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Coupling of order parameter and spin fluctuations in underdoped high-Tc cuprates
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We calculate self-consistently the spin anddx22y2-wave order-parameter fluctuations~OPFL’s! aboveTc
within an extension of the FLEX~fluctuation exchange! approximation for the two-dimensional Hubbard
model. The quasiparticle interaction due to OPFL’s can compete with that due to spin fluctuations for tem-
peratures nearTc and short pairing correlation lengths like those in the cuprates. The coupling of these
fluctuations via self-energy renormalization leads to a suppression ofTc and to a decrease of the dynamical
spin susceptibility for decreasingT below a crossover temperatureT*.Tc . The temperatureT* increases
while Tc decreases with increasing strength of OPFL’s or decreasing doping. The resulting neutron-scattering
intensity and NMR relaxation rates 1/T1 and 1/T2G decrease belowT* for decreasingT. This agrees qualita-
tively with the observed spin gap behavior in the underdoped high-Tc cuprates.@S0163-1829~97!01122-3#
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I. INTRODUCTION

A number of physical quantities in the normal state
high-Tc cuprates exhibits quite unusual properties in the
derdoped regime. We concentrate in this paper on th
quantities which are determined by the dynamical spin s
ceptibility x(q,v) for q near the antiferromagnetic wav
vector Q5(p,p). These are in particular the63Cu spin-
lattice relaxation rate 1/T1 given by 1/T1T
5(quAqu2limv→0x(q,v)/v and the inelastic neutron
scattering intensity which is proportional to Imx(q,v). In
the overdoped regime 1/T1T increases continuously asT de-
creases down toTc while in the underdoped regime 1/T1T
passes through a maximum at a temperatureT* for decreas-
ing T ~see Ref. 1!. These results are fully corroborated b
inelastic neutron-scattering data where in the underdoped
gime Imx(Q,v) at fixed smallv (\v510 or 15 meV!
passes through a maximum atT* for decreasingT ~see Ref.
2!. It has been suggested that the decrease of 1/T1T and the
neutron-scattering intensity belowT* are a signature of the
opening of a spin pseudogap in the magnetic excitations2

The third important quantity which is determined by t
dynamical susceptibility is the spin-echo decay rate 1/T2G
}@(qRex(q,0)#

1/2. In the overdoped regime the rati
T1T/T2G

2 is almost temperature independent which cor
sponds according to scaling arguments to a dynamical e
nentz52 where the spin excitations are relaxation mode3

In the underdoped regime the ratioT1T/T2G
2 is constant

down to a crossover temperatureTcr , and then it increase
with decreasingT. The other significant ratio isT1T/T2G
which for decreasingT decreases down toTcr , then becomes
constant betweenTcr and T* , and finally increases below
T* ~see Ref. 1!. The relationshipT1T/T2G5const in the
temperature range betweenTcr andT* corresponds to a dy
namical scaling exponentz51 which occurs in the quantum
disordered regime.3 Recently, a counterpart to the sp
pseudogap in nuclear magnetic resonance~NMR! and neu-
tron scattering has been found, namely, a quasiparticle
with d-wave symmetry aboveTc in angle-resolved photo
emission ~ARPES! experiments on underdope
550163-1829/97/55~22!/15274~8!/$10.00
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Bi2Sr2CaCu2O81d ~Bi2212! compounds.4 It has been pro-
posed that the physical origin of this normal state gap
preformed d-wave pairs without long-range phas
coherence.5,6

In this paper we show that another mechanism may
responsible for the suppression of the spin fluctuations an
Tc , namely, coupling tod-wave order parameter fluctuation
which are treated in analogy to the classical Aslamaz
Larkin theory.7 Spin-tripletp-wave order-parameter fluctua
tions belowTc have been observed in superfluid3He and
have been calculated from parquet equations for theT ma-
trices in the particle-particle and particle-hole channe8

Particle-hole and particle-particle scattering together w
considered also in the FLEX~fluctuation exchange! approxi-
mation for the two-dimensional~2D! Hubbard model.9 The
effect of particle-particle scattering is to reduceTc for
dx22y2-wave pairing which is obtained from the FLEX ap
proximation for spin-fluctuations alone.10–12

In this paper we generalize the Eliashberg equations
Ref. 12 by taking into account, beside the self-energy c
tribution due to particle-hole scattering, the self-energyS8
due to particle-particle scatteringT8. The particle-particle
scattering matrixT8 is calculated in the ladder approximatio
with the full spin fluctuation interaction. This yields a
analogous expression to the Ginzburg-Landau-Gor
~GLG! expression for the order-parameter fluctuati
propagator.7 In particular, the pairing instability inT8 is de-
termined by the denominator expressionT8
}@ uT2Tcu/Tc1j0

