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Intralayer and interlayer spin-singlet pairing and energy gap functions
with different possible symmetries in high-Tc layered superconductors
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Anisotropy and the wave-vector dependence of the energy gap function determine many important proper-
ties of a superconductor. Starting from first principles, we present here a complete analysis of possible sym-
metries of the superconducting gap functionEg(k) at the Fermi surface in high-Tc layered superconductors
with either a simple orthorhombic or a tetragonal unit cell. This is done within the framework of Gorkov’s
mean-field theory of superconductivity in the so-called ‘‘layer representation’’ introduced by us earlier. For
N conducting cuprate layers,J51,2,...,N, in each unit cell, the spin-singlet order parametersDJJ8(k) can be
expanded in terms of possible basis functions of all the irreducible representations relevant to layered crystals,
which are obtained here. In layered materials, the symmetry is restricted to the translational lattice periodicity
in the direction perpendicular to the layers and the residual point group and translational symmetries for the
two-dimensional unit cell in each layer of the three-dimensional unit cell. We derive an exact general relation
to determine different branches of the energy gap functionEg(k) at the Fermi surface in terms ofDJJ8(k),
which include both intralayer and interlayer order parameters. ForN52, we also obtain an exact expression for
quasiparticle energiesEp(k), p51,2, in the superconducting state in the presence of intralayer and complex
interlayer order parameters as well as complex tunneling matrix elements between the two layers in the unit
cell, which need not be equivalent. The form of the possible basis functions are also listed in terms of
cylindrical coordinateskt ,f,kz to take advantage of the orthogonality of functions with respect tof integra-
tions. In layered materials, with open Fermi surfaces in thekz direction, there is orthogonality of basis
functions with respect tokz also (2p<kzd<p). Our results show that in orthorhombic systems, planar
dk

x
22k

y
2-like (B1g) and dkxky-like (B2g) symmetries are always mixed, respectively, with the planar

s-wave-like (A1g) andA2g-like symmetries of the corresponding tetragonal system. There is also the possibil-
ity of a weak modulation ofEg(k) as a function ofkz(;coskzd). In addition, in the presence of interlayer
pairings which may or may not have the same symmetry as the intralayer order parameters, even in tetragonal
systems the nodes of thedk

x
22k

y
2-like intralayer gap function will be shifted. In view of this, some suggestions

for analyzing experimental data are also presented.@S0163-1829~97!02922-6#
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I. INTRODUCTION

The problem of the actual symmetry and the wave-vec
dependence of the spin-singlet pairing gap functionD~k! in
high-Tc cuprate superconductors has attracted g
attention1,2 during the last several years, because of its
conventional behavior in comparison to its almost isotro
form in low-Tc materials. Since the anisotropy and thek
dependence of the energy gap function, including its poss
nodes at the Fermi surface, determine the nature of quas
ticle excitations and various important properties of a sup
conductor, the significance of knowing its form for practic
applications of these materials cannot be minimized. Thi
also important from the theoretical point of view if we ha
to move towards a proper understanding of the superc
ducting pairing in these materials at a more basic level.
though recent Josephson coupling experiments,1 along with
several other types of observations, have shown evide3

for a planardk
x
22k

y
2-like symmetry in some high-Tc materials,

which seems to be consistent with the usual Berk-Schrie
550163-1829/97/55~22!/15248~13!/$10.00
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form for the spin-fluctuation exchange mechanism4,5 in
CuO2 layers in the Hubbard model, there are many oth
experiments2 which give either anisotropic extende
s-wave-like or mixeds-wave andd-wave-like symmetries,
as far as the dependence of the gap function onkt
5(kx ,ky) in the layer plane is concerned. In reality, the
need not be any universal behavior in all high-Tc cuprates,
but the answer is still not clear.

