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Local atomic structure of semiconductor alloys using pair distribution functions
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We have developed a method of calculating the pair distribution function of binary semiconductor crystals
and pseudobinary alloys with the zinc-blende structures. The pair distribution function is essentially the
density-density correlation function and reveals the local structure directly. We have used a simple model using
a harmonic potential with bond-stretching and bond-bending forces. The temperature dependence has been
incorporated quantum mechanically. Results of this method are presented for both ¢hggtaland GaAs
and alloys(Ga; _,In,As). These results can be directly compared with x-ray and neutron-diffraction experi-
ments.[S0163-18207)06004-9

[. INTRODUCTION distances, such as the lattice constant. Recently, extended
x-ray absorption fine structur€XAFS) experiments have

Semiconductor alloys have been studied extensively dubeen used to study semiconductor alldy&uch experiments
to their importance in applications. These materials have reinvestigate theshortrange order, such as the near-neighbor
ceived much attention because physical properties, such apacings.
the band gap, mobility, and lattice parameter, can be continu- However, the diffuse background in diffraction experi-
ously controlled: Having such continuous controls is of im- ments has not drawn much attention because it is more dif-
portance in applications such as electronic devices or opticdicult to obtain and hard to analyze. Nonetheless, the diffuse
devices. For example, the energy gap of a pseudobinafyackground exists in all experimental data on alloys due to
compound Ga_,Al ,As can be varied between 1.4 and 2.2the local displacements. This information can be analyzed
eV by varying the compositior, and the wavelength of the using the pair distribution functioPDF. PDF analysis has
solid-state laser made from this material can be tuned adeen used mainly in the characterization of atomic arrange-
cordingly. ments in amorphous materials such as noncrystalline alloys

Unlike pure crystals, the difference in the bond lengthsor liquids®~? Although it has long been known that the
associated with different chemical species in alloys induce®DF method is well suited for analyzing crystalline as well
internal strain. The structural characterization of alloys datesas amorphous materials, it has only recently been applied to
back to the work of Vegar@who found that the lattice con- study the local structure of disordered crystalline matefals.
stants of some alloys change linearly with the concentratiofecause the real-space resolution is inversely proportional to
of the constituents. A simplistic explanation of this phenom-the highest momentum data, it is essential to hhigh-
enon is the virtual-crystal approximatiérin which all the momentunscattering data to study local structures. High mo-
atoms are located on an ideal lattice with the lattice constarmentum scattering data have become available with the ad-
given by the compositional average of the constituentsvent of synchrotron x-ray sources and spallation neutron
Therefore, this approximation completely neglects the locakources. These high-momentum scattering data not only give
deformations, which would be expected to occur. In tetraheinformation about local structures from the diffusive back-
drally coordinated semiconductor compounds, deformatioground but also allow accurate data normalization. Since it
also occurs in the bond angles. A better understanding dfias now become rather routine to access the high-momentum
Vegard's law in random alloys was achieved recently and thecattering data, PDF analysis is becoming a good candidate
conditions under which Vegard's law is expected to holdfor characterizing semiconductor alloys.
were giverf These studies used a harmonic potential, which There are several attractive features to using PDF analy-
accounts for the bond-stretching and the bond-bendingis. On the one hand, it covers a wide range of pair distances.
forces. It has been shown that Vegard's law is strictly obeyed herefore, it can be used to study local structural character-
when the force constants for bond-stretching and the bondstics such as nearest-neighbor distances and intermediate-
bending forces are the same for the end members from whictange structures such as clustering. On the other hand, it
the alloy is made, and are independent of the composition. Igives a complete description of the structure in that not only
semiconductor alloys, these simplifications were exploited irthe average distance between a pair but whéth of the
a series of recent papet$ Most semiconductor alloys made length distribution can also be obtained, with good accuracy.
from IlI-V and II-VI elements follow Vegard's law very Furthermore, this method is not subject to any arbitrary fit-
closely® ting parameters and the result of a theoretical calculation can

