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Local atomic structure of semiconductor alloys using pair distribution functions
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and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
~Received 5 August 1996!

We have developed a method of calculating the pair distribution function of binary semiconductor crystals
and pseudobinary alloys with the zinc-blende structures. The pair distribution function is essentially the
density-density correlation function and reveals the local structure directly. We have used a simple model using
a harmonic potential with bond-stretching and bond-bending forces. The temperature dependence has been
incorporated quantum mechanically. Results of this method are presented for both crystals~InAs and GaAs!
and alloys~Ga12xIn xAs!. These results can be directly compared with x-ray and neutron-diffraction experi-
ments.@S0163-1829~97!06004-9#
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I. INTRODUCTION

Semiconductor alloys have been studied extensively
to their importance in applications. These materials have
ceived much attention because physical properties, suc
the band gap, mobility, and lattice parameter, can be cont
ously controlled.1 Having such continuous controls is of im
portance in applications such as electronic devices or op
devices. For example, the energy gap of a pseudobin
compound Ga12xAl xAs can be varied between 1.4 and 2
eV by varying the compositionx, and the wavelength of the
solid-state laser made from this material can be tuned
cordingly.

Unlike pure crystals, the difference in the bond leng
associated with different chemical species in alloys indu
internal strain. The structural characterization of alloys da
back to the work of Vegard,2 who found that the lattice con
stants of some alloys change linearly with the concentra
of the constituents. A simplistic explanation of this pheno
enon is the virtual-crystal approximation,3 in which all the
atoms are located on an ideal lattice with the lattice cons
given by the compositional average of the constituen
Therefore, this approximation completely neglects the lo
deformations, which would be expected to occur. In tetra
drally coordinated semiconductor compounds, deforma
also occurs in the bond angles. A better understanding
Vegard’s law in random alloys was achieved recently and
conditions under which Vegard’s law is expected to ho
were given.4 These studies used a harmonic potential, wh
accounts for the bond-stretching and the bond-bend
forces. It has been shown that Vegard’s law is strictly obe
when the force constants for bond-stretching and the bo
bending forces are the same for the end members from w
the alloy is made, and are independent of the composition
semiconductor alloys, these simplifications were exploited
a series of recent papers.5–8Most semiconductor alloys mad
from III-V and II-VI elements follow Vegard’s law very
closely.6

The experimental structural characterization of alloys
been accomplished mainly using Bragg x-ray diffraction, a
also using Bragg neutron diffraction. These experime
measure the structural quantities that are correlated overlong
550163-1829/97/55~3!/1545~9!/$10.00
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distances, such as the lattice constant. Recently, exten
x-ray absorption fine structure~XAFS! experiments have
been used to study semiconductor alloys.9 Such experiments
investigate theshort-range order, such as the near-neighb
spacings.

However, the diffuse background in diffraction expe
ments has not drawn much attention because it is more
ficult to obtain and hard to analyze. Nonetheless, the diff
background exists in all experimental data on alloys due
the local displacements. This information can be analy
using the pair distribution function~PDF!. PDF analysis has
been used mainly in the characterization of atomic arran
ments in amorphous materials such as noncrystalline al
or liquids.10–12 Although it has long been known that th
PDF method is well suited for analyzing crystalline as w
as amorphous materials, it has only recently been applie
study the local structure of disordered crystalline material13

Because the real-space resolution is inversely proportiona
the highest momentum data, it is essential to havehigh-
momentumscattering data to study local structures. High m
mentum scattering data have become available with the
vent of synchrotron x-ray sources and spallation neut
sources. These high-momentum scattering data not only
information about local structures from the diffusive bac
ground but also allow accurate data normalization. Sinc
has now become rather routine to access the high-momen
scattering data, PDF analysis is becoming a good candi
for characterizing semiconductor alloys.

There are several attractive features to using PDF an
sis. On the one hand, it covers a wide range of pair distan
Therefore, it can be used to study local structural charac
istics such as nearest-neighbor distances and intermed
range structures such as clustering. On the other han
gives a complete description of the structure in that not o
the average distance between a pair but thewidth of the
length distribution can also be obtained, with good accura
Furthermore, this method is not subject to any arbitrary
ting parameters and the result of a theoretical calculation
be directly compared with the experimental data.