2q22 ivt#21 where j0 is the supercon-
ducting coherence length atT50 andt is the relaxation time
due to pair breaking. The effect ofT8 is to enhance the
quasiparticle damping and, in turn, to suppress the dynam
spin susceptibility. This effect becomes very large asT tends
towardsTc becausej0 and t are relatively small for the
high-Tc cuprates. The result is that the neutron-scatter
intensities Imx(q,v), 1/T1T, and 1/T2G exhibit for decreas-
ing T a pronounced crossover atT*.Tc to spin pseudogap
behavior.

In Sec. II we derive the order-parameter fluctuati
propagator and the generalized FLEX approximation eq
15 274 © 1997 The American Physical Society



R
S

e
ud
u
le

s

ve

he

o
tio

f

n

rty

b-
r

in

ing
n

55 15 275COUPLING OF ORDER PARAMETER AND SPIN . . .
tions for the 2D Hubbard model. The results for the dynam
cal spin susceptibility, neutron scattering intensity, and NM
relaxation rates are presented and discussed in Sec. III.
tion IV is devoted to the conclusions.

II. ORDER-PARAMETER FLUCTUATION PROPAGATOR
AND FLEX APPROXIMATION
FOR 2D HUBBARD MODEL

In the previous FLEX~fluctuation exchange! approxima-
tion for the 2D Hubbard model10–12 the interaction between
quasiparticles due to exchange of spin fluctuations has b
taken into account. Here we generalize this theory by incl
ing the interaction due to exchange of order-parameter fl
tuations. We are led by the expression for the partic
particle scattering matrixT8 which has been obtained from
Ginzburg-Landau-Gorkov~GLG! theory7 ~we omit here the
coupling term between neighboring layers!:

T8~k1 ,k3 ;q,n!52
c~k1!c* ~k3!

N̄@~ uT2Tcu!/Tc1j0
2q22 int#

. ~1!

TheT8 in Eq. ~1! refers to the scattering of a pair of particle
with momentak31(q/2), (q/2)2k3 and total energyn to a
pair k11(q/2), (q/2)2k1, n. The functionc is the basis
function for the ‘‘embryonic’’ superconducting state abo
Tc ; herec(k)5cos(kx)2cos(ky) for d-wave pairing,j0 is
the superconducting coherence length atT50, andt is the
relaxation time. The GLG expressions7 for j0 andt involve
the tight-binding functione(k) and the pairing function
c(k).

In analogy to Eq. ~1! we have calculated
T8(k1 ,k3 ;q5k11k4) (k[k,ivn ;q[q,inm) in the ladder
approximation for the full pairing interaction
Ps(k12k3)5(3/2)U2x(k12k3) whereU is the on-site Cou-
lomb repulsion andx is the dynamical spin susceptibility12

~see Fig. 1!. The resulting Bethe-Salpeter equation is t
following:

T8~k1 ,k3 ;q5k11k4!5Ps~k12k3!2T(
k18

Ps~k12k18!

3G~k18!G~q2k18!T8~k18 ,k3 ;q!. ~2!

Forq50 the homogeneous part of this integral equation c
responds to the linearized gap equation whose eigensolu
fl(k) and eigenvaluesl are determined by12
i-
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lfl~k1!52T(
k18

Ps~k12k18!G~k18!G~2k18!fl~k18!.

~3!

This suggests an expansion ofT8 in terms of basis functions
fl , yielding

T8~k1 ,k3 ;q50!5(
l

plfl~k1!fl* ~k3!

12l~T!
, ~4!

pl5E dk1E dk3fl* ~k1!Ps~k12k3!fl~k3!. ~5!

Since the largest eigenvaluel is the ld for dx22y2-wave
pairing,12 we keep in the following only the leading term o
Eq. ~4! for l5ld andfl5fd . The coupling constantpd is
calculated from Eq.~5! by approximating the spin fluctuatio
interactionPs by d-function peaks in wave vectorq and
frequencyn:

RePs~q,n!.4p2g~Dq!2~3/2!U2Re@x~Q,0!d~n!d~q2Q!#.
~6!

Here,Dq is the half-width of the peak of Rex(q,0) around
q5Q5(p,p), and g is the half-width of the peak of
Rex(Q,n) around n50. Making use of the fact that the
eigensolution is normalized to unity and has the prope
fd(k2Q,v)52fd(k,v) we obtain from Eqs.~5! and ~6!

pd524p2g~Dq!2~3/2!U2Rex~Q,0!. ~7!

