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Coupling of order parameter and spin fluctuations in underdoped highT . cuprates
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We calculate self-consistently the spin atig_.-wave order-parameter fluctuatiod®PFL’s) aboveT,
within an extension of the FLEXfluctuation exchangeapproximation for the two-dimensional Hubbard
model. The quasiparticle interaction due to OPFL’s can compete with that due to spin fluctuations for tem-
peratures neafl; and short pairing correlation lengths like those in the cuprates. The coupling of these
fluctuations via self-energy renormalization leads to a suppressidn ahd to a decrease of the dynamical
spin susceptibility for decreasing below a crossover temperatufe >T.. The temperaturd, increases
while T, decreases with increasing strength of OPFL'’s or decreasing doping. The resulting neutron-scattering
intensity and NMR relaxation ratesTL/ and 17T, decrease below, for decreasingl. This agrees qualita-
tively with the observed spin gap behavior in the underdoped higbdprates[S0163-182807)01122-3

. INTRODUCTION Bi,Sr,CaCyOg, 5 (Bi2212 compound$. It has been pro-
posed that the physical origin of this normal state gap is
A number of physical quantities in the normal state ofpreformed d-wave pairs without long-range phase
high-T. cuprates exhibits quite unusual properties in the uncoherencé,®
derdoped regime. We concentrate in this paper on those |n this paper we show that another mechanism may be
quantities which are determined by the dynamical spin susresponsible for the suppression of the spin fluctuations and of
ceptibility x(q,) for g near the antiferromagnetic wave T, namely, coupling ta-wave order parameter fluctuations
vector Q= (m, ). These are in particular th€°Cu spin-  which are treated in analogy to the classical Aslamazov-
lattice  relaxation rate Th given by 1M T  Larkin theory’ Spin-tripletp-wave order-parameter fluctua-
=34lAql%lim,, _ox(d,w)/0 and the inelastic neutron- tions belowT, have been observed in superfluitie and
scattering intensity which is proportional to ytg,®). In  have been calculated from parquet equations forTthma-
the overdoped regime T{T increases continuously sde-  trices in the particle-particle and particle-hole chanfiels.
creases down td@ . while in the underdoped regimeTL/T Particle-hole and particle-particle scattering together were
passes through a maximum at a temperalyrdor decreas- considered also in the FLEKluctuation exchangeapproxi-
ing T (see Ref. 1 These results are fully corroborated by mation for the two-dimensiongD) Hubbard modef. The
inelastic neutron-scattering data where in the underdoped reffect of particle-particle scattering is to redude for
gime Imy(Q,w) at fixed smallo (Aw=10 or 15 meV  d,._.-wave pairing which is obtained from the FLEX ap-
passes through a maximum®t for decreasing’ (see Ref.  proximation for spin-fluctuations alort&:*2
2). It has been suggested that the decreaseTgfT1land the In this paper we generalize the Eliashberg equations of
neutron-scattering intensity beloW, are a signature of the Ref. 12 by taking into account, beside the self-energy con-
opening of a spin pseudogap in the magnetic excitafions. tribution due to particle-hole scattering, the self-enekgy
The third important quantity which is determined by the due to particle-particle scatterin§’. The particle-particle
dynamical susceptibility is the spin-echo decay rat€,d/ scattering matrid’ is calculated in the ladder approximation
x[=,Rex(q,0)]Y2 In the overdoped regime the ratio with the full spin fluctuation interaction. This yields an
TlT/T§G is almost temperature independent which corre-analogous expression to the Ginzburg-Landau-Gorkov
sponds according to scaling arguments to a dynamical expdGLG) expression for the order-parameter fluctuation
nentz=2 where the spin excitations are relaxation matles. propagator. In particular, the pairing instability i’ is de-
In the underdoped regime the ratib T/T5; is constant termined by the  denominator  expressionT’
down to a crossover temperatufe,, and then it increases «[|T—T¢[/T.+ §§q2—iwr]’l where &, is the supercon-
with decreasingT. The other significant ratio i¥,T/T,g  ducting coherence length &t=0 andr is the relaxation time
which for decreasingd decreases down B, then becomes due to pair breaking. The effect af’ is to enhance the
constant betweei., and T, , and finally increases below quasiparticle damping and, in turn, to suppress the dynamical
T, (see Ref. 1 The relationshipT,T/T,g=const in the spin susceptibility. This effect becomes very largeraends
temperature range betwe@&p, and T, corresponds to a dy- towardsT. becauseé, and r are relatively small for the
namical scaling exponert=1 which occurs in the quantum- high-T, cuprates. The result is that the neutron-scattering
disordered regim@. Recently, a counterpart to the spin intensities Iny(q,®), 1/T,T, and 17,5 exhibit for decreas-
pseudogap in nuclear magnetic resona(d®R) and neu- ing T a pronounced crossover @f >T, to spin pseudogap
tron scattering has been found, namely, a quasiparticle gapehavior.
with d-wave symmetry abov@. in angle-resolved photo- In Sec. Il we derive the order-parameter fluctuation
emission (ARPES experiments on underdoped propagator and the generalized FLEX approximation equa-
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tions for the 2D Hubbard model. The results for the dynami- 1 3 1 3 1 3
cal spin susceptibility, neutron scattering intensity, and NMR - -
relaxation rates are presented and discussed in Sec. Ill. Sec- T = ZPS * Jz T
tion 1V is devoted to the conclusions. 4 2 4 2 4 2

