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Binding energy of 1Bu singlet excitons in the one-dimensional extended Hubbard-Peierls model
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Using a symmetrized density-matrix renormalization-group formulation, we have investigated the electronic
binding energy of the lowest optically allowed exciton (1Bu) within an extended Hubbard-Peierls model~with
parametersU, V, andd! for conjugated chains withN580 sites. Three symmetries, theC2 , spin parity, and
electron-hole symmetries, have been applied to construct the projector operator. Analysis of our results on the
ratios between exciton binding energies and exciton energies, sheds light on the current experimental and
theoretical controversy on exciton binding for polyacetylene and polyparaphenylene vinylene. We show that in
the absence of dimerization, the exciton binding energy is vanishingly small forU/t up to 5 andV/t up to 2.3;
for a finite dimerization, it is only whenV is large enough that the exciton gets to be significantly bound. This
result questions the applicability to conjugated polymers of the strong correlation picture, in which the exciton
binding energy is equal toV. @S0163-1829~97!03623-0#
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The role of electron correlation in conjugated polyme
has long been a subject of intense scrutiny. It has b
shown that electron correlation affects strongly the polym
geometry~mostly bond alternation!,1 excitation spectra,2 and
nonlinear optical response3 and it is generally accepted tha
an exciton is mainly responsible for the low-lying photoe
citations. However, the location of the conduction-band e
and the exciton binding energy are still unclear from bo
experimental and theoretical standpoints. Early experime
estimates in polyacetylene~PA! led to Eb;0.1 eV.4 Re-
cently, in the context of investigations on the remarka
photocurrent and luminescence properties of polyparap
nylene vinylene~PPV!, the value of the exciton binding en
ergy became a hotly debated issue. Not less than four mo
of binding have been proposed:~i! very weak binding~semi-
conductor band model!, Eb;0.025 eV;5 ~ii ! weak to inter-
mediate binding,Eb50.2 eV;6 ~iii ! intermediate binding,
Eb;0.4 eV;7–9 and~iv! very strong binding,Eb;1 eV, with
a theoretical explanation based on the strong correla
picture.10 Earlier quantum-chemical calculations show th
the exciton binding energy is extremely sensitive to both
level at which electron correlation effects are treated and
basis size, and usually provide too large a binding energ
comparison to experiment.11,12

In this work, we apply a symmetrized density-matr
renormalization-group~DMRG! theory to calculate the 1Bu
single exciton energy and charge excitation band gap wi
an extended Hubbard-Peierls model for a wide range of
550163-1829/97/55~23!/15368~4!/$10.00
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rametersU, V, andd. We present a thorough investigatio
of the 1Bu exciton binding energy behavior within a reaso
able parameter space for the extended Hubbard-Pe
model; this model has been widely applied in studying el
tron correlation effects in conjugated polymers1 ~even though
longer range terms, such as next-nearest-neighbor inte
tions, are neglected and might be important!. It is of prime
interest, however, to provide accurate results within
Hubbard-Peierls model and to analyze their implications
real polymeric materials; we hope in this way to shed so
light on the binding-energy issue in conjugated polymers

The DMRG technique has been developed by White, w
showed that the RG scheme in the density-matrix repres
tation is much more accurate than previous R
approaches.13,14Pang and Liang first applied the DMRG fo
mulation to study the Hubbard-Peierls model and exami
the correlation effect on the charge- and spin-density dis
butions for one-particle excitations.15 Wen and Su studied
the doping effect and concluded that the HubbardU would
not cause an insulator-metal transition.16 We have recently
developed a symmetrized DMRG theory which exploitsC2
symmetry, electron-hole symmetryJ ~which interchanges the
creation and annihilation operators with appropriate phas!,
and spin parityP ~spin-up-down symmetry!,17 to form a
simple Abel group with eight elements.P can distinguish the
even and odd spin states and excludes triplet states from
even parity excited space. The ground state lies in theeA1

space, i.e., even spin (S50,2,4,...), symmetric forC2(A),
15 368 © 1997 The American Physical Society
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and covalent~1!; the optically allowed excited states lie i
the eB2 space, i.e., singlet, antisymmetric forC2 , and ionic
~2!.