The next step is to deriveT8 for finite pair momentum
q and energyn. The corresponding correction terms are o
tained from Eq. ~2! by expanding the pair propagato
G(k)G(q2k) in powers ofq up to second order and in
powers ofn up to first order. In analogy to Ref. 7 we obta
from Eq. ~2! with the help of Eq.~6!

FIG. 1. Bethe-Salpeter equation for particle-particle scatter
matrix T8 in the ladder approximation with full pairing interactio
Ps5(3/2)U2x ~wavy line! and self-energy contributionS8 arising
from T8 ~the solid lines are the dressed particle propagators!.
T8~k1 ,v1 ;k3 ,v3 ;q,n!52
g

4N̄

fd~k1 ,v1!fd* ~k3 ,v3!

@~12ld!1~g/4!j0
2q22 i ~g/4!tn#

, ~8!

j0
25

1

N̄
E

2`

1`

dv(
k

ufd~k,v!u2 18 $@]e~k!/]kx#
21@]e~k!/]ky#

2%Tc (
vn~Tc!

F 4vn
2

@vn
21e~k!2#3

2@vn
21e~k!2#22G , ~9!
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t5
1

N̄
E

2`

1`

dv(
k

ufd~k,v!u2~p/2!d@2e~k!2n#@ tanh~n/4Tc!/~n/2!#. ~10!
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The expressions forj0
2 andt in Eqs.~9! and~10! correspond

to the GLG expressions given in Ref. 7. They are appro
mately equal toj0

2.@7z(3)/48#(vF /pTc)
2 and t5p/8Tc .

The dimensionless coupling constantg is proportional to
updu in Eq. ~7!:

g52pd /pt54pg~Dq!2~3/2!~U/t !2Re@x~Q,0!t#.
~11!

Here, t is the nearest-neighbor hopping energy a
N̄51/4pt is the average density of states.

We come now to the calculation of the self-energy co
tributionS8(k) due to theT8 matrix. This is shown diagram
matically in Fig. 1 and is given by

S8~k,ivn!5T(
vn8

(
k8

T8~k,k;q5k1k8,inm5 ivn

1 ivn8!G~k8,ivn8!. ~12!

We now introduce in Eq.~12! the spectral representation o
the T8 matrix with respect to the Matsubara frequen
inm5 i2mpT and the spectral representation of the Gree
functionG with respect toivn85 inm2 ivn . Then the sum-
mation overvn8 , or nm , yields the functionI ( ivn ,V,v8)
given in Ref. 12. Then we carry out the analytical continu
tion ivn→v1 id, separateS8 into the odd- and even-v
partsv(12Z) andj, and finally add the self-energy contr
bution due to the spin fluctuation interactionPs ~see Ref.
12!. In this way we obtain the following generalized Elias
berg equations:

v@12Z~k,v!#5(
k8

E
0

`

dV@ ufd~k,v!u2K~k2k8,V!

1Ps~k2k8,V!#E
2`

1`

dv8

3I ~v,V,v8!A0~k8,v8!, ~13!

K~q,V!5
g

4pN̄

~g/4!tV

@~12ld!1~g/4!j0
2q2#21@~g/4!tV#2

.

~14!

The other Eliashberg equation for the energy shift funct
j(k,v) is obtained from Eq.~13! by changing the sign in
front of the first termufdu2K and by replacing the spectra
function A0 by A3(k8,v8). The spin fluctuation interaction
Ps , the spectral functionsA0 andA3, and the kernelI are
given in Ref. 12. It should be noticed that the spin fluctuat
interaction Ps5(3/2)U2x0(12Ux0)

21 is calculated from
the irreducible spin susceptibilityx0 which is determined by
the quasiparticle spectral functionN(k,v)5A01A3. The
latter functions are renormalized by the self-energ
v(12Z) andj(k,v). Equation~13! for v@12Z(k,v)# and
the corresponding one forj(k,v) and the eigenvalue fo
i-

d

-

s

-

n

n

s

ld and fd(k,v) are calculated self-consistently togeth
with the interactionsPs ~see Ref. 12! andK @see Eq.~14!#.