The experimental structural characterization of alloys hade directly compared with the experimental data.
been accomplished mainly using Bragg x-ray diffraction, and In this paper, we present a method of calculating the PDF
also using Bragg neutron diffraction. These experiment®f binary semiconductor crystals in the zinc-blende structure,
measure the structural quantities that are correlatedlomgr  AC, and the associated pseudobinary alloys, ,B,C. We
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also discuss the advantages and limitations of using the PDF Let u; be the displacement vector of atanfrom its per-
analysis in investigating local structures. To account for thdect crystalline position. Expanding up to linear terms in
local strain, we use a simple valence-bond m&dehich has  u;, we have

been successful in describing the local strain in semiconduc- .

tor alloys. Since experimental data are always subject to ther- Lij=Letrij-ui, @
mal broadening, thermal averaging should be taken into aGyheref; is a unit vector in the perfect crystal pointing from
count also. This is done in this paper by using the propetiomi to its nearest neighbdr, andu;; =u;—u;. Then the

Bose facto.rs .and also by .employir?g the _Debye—WaIIer theopotential energy(1) can be expanded to have the f6rm
rem. We limit ourselves in our discussion of the PDF of

semiconductor alloys to the zinc-blende structure in the form i 0 - 5
of random solid solutions In particular, we focus on V= 2 7(Le—|—ij +1ij - Uij)
Ga, _,In,As as an important example. But our method can be 0
easily modified to any crystals and crystalline alloys; with or ) Biji | « . 1. . 2
without local clustering present. +le El g | Vi Uit T Ui+ 5 (T Ui - Uy ) |
The reason for choosing Ga,In,As is that it is one of n
the largest bond-length mismatched alloys among IlI-V and ©)
[I-VI compounds. Therefore, the effect of bond-length disor-we®—8 have preferred to use the Kirkwood model Hg)
der will be most pronounced. Also it is one of the standardrather than the more popular Keating mdfélecause of the
systems and has been studied quite extensfé@ne of the  cleaner separation of length and angular displacements.
experimental advantages is that the two end members, Ga/Since the nearest-neighbor central force alone is not enough
and InAs, are completely miscible and form a random solicko stabilize the zinc-blende structure, this model is one of the
solution atall concentrations. simplest force models for the zinc-blende structure. This
model (3) is not good enough to produce very exact phonon
dispersion relations. However, it has been proved to be ac-
curate enough to describe the local structure quantitatfrely.
To account for the forces between atoms tetrahedralljt also provides a clear picture for the important microscopic
coupled by the valence bonding in zinc-blende structures, wéorces. Therefore, the model is a good starting point for our
adopt the Kirkwood modéef The potential energy in this Purpose and may be refined later as needed. It appears that

1. MODEL

model is given by this simple model can capture all the essential features in the
PDF.
8 Equation(3) can be recast into a concise matrix form,
S 4] 10422 ijl _ 0\2
V—% - (Lij—Lj) +Le<ij2”> g (cosij —cog)”. V=1u'Mu+u'®+E,, (4)
(1) whereu=(uq,U,, .. .) is thedisplacement field vector and

] ] M is a matrix derivable from Ed3). The components of the
Here, the first term describes the energy due to the bonggyce vector fieldb=(®,,®,, .. .) aredefined by

stretching force with the force constaaf; between atoms

i andj. L;; and Lﬂ are the actual and natur@linstrainegd - Z 0n

bond lengths between atomsand j, respectively. The sec- i j aij(Le=Liprij, ®)

ond term in(1) is due to the bond-bending force with the . . .

force constan;; between the bondg andil. 6;; and °  which expresses the internal strain due to the disorder. The
are the actual and naturél09.5°) angle between the bonds length disorder only appears through this vector. This form
ij andil. L, is the nearest-neighbor distance as given by théf the potential4) is useful in that it gives a simple form to
virtual crystal approximationL, is inserted in the second find the relaxed equilibrium positions of strained systems,
term to makeg;; have the same dimension ag;. The namely,
angular brackets under the summations denote counting each MU= — ® 6
configuration only once to exclude double counting. The po- u= ' ©®)
tential (1) has been used extensively in discussing the elastiand also in that the dynamical matrix is defined through the

strain in semiconductor aIon:S‘.8 The harmonic approxima- matrix M as discussed in the next section.
tion can be applied because we expsaball positional

changes in the alloy from the virtual crystal, whiph is .used as IIl. DEFINITIONS
a reference. There are two causes for the distortions, the
static one from the bond-length mismatch and tiynamic Since different definitions are used in the literattfreve