We particularly stress the importance of electron-h
symmetry operation, which holds only at half filling. As h
been shown previously,17 the lowest singlet covalentB state
~optically forbidden! lies well below the lowest singlet ionic
B state that is of major interest with regard to optical pro
erties. If this symmetry operation is not exploited, one
ways obtains the former state, in DMRG or in exact diag
nalization, as the lowestB state, a feature which can cau
much confusion.

In the DMRG calculation, the entire chain consists of fo
blocks, namely, a left partm coupled with one new sites,
and their counterparts~m8 and s8! on the right-hand side
generated by theC2 operation. For the left block~for in-
stance, starting from one or two sites!, the symmetry opera
tors can be transformed from Fock space to density-ma
eigenstate space, which is block diagonalized with respec
the number of particles and totalSz . The symmetry opera
tions for a new site are defined asJi u0&5u3&, Ji u↑&5
(21)i u↑&, Ji u↓&5(21)i u↓&, Ji u3&52u0&; Pi u0&5u0&,
Pi u↑&5u↓&, Pi u↓&5u↑&, andPi u3&52u0& ~whereu0& rep-
resents an empty site andu3& represents a doubly occupie
site; site indexi is relevant to the phase ofe-h symmetry!.
Then, for the entire four-block system, the projection ope
tor matrix for a given irreducible representation is formed
a direct product of the matrices of the four blocks by virt
of C2 symmetry @C2umss8m8&5(21)gum8s8sm&, g
5(nm1ns)(nm81ns8), n is the number of particles in th
block#. The linear dependencies of the symmetry adap
combinations are eliminated by a Gram-Schmidt orthon
malization. The symmetrized Hamiltonian is then diagon
ized by Davidson’s algorithm for the targeted states, th
being the ground state, or low-lying singlet and tripletBu
and Ag excited states. The chain is built up to the leng
desired~in this case,N580!, which is referred to as an infi
nite DMRG. To refine the states obtained from the infin
DMRG procedure, we then apply the finite iteration a
proach to improve the environments of all the blocks. In t
process, theC2 symmetry is applied only at the last step
each iteration, namely, when the left and right blocks
equal in size. The improvement of accuracy brought by
finite scheme depends on the parameters in the Hamilto
and the irreducible space. For instance, for more delocal
systems~i.e., small bond alternationd or small Hubbard
U!, the improvement is better than in the case of largerd or
U. The finite-scheme iterations are also found to be m
important for the description of theeB2 space than for the
eA1 space. It is important to point out that in our R
scheme, the symmetry adaptation is applied at every itera
step, so that the density matrix whose eigenstates are
for renormalization always comes from the targeted s
~ground state or excited state!.

To study the exciton binding, we have included t
nearest-neighbor density-density repulsionV term, which is
the origin of attraction between electron and hole. As h
been pointed out before, this term represents a physics th
different from that of the Hubbard model in terms of th
excitation spectra.18 Generally speaking, the long-range cha
acter of the Coulomb interaction is important in describi
e
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exciton binding. It is known that the DMRG works ex
tremely well for short-range potentials;13,14 however, for
long-range potentials, convergence is not guaranteed, w
can lead to poorer accuracy, especially for long-chain s
tems. This is the reason why we chose to keep the nea
neighbor density repulsion term in our model Hamiltonia
The importance of the bond alternation parameter~d! has
been emphasized by Soos, Ramasesha, and Galva˜o;19 it pro-
vides the simplest way to incorporate the chemical struct
in a model study@for instance,d can induce a 2A/1B cross-
over, i.e., ford,~.!dc , E(2A),(.)E(1B) wheredc is a
critical value20#. In this context, the extended Hubbar
Peierls model is defined by

H52t(
i ,s

@11~21! id#~cis
1 ci11s1H.c.!1U(

i
ni↑ni↓

1V(
i

~ni21!~ni1121!, ~1!

where t is the hopping integral which is taken to be uni
(t51); d is the dimensionless bond alternation parame
U is the Hubbard on-site repulsion, andV is the nearest-
neighbor interaction. Note that the condition for occurren
of the spin-density-wave~SDW! or bond-order-wave~BOW!
phases isU.2V.1