In this paper, we present a method of calculating the P
of binary semiconductor crystals in the zinc-blende structu
AC, and the associated pseudobinary alloys,A12xBxC. We
1545 © 1997 The American Physical Society
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1546 55JEAN S. CHUNG AND M. F. THORPE
also discuss the advantages and limitations of using the
analysis in investigating local structures. To account for
local strain, we use a simple valence-bond model,6 which has
been successful in describing the local strain in semicond
tor alloys. Since experimental data are always subject to t
mal broadening, thermal averaging should be taken into
count also. This is done in this paper by using the pro
Bose factors and also by employing the Debye-Waller th
rem. We limit ourselves in our discussion of the PDF
semiconductor alloys to the zinc-blende structure in the fo
of random solid solutions. In particular, we focus on
Ga12xInxAs as an important example. But our method can
easily modified to any crystals and crystalline alloys; with
without local clustering present.

The reason for choosing Ga12xIn xAs is that it is one of
the largest bond-length mismatched alloys among III-V a
II-VI compounds. Therefore, the effect of bond-length dis
der will be most pronounced. Also it is one of the standa
systems and has been studied quite extensively.6,9 One of the
experimental advantages is that the two end members, G
and InAs, are completely miscible and form a random so
solution atall concentrations.

II. MODEL

To account for the forces between atoms tetrahedr
coupled by the valence bonding in zinc-blende structures
adopt the Kirkwood model.15 The potential energy in this
model is given by

V5(
^ i , j &

a i j

2
~Li j2Li j

0 !21Le
2 (
^ i j ,i l &

b i j l

8
~cosu i j l 2cosu0!2.

~1!

Here, the first term describes the energy due to the bo
stretching force with the force constanta i j between atoms
i and j . Li j and Li j

0 are the actual and natural~unstrained!
bond lengths between atomsi and j , respectively. The sec
ond term in~1! is due to the bond-bending force with th
force constantb i j l between the bondsi j and i l . u i j l andu0

are the actual and natural~109.5°) angle between the bond
i j and i l . Le is the nearest-neighbor distance as given by
virtual crystal approximation.Le is inserted in the secon
term to makeb i j l have the same dimension asa i j . The
angular brackets under the summations denote counting
configuration only once to exclude double counting. The
tential ~1! has been used extensively in discussing the ela
strain in semiconductor alloys.5–8 The harmonic approxima
tion can be applied because we expectsmall positional
changes in the alloy from the virtual crystal, which is used
a reference. There are two causes for the distortions,
static one from the bond-length mismatch and thedynamic
one from the thermal motion. The change from bond-len
mismatch is small since it is less than 10% of the unstrai
bond lengths although Ga12xIn xAs is one of the larges
length-mismatched semiconductors. The thermal broade
is also quite small since we are interested in the low-
room-temperature range. It is therefore reasonable to u
harmonic approximation for the potential due to the displa
ments.
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Let ui be the displacement vector of atomi from its per-
fect crystalline position. Expanding up to linear terms
ui , we have

Li j5Le1 r̂ i j •ui j , ~2!

wherer̂ i j is a unit vector in the perfect crystal pointing from
atom i to its nearest neighborj , andui j5uj2ui . Then the
potential energy~1! can be expanded to have the form6

V5(
^ i , j &

a i j

2
~Le2Li j

01 r̂ i j •ui j !
2

1Le
2 (
^ i j ,i l &

b i j l

8 F r̂ i j •ui l1 r̂ i l •ui j1
1

3
~ r̂ i j •ui j r̂ i l •ui l !G2.

~3!

We5–8 have preferred to use the Kirkwood model Eq.~3!
rather than the more popular Keating model16 because of the
cleaner separation of length and angular displaceme
Since the nearest-neighbor central force alone is not eno
to stabilize the zinc-blende structure, this model is one of
simplest force models for the zinc-blende structure. T
model~3! is not good enough to produce very exact phon
dispersion relations. However, it has been proved to be
curate enough to describe the local structure quantitative6

It also provides a clear picture for the important microsco
forces. Therefore, the model is a good starting point for
purpose and may be refined later as needed. It appears
this simple model can capture all the essential features in
PDF.

Equation~3! can be recast into a concise matrix form,

V5 1
2u

†Mu1u†F1E0 , ~4!

whereu5(u1 ,u2 , . . . ) is thedisplacement field vector an
M is a matrix derivable from Eq.~3!. The components of the
force vector fieldF5(F1 ,F2 , . . . ) aredefined by

Fi52(
j

a i j ~Le2Li j
0 ! r̂ i j , ~5!

which expresses the internal strain due to the disorder.
length disorder only appears through this vector. This fo
of the potential~4! is useful in that it gives a simple form to
find the relaxed equilibrium positions of strained system
namely,

Mu52F, ~6!

and also in that the dynamical matrix is defined through
matrixM as discussed in the next section.