one from the thermal motion. The change from bond-lengttgive the definitions we use in this study. To define the dy-
mismatch is small since it is less than 10% of the unstrainedamical matrixD(k), we need to distinguish the Bravais
bond lengths although Ga,In,As is one of the largest lattice and the basis to which the atdnmbelongs. Let us
length-mismatched semiconductors. The thermal broadenindjvide N atoms into\" Bravais lattice points, each contain-
is also quite small since we are interested in the low-toing p basis atomgN=Ap]. Let I(I") and u(u’) be the
room-temperature range. It is therefore reasonable to useBravais lattice and the basis labels of the atgm), respec-
harmonic approximation for the potential due to the displacetively. Denoting the position of the atomasr;, we use the
ments. following definition of the dynamical matrix;
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1(q) } 13

Dysaurar(K)=(M,M,,) " Y22 Mg el (7) F(Q)EQ[W—l
|!

Here,a anda’ denote three Cartesian coordinates, and henceheref(q) is the atomic form factor ant(q) is the experi-

the dynamical matrix is a3x 3p matrix. mentally measured scattering intensity given by the square of
Since different nomenclature has been used for the PDRhe scattering amplitude,

we hereby give the definitiof. For the sake of simplicity,

we begin with an arrangement ®f identical atomg®-*3 L(a)=

Then, the atomic density functigu(r) is given by (Q)=

2

N
Ei f(q)e'dr (14)

In the next section, the Kirkwood model of the previous
p(r):Z o(r—ri), (8 section is utilized to calculate the PDF and results are given
' mainly in the form of the reduced RDF to be directly com-
and the density-density correlation functi@(r) can be pared with experiments.
written as In case of multicomponent systettfs3the definition of
the PDF is generalized to

1 1
C(r)=—< p(r’+r)p(r’)dr’>=—2 > (8(r=ry)) 1
N f N ' p(r)ZNZ rE wij pij (). (15)
=p(r)+a(r), 9 v
whererj;=r;—r; is a vector from atoni to j and() denotes

the statistical average that implié®th configurational and
thermal averages. The correlation functi@r) describes

Here, w;; is given byfif_j_/? where f; is the scattering
strength of the atom andf denotes the arithmetic mean of
fi’s in the samplef; is the scattering factor in x-ray scatter-

o - o .. _ing, and the scattering length in neutron scattering. Equation
the probability per unit volume of finding an atom at position (15) is exact for neutron diffraction, where the scattering is

r from a chosen atom at the origin. This probability densityfrom the nucleus which mav be considered as a point. Eor
is further averaged by taking each atom in turn as the origin).(_ra scattering Eq(15) is orﬁ an approximation also th’e-
The 6 function &(r) is the probability of finding itself and y 9 =4 y pp

appears as a constant background in the momentum spacejﬁéﬁc(:]ui?] tr(:aetln? ilz\(/:g%r;ﬁgfgr?'w dgsz(;]g'g;ec% WI\Iltgvg?tﬁZI:gm,
experiments. The functiop(r) defines the PDF. Defining y g dep '

ey — . : we will use this approximation here so that tfieare pro-
pij(r)=(&(r—ry;)), the PDF can be rewritten as portional to the atomic charge .

1,
p(r)= NiZj pij(r), (10 IV. CALCULATION OF PDF

where the prime in the summation means thaij is ex- In thl_s section we evaluate the PDF of crystalllne systems
cluded. in the zinc-blende structure. The system may be either a pure

binary semiconductor such as GaAs and InAs, or a pseudo-

In this study, the major interest lies in macroscopically, . . :
isotropic materials, such as pure randomly oriented crystal-blnary alloy such as Ga.«n,As. We first rewritep;;(r) as

lites or random solid solutions. In such materigiér) de- 1 o

pends only on the magnitude It is convenient to define the pij(r)= z—f dge '7(e'ii). (16
radial distribution functiofRDF) asJ(r)=4r?p(r). Then ™

the probability should be interpreted as per unit length ratheThis function would be & function located at ; if all the
than per unit volume. The average number of atoms in atoms were stationary in a perfect crystal. However, this
shell with radiusr and thicknesslr is given byJ(r)dr. function is broadened by titeermal motionsince the atoms

However, the RDF tends to obscure the correlations bemove about the equilibrium positions even at zero tempera-
tween atoms as gets larger because it grows rapidly. Hence,ture. Moreover, it is further broadened by ihéernal strains
it is customary to define the reduced RDF as due to the bond-length mismatch in the case of alloys.