Pang and Liang have calculated the charge excitation
for the Hubbard-Peierls model, which is defined asEg
5E(N21)1E(N11)22E(N).15 We stress that this is no
the optical gap in the extended Hubbard-Peierls model, s
this definition excludes the contribution due to Coulomb
traction between electron and hole. Instead, this quantity
comes our definition for the charge excitation band g
which constitutes the continuum edge. Thus, the exci
binding energy is defined asEb5Eg2E(1Bu). Strictly, this
definition is only valid for an infinite chain; for a finite chain
the error is on the order of 1/N. We note that the finite-size
effect forEg is smaller than forE(1Bu), because 1Bu rep-
resents two charge carriers on a single chain, while for c
culatingEg , there is only one additional charge; the cha
ends have then a smaller effect. As a result, for the Hubb
model whereEb is known to be zero,Eb as calculated from
the DMRG will be slightly negative and of the order o
1/N. As noted previously, the covalent singlet 1B state lies
well below the optically allowed ionic 1B state; thus, the
binding energy of the former is much larger than that of t
latter. Here, we only discuss the ionic 1B state.

We have demonstrated the high accuracy of the sym
trized DMRG scheme in calculating the 1Bu state for long-
chain systems.17 The DMRG results are to be regarded
nearly exact for the ground state and a few excited sta
such as the lowest-lying triplet states and singleBu andAg
excited states.20 The accuracy of the calculations is man
fested in the following ways:~i! the energy of the target stat
converges with respect to increasing the dimension~the cut-
off! of the truncated density-matrix eigenstates; and~ii ! the
difference tends to vanish~around 1025! between 1~exact
value! and the sum of the eigenvalues of the truncated d
sity matrix. This is a natural way to track the precision of
DMRG calculation, as suggested by White.13,14Note that in
calculatingE(N61), we do not apply any symmetry opera
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15 370 55BRIEF REPORTS
tion. The DMRG cutoff is taken to bem5100; since the
DMRG is more accurate for stronger correlation, in the c
of smallerU values, we setm5150 for the eB2 space in
order to have comparble accuracy. The precision on the s
energy is poorer for theeB2 space (1023) than the eA1

state space (;1025). The accuracy is, however, hig
enough to give a definite answer concerning the exc
binding energy, which contains an intrinsic error of 1/N.

The main results of our study are summarized below:
~1! ForV50, as expected for the Hubbard-Peierls mod

the binding energyEb is always calculated to be a sma
negative quantityO(1/N) for anyU andd. This agreement
with the physical picture actually serves as a double ch
for our numerical scheme.

~2! For d50 and for fixedU(55), V does not induce any
binding in the SDW/BOW phase (V,U/2). V lowers both
the band gap and the 1Bu exciton energy, see Fig. 1. Th
V term is the origin of exciton binding. However,V also
increases electron delocalization by largely renormaliz
the t term; this eventually increases the electron-hole se
ration which is largest ford50. This result questions th
applicability of strong correlation arguments stating that
1Bu exciton binding energy is equal toV.18

~3! For fixed electron interaction strength,Eb increases
when increasingd ~Fig. 2!. This implies that the larger thed
value, the more excitoniclike the lowest charge excitation

~4! For fixedd ~e.g., 0.2!, smallV values hardly enhanc
Eb ; however, a largerV strongly enhancesEb ~see Fig. 1!.
We note that the exciton is bound only whenV is large
enough relative toU.