III. RESULTS FOR DYNAMICAL SPIN SUSCEPTIBILITY
AND NMR RELAXATION RATES

We have solved numerically Eq.~13! for the quasiparticle
self-energy componentv@12Z(k,v)# and the correspond
ing equation for the componentj(k,v), with order-
parameter fluctuationK @see Eq.~14!# and spin fluctuation
interactionPs5(3/2)U2x. The kernelI , the spectral func-
tionsA0 andA3 and the interactionPs are given in Ref. 12.
In addition to the equations forv(12Z) and j, we have
solved numerically the eigenvalue equation for the gap fu
tion fd(k,v) with eigenvalueld ~see Ref. 12!. The super-
conducting transition temperatureTc is given by that tem-
perature where, for decreasingT, the eigenvalueld(T)
passes through unity. It should be emphasized thatld and
fd are calculated self-consistently which takes into acco
the renormalization of the order-parameter by the spin fl
tuations. On the other hand, the spin fluctuations are re
malized by the order parameter fluctuations since the irred
ible spin susceptibilityx0 is calculated from the spectra
functionN(k,v)5A01A3. The latter function is determined
self-consistently from the Eliashberg equations@see Eq.~13!#
containing the interactionsPs and K.

We consider here a tight-binding bande(k) with nearest-
neighbor hopping whose 2D Fermi line is similar to that
the YBaCuO and Bi2212 compounds.12 The band filling is
varied by varying the chemical potentialm which has been
included ine(k). For the on-site Coulomb repulsion we tak
U56t and m520.8, yielding a renormalized band filling
n50.95 ~notice that half-filling corresponds ton51). As a
second set of parameters we take aq-dependent repulsion
J(q) ~see Ref. 12! where J(Q)[U53.3t (3.4t) and
m521.1 (n50.93). The functionJ(q) describes approxi-
mately the effect of vertex corrections and decreases aq
decreases fromQ to 0 ~see Ref. 13!. The superconducting
coherence lengthj0 at T50 is given by Eq. ~9!. For
d-wave pairingj0 decreases with increasingn and becomes
about j0 /a.3 near half-filling. For the relaxation timet
given by Eq.~10! we take as an upper limit the GLG valu
yielding tV5pV/8Tc.12(V/t).

Quite generally we find that the dynamic spin susceptib
ity x(q,v) increases monotonically with decreasingT in the
absence of order parameter fluctuations~OPFL’s! while in
the presence of OPFL’s this function increases down t
crossover temperatureT* where it passes through a max
mum, and then it decreases asT decreases fromT* down-
wards to Tc . In Figs. 2~a! and 2~b! we have plotted
Imx(Q,v) versus v for U56t, n50.95, g54, j051,
t51 and forJ(Q)5U53.3t, n50.93,g51, j054, t58,
respectively. The lowest line refers toT50.04t @0.1t in ~b!#,
and for decreasingT this function increases continuously u
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to the highest curve referring to the crossover tempera
T*50.014t @0.03t in ~b!#, and then it decreases continuous
down to the intermediate curve referring to abo
Tc50.009t @0.015t in ~b!#. One recognizes from Fig. 2 tha
the positionvsf of the maximum of Imx(Q,v) decreases
first with decreasingT down toT* where it passes through
minimum, and thenvsf increases asT decreases further to
wardsTc .

In the inset of Fig. 2~b! we have plotted Imx(Q,v) versus
T at a fixed small value ofv (0.024t.6meV for t5250
meV!. One sees that for decreasingT this function passes
through a maximum at aboutT* . This is in qualitative
agreement with the neutron-scattering data on underdo
YBa2Cu3O61x for x50.69, 0.83, and 0.92 which have bee
interpreted to arise from the opening of a spin pseudog2

One recognizes that the positionsvsf of the maxima in Fig.
2~b! are much larger than in Fig. 2~a!. The largerv scales in
Fig. 2~b! are in much better agreement with the neutro
scattering data than the smallv scales in Fig. 2~a!.

An analogous temperature behavior is found
Rex(q,v) considered as a function ofq at fixedv. For the
same parameter values as in Fig. 2 we have plotted in F
3~a! and 3~b! the function Rex(q,v50) versusq along a
path in the Brillouin zone running fromG5(0,0) to