III. DEFINITIONS

Since different definitions are used in the literature,17 we
give the definitions we use in this study. To define the d
namical matrixD(k), we need to distinguish the Brava
lattice and the basis to which the atomi belongs. Let us
divide N atoms intoN Bravais lattice points, each contain
ing p basis atoms@N5Np#. Let l ( l 8) and m(m8) be the
Bravais lattice and the basis labels of the atomi ( i 8), respec-
tively. Denoting the position of the atomi asr i , we use the
following definition of the dynamical matrix;
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Dma,m8a8~k!5~MmMm8!
21/2(

l 8
Mia,i 8a8e

2 ik•[ r i2r i 8] . ~7!

Here,a anda8 denote three Cartesian coordinates, and he
the dynamical matrix is a 3p33p matrix.

Since different nomenclature has been used for the P
we hereby give the definition.14 For the sake of simplicity,
we begin with an arrangement ofN identical atoms.10–13

Then, the atomic density functionp(r ) is given by

p~r !5(
r i

d~r2r i !, ~8!

and the density-density correlation functionC(r ) can be
written as

C~r !5
1

N K E p~r 81r !p~r 8!dr 8L 5
1

N(
r i

(
r j

^d~r2r i j !&

5r~r !1d~r !, ~9!

wherer i j5r j2r i is a vector from atomi to j and^& denotes
the statistical average that impliesboth configurational and
thermal averages. The correlation functionC(r ) describes
the probability per unit volume of finding an atom at positi
r from a chosen atom at the origin. This probability dens
is further averaged by taking each atom in turn as the ori
The d function d(r ) is the probability of finding itself and
appears as a constant background in the momentum spa
experiments. The functionr(r ) defines the PDF. Defining
r i j (r )[^d(r2r i j )&, the PDF can be rewritten as

r~r !5
1

N(
i , j

8r i j ~r !, ~10!

where the prime in the summation means thati5 j is ex-
cluded.

In this study, the major interest lies in macroscopica
isotropicmaterials, such as pure randomly oriented crys
lites or random solid solutions. In such materials,r(r ) de-
pends only on the magnituder . It is convenient to define the
radial distribution function~RDF! asJ(r )54pr 2r(r ). Then
the probability should be interpreted as per unit length rat
than per unit volume. The average number of atoms i
shell with radiusr and thicknessdr is given byJ(r )dr.

However, the RDF tends to obscure the correlations
tween atoms asr gets larger because it grows rapidly. Henc
it is customary to define the reduced RDF as

G~r !54pr @r~r !2r0#5
1

r
@J~r !24pr 2r0#, ~11!

where r0 is the averagenumber density of the material.
Since the average density is subtracted,G(r ) oscillates
around zero and shows the correlations more clearly t
does the RDF. Usually, it is this function to which the e
perimental data are transformed through the relation

G~r !5
2

pE0
`

F~q!sinqrdq. ~12!

Hereq is the magnitude of the scattering vector andF(q) is
the reduced scattering intensity defined by
ce

F,

n.

of

l-

r
a

e-
,

n

F~q![qF I ~q!

Nf2
21G , ~13!

where f (q) is the atomic form factor andI (q) is the experi-
mentally measured scattering intensity given by the squar
the scattering amplitude,

I ~q!5U(
i

N

f ~q!eiq•r iU2. ~14!

In the next section, the Kirkwood model of the previo
section is utilized to calculate the PDF and results are gi
mainly in the form of the reduced RDF to be directly com
pared with experiments.

In case of multicomponent systems,10–13 the definition of
the PDF is generalized to

r~r !5
1

N(
r i

(
r j

wi jr i j ~r !. ~15!

Here, wi j is given by f i f j / f̄ , where f i is the scattering
strength of the atomi and f̄ denotes the arithmetic mean o
f i ’s in the sample.f i is the scattering factor in x-ray scatte
ing, and the scattering length in neutron scattering. Equa
~15! is exact for neutron diffraction, where the scattering
from the nucleus which may be considered as a point.
x-ray scattering Eq.~15! is only an approximation as thef i
are due to the electron density associated with each a
which in reality have differentq dependence. Nevertheles
we will use this approximation here so that thef i are pro-
portional to the atomic chargesZi .