High-Tc cuprate superconductors are known to be laye
materials, with orthorhombic or tetragonal unit-cell symm
try, and very weak interaction and single-particle tunneli
between the layers. It is assumed that holes or electron
CuO2 layers of each unit cell are directly involved in th
spin-singlet pairing in these materials.6 Other layers in the
unit cell contribute to the superconducting state of these
terials only indirectly through their weak coupling to CuO2
layers. In such a layered system, it is, therefore, more ap
priate to characterize the superconducting state in term
possible intralayer pairing order parametersDJJ(kt ,kz) and
interlayer pairing order parametersDJJ8(kt ,kz), JÞJ8,
15 248 © 1997 The American Physical Society
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55 15 249INTRALAYER AND INTERLAYER SPIN-SINGLET . . .
where J and J8 label the CuO2 layers in a unit cell, and
wherekt andkz are the wave vector in the layer plane and
the direction perpendicular to it. Instead of the usual expr
sion for the energy gap at the Fermi surface, 2D~k!, in the
familiar one-band three-dimensional case, whereD~k! is the
corresponding energy gap function, the energy gap is n
determined by the set of order parametersDJJ8(kt ,kz);
J,J851,2,...,N, whereN is the number of superconductin
layers per unit cell. In order to tackle this problem effe
tively, we have already developed7 a microscopic framework
for spin-singlet pairing theory of superconductivity in su
layered materials, in terms of a general effective dynam
interaction,V(r1 ,r2 ,v), between the charge carriers, and
appropriate set of single-particle electronic states defin
the so-called ‘‘layer’’ representation. To start with, for sim
plicity, this theory was applied to the case ofN-equivalent
layers per unit cell, with only intralayer pairing independe
of kt ~i.e., isotropics-wave-like in the layer plane!, to study
the saturation7,8 properties of the superconducting transiti
temperatureTc as a function ofN, and the anisotropy7,9 of
the gap parametersDJJ(kz) as a function ofkz . The case of
two layers per unit cell, with both intralayer and interlay
pairings, were also considered in great detail7 in terms of
phenomenological pairing interactions, but the analysis w
again restricted to the case ofkt-independent order param
eters. For two equivalent layers per unit cell, the energy
function for the resulting two branches was given byEg
5D(kz)6D'(kz), whereD5D115D22 was the real intra-
layer pairing order parameter, andD'(kz)5uD12(kz)u
5uD21(2kz)u was the amplitude of the interlayer pairing o
der parameter. Note that in our notation, the minimum
ergy gap for pair breaking is 2Eg .

In view of the possibility of unconventional symmetr
andkt dependence of the intralayer order parameters in
layer plane, recently we used our approach to analyze10 this
situation for layered systems with either orthorhombic or
tragonal symmetry in the case ofN-equivalent layers per uni
cell, with no interlayer pairings. We showed that for tetra
onal systems there is a possibility of pure plan
d-wave-like symmetry for the order parametersDJJ(kt ,kz)
near T5Tc , apart from its weak modulation~;coskzd,
whered is the length of the unit cell in thez direction! as a
function of kz . In orthorhombic systems, planardk

x
22k

y
2-like

symmetry is always mixed with the planars-wave-like sym-
metry. Since interlayer pairing is expected to mix plan
symmetries even in the tetragonal case, it is importan
extend our analysis to the most general case where
intra- and interlayer pairings are considered simultaneou
with various possible basis functions which are consist
with the symmetry of the conducting layers in the unit cell
the crystal. To be more particular and focused, in this pa
we will address this general problem in greater detail for
case of two layers (N52) per unit cell. Based on this, w
will then discuss the case of arbitrary number of layers
unit cell. Our work is expected to establish a sound basi
analyze past and future experimental data exploring the
sible symmetry of the superconducting state in high-Tc lay-
ered crystals.

In Sec. II of this paper, we will briefly review our earlie
formulation7 of the generalized pairing theory of superco
s-
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ductivity in layered materials within the framework of th
Gorkov mean-field theory. This will establish the notatio
for our layer representation and the corresponding ma
ematical framework. The formulation is in terms of th
normal-state single-particle Green functiong(r1 ,r2 ,v) and
the general effective dynamical interactionV(r1 ,r2 ,v), both
in our layer representation. It includes the possibility of bo
intralayer and interlayer pairings. A general expression
the energy gap functionEg(k) for quasiparticle excitations a
the Fermi surface in terms of the order parametersDJJ8(k),
J,J851,2,...,N, is also derived in this section. For layere
crystals, with orthorhombic or tetragonal symmetry, it
enough to consider the periodicity of the unit cell in thez
direction, perpendicular to the layers, and the correspond
residual two-dimensional point-group and translational sy
metry for each CuO2 layer in the unit cell. To be complete
and to avoid confusion, in Sec. III we obtain and list t
possible irreducible representations~IRR’s! and their basis
functions which can be used to expand order parame
DJJ8(k) andEg(k), in simple tetragonal and orthorhomb
layered systems. Basis functions are also given in term
the cylindrical coordinateskt ,f,kz , since in layered crystals
with widely open Fermi surfaces, the integrations overkzd
andf cover the full period in each case, so that the ortho
nality of the basis functions in these coordinates can be u
in our analysis.