FIG. 2. Imaginary part of dynamical spin susceptibilit
Imx(Q,v), atQ5(p,p), vsv, in the presence of order-paramet
fluctuations ~OPFL’s! with parametersg, j0, and t. ~a! U56t,
n50.95, g54, j051, t51, and temperaturesT50.04t ~lowest
curve!, T5T*50.014t ~uppermost curve!, andT5Tc50.009t ~in-
termediate curve!. ~b! J(Q)5U53.3t, n50.93, atT50.1t ~lowest
curve!, T5T*50.03t ~uppermost curve!, andT5Tc50.015t ~in-
termediate curve!. The inset shows this quantity for fixe
v50.024t.6 meV as a function ofT.
re
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ed
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X5(p,0) to M5(p,p) and back toG. From the lowest
solid line referring toT50.04t @0.1t in ~b!# this function
increases continuously for decreasingT up to the highest
solid line referring toT*50.014t @0.03t in ~b!#, and then it
decreases continuously to the intermediate curve at a
Tc.0.009t @0.015t in ~b!#. One recognizes that the hal
width of the peak,Dq;jAF

21 , passes through a minimum a
T* for decreasingT. In the absence of OPFL’s the height o
the peak increases and the half-widthDq decreases mono
tonically with decreasingT.

These completely different behaviors of the temperat
dependences of Imx(Q,v) and Rex(q,0) in the absence o
presence of OPFL’s are reflected in theT dependences of the
spin-lattice relaxation rate 1/T1 and of the spin-echo deca
rate 1/T2G , respectively. Quite generally we can say th
1/T1T increases monotonically in the absence of OPFL’s
T decreases down toTc while it passes through a maximum
at T* with decreasingT in the presence of OPFL’s. Thu
T1T has about the sameT dependence as the spin fluctuatio
energy vsf . In Fig. 4 we have plotted some results f
1/T1T versusT down toTc for U56t ~a!, J(Q)53.3t ~b!,
and J(Q)53.4t ~c!, and for different parameter values o
g, j0, andt for the OPFL’s. The Figs. 4~b! and 4~c! show
that Tc and 1/T1T are suppressed by the order-parame
fluctuations in comparison to the values obtained with
OPFL’s. The suppression increases with the strength of
OPFL’s where the latter increases with increasing coupl
strengthg and/or with decreasing coherence lengthj0 and
decreasing relaxation timet. On the other hand, the positio
T* of the maximum of 1/T1T increases with increasing
strength of the OPFL’s.

In Fig. 4~a! we show 1/T1T for U56t, n50.95, j051,

FIG. 3. Real part of dynamical spin susceptibilit
Rex(q,v50), vs q along a path running fromG5(0,0) to
X5(p,0) to M5(p,p) and back toG. ~a! U56t and the same
parameter values as in Fig. 2~a!; ~b! J(Q)5U53.3t and the same
parameter values as in Fig. 2~b!.
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t51, and coupling constantsg51, 4, 8, and 16~curves
from top to bottom for this sequence of coupling constan!.
For g54, 8, 16 we obtain the crossover temperatu
T* /t50.014, 0.015, 0.016, and thedx22y2-wave transition
temperaturesTc /t50.009, 0.005, 0.001. ThusTc is strongly
suppressed in comparison to theTc0.0.018t without
OPFL’s. The relatively large values of the coupling const
g are in accordance with Eq.~11! becauseU is large
(U56t) and because the peaks of Rex(q,n) are large and
have a relatively large half-widthDq @see Fig. 3~a!#. We
have varied alsoj0 and t and find that 1/T1T increases as
j0 and t are increased. For example, by increasingj0 and
t from 1 to 2 at fixedg58 we obtain about the same curv
in Fig. 4~a! as that forg54, j051, andt51.

In Figs. 4~b! and 4~c! we show 1/T1T for couplingJ(q)
with J(Q)5U53.3t (3.4t) and n50.93. One recognize
that the temperature scales in Figs. 4~b! and 4~c! are much
larger than those in Fig. 4~a! which is in much better agree
ment with the NMR experiments.1,3 For J(Q)5U53.3t @see

FIG. 4. The quantity 1/T1T vs T where 1/T1 is the spin-lattice
relaxation rate, for different coupling constantsg, superconducting
coherence lengthsj0, and relaxation timest of the order-paramete
fluctuations.~a! U56t, n50.95; ~b! J(Q)5U53.3t, n50.93; ~c!
J(Q)5U53.4t, n50.93.
s

t

Fig. 4~b!# we obtain Tc050.0304t without OPFL’s, and
Tc /t.0.024, 0.016, and 0.01 for the sequence of param
valuesj058, t516, j054, t58, andj052, t54 at fixed
g51. The values ofT* /t are in this sequence about 0.0
0.032, and 0.035. ForU/t53.4 @see Fig. 4~c!# we obtain
Tc050.0314t without OPFL’s, andTc /t.0.019, 0.0125, and
0.006 for the sequence of parameter valuesj054, t58 and
j052, t54 at fixedg51, andj052, t54 at g52. The
values ofT* /t in this sequence are about 0.025, 0.028, a
0.032. Our results in Fig. 4 show that for increasingU the
strength of the spin fluctuations increases rapidly while th
suppression due to coupling to order-parameter fluctuat
increases rapidly with decreasing correlation length and
laxation time and/or increasing coupling strengthg. For suf-
ficiently large order-parameter fluctuations the crosso
temperatureT* to spin pseudogap behavior can be mu
larger thanTc which agrees qualitatively with the NMR dat
on underdoped YBa2Cu3O61x and YBa2Cu4O8.