Il. ORDER-PARAMETER FLUCTUATION PROPAGATOR ,
AND FLEX APPROXIMATION Z ® = T'
FOR 2D HUBBARD MODEL

In the previous FLEX(fluctuation exchangeapproxima-
tion for the 2D Hubbard mod¥l*?the interaction between

quasiparticles due to exchange of spin fluctuations has been FIG. 1. Bethe-Salpeter equation for particle-particle scattering
. : : : matrix T’ in the ladder approximation with full pairing interaction
f[aken into account. Here we generalize this theory by mclud-P — (312)U2y (wavy Iinap:nd self-energy contrliobutiog’ arising
ing the interaction due to exchange of order-parameter fluc-> ‘7 o :
tuations. We are led by the expression for the particle_from T’ (the solid lines are the dressed particle propagators

particle scattering matriX’ which has been obtained from
Ginzburg-Landau-GorkoyGLG) theory (we omit here the Ny (k) =—T2> Py(ki—k;)G(K))G(—k) by (k).

coupling term between neighboring layers ky @
* This suggests an expansion®f in terms of basis functions
’ . l/’(kl)w (ks) ieldi
T'(ky,K3;09,v)=— = > (1) ¢\, yielding
N[(lT_Tc|)/Tc+§0q —ivr] *
, Prdr(Ke) &5 (ka)
. _ _ _ T'(ky kgiq=0)=2> ————=—, (4
TheT’ in Eq. (1) refers to the scattering of a pair of particles A (M

with momentak;+(g/2), (q/2)— ks and total energy to a

pair k;+(a/2), ((‘:!/2)—k1, y.”The functiony is the basis p)\:J' dklj dkg? (k1) Pe(Ky—Kg) by (Ks). (5)

function for the “embryonic” superconducting state above

T¢; herey(k) =cosk,) —cosk,) for d-wave pairing,§o is  Since the largest eigenvalue is the Ay for d,2_2-wave

the superconducting coherence lengtiTat0, andr is the  pairing!? we keep in the following only the leading term of

relaxation time. The GLG expressidrisr £, and 7 involve  EQq. (4) for A=\4 and ¢, = ¢4. The coupling constarg is

the tight-binding functione(k) and the pairing function calculated from Eq(5) by approximating the spin fluctuation

(k). interaction P¢ by S-function peaks in wave vectayq and
In analogy to Eg. (1) we have calculated frequencyw:

T'(kq,kz;:0=k;+ks) (k=k,iw,;q=0q,iv,) in the ladder N2 2 2 _

approximation for the full pairing interaction ReP(q,v)=4m"y(A0) (32U RE x(Q,0)5(v) 5(q Q)(g;)

Ps(ky—ks) =(3/2)U?x(k; — k3) whereU is the on-site Cou- ) .

lomb repulsion andy is the dynamical spin susceptibiliy ~Here,Aq is the half-width of the peak of Rgq,0) around

(see Fig. 1 The resulting Bethe-Salpeter equation is thed=Q=(m,m), and y is the half-width of the peak of
following: Rey(Q,v) around v=0. Making use of the fact that the

eigensolution is normalized to unity and has the property
da(k—Q,w)=— ¢y(k,w) we obtain from Eqs(5) and(6)