IV. CALCULATION OF PDF

In this section we evaluate the PDF of crystalline syste
in the zinc-blende structure. The system may be either a p
binary semiconductor such as GaAs and InAs, or a pseu
binary alloy such as Ga12xIn xAs. We first rewriter i j (r ) as

r i j ~r !5
1

2pE dqe2 iqr^eiqr i j &. ~16!

This function would be ad function located atr i j if all the
atoms were stationary in a perfect crystal. However, thisd
function is broadened by thethermal motionssince the atoms
move about the equilibrium positions even at zero tempe
ture. Moreover, it is further broadened by theinternal strains
due to the bond-length mismatch in the case of alloys.

For the thermal motions, the Debye-Waller theorem c
be applied to the harmonic approximation of Sec. II.
shown in Appendix A, this leads to aGaussianpeak for
r i j (r ) centered atr i j with width s i j given by

s i j5^@ui j • r̂ i j #
2&1/2. ~17!

Accordingly, the total PDF consists of a series of Gaussi
from each pair in the system with weightwi j .

To proceed further, we make use of the quantu
mechanical representation of the displacement. Let us div
N atoms intoN Bravais lattice points, each containingp
basis atoms as before. Letm (n) be the basis label of atom
i ( j ) in a unit cell. Rewritingui j in terms of phonon opera
tors, it can be shown that
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s i j
25

2\

N (
k,s

1

vs~k! S ^nk,s&1
1

2D F12 H uem~k,s!• r̂ i j u2

Mm

1
uen~k,s!• r̂ i j u2

M n
J

2
uem~k,s!• r̂ i j uuen~2k,s!• r̂ i j ueik•r i j

AMmM n
G , ~18!

wherevs(k) is the eigenvalue of the dynamical matrix~7!
with the wave vectork in branchs, nk,s is the number op-
erator in that mode, andem(k,s) is the corresponding eigen
vector associated with the basism and massMm . In the
summation,k runs from 1 toN and s runs from 1 to 3p.
Now, the problem of finding the effect ofthermalbroaden-
ing is reduced to solving the eigenvalue problem of the
namical matrix. Solving the eigenvalue problem analytica
for generalk has to rely on numerical methods.

Below, we distinguish between the pure and disorde
systems. In the former, the only reason for line broadenin
the thermal motion. In the latter, there are two reasons,
thermal motion and the internal strains.

A. Pure system

Consider a pure binary semiconductor crystal,AC, with A
atoms in one sublattice andC in the other. There is only one
source of peak broadening, thethermal motion, which is
u
t
.
e

a
2
8
th
b

-

d
is
e
characterized by thes i j in Eq. ~18!. For a pure crystal,a i j
assumes the same valuea for all bonds and we assume th
b i j l also takes the same valueb for all angles. These param
eters can be determined independently from standard ex
mental data.6 Since p52 in the zinc-blende structure, th
dynamical matrix is a 636 matrix. It can be calculated ana
lytically in a closed form for generalk:8

FIG. 1. The widths for a pure InAs crystal as a function of th
distance from the originr at different temperatures (3, at 1000 K;
L, at 300 K; andh, at 10 K!. The leftmost symbol corresponds t
the nearest neighbor. At certain distances, where two types
neighbors~e.g., In-In and As-As! occur, symbols may overlap.
Dk5aF 4
3 1 2t2k

2tk
4
3 1

G1bF 4
3 11 1

4 nkn2k t2k2
2
3 g2k1

tk2
2
3 gk1

4
3 11 1

4 n2knk
G

1
1

9
bF 4

3 11 1
4 n2knk1

4
3 gkt2k1

4
3 g2ktk t2k22g2k1

tk22gk1
4
3 11 1

4 nkn2k1
4
3 g2ktk1

4
3 gkt2k

G . ~19!