For the thermal motions, the Debye-Waller theorem can
be applied to the harmonic approximation of Sec. Il. As
shown in Appendix A, this leads to &aussianpeak for
pij(r) centered at;; with width oy; given by

1
G(r)=4mr[p(r)=pol= £ [I(r)=4mr?po], (11)

where po is the averagenumber density of the material.
Since the average density is subtract€r) oscillates Uij:<[uij.fij]2>ll2_ 17
around zero and shows the correlations more clearly than _ i ) )
does the RDF. Usually, it is this function to which the ex- Accordingly, the total PDF consists of a series of Gaussians

perimental data are transformed through the relation from each pair in the system with weigiv; .
To proceed further, we make use of the quantum-

2 (= mechanical representation of the displacement. Let us divide
G(UZ;I F(q)sinqrda. (12 N atoms intoV Bravais lattice points, each containing
0 basis atoms as before. Lgt(v) be the basis label of atoms
Hereq is the magnitude of the scattering vector &(d) is i (j) in a unit cell. Rewritingu;; in terms of phonon opera-

the reduced scattering intensity defined by tors, it can be shown that
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where wg(k) is the eigenvalue of the dynamical matii®) T=10K
with the wave vectok in branchs, ny s is the number op- 000 Lyl
erator in that mode, anel,(k,s) is the corresponding eigen- 770 5 10 15

vector associated with the basis and massM . In the o

summation,k runs from 1 toA ands runs from 1 to 3. r (4)

Now, the problem of finding the effect dhermalbroaden- ) )

ing is reduced to solving the eigenvalue problem of the dy- FIG. 1. The widtho for a pure InAs crystal as a function of the

namical matrix. Solving the eigenvalue problem ana|ytlca”yd|stance from the origim at different temperaturesx(, at 1000 K;

for generak has to rely on numerical methods. ¢, at 300 K; and, at 10 K). The leftmost symbol corresponds to
Below, we distinguish between the pure and dlsorderetﬁhe nearest neighbor. At certain distances, where two types of

nelghbors(e g., In-In and As-Asoccur, symbols may overlap.
systems. In the former, the only reason for line broadening is

the thermal motion. In the latter, there are two reasons, thgharactenzed by the-; in Eq. (18). For a pure crystal
thermal motion and the internal strains. y ij 9. P ystalj

assumes the same valuefor all bonds and we assume that
Bij also takes the same valyefor all angles. These param-
eters can be determined independently from standard experi-

Consider a pure binary semiconductor crystet, with A mental datd. Since p=2 in the zinc-blende structure, the
atoms in one sublattice ar@ in the other. There is only one dynamical matrix is a & 6 matrix. It can be calculated ana-
source of peak broadening, thkermal motion, which is lytically in a closed form for generad:®

A. Pure system

i1 T st i T 5yl
Dk:a 4 +’8 2 4 1
7 3l 3wl 31t v
1 |31+ 3 vt 3Tkt 3 YTk T_k—2y-k1
+§ﬁ . L . . . (19)
—2%d 31+ g vevokt 3 Yo7kt 3 YTk
Here, 1 is the 3x 3 unit matrix, and the scalay, is given by
S eikeog Kile Kyl kL+ Kile . kyLe = KL 20
Y=, e K 9=4| cos~—c0S2=C0S i sin——=sin—~—sin
5 NERRNE RG] V3 f V3]