The problems of one layer (N51) and two layers (N
52) per unit cell are examined in detail in Sec. IV, wi
various possible symmetries for the order parameters and
energy gap functionEg(k). For two layers per unit cell,
which need not be equivalent, we also give an exact exp
sion for the two branches of the quasiparticle energyE(k),
in the presence of intralayer and interlayer pairings as wel
complex tunneling matrix elements between the layers.
Sec. V, we briefly consider the general case ofN layers per
unit cell. In particular, we emphasize how one can anal
the symmetry of the energy gap functionEg(k) in this case,
if the interlayer pairings are allowed only between t
nearest-neighbor layers in the unit cell. We conclude
paper in Sec. VI with a short discussion.

II. MATHEMATICAL FRAMEWORK
FOR THE SPIN-SINGLET PAIRING THEORY

IN A LAYERED CRYSTAL

For describing the generalized pairing theory in layer
materials, it is convenient to introduce the Bloch-period
layer representation7 for the single-particle electronic state
in terms of a set of orthonormalized functionsxnakts

(x,y,z

2znM) localized at different layers in the crystal. Here, t
verticalz coordinate of thenth layer in theM th vertical unit
cell has been denoted byznM5zn1Md, whered is the unit-
cell length in thez direction perpendicular to the layers, an
s refers to the effective spin-up and spin-down states wh
are degenerate in the absence of any external magnetic
The functionsxnakts

(r ) are products of two-dimensiona

Bloch-like band functions, labeled by the band index ‘‘a’’
and the layer wave vectorkt5(kx ,ky) in the x2y layer
plane, and one-dimensional Wannier-like functions in thez
direction localized at different layers in the crystal. Th
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satisfy the orthonormalization conditions

E d3rxn8a8kt8s
* ~x,y,z2zn8M8!xnakts

~x,y,z2znM!

5dn8ndM8Mda8adkt8,kt. ~1!

The basis functions for each of the layersn in any unit cell of
the crystal, which define our Bloch-periodic layer repres
tation are then just the Bloch sum

Lnaks~r !5^r unaks&

5
1

AN3
(
M

eikzMdxnakts
~x,y,z2zn2Md!;

2p/d<kz<p/d, ~2!

whereN3 is the number of unit cells in the verticalz direc-
tion of the crystal. Note that the above basis functions are
the eigenstates of the three-dimensional Bloch Hamilton
H0 , and there are still nonvanishing single-particle ‘‘tunn
ing’’ matrix elements ofH0 between different layers in th
unit cell. Since the extension of the single-particle ene
bandwidth in thekz direction is expected to be very narro
and small compared to the Fermi energym in any highly
layered metal, all states with2p/d<kz<p/d are occupied
at the Fermi surface~FS!. In other words, the Fermi surfac
is expected to be widely open in the direction perpendicu
to the reciprocal layerkt plane.

In the Gorkov decoupling scheme, th
generalized pairing theory of superconductivity
described7 in terms of the single-particle Gree
functions Gss8(x1 ,x2) 52^T„cs(x1)cs8

† (x2)…&;

Ḡss8(x1 ,x2) 52^T„cs
†(x1)cs8(x2)…& 52Gs8s(x2 ,x1),

and the anomalous Green functio
Fss8(x1x2)52^P†T„cs(x1)cs8(x2)…&, F̄ss8(x1 ,x2)
52^PT„cs

†(x1)cs8
† (x2)…&, wherex stands for (r ,i t ), T is

the usual time-ordering operator, andP andP† change (N
12) and (N22)-particle states to theN-particle state. The
self-energies corresponding to the anomalous Green f
tions Fss8 and F̄ss8, in the presence of the effective dy
namic pairing interactionV(r1 ,r2 ,ivm2 ivm8), where the
Matsubara frequenciesvm5(2m11)pkBT, m50,61,
62,..., are the gapfunctionsDss8 and D̄ss8, with

Dss8~r1 ,r2 ,ivm!5kBT(
m8

V~r1 ,r2 ,ivm2 ivm8!

3Fss8~r1 ,r2 ,ivm8!, etc. ~3!