T’ (Kq,Kg;q=ky+kg) = Ps(ky—kg) =T, Py(ky—k) pa=—4m2y(Aq)%(3/2U2Rex(Q,0). 7
ky
, e The next step is to deriv@’ for finite pair momentum
X G(ky)G(q—ky)T'(ky,ks:q). (2) g and energy. The corresponding correction terms are ob-
tained from Eq.(2) by expanding the pair propagator
For g=0 the homogeneous part of this integral equation corG(k)G(g—k) in powers ofq up to second order and in
responds to the linearized gap equation whose eigensolutiop®wers ofy up to first order. In analogy to Ref. 7 we obtain
&, (k) and eigenvalues are determined By from Eq. (2) with the help of Eq(6)

g da(ky, 1) df (K3, w3)

T ke 0 ika,09:0,7) = = e 3 (o) 07— (gld) 7] ®
gzzi_ S | a(k, @) |23 de(K)/ ok, 2+ [ de(k) ok, 1D Te > 4—(1)ﬁ—[coz+e(k)2]’2 ©)
0 NJ - 7 d\ R, 8 X Yy Cwn(TC) [wﬁ+e(k)2]3 n ’
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1 [+
T:N— dwzk: | pa(k,w)|?(7/2) 5 2€e(k) — v][ tanK v/4T )/ (v/2)].

The expressions fcgfg andr in Egs.(9) and(10) correspond

, AND L. TEWORDT

(10

Ng and ¢y4(k,w) are calculated self-consistently together

to the GLG expressions given in Ref. 7. They are approXiwith the interactions, (see Ref. 1pandK [see Eq(14)].

mately equal tat3=[7¢(3)/48](ve/wT)? and 7= m/8T,.
The dimensionless coupling constamtis proportional to
|pdl in Eq. (7):

g=—pa/7t=4my(A0)*(3/2)(U/t)*Re x(Q,0)t].
11

Ill. RESULTS FOR DYNAMICAL SPIN SUSCEPTIBILITY
AND NMR RELAXATION RATES

We have solved numerically E@L3) for the quasiparticle
self-energy component[1—Z(k,w)] and the correspond-

Here, t is the nearest-neighbor hopping energy anding equation for the component(k,w), with order-

N=1/4t is the average density of states.

We come now to the calculation of the self-energy con
tribution 2’ (k) due to theT’ matrix. This is shown diagram-
matically in Fig. 1 and is given by

S'(Kiwy)=T> 2 T'(kkg=k+k'iv,=iw,
’ k!

+iwh)G(K o). 12

We now introduce in Eq(12) the spectral representation of

the T' matrix with respect to the Matsubara frequency

ivn,=i2m=T and the spectral representation of the Green’
function G with respect td w;=ivy,—iw,. Then the sum-
mation overw),, or v, yields the functionl (iw,,Q,»")
given in Ref. 12. Then we carry out the analytical continua
tion iw,—w+id, separateX’ into the odd- and evew
partsw(1—2Z) and¢, and finally add the self-energy contri-
bution due to the spin fluctuation interactiéh, (see Ref.
12). In this way we obtain the following generalized Eliash-
berg equations:

o[1-Z(k,w)]= >, f:dﬂwd(k,w)lzl«k—k',m
k/

+ oo
+Ps(k—k’,Q)]J do’

X(w,Q,0")Ayk,0"), (13
g (9/4)7Q
KA = (T hg) T (04 224717+ [(9/a) 7
(14

parameter fluctuatioiX [see Eq.(14)] and spin fluctuation
-interaction Ps= (3/2)U%y. The kernell, the spectral func-
tions Ay andA; and the interactiofPs are given in Ref. 12.

In addition to the equations fobv(1—2Z) and & we have
solved numerically the eigenvalue equation for the gap func-
tion ¢4(k,w) with eigenvalue\ 4 (see Ref. 1P The super-
conducting transition temperatuii, is given by that tem-
perature where, for decreasinf, the eigenvaluehy(T)
passes through unity. It should be emphasized ihaand

¢4 are calculated self-consistently which takes into account
the renormalization of the order-parameter by the spin fluc-
5tuations. On the other hand, the spin fluctuations are renor-
malized by the order parameter fluctuations since the irreduc-
ible spin susceptibilityy, is calculated from the spectral
functionN(k,w)=Ag+ Az. The latter function is determined
“self-consistently from the Eliashberg equati¢sse Eq(13)]
containing the interactionBg and K.