1,3

The calculated spin-echo decay rate 1/T2G ~with constant
form factor! increases monotonically with decreasingT in
the absence of order-parameter fluctuations while it pas
through a maximum atT* with OPFL’s @see Fig. 5~a! for
U/t53.3#. Thus we can say thatT2G has about the sameT
dependence as the half-widthDq}jAF

21 of the commensurate
peak @see Fig. 3~b!#. In Fig. 5~b! we have plotted the ratio
T1T/T2G

2 versusT for U/t53.3 and for the same paramet
values as for 1/T1T in Fig. 4~b!. One sees that this ratio i
nearly constant over the whole temperature region in the
sence of OPFL’s. Scaling arguments yield the relations
T1T/T2G

2 5const for a dynamical scaling exponentz52 cor-
responding to overdamped relaxational spin excitation3

Such a behavior has been observed in overdoped cuprat1,3

In Fig. 5~c! we have plotted our results for the other signi
cant ratioT1T/T2G versusT for the same parameter value
as in Fig. 5~a!. One sees that without OPFL’s this ratio d
creases almost linearly with decreasingT. In the presence of
OPFL’s the curves for this ratio first run almost parallel
the former curve for decreasingT, then below a temperatur
of aboutTcr these curves bend upwards until they reach
minimum at aboutT* , and belowT* these functions in-
crease rapidly asT decreases further towardsTc . Scaling
arguments yield a relationshipT1T/T2G5const for a dy-
namical scaling exponentz51 which applies to the
quantum-disordered regime.3 Such a behavior has been o
served in underdoped cuprates in a temperature region
tweenTcr andT* .

1,3 Our results in Fig. 5~c! show a constant
behavior in the temperature region betweenTcr andT* to a
very crude approximation.

We have seen in Figs. 4 and 5 thatTc is decreased and
T* is increased in proportion to the strength of the ord
parameter fluctuations. The latter are increased for decr
ing j0 andt, or for increasing coupling constantg as can be
seen from Eq.~14! for the fluctuation propagatorK. Accord-
ing to the results of GLG theory7 j0 andt become smaller as
the doping value away from half-filling,x512n, decreases
The question arises how the coupling constantg depends on
dopingx. As an example we have calculatedg from Eq.~11!
for fixedU53.3t andT50.03t and for two values ofn, i.e.,
n50.83 (m521.35) andn50.93 (m521.1). We obtain
Rex(Q,0).7 for n50.83 and Rex(Q,0).18 for n50.93;
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however, the half-widthDq of the commensurate peaks d
creases as one goes fromn50.83 ton50.93. Nevertheless
the coupling constantg is estimated to increase substantia
asx decreases fromx50.17 tox50.07.

A serious shortcoming of the previous FLEX approxim
tion for spin fluctuations alone10–12 is that the Tc for
dx22y2-wave pairing increases monotonically with decre
ing x512n. On the other hand, we have now shown th
this Tc decreases with decreasingx since the strength of the
order parameter fluctuations increases. These two opp
effects lead then to a maximum inTc for decreasingx in
qualitative agreement with experiment.

The reason that the spin susceptibilityx(q,v)
5x0(q,v)@12Ux0(q,v)#

21 acquires a maximum atT* for
decreasingT ~see Fig. 2! is that the irreducible susceptibilit
x0(q,v) goes through a corresponding maximum. Inde
the quantityUcr5@x0(qc,0)#

21 ~whereqc is the position of
the maximum! passes through a minimum atT* for decreas-

FIG. 5. Spin-echo decay rate 1/T2G ~a!, ratio T1T/T2G
2 ~b!, and

ratioT1T/T2G ~c!, vsT, for U53.3t andn50.93. The notations for
the different parameter values of the order-parameter fluctuat
are the same as those for 1/T1T in Fig. 4~b!.
-