Here,1 is the 333 unit matrix, and the scalargk is given by

gk[(
d
e2 ik•d54FcoskxLeA3

cos
kyLe

A3
cos

kzLe

A3
1 isin

kxLe

A3
sin
kyLe

A3
sin
kzLe

A3 G . ~20!
for
s for
be-
rong
by
bly
ed
nd-
ita-
id.
im-
ra-
ak,
The vector nk and the tensortk are defined to be
nk5( i¹k /Le)gk , tk5( i¹k /Le)( i¹k /Le)gk , respectively.
Using Eq. ~19! the eigenvalue problem can be solved n
merically, and the summation in Eq.~18! can be carried ou
using Monte Carlo integration over the first Brillouin zone

There isno internal strain for a pure system as discuss
in Sec. II. Figure 1 presents the result for the widths for
InAs at different temperatures. We useda5105.30 N/m and
b517.28 N/m for InAs.6 Note that there is a factor of 3
difference in the values of the force constants used here
previously6 due to different definitions. The symbols at 2.6
Å depict the width of nearest neighbors, and those at 4.2
represent that of the second neighbors, etc. Although
highest temperature 1000 K is not realistic because it is
-

d

nd

Å
e
e-

yond the melting point, still the widths is much less than
the interatomic spacing. It is to be noted that the width
the nearest neighbors does not vary as much as the width
other neighbors as the temperature is increased. This is
cause nearest-neighbor pairs are connected by the st
bond-stretching force. All other neighbors are connected
at least one bond-bending force, which is considera
weaker than the bond-stretching force in covalently bond
materials. Therefore, further neighbors connected by bo
bending forces become more sensitive to the thermal ag
tion, while nearest-neighbor pairs can remain rather rig
This has an experimental significance; if one wants to
prove the experimental resolution by lowering the tempe
ture, it does not help much for the nearest-neighbor pe
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55 1549LOCAL ATOMIC STRUCTURE OF SEMICONDUCTOR . . .
which turns out to be the most interesting, as it does for
rest of peaks.

In calculating the PDF, the symmetry of the system c
be made use of in the summation of Eq.~18!. Since the same
type of neighbors have the same distance and the s
width, PDF peaks of the same type are simply weighted
the number of neighbors of that type in addition to t
weighting factorwi j . For example, nearest neighbor by
next nearest neighbor by 12, and so on. The reduced R
G(r ) of InAs at 10 K and 300 K are depicted in Fig. 2. Th
curve at 10 K shows much sharper peaks as expected. A
temperature is raised, however, peak widths are increa
and hence peak heights are decreased substantially due
effect of the thermal broadening.

In Fig. 3, the reduced RDF at 300 K is compared with
x-ray diffraction experiment.17,18 The theoretical curve is
convoluted with the experimental resolution function as d
cussed in Appendix B. This convolution not only mak
small wiggles appear at the bottom of the curves but a
lowers and widens the peaks. The figure shows that the
culation reproduces essentially every feature in the exp

FIG. 2. Temperature dependence of the reduced~x-ray! RDF of
a pure InAs crystal is plotted as a function of the distance from
origin r at 10 K ~dotted line! and 300 K~solid line!. Note that the
resolution changes substantially with the temperature.

FIG. 3. The reduced~x-ray! RDF of a pure InAs crystal from the
theoretical calculation~solid line! is compared with the experimen
~Ref. 18! ~dotted line! at 300 K.
e

n

e
y

F
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ment. Our calculation gives slightly better resolution than
experiment, which is perhaps surprising, as the theory
cludes truncation ripples via the convolution in Eq.~B9! and
using the experimentalqmax.

18 What is surprising is that ou
simple model with no adjustable parameters even allow
quantitative comparison with experiment. This confirms th
the model is adequate to be used for semiconductor allo

B. Disordered system

Consider a pseudobinary semiconductor alloy in the zi
blende structure,A12xBxC with A andB atoms in one sub-
lattice andC in the other. Although disorder is introduce
only in one sublattice in this study, it would be straightfo
ward to generalize it to both sublattices. As mentioned
fore, there are two reasons for peak broadening, becaus
internal strain due to bond-length mismatch betweenA-C
andB-C bonds comes into play as well as thethermal mo-
tion. As in the case of the pure crystal, for simplicity, w
takea i j5a for all pairs andb i j l 5b for all angles. We be-
lieve that this simplification does not affect the result mu
because the values ofa and b do not vary much among
III-V and II-VI compounds.6 This restriction can easily be
relaxed to include more general cases. Note that even l
changes in the force constants produce only small change
the internal strains.5–8

To realize the alloy, we employ the periodic superce
which consists ofL3L3L cubic unit cells of the zinc-
blende structure, each containing eight atoms. The dynam
matrix becomes a 3p33p matrix where p58L3. This
method has several advantages over other methods of c
lating s, such as the equation of motion technique.19 Since
this method simply extends the size of the basis, it is c
ceptually clear and we can closely follow most of the arg
ments about the pure system given above. Another com
tational merit of taking a large supercell is that we may s
only over modes atk50 in Eq. ~18!. This is because the
zone folding in the reduced-zone scheme enables us
sample enoughk points in the original Brillouin zone if we
use a big enough supercell. It also reduces computatio
time since all calculations can be done in real mode rat
than in complex mode. For the results presented in this s
tion, we usedL54 so that we dealt with 512 atoms an
hence a 153631536 dynamical matrix. The typical error i
s is estimated to be less than 1% by comparison with
Brillouin zone integration scheme for the perfect crystal.
configurational average is taken over 10 realizations.