We consider here a tight-binding bal(k) with nearest-
neighbor hopping whose 2D Fermi line is similar to that of
the YBaCuO and Bi2212 compountfsThe band filling is
varied by varying the chemical potential which has been
included ine(k). For the on-site Coulomb repulsion we take
U=6t and u=—0.8, yielding a renormalized band filling
n=0.95 (notice that half-filing corresponds to=1). As a
second set of parameters we takej-dlependent repulsion
J(q) (see Ref. 12 where J(Q)=U=3.3 (3.4) and
pu=-—21.1 (n=0.93). The function](q) describes approxi-
mately the effect of vertex corrections and decreaseg as
decreases fron® to 0 (see Ref. 13 The superconducting
coherence lengthé, at T=0 is given by Eq.(9). For
d-wave pairingé, decreases with increasimgand becomes
about {,/a=3 near half-filling. For the relaxation time
given by Eq.(10) we take as an upper limit the GLG value

The other Eliashberg equation for the energy shift functioryielding 7Q) = wQ /8T .=12(Q/t).

é(k,w) is obtained from Eq(13) by changing the sign in
front of the first term|¢4|°K and by replacing the spectral
function Ay by Az(k’,w’). The spin fluctuation interaction
P, the spectral functiong, and A;, and the kernel are

Quite generally we find that the dynamic spin susceptibil-
ity x(g,w) increases monotonically with decreasifign the
absence of order parameter fluctuatid@PFL's) while in
the presence of OPFL’s this function increases down to a

given in Ref. 12. It should be noticed that the spin fluctuationcrossover temperaturg, where it passes through a maxi-

interaction Ps=(3/2)U%xo(1—Ux,) " is calculated from
the irreducible spin susceptibility, which is determined by
the quasiparticle spectral functioN(k,w)=Ay+A;. The

mum, and then it decreases Bdlecreases front, down-
wards to T.. In Figs. Za) and Zb) we have plotted
Imy(Q,w) versus w for U=6t, n=0.95, g=4, ¢=1,

latter functions are renormalized by the self-energiesr=1 and forJ(Q)=U=3.%, n=0.93,g=1, £{,=4, 7=8,

w(1—2Z) andé(k,w). Equation(13) for w[1—Z(k,w)] and
the corresponding one faf(k,w) and the eigenvalue for

respectively. The lowest line refers To=0.04 [0.1t in (b)],
and for decreasing this function increases continuously up
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FIG. 3. Real part of dynamical spin susceptibility,
: : : Rey(q,o=0), vs q along a path running froml’=(0,0) to
0 0.1 0.2 03 0.4 0.5 X=(,0) to M=(m,7) and back tol'. (a) U=6t and the same
o/t parameter values as in Fig(a, (b) J(Q)=U=3.3 and the same
parameter values as in Fig(l.
FIG. 2. Imaginary part of dynamical spin susceptibility,
Imy(Q,w), atQ=(,m), VS w, in the presence of order-parameter
fluctuations (OPFL'S with parametersy, &, and . (@ U=6t, X=(7,0) to M=(m,m) and back tol'. From the lowest

n=0.95,g=4, &=1, 7=1, and temperature§=0.04 (lowest  Solid line referring toT=0.04 [0.1t in (b)] this function
curve, T=T, =0.014 (uppermost curye andT=T,=0.009 (in- increases continuously for decreasifigup to the highest
termediate curve (b) J(Q)=U=3.3, n=0.93, atT=0.1 (lowest  solid line referring toT, =0.014 [0.02 in (b)], and then it
curve, T=T,=0.0% (uppermost curve and T=T,=0.015 (in- decreases continuously to the intermediate curve at about
termediate curye The inset shows this quantity for fixed T_=0.009 [0.01% in (b)]. One recognizes that the half-
©=0.024=6 meV as a function of . width of the peakAq~ &, , passes through a minimum at
T, for decreasing . In the absence of OPFL's the height of
to the highest curve referring to the crossover temperaturthe peak increases and the half-widtly decreases mono-
T,=0.014 [0.03 in (b)], and then it decreases continuously tonically with decreasing .
down to the intermediate curve referring to about These completely different behaviors of the temperature
T.=0.009 [0.015 in (b)]. One recognizes from Fig. 2 that dependences of If(Q,w) and Rg/(q,0) in the absence or
the positionw of the maximum of Iny(Q,w) decreases presence of OPFL’s are reflected in fhelependences of the
first with decreasind down toT, where it passes through a spin-lattice relaxation rate T{ and of the spin-echo decay
minimum, and thenwg increases a3 decreases further to- rate 1T,g, respectively. Quite generally we can say that
wardsT, . 1/T,T increases monotonically in the absence of OPFL’s as
In the inset of Fig. &) we have plotted Ing(Q,w) versus T decreases down . while it passes through a maximum
T at a fixed small value ofv (0.024=6meV fort=250 at T, with decreasingrl in the presence of OPFL'’s. Thus
meV). One sees that for decreasifigthis function passes T;T has about the sanmedependence as the spin fluctuation
through a maximum at aboul, . This is in qualitative energy wg. In Fig. 4 we have plotted some results for
agreement with the neutron-scattering data on underdopedT;T versusT down to T, for U=6t (a), J(Q)=3.3 (b),
YBa,Cu;04,  for x=0.69, 0.83, and 0.92 which have beenand J(Q)=3.4t (c), and for different parameter values of
interpreted to arise from the opening of a spin pseuddgapg, &y, and = for the OPFL’s. The Figs. ®) and 4c) show
One recognizes that the positioag; of the maxima in Fig. that T, and 1T, T are suppressed by the order-parameter
2(b) are much larger than in Fig(&. The largerw scales in  fluctuations in comparison to the values obtained without
Fig. 2(b) are in much better agreement with the neutron-OPFL’s. The suppression increases with the strength of the
scattering data than the smallscales in Fig. @&). OPFL’s where the latter increases with increasing coupling
An analogous temperature behavior is found forstrengthg and/or with decreasing coherence lengthand
Rey(q,w) considered as a function of at fixedw. For the  decreasing relaxation time On the other hand, the position
same parameter values as in Fig. 2 we have plotted in Figg., of the maximum of IF;T increases with increasing
3(a) and 3b) the function Rg(g,w=0) versusq along a  strength of the OPFL'’s.
path in the Brillouin zone running from'=(0,0) to In Fig. 4@ we show 1T, T for U=6t, n=0.95, {,=1,
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Fig. 4(b)] we obtain T,,=0.0304 without OPFL’s, and