The vector v, and the tensorr, are defined to be yond the melting point, still the widtle is much less than
ne=0Vi/Le) v, 7=(iVi /L) (iVi/Le) vk, respectively. the interatomic spacing. It is to be noted that the width for
Using Eq.(19) the eigenvalue problem can be solved nu-the nearest neighbors does not vary as much as the widths for
merically, and the summation in E€L8) can be carried out other neighbors as the temperature is increased. This is be-
using Monte Carlo integration over the first Brillouin zone. cause nearest-neighbor pairs are connected by the strong
There isno internal strain for a pure system as discussedhond-stretching force. All other neighbors are connected by
in Sec. Il. Figure 1 presents the result for the widtifor  at least one bond-bending force, which is considerably
InAs at different temperatures We used105.30 N/m and  weaker than the bond-stretching force in covalently bonded
B=17.28 N/m for InAs® Note that there is a factor of 3 materials. Therefore, further neighbors connected by bond-
difference in the values of the force constants used here arttknding forces become more sensitive to the thermal agita-
previously due to different definitions. The symbols at 2.62 tion, while nearest-neighbor pairs can remain rather rigid.
A depict the width of nearest neighbors, and those at 4.28 Ahis has an experimental significance; if one wants to im-
represent that of the second neighbors, etc. Although thprove the experimental resolution by lowering the tempera-
highest temperature 1000 K is not realistic because it is beture, it does not help much for the nearest-neighbor peak,
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———— ment. Our calculation gives slightly better resolution than the
experiment, which is perhaps surprising, as the theory in-
cludes truncation ripples via the convolution in EB9) and
using the experimentay,,.'® What is surprising is that our
simple model with no adjustable parameters even allows a
quantitative comparison with experiment. This confirms that
the model is adequate to be used for semiconductor alloys.

30

20

A I

G(r) (A7%)

C B. Disordered system
—10 ~— T=300K ]

N A Consider a pseudobinary semiconductor alloy in the zinc-
0 5 10 15 blende structuref; _,B,C with A andB atoms in one sub-
o lattice andC in the other. Although disorder is introduced
r (4) only in one sublattice in this study, it would be straightfor-

ward to generalize it to both sublattices. As mentioned be-
FIG. 2. Tempergture dependence Of. the redL(xer_dzy) RDF of fore, there are two reasons for peak broadening, because the
a pure InAs crystal is plotted as a function of the distance from the . .
origin r at 10 K (dotted ling and 300 K(solid line). Note that the internal strain due to bpnd-length mismatch betwesrC
andB-C bonds comes into play as well as ttieermal mo-
tion. As in the case of the pure crystal, for simplicity, we
ake a;; = « for all pairs andg;; = 8 for all angles. We be-
ieve that this simplification does not affect the result much
r{aecause the values @f and 8 do not vary much among
11V and 11-VI compounds® This restriction can easily be

resolution changes substantially with the temperature.

which turns out to be the most interesting, as it does for th
rest of peaks.

In calculating the PDF, the symmetry of the system ca
be made use of in the summation of E§8). Since the same
type of neighbors have the same distance and the sarﬁ%l
width, PDF peaks of the same type are simply weighted b
the number of neighbors of that type in addition to the
weighting factorw;; . For example, nearest neighbor by 4,
next nearest neighbor by 12, and so on. The reduced RD
G(r) of InAs at 10 K and 300 K are depicted in Fig. 2. The
curve at 10 K shows much sharper peaks as expected. As t
temperature is raised, however, peak widths are increas
and hence peak heights are decreased substantially due to
effect of the thermal broadening.

In Fig. 3, the reduced RDF at 300 K is compared with an
x-ray diffraction experiment”*® The theoretical curve is
convoluted with the experimental resolution function as dis ) o
cussed in Appendix B. This convolution not only makesOnIy over_modes ak=0 in Eq.(18). This is because the
small wiggles appear at the bottom of the curves but alsgon€ folding in the reduced-zone scheme enables us to
lowers and widens the peaks. The figure shows that the cap@MPIe eénougk points in the original Brillouin zone if we

culation reproduces essentially every feature in the experil-?se a.b|g enough supercell. It also red.uces computational
time since all calculations can be done in real mode rather

than in complex mode. For the results presented in this sec-
e I RS tion, we usedL=4 so that we dealt with 512 atoms and
hence a 1538 1536 dynamical matrix. The typical error in
o is estimated to be less than 1% by comparison with the
Brillouin zone integration scheme for the perfect crystal. A
configurational average is taken over 10 realizations.

The displacement vectar in this case contains the dis-
tortion due to thestatic strainug as well as thethermal
motionu,. Since we are interested in the first-order correc-

{ . tion in the harmonic approximation, the totalcan be writ-
_5|-— theory h ] ten as a simple sum of these two terms. The static strains
—— experiment . us due to the bond-length mismatch are found by relaxing the
N system according to Eq6). The thermal fluctuations,
around the relaxed positions enter through @4). The cal-
r (&) culational procedure for alloys is as follows: for a given ran-
dom number seed a configuration of the system is realized.