The displacement vectoru in this case contains the dis
tortion due to thestatic strain us as well as thethermal
motionut . Since we are interested in the first-order corre
tion in the harmonic approximation, the totalu can be writ-
ten as a simple sum of these two terms. The static str
us due to the bond-length mismatch are found by relaxing
system according to Eq.~6!. The thermal fluctuationsut
around the relaxed positions enter through Eq.~17!. The cal-
culational procedure for alloys is as follows: for a given ra
dom number seed a configuration of the system is realiz
Then the matrixM in Eq. ~4! is constructed and the system
relaxed using the conjugate gradient method to find the st
equilibrium displacementus using Eq.~6!. FromM , dynami-

e
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1550 55JEAN S. CHUNG AND M. F. THORPE
cal matrixD is numerically constructed using Eq.~7!. The
eigenvalue problem for the matrixD is solved numerically.
The solution is used in the integration~18! to obtains i j .
This whole procedure is iterated over many realizations
perform a configurational average and finally Eq.~15! gives
the PDF.

Figure 4 shows the reduced RDFG(r ) for Ga0.5In 0.5As at
10 K and 300 K. Every peak basically consists of ma
Gaussians as in the pure case. However, due to the inte
strains each Gaussian from a particular neighbor is cent
at a different distance given by the relaxed positions of e
realization. The widths i j also depends on the particular r
alization. Therefore, we cannot make use of the symmetr
the system to reduce computational time as in the pure c
The distribution of the pair distance implies that each pe
from a particular type of neighbor is already broadened e
at very low temperature. Therefore, there is no dram
change in peak width and height as in the pure system as
temperature is varied.

For comparison, the first three peaks are plotted agai
Fig. 5 along with those from the pure end members, Ga
and InAs. The internal structure of the first-neighbor peak
10 K clearly shows that it retains the characteristics of
pure systems, although this structure is almost unrecog
able at 300 K due to the thermal broadening. This is ag
because the nearest neighbors are only connected by
strong bond-stretching force. From the second neighbors
beyond, however, there can be many different intermed
configurations connected by the weak bond-bending for
Hence each peak appears as a distribution of Gaussians
tered at the length given by the virtual crystal approximati
with the peak of the alloy tracking the first moment of th
peak, which is temperature independent and goes line
with the compositionx between the two pure crystal limits

For a more detailed analysis, the first and the sec
peaks at 10 K are redrawn in Fig. 6 along with the bon
length distributions. It is clear that the structure in the fi
peak results from two different types of bonds~Ga-As and
In-As!. The lengths of two types of bonds are relaxed to n

FIG. 4. Temperature variation of the reduced~neutron! RDF of
a Ga0.5In0.5As alloy is plotted as a function of the distance from t
origin r at 10 K ~dotted line! and 300 K~solid line!. Note that the
resolution does not change substantially with the temperature,
the change is much less pronounced than for the pure system s
in Fig. 2.
o

y
nal
ed
h

of
se.
k
n
ic
he

in
s
t
e
iz-
in
the
nd
te
s.
en-
,
t
rly

d
-
t

equilibrium lengths~2.47 and 2.60 Å! from those of pure
cases~2.45 and 2.62 Å!. This change in the bond lengths ha
been studied both experimentally9 and theoretically.6,20 Our
calculation shows that the change in the average length
the width of the distribution of the nearest-neighbor bo
lengths can be measured in a PDF experiment at a s
ciently low temperature. A quantitative measurement of
width may not be trivial because the thermal broadening
comparable to the width of the length distribution itse
However, it is this capability of measuring the width th

nd
wn

FIG. 5. Details of the first three peaks of the reduced~neutron!
RDF of Ga0.5In0.5As, shown in Fig. 4, are compared with the pu
end members, GaAs and InAs, at 10 K and 300 K. Solid lines
for the alloy, broken lines for GaAs, and dotted lines for InAs.