20
18} T./t=0.024, 0.016, and 0.01 for the sequence of parameter
16f valueséy=8, 7=16, {,=4, 7=8, and§,=2, =4 at fixed

e 14f g=1. The values ofT, /t are in this sequence about 0.03,

E 12 0.032, and 0.035. Fou/t=3.4 [see Fig. 4c)] we obtain

- 10f T.0=0.0314 without OPFL’s, andr./t=0.019, 0.0125, and

8t 0.006 for the sequence of parameter valggs 4, =8 and

6f &=2, 7=4 at fixedg=1, and£;=2, 7=4 atg=2. The

STy 0.02 0.03 0.04 values ofT, /t in this sequence are about 0.025, 0.028, and
T/t 0.032. Our results in Fig. 4 show that for increasldghe

strength of the spin fluctuations increases rapidly while their
suppression due to coupling to order-parameter fluctuations
increases rapidly with decreasing correlation length and re-
laxation time and/or increasing coupling strength~or suf-
ficiently large order-parameter fluctuations the crossover
temperatureT, to spin pseudogap behavior can be much
larger thanT . which agrees qualitatively with the NMR data
on underdoped YB&Lu;0g, , and YBgCu,0g. 23
The calculated spin-echo decay rat& 4 (with constant
] form factop increases monotonically with decreasimgin
0.0l 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 the absence of order-parameter fluctuations while it passes
T/t through a maximum aT, with OPFL’s [see Fig. %) for
U/t=3.3]. Thus we can say that,; has about the samE
or————— dependence as the half-widg &, of the commensurate
141 1 peak[see Fig. &)]. In Fig. 5b) we have plotted the ratio
T, T/T5; versusT for U/t=3.3 and for the same parameter
values as for ;T in Fig. 4(b). One sees that this ratio is
nearly constant over the whole temperature region in the ab-
sence of OPFL’s. Scaling arguments yield the relationship
TlT/Tngconst for a dynamical scaling exponenit 2 cor-
responding to overdamped relaxational spin excitatfons.
Such a behavior has been observed in overdoped cuprates.
In Fig. 5(c) we have plotted our results for the other signifi-
cant ratioT,T/T,g versusT for the same parameter values
as in Fig. %a). One sees that without OPFL’s this ratio de-
creases almost linearly with decreasihgln the presence of
relaxation rate, for different coupling constagtssuperconducting OPFL's the curves for this ratio first run almost parallel to

coherence length%,, and relaxation times of the order-parameter the former curve for decreasing then below a_ temperature
fluctuations.(8) U=6t, n=0.95; (b) J(Q)=U=3.%, n=0.93;(c)  Of aboutT, these curves bend upwards until they reach a

J(Q)=U=3.4, n=0.93. minimum at aboufT, , and belowT, these functions in-
crease rapidly ag decreases further towards,. Scaling