To relate our results with experimental findings, w
present in Table I, the DMRG results for the 1Bu exciton
state and binding energies for three sets of correla
strengths and bond alternation parameters. The alterna
parameter for PA is 0.07 according to its bond-length alt
nation. Sooset al. have proposed an effective parame
d50.2 for systems containing phenylene rings.21 We note
that PPV can actually be considered as a regular copoly
of polyparaphenylene and PA;22 thus, we consider the effec

FIG. 1. Dependence of the 1Bu binding energyEb on V/t for
U/t55. Circles representd50.2 and trianglesd50.0. The inset
shows the dependence of band gapEg on V/t for d50.0.
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tive bond alternation for PPV to be within the range 0.1
0.2. Note thatV/U is fixed at 0.4 in Table I, i.e., a relatively
large nearest-neighbor interaction strength for shorter-ra
interaction ~smaller V/U value!, the binding energy is
smaller than those in Table I. In a one-dimensional cor
lated system, it has been shown that the 1Bu state is nearly
responsible for the whole oscillator strength of the low
lying excitations, while the continuum band state hard
shows up in the linear absorption spectrum;18 as a result, we
take the optical-absorption data to set the 1Bu state energy:
1.8 eV for PA and 2.4 eV for PPV. We then obtain thet
values for different (U,V)’s using these experimenta
energies;23 namely, the bare t is evaluated as
Eexp(1Bu)/E

theo(t51)(1Bu), which is in the range of 1–2 eV
for the parameters in Table I. The binding energies obtai
in this way are also reported in the same Table. Given
uncertainty int value, Table I provides accuraterelativeval-
ues between the exciton state energy and its binding ene

FIG. 2. Dependence of band gap~circles! and 1Bu exciton en-
ergy ~triangles! on alternationd for U/t55, V/t52. The inset
shows their difference, i.e.,Eb5Eg2E(1Bu), as a function ofd.

TABLE I. 1Bu exciton binding energies and, in parenthes
1Bu state energy~for t51); V/U is fixed at 0.4. If we take the
experimental 1Bu energy values for PA~d50.07! and PPV ~d
50.15–0.2!, then theEb values can be scaled in absolute units~eV!
and are given underlined.

U
d 3 5

0.07 0.042 0.149
~0.947! ~1.879!
0.080 0.143

0.15 0.123 0.328
~1.327! ~2.152!
0.222 0.366

0.20 0.18 0.430
~1.54! ~2.312!
0.28 0.446
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We stress that these theoreticalEb /E(1Bu) ratio can help in
clarifying the controversy on the exciton binding energy.
fact, the usefulness of such a comparison between the t
retical results with experimental data has been pointed
earlier.10

For PA, we noted above that previous quantum-chem
calculations yield a range of hugeEb values, while the ex-
perimental estimate corresponds to anEb value as small as
about 0.1 eV.4 Our results are fully consistent with this ex
perimental estimate, within the whole range of parame
given in Table I, even under strong correlation streng
Namely, the theoretical ratioEb /E(1Bu) is in good agree-
ment with experiment, regardless of thet value chosen. It is
interesting to mention that we also performed a single
calculation for Hamiltonian~1!, an approach which is widely
used in exciton theory;10–12,24we then findEb to be 0.6 eV
for d50.07, U55, andV52 ~the 1Bu state energy again
taken to be at 1.8 eV!. ThisEb value is notably much large
than the DMRG value, which questions the accuracy of p
vious single CI-based theoretical calculations.

For PPV, our results, namely, the ratiosEb /E(1Bu) are in
agreement with the experimental findings by Campbellet
al.,6 Friend, Bradley, and Townsend7 and Kerstinget al.,8 as
well as the results of the phenomenological calculations
Gomes da Costa and Conwell.9 We find a weak to interme
diate binding energy even when we use strong correla
parameters; the latter is in contradiction to the results pro
tt
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ing strong binding, based on a single CI approach10 ~which
thus appears as too crude an approximation!.

We note that incorporation of lattice relaxation effec
would not lead to an increase in binding energy:25 from
quantum-chemical extensive CI calculations, the lattice
laxation of the 1Bu state is found to be comparable to th
sum of those of the anion and cation~negative and positive
polarons!. Among other effects neglected in the prese
study, are interchain interactions and intrachain long-ra
interactions. These effects deserve further investigations

To conclude, we have performed DMRG calculations
an extended Hubbard-Peierls model. We have presented
dependence of exciton binding energy both on alternatiod
and nearest-neighbor interactionV. Our results provide reli-
able values for the ratio ofEb /E(1Bu) in PA and support the
experimental findings that the exciton binding energy in P
occurs in the weak-to-intermediate range~0.2–0.45 eV!.
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