FIG. 3. The reducetk-ray) RDF of a pure InAs crystal from the Then the matriM in Eq. (4) is constructed and the system is
theoretical calculatiorisolid line) is compared with the experiment relaxed using the conjugate gradient method to find the static
(Ref. 18 (dotted ling at 300 K. equilibrium displacemenig using Eq.(6). FromM, dynami-

axed to include more general cases. Note that even large
anges in the force constants produce only small changes in
he internal strains:®

To realize the alloy, we employ the periodic supercell,
hich consists ofLXLXL cubic unit cells of the zinc-
lende structure, each containing eight atoms. The dynamical
I%atrix becomes a 8x3p matrix where p=8L3. This

ethod has several advantages over other methods of calcu-
aling o, such as the equation of motion technidti&ince
this method simply extends the size of the basis, it is con-
ceptually clear and we can closely follow most of the argu-
ments about the pure system given above. Another compu-
tational merit of taking a large supercell is that we may sum

N P

0 5 10 15
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FIG. 4. Temperature variation of the redud@eutron RDF of SN I IR

a Ga 5lng sAs alloy is plotted as a function of the distance from the 3 4 5
origin r at 10 K (dotted ling and 300 K(solid line). Note that the o

resolution does not change substantially with the temperature, and r (&)
the change is much less pronounced than for the pure system shown

in Fig. 2. FIG. 5. Details of the first three peaks of the reduéeelutron

RDF of Ga glngsAs, shown in Fig. 4, are compared with the pure
end members, GaAs and InAs, at 10 K and 300 K. Solid lines are

cal matrix D is numerically constructed using E({). The
y 9 EGD) for the alloy, broken lines for GaAs, and dotted lines for InAs.

eigenvalue problem for the matrR is solved numerically.

The solution is used in the integratidt8) to obtain oy; .

This whole procedure is iterated over many realizations t¢auilibrium lengths(2.47 and 2.60 Afrom those of pure
perform a configurational average and finally ELf) gives cases(2.45 and 2.62 A Th'S change in the bqnd leggths has
the PDF. been studied both experimentdllgnd theoretically:** Our

Fiqure 4 shows the reduced RIT) for Ga. dn - <As at calculation shows that the change in the average length and
10 ||<9L;nd 300\,\(( Every upeak t?agzic)ally cgggisthAof manythe width of the distribution of the nearest-neighbor bond
' Iglngths can be measured in a PDF experiment at a suffi-

Gaussians as in the pure case. However, due to the intern v I A o £ th
strains each Gaussian from a particular neighbor is centerdd®Ntly low temperature. A quantitative measurement of the
idth may not be trivial because the thermal broadening is

at a different distance given by the relaxed positions of eacll ; T
realization. The widtho;; also depends on the particular re- comparabl_e fo the W'dth.(.)f the Iength_dlstrlbuthn ftself.
alization. Therefore, we cannot make use of the symmetry offowever, it is this capability of measuring the width that
the system to reduce computational time as in the pure case.

The distribution of the pair distance implies that each peak T T T TS 800

from a particular type of neighbor is already broadened even & R0F (a) E =
. X ! E -1 600 @

at very low temperature. Therefore, there is no dramatic °< 1ok 3 S

change in peak width and height as in the pure system as the ~ * 3 400 3

temperature is varied. & 0 = g 8 = 200 %

For comparison, the first three peaks are plotted again in b ,§ i 2 % E

Fig. 5 along with those from the pure end members, GaAs 2.3 24 25 26 27 28

and InAs. The internal structure of the first-neighbor peak at r (&)

10 K clearly shows that it retains the characteristics of the

pure systems, although this structure is almost unrecogniz- T 800 -

able at 300 K due to the thermal broadening. This is again 600 @

because the nearest neighbors are only connected by the 5

strong bond-stretching force. From the second neighbors and 400 o3

beyond, however, there can be many different intermediate 200 %’

configurations connected by the weak bond-bending forces. 0

Hence each peak appears as a distribution of Gaussians cen-
tered at the length given by the virtual crystal approximation,
with the peak of the alloy tracking the first moment of that

peak, which is temperature independent and goes linearly g ¢ petail structures df) the first andb) the second peaks
with the compositiorx between t.he two pure crystal limits.  of the reducedneutron RDF at 10 K, from Fig, 5, are drawn as