7=1, and coupling constantg=1, 4, 8, and 16(curves arguments yield a relationship,;T/T,g=const for a dy-

from top to bottom for this sequence of coupling constants namical scaling exponenz=1 which applies to the

For g=4, 8, 16 we obtain the crossover temperaturesjuantum-disordered regimieSuch a behavior has been ob-

T, /t=0.014, 0.015, 0.016, and thi._,2-wave transition served in underdoped cuprates in a temperature region be-

temperatured . /t=0.009, 0.005, 0.001. Thug, is strongly  tweenT andT, . Our results in Fig. &) show a constant

suppressed in comparison to thE,,=0.018 without behavior in the temperature region betw@epandT, to a

OPFL'’s. The relatively large values of the coupling constantvery crude approximation.

g are in accordance with Eqll) becauseU is large We have seen in Figs. 4 and 5 thgt is decreased and

(U=6t) and because the peaks of Rq,v) are large and T, is increased in proportion to the strength of the order

have a relatively large half-widtiAq [see Fig. 8a)]. We  parameter fluctuations. The latter are increased for decreas-

have varied als@&, and r and find that I, T increases as ing &, andr, or for increasing coupling constagtas can be

&, and 7 are increased. For example, by increasiiggand  seen from Eq(14) for the fluctuation propagatd€. Accord-

 from 1 to 2 at fixedgy=8 we obtain about the same curve ing to the results of GLG theofy, and r become smaller as

in Fig. 4(a) as that forg=4, £,=1, andr=1. the doping value away from half-filing¢=1—n, decreases.

In Figs. 4b) and 4c) we show 1T, T for couplingJ(q) The question arises how the coupling constadepends on
with J(Q)=U=3.2 (3.4t) and n=0.93. One recognizes dopingx. As an example we have calculatgdrom Eq.(11)
that the temperature scales in Figgb)4and 4c) are much for fixed U=3.3 andT=0.03 and for two values ohf, i.e.,
larger than those in Fig.(d) which is in much better agree- n=0.83 (u=-1.35) andn=0.93 (u=-1.1). We obtain
ment with the NMR experiments® ForJ(Q)=U=3.3% [see  Rey(Q,0)=7 for n=0.83 and Rg(Q,0)=18 for n=0.93;

1/T,T
S~

12
10

1/T,T

[T S TR - R
T T T T

.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
T/t

FIG. 4. The quantity ;T vs T where 1T, is the spin-lattice
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1.9 - < ing T while it decreases continuously towardsin the ab-
18} sence of OPFL's. Theyy is calculated from the quasi-
L7} particle spectral functionN(k,w) (see Ref. 1P whose
i-g: height and half-width at the Fermi momentum are given
@ a4l by 1M'(k) and I'(k)/Rez(k,0), respectively, wherd’ (k)
sl =lim,_owIlmZ(k,w) is the scattering rate. We find that in
- 12} the absence of OPFL’s the scattering r&teat the Fermi
L1t wave vectork,=(0.172,1) decreases linearly wiih while
Loy in the presence of OPFL’$; increases in comparison to the
09f .
08l ] former one asT decreases below, . The effective mass
001 0.02 0.05 0.04 0.05 0.06 0.07 0.08 0.09 0.0 ratio Re&Z(k,0) atk, increases slightly with decreasifigand

T/t has about the same value without and with OPFL’s. The
scattering ratd” and the effective mass ratio Rgk,0) at
k,=0.406(1,1) are about the same with or without OPFL’s.
08 (®) 1 Indeed, the peaks dfi(k,w) for k aroundk, are decreased

) and broadenedand shifted to lowerw) for T<T, while

[‘O o7l they are not affected aroung . Sincey(q,w) depends very

AN sensitively on xo(g,w), and since the spectral function

~ N(k,w) for k near the antinode of the gap is decreased and

[[: 06l broadened, one can understand that belqwthe suscepti-
bility xo is smeared out and in turn iQ, w) decreases and
Rex(q,0) is broadened aroung= Q.