In the absence of pairing in the normal state, the sing
particle Green functionsGss8 andḠss8 are supposed to b
given bygss8 and ḡss8. Then the full set of self-consisten
generalized Gorkov equations for superconductivity, with
possibility of both spin-singlet and spin-triplet pairings, a
given by
-

ot
n
-

y

r

c-

-

e

Gs1s2~r1 ,r2 ,ivm!5gs1s2~r1 ,r2 ,ivm!1E d3r 3E d3r 4

3(
s3

(
s4

gs1s3~r1 ,r3 ,ivm!Ds3s4

3~r3 ,r4 ,ivm!F̄s4s2~r4 ,r2 ,ivm!,

~4!

F̄s1s2~r1 ,r2 ,ivm!5E d3r 3E d3r 4

3(
s3

(
s4

ḡs1s3~r1 ,r3 ,ivm!D̄s3s4

3~r3 ,r4 ,ivm!Gs4 ,s2~r4 ,r2 ,ivm!

~5!

with similar equations forḠs1s2 andFs1s2, where in Eqs.
~4! and ~5!, g↔ḡ, D↔D̄, G↔Ḡ, andF↔F̄.

If we restrict ourselves only to the spin-singlet pairing,
the absence of any external magnetic field, the general
pairing theory can be written down in terms of the sing
particle Green functionG5G↑↑5G↓↓, the singlet anoma-
lous Green functionFs and the corresponding gap functio
Ds , together with the two input functions, namely, th
normal-state Green functiong5g↑↑5g↓↓ and the effective
pairing interaction functionV. They are represented by Eq
~1!–~3! in the first paper of Ref. 7~to be referred to as I,
hereafter!. For the sake of clarity, if we further restrict thi
exposition to an effective Hamiltonian in which only th
conducting layers,J51,2,...,N, in each unit cell, are di-
rectly involved in the pairing, with only one two-dimension
band for each layer, one can rewrite the set of these th
equations of the spin-singlet theory in terms of a set of th
equations forN3N matricesGI , FI , andDI in the layer rep-
resentation. Using the following expansions and notation

G~r1 ,r2 ,ivm!5(
k

(
J1 ,J2

LJ1ks~r1!LJ2ks* ~r2!GJ1J2
~k!,

~6!

Fs~r1 ,r2 ,ivm!5(
k

(
J1 ,J2

LJ1 ,2k↓* ~r1!LJ2 ,k↑
* ~r2!FJ1J2

~k!

5(
k

(
J1 ,J2

LJ1k↑~r1!LJ2 ,2k↓~r2!FJ1J2
~k!,

~7!

Ds~r1 ,r2 ,ivm!5(
k

(
J1 ,J2

LJ1k↑~r1!LJ2 ,2k↓~r2!DJ1J2
~k!

5(
k

(
J1,J2

LJ1 ,2k↓* ~r1!LJ2 ,k↑
* ~r2!DJ1J2

~k!,

~8!

g~r1 ,r2 ,ivm!5(
k

(
J1 ,J2

LJ1ks~r1!LJ2ks* ~r2!gJ1J2~k! ~9!
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VJ1J2 ;J3J4
~k,k8!5VJ1J2 ;J3J4

~k,k8,ivm2 ivm8!

5^J1k↑;J2 ,2k↓uV~r1 ,r2 ,ivm2 ivm8!

3uJ3k8↑,J4 ,2k8↓&, ~10!

k[~k,ivm!5~kt ,kz ,ivm!;

k8[~k8,ivm8!5~kt8 ,kz8 ,ivm8! ~11!

the resulting set of self-consistent coupledN3N matrix
equations for the spin-singlet pairing theory for layered m
als are given by

GI ~k!5gI ~k!1gI ~k!DI ~k!FI ~k!, ~12!

FI ~k!52gI
trans~2k!DI ~k!GI ~k! ~13!

@DI ~k!#J1J25(
k8

(
J3 ,J4

VJ1J2 ;J3J4
~k,k8!FJ3J4

~k8!

[F(
k8

V= ~k,k8!F~k8!G
J1J2

, ~14!

where the matrixgI
trans is the usual transpose of the matr

gI , related togI
t of I by

gJ1J2
trans~2k!5gJ2J1~2k!5gJ1J2

t ~k!. ~15!