For a more detailed analysis, the first and the secondglid lines to the scale in the left. The histograms of the bond-length
peaks at 10 K are redrawn in Fig. 6 along with the bond-gistribution without thermal broadening are also shown to the scale
length distributions. It is clear that the structure in the firstin the right. In(a), X and ¢ represent Ga-As and In-As bonds,
peak results from two different types of bon@@3a-As and respectively. In(b), +, X, ¢, andl] denote Ga-Ga, In-In, Ga-In,
In-As). The lengths of two types of bonds are relaxed to newand As-As, respectively.
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makes a PDF analysis potentially superior to other experimay arise from fitting the experimental data with adjustable
mental methods. For example, XAFS experiments only meaparameters, which other methods such as XAFS do. How-
sure the average length of nearest and perhaps also neever, it has some limitations in resolution due to zero-point
nearest-neighbor peaks. By contrast, a PDF experiment canotions. This makes it difficult to resolve different types of
give the average lengténd the width of the length distribu- bonds beyond the first-neighbor peak. One possible improve-
tion without any adjustable parameters. The only empiricament is to explore the partial PDF, which measures peaks
parameters in our theoretical analysis are the force constanitsvolving a certain atom* But this would require a large
a, B and the lattice constariSee Eq.(3)]. These can be experimental effort, involving isotope substitution or anoma-
determined independently by standard experiments such #&sus x-ray scattering techniques.
elasticity measurements and the Bragg x-ray experiment. Despite these limitations, PDF analy$@ of course the

In the second-neighbor peak, there are four possible cormore involved single-crystal diffuse scattering almost the
figurations, Ga-Ga, In-In, Ga-In from the disordered sublat-only method of studying the intermediate-range properties of
tice and As-As from the ordered sublattice. While the firstsemiconductor alloys. Therefore it has been important to de-
three have only the As atom as the intermediate atom, theelop a microscopic model to understand the observed be-
As-As bond can have Ga or In in the middle. Each of theséhavior microscopically and provide a clear physical picture.
five configurations has a different average length with differ-The model and analysis used in this study has proved to be
ent length distribution8.The length distribution can be well quite versatile and robust.
approximated by three Gaussians depending on
environment£® From the bottom panel of Fig. 6, the internal ACKNOWLEDGMENTS
structure can be seen for As-As neighbors. For others it is not ] ] ) )
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lengths from different configurations is within the range of Francesco. Our thanks are also extended to A. R. Day, N.
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In conclu3|.on, we haye developed a method of calculgtlng APPENDIX A: DERIVATION OF GAUSSIAN PEAKS
the PDF of binary semiconductor crystals and pseudobinary

alloys having the zinc-blende structure. The PDF reveals the [et us rewrite Eq(16) as

local structure directly and can be compared with experi-

ments. Our approach can be easily generalized for various _

crystal structures including fcc, diamond, and wurtzite struc- pij(r)= Ej dge "'Cyj(a), (AD)
tures. To facilitate the calculation, we have used a harmonic _iars . . .
Kirkwood potential model with bond-stretching and bond- WhereCi;(a)=(e'“"i). In the harmonic approximation, the
bending forces. Temperature dependence is treated quantdfiératomic spacing;; can be written as

mechanically using the dynamical matrix and appropriate (A2)
Bose factors.

The PDF turns out to consist of a series of Gaussians Witlwhererﬂ is the distance between the atomandj in the
weightw;; given by the type of atoms at sitendj and with  perfect unstrained lattice. Using the Debye-Waller theorem,
width o; given as a function of phonon properties. In thewe have
case of a pure system, each type of neighbor pair has the
same width and are further weighted by the number of neigh- Cij(q) :eiqrf)j(eiq“ij '}ij>:eiqfﬂe* (1/2) g%((ujj Tij)?)
bors of that type. However, in the case of the alloy, each (A3)
peak from the same type of neighbor is relaxed to a different, . .
distance with a different width by the internal strains. fi’uttlng this back to EqAL), we have