03 T 052 003 0.04 005 0.06 007 0.05 0.00 010 Our theory cannot explain the observed crossovers of the

in-plane resistivity and the uniform susceptibility for de-
creasingT in the underdoped cuprates. The calculated resis-
08 T T T T tivity p is linear in T down to a low temperaturd
(~0.02) and then bends upwards beldly like that ob-

T/t

o7 served in the overdoped regime. It is likely that the opposite
g 06 behavior in the underdoped regime, i.e., a bending down-
= osl wards ofp below T, , is caused by the Aslamazov-Larkin
T I current contribution involving two fluctuation propagatérs.
B o4l We obtain a slight decrease of the uniform and static spin
susceptiblityy(0,0) with decreasing’, however not such a
031 drastic decrease beloW, as has been observed. This is
02 e plausible because the suppression of spin fluctuations by
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 OPFL'’s is proportional to the strength of the spin fluctua-

T/t tions, and one sees from Fig. 3 that0,0) is much smaller
than Rg(Q,0). The vertex corrections due to spin fluctua-
FIG. 5. Spin-echo decay rateTht (@), ratio T, T/T5¢ (b), and  tions atq=0 are almost temperature independ&nthich
ratio T,T/T,g (), vsT, for U=3.3 andn=0.93. The notations for ,eans that they cannot explain the drastic decrease of
the different parameter value§ of.the order-parameter quctuationi(O’o) belowT, .
are the same as those folT1T in Fig. Ab). Another shortcoming of our theory is the fact that we do
_ not find a quasiparticle gap in the spectral functhfk, w)
however, the half-widthAq of the commensurate peaks de- 35k cuts through the Fermi line along the direction from
creases as one goes fram=0.83 ton=0.93. Nevertheless, (0,m) to (s, ) as it has been observed abdlgin under-
the coupling constarg is estimated to increase substantially doped Bi 2212(see Ref. & Notice that in the absence of
asx decreases from=0.17 tox=0.07. ~ OPFL'’s the peaks oN(k,w) for k near the antinodé, of
~ A serious shortcoming of the previous FLEX approxima-the gap are much smaller and broader than the peaks near the
tion for spin fluctuations alori™*? is that the T for  npodek, of the gap. The OPFL's lead to an additional broad-

dy2_y2-wave pairing increases monotonically with decreas-ening of the peaks neak, and to shifts inw of order
ing x=1-—n. On the other hand, we have now shown that,,~ —0.03 which are similar to the observed ones.

this T decreases with decreasirgsince the strength of the
order parameter fluctuations increases. These two opposite
effects lead then to a maximum iR, for decreasingx in
qualitative agreement with experiment. Our calculations show that inclusion of order parameter
The reason that the spin susceptibility(q,w) fluctuations in the FLEX approximation for the 2D Hubbard

= xo(0,®)[1—Uxo(q,w)]” ! acquires a maximum at, for  model is capable of explaining the spin gap properties of the
decreasing (see Fig. 2is that the irreducible susceptibility high-T. cuprates in the underdoped regime. These properties
xo(g,w) goes through a corresponding maximum. Indeedare determined by the dynamical spin susceptibjitg, w)

the quantityU = x0(dc,0)]~* (Whereq_ is the position of for wave vectorq nearQ= (s, 7). The underlying mecha-
the maximum passes through a minimum®{ for decreas- nism is a competition between spin fluctuations and order-

IV. CONCLUSIONS
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parameter fluctuationsSOPFL’s). The latter become suffi- dependence off;. In the absence of OPFL’s th&, for
ciently strong asl tends toT, because the superconducting d,2_,2-wave pairing increases monotonically with decreas-
coherence lengtl, and the relaxation time due to pair ing dopingx=1—n (see Ref. 12 Now we find that this
breaking are relatively small for the highs cuprates. The T is suppressed in proportion to the strength of the OPFL’s
effect of OPFL's increases with decreasing doping awaywvhich increases with decreasing These two combined ef-
from half-filling, x=1—n, since on the one hand the cou- fects lead then to a maximum i, for decreasing which
pling strengthg increases, while on the other haggl and ~ agrees qualitatively with the doping dependence ofor the
 decrease with decreasing high-T, cuprates. We have shown that on the other hand the

