main singularity (r51/2)
are g1/2

2 5215/16 and g1/2
1 527/16; furthermore,

h1/2523/8.

B. Heisenberg model

Although the Heisenberg model is solvable by a Beth
ansatz and in principle the wave functions are known, it
too involved to give the matrix elements ofCs(Q,v) and
Ds(Q,v). The simplest alternative way is exact diagonaliza
tion of small clusters and density matrix renormalizatio
group33 ~DMRG! extended to dynamical properties.34 We
have used both methods to calculate the weights for syst
sizes up toN524 andN542, respectively. A typical distri-
bution of the weights forCs(Q,v) for zero magnetization is
given in Fig. 5. There are several features to be observed:~i!
Due to selection rules, the nonzero matrix elements are w
the S51/2 final states only,~ii ! the weight is concentrated
along the lower edge of the excitation spectra in the interv
p/2>Q>p, and~iii ! there are two, almost overlapping tow-
ers visible corresponding tor51/2 andr523/2. Our inter-
pretation of the spectrum is that the weight mostly follow
the dispersion of the spinon of Faddeev and Takhtajan35

since the final states have an odd number of spins; thus th
can be a single spinon in the spectrum and it has a cosinel
dispersion. It is also surprising that forCs(Q,v) more than
97% and forDs(Q,v) more than 99% of the total weight are
found in this spinon branch. This behavior is similar to tha
discussed by Talstra, Strong, and Anderson,36 who added
two spins to the spin wave function.

We can also try to analyze the low-energy behavior from
the conformal field theory point of view. Namely, from the
Bethe ansatz solutions the finite-size corrections to the e

FIG. 5. Support and weights ofCs(Q,v) for the N518 spin
Heisenberg model. The symbols represent the excitations of t
final states~19 spins!, where the total spin is also indicated. The
numbers near the solid triangles give the weight of that particul
state. Due to selection rule the matrix elements are zero, with high
spin states denoted by open symbols. The dotted lines are a guid
the eye and show ther51/2 andr523/2 towers.
e
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ergy are known37–39and they are also given by Eqs.~42! and
~43! apart from ln(N)/N corrections, with

g r ,s
6 5S ms̄

2j
6jr D 221. ~50!

For zero magnetization the velocityus readsp J̃ /2, the en-
ergy is «s52 J̃ ln2 and j51/A2, and the exponents are
g1/2

2 521 andg1/2
1 521/2, very close to theXY exponents

(215/16 and27/16, respectively!. For arbitrary magnetiza-
tion us , «s , and j are to be calculated from integra
equations.38

Also, we check if Eq.~47! is satisfied for ther51/2 tower
in Fig. 6. Namely, it tells us thatc(0,1)5d(1,0)51/2 and
c(0,2)5d(2,0)53/8, apart from finite-size corrections, which
we assumed to be of the same form as in the case of

he

r
er
to

FIG. 6. ~a! Relative weightsc(0,1), c(0,2), d(1,0), andd(2,0) as a
function of the system size calculated by exact diagonalizati
~squares and triangles! and by DMRG ~crosses! for the r51/2
tower. The dashed line represents a fit to th
a01a1 /N1a2ln(N)/N form and it is reasonably close to the theo
retical values 0.5 and 0.375 in the thermodynamic limit.~b! The
opposite sign of logarithmic corrections cancels if we make t
products@c(0,1)d(1,0)#1/2 and @c(0,2)d(2,0)#1/2.
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XY model in Eq.~46!. We believe that this method can als
be used to determine exponents in a more general cas
well.

Another interesting point is that the exponentg1/2
2 521

already indicates thatc(1,0) vanishes, in agreement with th
selection rules. However, there is still some weight
c(2,0), which comes fromS51/2 bound states of spinons. W
do not know the finite-size scaling of that weight, i.e
whether or not it disappears in the thermodynamic limit.

Now, if we recall thatDs(Q)5(vDs(Q,v), then it fol-
lows @see Eq.~36!# that the contribution toDQ for Q.p/2 is
strongly suppressed, and we see essentially the contribu
from the r53/2 tower. Since the contribution toC(Q,v)
andD(Q,v) comes mostly from the lower edge of excitatio
spectrum, we can use the approximations

Cs~Q,v!5Cs~Q!d~v2«s2«Q!,

Ds~Q,v!5Ds~Q!d~v2«s1«Q!,

where«Q is the des Cloizeaux-Pearson dispersion40

«Q5
p

2
J̃ usin~Q2p/2!u.

TheCs(Q) andDs(Q) can be calculated numerically fo
small clusters~typically up toN526 with exact diagonaliza
tion andN570 with DMRG! for the nonmagnetic case~see
Refs. 8 and 9!. The (N11)Cs(Q) and (N21)Ds(Q) seem
to have a small finite-size effect, as follows from Eq.~37!,
and the singularity in the nonmagnetic case is given
h1/2521/2, as already noticed by Sorella and Parola.8

We have also calculatedCs(Q) andDs(Q) for the sys-
tem with finite magnetizationN↓ /N51/4 ~see Fig. 7!. There
Q↑53p/4, Q↓5p/4, and the exponents ar
h1/2,↑520.5860.03 andh1/2,↓520.2560.03. These expo
nents are consistent withj50.8760.02 and in surprisingly
good agreement with the simple formula given by Frahm a
Korepin,32 j'12m↓/2, which is valid in a large magneti
field.