FIG. 6. Detail structures of~a! the first and~b! the second peaks
of the reduced~neutron! RDF at 10 K, from Fig, 5, are drawn a
solid lines to the scale in the left. The histograms of the bond-len
distribution without thermal broadening are also shown to the sc
in the right. In ~a!, 3 andL represent Ga-As and In-As bond
respectively. In~b!, 1, 3, L, andh denote Ga-Ga, In-In, Ga-In
and As-As, respectively.
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makes a PDF analysis potentially superior to other exp
mental methods. For example, XAFS experiments only m
sure the average length of nearest and perhaps also
nearest-neighbor peaks. By contrast, a PDF experiment
give the average lengthand the width of the length distribu-
tion without any adjustable parameters. The only empiri
parameters in our theoretical analysis are the force cons
a, b and the lattice constant@See Eq.~3!#. These can be
determined independently by standard experiments suc
elasticity measurements and the Bragg x-ray experiment

In the second-neighbor peak, there are four possible c
figurations, Ga-Ga, In-In, Ga-In from the disordered sub
tice and As-As from the ordered sublattice. While the fi
three have only the As atom as the intermediate atom,
As-As bond can have Ga or In in the middle. Each of the
five configurations has a different average length with diff
ent length distributions.6 The length distribution can be we
approximated by three Gaussians depending
environments.20 From the bottom panel of Fig. 6, the intern
structure can be seen for As-As neighbors. For others it is
discernible because the peaks from different environme
are too close. In the total PDF the difference in avera
lengths from different configurations is within the range
thermal broadening. Therefore, the second-neighbor P
peak appears to be a single peak at the distance given b
virtual crystal approximation and different types of neig
bors are indiscernible in the total PDF.

V. CONCLUSION

In conclusion, we have developed a method of calculat
the PDF of binary semiconductor crystals and pseudobin
alloys having the zinc-blende structure. The PDF reveals
local structure directly and can be compared with exp
ments. Our approach can be easily generalized for var
crystal structures including fcc, diamond, and wurtzite str
tures. To facilitate the calculation, we have used a harmo
Kirkwood potential model with bond-stretching and bon
bending forces. Temperature dependence is treated qua
mechanically using the dynamical matrix and appropri
Bose factors.

The PDF turns out to consist of a series of Gaussians w
weightwi j given by the type of atoms at sitei and j and with
width s i j given as a function of phonon properties. In t
case of a pure system, each type of neighbor pair has
same width and are further weighted by the number of ne
bors of that type. However, in the case of the alloy, ea
peak from the same type of neighbor is relaxed to a differ
distance with a different width by the internal strains.

This method is used to calculate the PDF of a InAs p
crystal and a Ga12xIn xAs alloy, with x50.5. The result for
the pure crystal agrees well with the diffraction experime
even though there are no adjustable parameters. The
monic model we used describes the behavior of the sys
well. The result for the alloy suggests that two different typ
of nearest neighbors can be resolved experimentally at s
ciently low temperature. The information on the width of t
length distribution can be obtained as well as the aver
length. The resolution of such an experiment, however
somewhat limited by the zero point motions.

This method does not suffer from possible artifacts t
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may arise from fitting the experimental data with adjusta
parameters, which other methods such as XAFS do. H
ever, it has some limitations in resolution due to zero-po
motions. This makes it difficult to resolve different types
bonds beyond the first-neighbor peak. One possible impro
ment is to explore the partial PDF, which measures pe
involving a certain atom.21 But this would require a large
experimental effort, involving isotope substitution or anom
lous x-ray scattering techniques.

Despite these limitations, PDF analysis~or of course the
more involved single-crystal diffuse scattering! is almost the
only method of studying the intermediate-range properties
semiconductor alloys. Therefore it has been important to
velop a microscopic model to understand the observed
havior microscopically and provide a clear physical pictu
The model and analysis used in this study has proved to
quite versatile and robust.
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APPENDIX A: DERIVATION OF GAUSSIAN PEAKS

Let us rewrite Eq.~16! as

r i j ~r !5
1

2pE dqe2 iqrCi j ~q!, ~A1!

whereCi j (q)[^eiqr i j &. In the harmonic approximation, th
interatomic spacingr i j can be written as

r i j5r i j
01ui j • r̂ i j , ~A2!

where r i j
0 is the distance between the atomsi and j in the

perfect unstrained lattice. Using the Debye-Waller theore
we have

Ci j ~q!5eiqr i j
0
^eiqui j • r̂i j &5eiqr i j

0
e2 ~1/2! q2^~ui j • r̂i j !