Our main result is that for sufficiently strong order param-Crossover temperaturé, to spin gap behavior increases
eter fluctuations the dynamic spin susceptibiligfq, ») with increasing strength of the OPFL's a.nd becomes .much
passes through a maximum for decreasingt a crossover larger thanT. (see Figs. 4 and )5 This agrees with
temperature denoted by, . This leads to the spin gap be- €Xperiment. _ _ _
havior of three measured physical quantities. First, It should be emphasized that the spin fluctuations and the
Imy(Q,®) at fixed smallw passes through a maximum at Order-parameter fluctuations are intimately coupled via the
T, for decreasing [see Fig. 2)]. This result agrees quali- Eliashberg equations which contain the spin and order-
tatively with the neutron scattering data on underdopedP@rameter fluctuations as exchange interactions. The reason
YBa,Cu:O4 . . (See Ref. 2 Second, the antiparamagnon en- for the coupling is that these interactions are renormalized by
ergy wg corresponding to the position of the maximum of the quasiparticle self-energy and by the superconducting ei-
Imy(Q,w) passes through a minimum & for decreasing genve}lye A¢ and elgensolutlond{d, respectlvgly. These
T (see Fig. 2 This has the consequence that the spin-latticé]ua”““es themselves are det_ermlned by the Ellaghberg equa-
relaxation rate divided by, 1/T,T, passes through a maxi- t/ons. For temperatures sufficiently close tdl the interac-
mum atT, for decreasingl (see Fig. 4 Third, the half- t|on.due to order-paramgter quctqatlons can compete with
width Aq,vg;'él of the peak of Rg(q,»=0) atq=Q passes the interaction due to spin fluctuations. This Igads to a sup-
through a minimum aT,, for decreasing (see Fig. 3 This pression of the maximum of the spectral density of the spin
has the consequence that the spin-echo decay rate; 1/ fluctuations, Iny(Q,w), asT decreases below the crossover

passes through a maximumBg for decreasing’ [see Fig. temperatureT, . It is somewhat surprising that the eigen-

. : . value A y4(T) for d,2_,2-wave pairing continues to increase
5(@)]. The ratioT,T/T5g is nearly constant as a function of up to urﬁi(ty)asT dé((zzrey;ses beE)W glthough the maximum

i i *
T above qte_mperaturﬁcr?T* [seg Fig. 5@] Wh'.Ch MeaNS ot the pairing interaction, (3/2)2Imy(Q, ), decreases. The
that one is in a dynamical scaling regime with exponentr ason is that the decrease of the maximum of (@)
z=2 where the spin excitations are overdamped relaxationebleowT is accompanied by an increase of its osi:cio
modes® The ratioT,T/T,g is approximately constant in the and a sE)read of thiz functio% to higher frequenc(zlsa Fig
temperature region betwedn, andT, [see Fig. &)] which . '
o re T x e . . 2). It is well known that the larger the frequency spread of

means that one is in a dynamical scaling regime with eXPOL . Lairing interaction the laradr. or A
nentz=1 (see Ref. B Our results for I, T and 1M, in P 9 gele d:

; o . In summary, we have studied the effectdbfvave order-
Figs. 4b), 4(c), and 5 agree qualitatively with the NMR Lo . . T
. parameter fluctuations above. on spin fluctuations within
measurements in the overdoped and underdoped cuprates! n extension of the FLEX approximation for the 2D Hubbard

We find spin 9ap bShawor for a large and constant On_Slt(%odel. Both kinds of fluctuations become very large for de-
Coulomb repulsiony = 6t) as well as for a relatively small

Coulomb repulsion)(Q) [with J(Q)=U=3.3] which de- creasing t.emperatur'é because one gp.proz_iches_t.he antifer-
creases for q—0 to simulate the effect of vertex romagnetic as _weII as thd—\_/vave pairing instability. The
correctionst® The latter interaction yields results for the crossover to spin gap behavior for decr_eas‘l‘t_”:g:cqrs at th_e
neutron-scattering intensity and NMR relaxation rates Whicﬁ[emperature 1, >Tc) where the qua5|part|cle. Interaction
are in much better agreement with the experimentafjue to exchange of order parameter'fluctuatlons bepomes
results =3 than those folU =6t because the frequency and comparable to that due 1o spin fluctuations. The coupling of
temperature scales, respectively, are much lafgempare these fluctuations via self-energy renormallzanor_n gives rise
Figs. 2a) and 2b), Figs. 4a) and 4b)]. Here it should be to th.e'(.)bserved spin gap behavior of'the dynamlq spin sus-
pointed out that our calculation of the spin susceptibility isCeptlblllty x(q,0) for q near _the antlferromagnetlc wave
formally inconsistent in our approximation for the self- vector Q=(m, ). A shortcoming of the theory is that the

energy because we have not calculated self-consistently theéfeCt of OPFL's cannot explain the observed spin

vertex corrections to the irreducible spin susceptibility Whichpseudogap ag=0 and th_e qya5|part|cle 9ap abo¥g in
would be necessary for a conserving approximation. How_underdoped cuprates. This raises the question of whether the

ever, these vertex corrections are nearly temperatur@1tter gaps might have a different physical origin which is

independerif and therefore they should not contribute to the Ot described by the present FLEX approximation.
temperatur_e crossover due to order-parameter fluctuations ACKNOWLEDGMENTS
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