VI. THE GREEN’S FUNCTION AND THE COMPARISON
WITH THE CONFORMAL FIELD THEORY

The real space Green’s function can be calculated fr
the spectral functions as

G~x,t !5E
2p

p

dkE
2`

`

dveivt2 ikxA~k,v!

for t.0 and A(k,v) should be replaced byB(k,v) for
t,0, as follows from Eq.~1!. Then, from Eqs.~13!, ~33! and
~49! it follows that

G~x,t.0!'(
p,r

cp,re
2 iQ̃rxN/L

~x2uct !
bQ̃r

11~x1uct !
b2Q̃r

11

3
1

~x2ust !
gr

1
11~x1uct !

gr
2

11
, ~51!

where Q̃r was defined asQr12pp; furthermore,cp,r are
numbers. The charge velocityuc is the same one as in Eq
as

r

ns

y

d

m

~26!, while the spin velocity isus5us /n, where us was
defined in Eq.~42!. The Green’s function has singularities a
different momenta, depending on the actual quantum num
bersp and r ; see Table II for details.

On the other hand, according to the conformal fiel
theory,21,22 a correlation function̂f(x,t)f(0,0)& reads

(
Dc ,Ds

cDc ,Ds
e22i [Dck↑1~Dc1Ds!k↓]x

~x2uct !
2Dc

1

~x1uct !
2Dc

2

~x2ust !
2Ds

1

~x1ust !
2Ds

2 ,

FIG. 7. ~a! C↑(Q) andD↑(Q) and ~b! C↓(Q) andD↓(Q) for
finite magnetizationN↑ /N53/4 with singularity atQ53p/4 and
Q5p/4, respectively. The solid symbols stands forDs(Q) and
open symbols forCs(Q).

TABLE II. Same momenta for which the Green’s function
Gs(x,t.0) is singular.

r p521 p50 p51

23/2 23ks 2ks12ks̄

21/2 2ks ks12ks̄

1/2 2ks22ks̄ ks

3/2 ks22ks̄ 3ks
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where the exponents

2Dc
65S ZccDc1ZscDs6

ZssDNc2ZcsDNs

2detZ D 2,
2Ds

65S ZcsDc1ZssDs6
ZccDNs2ZscDNc

2detZ D 2 ~52!

are related to the finite-size corrections

E2E05
2p

N
uc~Dc

11Dc
2!1

2p

N
us~Ds

11Ds
2!, ~53!

P2P052Dck↑12~Dc1Ds!k↓1
2p

N
~Dc

12Dc
21Ds

12Ds
2!

~54!

and cDc ,Ds
are numbers. The quantum numbersDc , Ds ,

DNc, andDNs characterize the excitations and are related
p andr as given in Table III. TheZ’s are the elements of th
so-called dressed charge matrix. It can be calculated f
Bethe ansatz solution of the Hubbard model, and in
large-U limit they read

TABLE III. Correspondence between the Bethe ansatz quan
numbers andp and r .

s Dc Ds DNc DNs

↑ p1r 2r 1 0
↓ p r 1 1
↑ 2p2r r 21 0
↓ 2p 2r 21 21
o

m
e

Zcc51 , Zcs50,

Zsc5m↓ , Zss5j,

wherej can be obtained solving an integral equation. For
nonmagnetic casem↓51/2 andj51/A2. Then we are ready
to identify the exponents b6Q̃r

1152Dc
6 and

g r
61152Ds

6 and in this way we can directly see the vali
ity of the conformal field thery in the large-U limit. In the
case of thet-JXY model no Bethe ansatz result is known, b
using the analogy with the isotropic case, the exponents
readily obtained using the substitutionsZcc→1, Zcs→0,
Zsc→m↓ , andZss→1.

VII. CONCLUSION

To conclude, we have shown that for some special ca
the spectral functions of the 1D Hubbard can be calcula
using the spin-charge factorized wave function, which i
plies that the spectral functions are given as a convolu
involving the charge and spin parts. Analytical calculatio
are possible for the charge part and for the spin part in
case of theXY model. The low-energy behavior turns out
be fully consistent with the predictions of the conformal fie
theory, i.e., the exponents are given by the finite-size cor
tions to the energy and momentum, and the weights
given by theG function. Based on this, we propose a way
determine the exponents of the correlation functions. F
thermore, we argue that when the exponents of the corr
tion functions are close to integers, the Luttinger liqu
power-law behavior of the correlation functions should
taken with care, as it comes from the asymptotic expans
of theG function.

m
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