This method is used to calculate the PDF of a InAs pure 1 (= o
crystal and a Ga ,In,As alloy, with x=0.5. The result for pij(r)= 2—[ e~ (W2aX[uij I9) +ialrj—rqq
the pure crystal agrees well with the diffraction experiment )=
even though there are no adjustable parameters. The har-
monic model we used describes the behavior of the system = ;e—uﬂ—r)z/mu”frij]2>_ (A4)
well. The result for the alloy suggests that two different types v2m([uj; ~fij]2)
of nearest neighbors can be resolved experimentally at suffi- . _ .
ciently low temperature. The information on the width of the | nerefore,p;;(r) is a Gaussian peak centered gtwith the

_ 0 5
Fij=rij+uUij-rij,

length distribution can be obtained as well as the averagl@"
length. The resolution of such an experiment, however, is o ={[u; - T3] (A5)
somewhat limited by the zero point motions. 4 v ’

This method does not suffer from possible artifacts thawhich is Eq.(17).
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To evaluateo;, let us divideN atoms intoV Bravais w _
lattice points, each containing basis atoms as before, as J’ T(q)e'q'dq+j T(—q)e'q'dq},
described in the text. Ldt (m) and x (v) be the unit cell \/_ 2 0
label and the basis label in the unit cell of atoing]), (B2)
respectively. Using phonon operators, th¢h Cartesian where we have made a change in varialje; — g, in the
component of the displacement vectgrcan be written as  second integral. Combining the integrals and noting that

T(—=q9)=-T(q), we get

1 [ & -
Uia:\/_jv% W[eﬂa(ks)akse'{k'ri*ws(k)t} 1 T(q)

iqr
| t(r)= \/_ o e''dq, (B3)
+e,,(—ks)al e terimesion) (AB)
] _ ) and thus, through a back Fourier transform,

where w¢(k) is the eigenvalue of the dynamical matiig)
with the wave vectok in branchs, e,,(k,s) is the ath T(Q) 1 (= iqr
component of the corresponding eigenvector associated with i Z—\/ﬁ _wt(r)e dr, (B4)
the atomi (basis labelu) with the massM,, and ays
(afy) is the annihilation(creation operator. In "the summa- Now we are interested in knowing that we will recover in

tion, k runs from 1 ta\V ands runs from 1 to . Putting this  real space in the case when we collect data only out to
expression into Eq(A5) and working out the commutation q,,.,. Hence, we define
relations of the operators yields

1 Umax .
2h le,(k,s)-Ti|? t’(r)=—f T(g)singrdg, (B5)
NN o0 (<”ks> ) [M—J vamlo
® which, in analogy with Eqs(B1) through(B3), gives

Amanx T(Q)

|ev(kys) ?IJ |2]
r) V2 f
CImax

M e'9'daq. (B6)

14

B le.(k,s)-Tijlle,(—k,s)-Tij|e i AT Substituting Eq(B4) for T(g)/2i and evaluating the integral
/MMMV ! (A7) overq, we get
wheren, ¢ is the number operator. This establishes @6). :_f ) Slnolmavé(r - dr’ (B7)
-r’ '

APPENDIX B: MODELING FINITE DATA . . .
Since t(r) is also an odd function, we can use

In experiments, data can be collected only over a finite(—r)=—t(r) to obtain
range of the scattering momentum from 0 tO g4y, al- , , ) ,
though the Fourier transformation in E@2) should be car-  {/(, =ifxt(r’) SiNGmax(F —1')  SiNgmay(r +1 )}dr’
ried out over a range from O te. We are interested in how mJo r—r’ r+r’
the termination affects the reduced RDF. In fact, the deriva- (B8)
tion in this appendix may be applied in a broader context of
modeling finite data.

We can now substitute directl@(r) giving

Let us first define a functiot(r) as 1 (= SiINGadF =) SiNGmar +1")
:_f U T ar’,
1 fw
t(r)=—=| T(q)simrda. B1 (B9)
(r) Tl (q)sinqrdq (B1)

whereGg(r) is the experimentally determined reduced RDF
The functionT(q) and be any function provided that it is from finite data. The function in the brackets makes the ideal
odd. Expanding sigr as €'9"—e'9")/2i, we have G(r) broader and produces ripples around the peak in Fig. 3.
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