-
t

ite

,

ing T while it decreases continuously towardsU in the ab-
sence of OPFL’s. Thex0 is calculated from the quasi
particle spectral functionN(k,v) ~see Ref. 12! whose
height and half-width at the Fermi momentum are giv
by 1/G(k) and G(k)/ReZ(k,0), respectively, whereG(k)
5 limv→0vImZ(k,v) is the scattering rate. We find that i
the absence of OPFL’s the scattering rateG at the Fermi
wave vectorka5(0.172,1) decreases linearly withT, while
in the presence of OPFL’s,G increases in comparison to th
former one asT decreases belowT* . The effective mass
ratio ReZ(k,0) atka increases slightly with decreasingT and
has about the same value without and with OPFL’s. T
scattering rateG and the effective mass ratio ReZ(k,0) at
kb50.406(1,1) are about the same with or without OPFL
Indeed, the peaks ofN(k,v) for k aroundka are decreased
and broadened~and shifted to lowerv) for T,T* while
they are not affected aroundkb . Sincex(q,v) depends very
sensitively on x0(q,v), and since the spectral functio
N(k,v) for k near the antinode of the gap is decreased
broadened, one can understand that belowT* the suscepti-
bility x0 is smeared out and in turn Imx(Q,v) decreases and
Rex(q,0) is broadened aroundq5Q.

Our theory cannot explain the observed crossovers of
in-plane resistivity and the uniform susceptibility for d
creasingT in the underdoped cuprates. The calculated re
tivity r is linear in T down to a low temperatureT0
(;0.02t) and then bends upwards belowT0 like that ob-
served in the overdoped regime. It is likely that the oppos
behavior in the underdoped regime, i.e., a bending do
wards ofr below T* , is caused by the Aslamazov-Larki
current contribution involving two fluctuation propagators7

We obtain a slight decrease of the uniform and static s
susceptiblityx(0,0) with decreasingT, however not such a
drastic decrease belowT* as has been observed. This
plausible because the suppression of spin fluctuations
OPFL’s is proportional to the strength of the spin fluctu
tions, and one sees from Fig. 3 thatx(0,0) is much smaller
than Rex(Q,0). The vertex corrections due to spin fluctu
tions at q50 are almost temperature independent13 which
means that they cannot explain the drastic decrease
x(0,0) belowT* .

Another shortcoming of our theory is the fact that we
not find a quasiparticle gap in the spectral functionN(k,v)
as k cuts through the Fermi line along the direction fro
(0,p) to (p,p) as it has been observed aboveTc in under-
doped Bi 2212~see Ref. 4!. Notice that in the absence o
OPFL’s the peaks ofN(k,v) for k near the antinodeka of
the gap are much smaller and broader than the peaks nea
nodekb of the gap. The OPFL’s lead to an additional broa
ening of the peaks nearka and to shifts inv of order
v;20.03t which are similar to the observed ones.

IV. CONCLUSIONS

Our calculations show that inclusion of order parame
fluctuations in the FLEX approximation for the 2D Hubba
model is capable of explaining the spin gap properties of
high-Tc cuprates in the underdoped regime. These proper
are determined by the dynamical spin susceptibilityx(q,v)
for wave vectorq nearQ5(p,p). The underlying mecha-
nism is a competition between spin fluctuations and ord

ns
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parameter fluctuations~OPFL’s!. The latter become suffi
ciently strong asT tends toTc because the superconductin
coherence lengthj0 and the relaxation timet due to pair
breaking are relatively small for the high-Tc cuprates. The
effect of OPFL’s increases with decreasing doping aw
from half-filling, x512n, since on the one hand the co
pling strengthg increases, while on the other handj0 and
t decrease with decreasingx.

Our main result is that for sufficiently strong order para
eter fluctuations the dynamic spin susceptibilityx(q,v)
passes through a maximum for decreasingT at a crossover
temperature denoted byT* . This leads to the spin gap be
havior of three measured physical quantities. Fi
Imx(Q,v) at fixed smallv passes through a maximum
T* for decreasingT @see Fig. 2~b!#. This result agrees quali
tatively with the neutron scattering data on underdop
YBa2Cu3O61x ~see Ref. 2!. Second, the antiparamagnon e
ergy vsf corresponding to the position of the maximum
Imx(Q,v) passes through a minimum atT* for decreasing
T ~see Fig. 2!. This has the consequence that the spin-lat
relaxation rate divided byT, 1/T1T, passes through a max
mum atT* for decreasingT ~see Fig. 4!. Third, the half-
width Dq;jAF

21 of the peak of Rex(q,v50) atq5Q passes
through a minimum atT* for decreasingT ~see Fig. 3!. This
has the consequence that the spin-echo decay rate 1T2G
passes through a maximum atT* for decreasingT @see Fig.
5~a!#. The ratioT1T/T2G