2&.
~A3!

Putting this back to Eq.~A1!, we have

r i j ~r !5
1

2pE2`

`

e2~1/2!q2^[ui j • r̂i j ]
2&1 iq~r i j

0
2r !dq

5
1

A2p^@ui j • r̂ i j #
2&
e2~r i j

0
2r !2/2^[ui j • r̂i j ]

2&. ~A4!

Therefore,r i j (r ) is a Gaussian peak centered atr i j with the
width

s i j5^@ui j • r̂ i j #
2&1/2, ~A5!

which is Eq.~17!.
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To evaluates i j , let us divideN atoms intoN Bravais
lattice points, each containingp basis atoms as before, a
described in the text. Letl (m) andm (n) be the unit cell
label and the basis label in the unit cell of atomsi ( j ),
respectively. Using phonon operators, theath Cartesian
component of the displacement vectorui can be written as

uia5
1

AN (
ks
A \

2Mivs~k!
@ema~ks!akse

i $k•r i2vs~k!t%

1ema~2ks!a2ks
† e2 i $k•r i2vs~k!t%# ~A6!

wherevs(k) is the eigenvalue of the dynamical matrix~7!
with the wave vectork in branchs, ema(k,s) is the ath
component of the corresponding eigenvector associated
the atom i ~basis labelm) with the massMm , and aks
(aks

† ) is the annihilation~creation! operator. In the summa
tion, k runs from 1 toN ands runs from 1 to 3p. Putting this
expression into Eq.~A5! and working out the commutatio
relations of the operators yields

s i j
25

2\

N (
k,s

1

vs~k! S ^nk,s&1
1

2D F12 H uem~k,s!• r̂ i j u2

Mm

1
uen~k,s!• r̂ i j u2

M n
J

2
uem~k,s!• r̂ i j uuen~2k,s!• r̂ i j ueik•r i j

AMmM n
G , ~A7!

wherenk,s is the number operator. This establishes Eq.~18!.

APPENDIX B: MODELING FINITE DATA

In experiments, data can be collected only over a fin
range of the scattering momentumq from 0 to qmax, al-
though the Fourier transformation in Eq.~12! should be car-
ried out over a range from 0 tò. We are interested in how
the termination affects the reduced RDF. In fact, the der
tion in this appendix may be applied in a broader contex
modeling finite data.

Let us first define a functiont(r ) as

t~r !5
1

A2p
E
0

`

T~q!sinqrdq. ~B1!

The functionT(q) and be any function provided that it
odd. Expanding sinqr as (eiqr2e2 iqr)/2i , we have
on

.

ith

e

-
f

t~r !5
1

A2p

1

2i F E0`T~q!eiqrdq1E
0

2`

T~2q!eiqrdqG ,
~B2!

where we have made a change in variable,q→2q, in the
second integral. Combining the integrals and noting t
T(2q)52T(q), we get

t~r !5
1

A2p
E

2`

` T~q!

2i
eiqrdq, ~B3!

and thus, through a back Fourier transform,

T~q!

2i
5

1

A2p
E

2`

`

t~r !e2 iqrdr, ~B4!

Now we are interested in knowing that we will recover
real space in the case when we collect data only out
qmax. Hence, we define

t8~r !5
1

A2p
E
0

qmax
T~q!sinqrdq, ~B5!

which, in analogy with Eqs.~B1! through~B3!, gives

t8~r !5
1

A2p
E

2qmax

qmax T~q!

2i
eiqrdq. ~B6!

Substituting Eq.~B4! for T(q)/2i and evaluating the integra
overq, we get

t8~r !5
1

pE2`

`

t~r 8!
sinqmax~r2r 8!

r2r 8
dr8. ~B7!

Since t(r ) is also an odd function, we can us
t(2r )52t(r ) to obtain

t8~r !5
1

pE0
`

t~r 8!Fsinqmax~r2r 8!

r2r 8
2
sinqmax~r1r 8!

r1r 8 Gdr8.
~B8!

We can now substitute directlyG(r ) giving

Ge~r !5
1

pE0
`

G~r 8!Fsinqmax~r2r 8!

r2r 8
2
sinqmax~r1r 8!

r1r 8 Gdr8,
~B9!

whereGe(r ) is the experimentally determined reduced RD
from finite data. The function in the brackets makes the id
G(r ) broader and produces ripples around the peak in Fig
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University, Cheongju, 360-763, Republic of Korea.
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