2 is nearly constant as a function o
T above a temperatureTcr.T* @see Fig. 5~b!# which means
that one is in a dynamical scaling regime with expon
z52 where the spin excitations are overdamped relaxatio
modes.3 The ratioT1T/T2G is approximately constant in th
temperature region betweenTcr andT* @see Fig. 5~c!# which
means that one is in a dynamical scaling regime with ex
nent z51 ~see Ref. 3!. Our results for 1/T1T and 1/T2G in
Figs. 4~b!, 4~c!, and 5 agree qualitatively with the NMR
measurements in the overdoped and underdoped cuprat1,3

We find spin gap behavior for a large and constant on-
Coulomb repulsion (U56t) as well as for a relatively smal
Coulomb repulsionJ(Q) @with J(Q)5U53.3t# which de-
creases for q→0 to simulate the effect of verte
corrections.13 The latter interaction yields results for th
neutron-scattering intensity and NMR relaxation rates wh
are in much better agreement with the experimen
results1–3 than those forU56t because the frequency an
temperature scales, respectively, are much larger@compare
Figs. 2~a! and 2~b!, Figs. 4~a! and 4~b!#. Here it should be
pointed out that our calculation of the spin susceptibility
formally inconsistent in our approximation for the se
energy because we have not calculated self-consistently
vertex corrections to the irreducible spin susceptibility wh
would be necessary for a conserving approximation. Ho
ever, these vertex corrections are nearly tempera
independent13 and therefore they should not contribute to t
temperature crossover due to order-parameter fluctuat
discussed in this paper.

The inclusion of order-parameter fluctuations in t
FLEX approximation can explain also the observed dop
y
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dependence ofTc . In the absence of OPFL’s theTc for
dx22y2-wave pairing increases monotonically with decrea
ing doping x512n ~see Ref. 12!. Now we find that this
Tc is suppressed in proportion to the strength of the OPF
which increases with decreasingx. These two combined ef
fects lead then to a maximum inTc for decreasingx which
agrees qualitatively with the doping dependence ofTc for the
high-Tc cuprates. We have shown that on the other hand
crossover temperatureT* to spin gap behavior increase
with increasing strength of the OPFL’s and becomes m
larger than Tc ~see Figs. 4 and 5!. This agrees with
experiment.1,3

It should be emphasized that the spin fluctuations and
order-parameter fluctuations are intimately coupled via
Eliashberg equations which contain the spin and ord
parameter fluctuations as exchange interactions. The re
for the coupling is that these interactions are renormalized
the quasiparticle self-energy and by the superconducting
genvalue ld and eigensolutionfd , respectively. These
quantities themselves are determined by the Eliashberg e
tions. For temperaturesT sufficiently close toTc the interac-
tion due to order-parameter fluctuations can compete w
the interaction due to spin fluctuations. This leads to a s
pression of the maximum of the spectral density of the s
fluctuations, Imx(Q,v), asT decreases below the crossov
temperatureT* . It is somewhat surprising that the eige
value ld(T) for dx22y2-wave pairing continues to increas
up to unity asT decreases belowT* although the maximum
of the pairing interaction, (3/2)U2Imx(Q,v), decreases. The
reason is that the decrease of the maximum of Imx(Q,v)
below T* is accompanied by an increase of its positionvsf
and a spread of this function to higher frequencies~see Fig.
2!. It is well known that the larger the frequency spread
the pairing interaction the largerTc or ld .

In summary, we have studied the effect ofd-wave order-
parameter fluctuations aboveTc on spin fluctuations within
an extension of the FLEX approximation for the 2D Hubba
model. Both kinds of fluctuations become very large for d
creasing temperatureT because one approaches the antif
romagnetic as well as thed-wave pairing instability. The
crossover to spin gap behavior for decreasingT occurs at the
temperature (T*.Tc) where the quasiparticle interactio
due to exchange of order parameter fluctuations beco
comparable to that due to spin fluctuations. The coupling
these fluctuations via self-energy renormalization gives
to the observed spin gap behavior of the dynamic spin s
ceptibility x(q,v) for q near the antiferromagnetic wav
vectorQ5(p,p). A shortcoming of the theory is that th
effect of OPFL’s cannot explain the observed sp
pseudogap atq50 and the quasiparticle gap aboveTc in
underdoped cuprates. This raises the question of whethe
latter gaps might have a different physical origin which
not described by the present FLEX approximation.
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