In the above set of Eqs.~12!–~14!, the super matrixV= is
defined in Eq.~14! itself, and the summation overk8 implies,

(
k8

•••[kBT(
vm8

E d2kt8

~2p!2
E

2p/d

p/d dkz8

~2p/d!
••• ~16!

for an open Fermi surface in thekz direction.
The set of coupled Eqs.~12!–~14! has the formal solu-

tions forGI andDI which can be rewritten in the form

GI ~k!5gI ~k!@ II1DI ~k!gI
trans~2k!DI ~k!gI ~k!#21, ~17!

DI ~k!52(
k8

V= ~k,k8!@@gI
trans~2k8!DI ~k8!gI ~k8!#

3@ II1DI ~k8!gI
trans~2k8!DI ~k8!gI ~k8!#21#, ~18!

where II is the unitN3N matrix, and the inverse of an
matrix has the usual definition.

Note that nearT;Tc , whenDI is small, one has the lin
earized form of Eq.~18!, whose nontrivial solution corre
sponding to the maximum possibleTc determines the super
conducting state. One has to solve the linear eigenva
equation

DI ~k!52(
k8

V= ~k,k8!@gI
trans~2k8!DI ~k8!gI ~k8!#, T5Tc ,

~19!

in which the summation overk8 includes the summation
over vm85(2m811)pkBTc , m850,61,62,... .

In general, when we analytically continueD( ivm) to real
frequenciesv, the gap functionD~k,v! is a complex func-
tion, even for a single layer per unit cell. However, becau
t-

e

e

of its analytic properties in thev plane, it satisfies the usua
Kramer’s-Krönig relations between its real and imagina
parts, withD(v)5D* (2v). If the frequencies involved in
the pairing exchange mechanism are large compared
kBTc , one may assume thatD is almost frequency indepen
dent up to the frequencies of the order of a few tim
kBTc , with a negligible imaginary part in that low-frequenc
region. For the spin-singlet pairing, because of the requ
ment of symmetric spatial part, one has also the relat
@examine, e.g., Eq.~8!#

DJ1J2
~k!5DJ2J1

~2k!. ~20!

Similarly, the pairing interactionVJJ,JJ(k,k8,ivm2 ivm8) is
symmetric with respect to the interchange ofk andk8, etc.,
and the transformationk→2k, k8→2k8.

The poles of the normal-state Green function in thev
plane in the representation in which it is diagonal,S21gISI
[gI

(a) ~diagonal!, represent the normal-state single-partic
energies and their damping. If one ignores the imaginary p
and the frequency dependence of the normal-state s
energy, one can assume a simplified form

gaa8
~a!

~k,ivm!5~ ivm2ja!21daa8 , a51,2,...,N ~21!

for it in the a representation in which it is diagonal. Exact
at the Fermi surface, defined byja50 for all theN sheets
(a51,2,...,N), gI

(a) reduces to the form (ivm)
21II. In other

words, exactly at the Fermi surface~FS!, in the layer repre-
sentation also,gI 5SIg(a)SI 215( ivm)

21II, and one has

gI
21~k,ivm!5 ivmII,

gI
trans~2k,2 ivm!52~ ivm!21II, at FS. ~22!

We also know that the poles of the full Green functio
GI (k,v) in thev plane, or the zeroes of the determinant
GI 21(k,v) determine the quasiparticle excitation energ
Ep in the superconducting state. Exactly at the Fermi surfa
with all ja50, they can be identified with the energy ga
functionsEgp for theN branches. In fact, Eqs.~17! and~22!
imply that these poles are determined by the vanishing of
determinant

detuDI DI 2Eg
2IIu50, ivm→Eg ~23!

in the layer representation. This can be rewritten, after f
torization, in the simpler form

detuDI 7EgIIu50. ~24!

In other words, ifDI can be assumed to be frequency ind
pendent, the eigenvalues ofDI (k), with the appropriate
choice of their sign, give the energy gap functionsEgp , p
51,2,...,N. In particular, forN52, ~two layers per unit
cell!, with

DI ~k!5S D11~k!

D21~k!

D12~k!

D22~k! D ~25!

in the J-J8 layer representation, the two branches of t
energy gap function are given by
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~6 !Eg1,25
1
2 @D11~k!1D22~k!#6 1

2 @„D11~k!2D22~k!…2

14D12~k!D21~k!#1/2, ~26!

where one may assume,DJJ(k)5DJJ(2k) to be real, and
D21(k)5D12(2k)5D12* (k). Note that the~6! sign in the
left-hand side of the above equation represents the choic
any overall sign forEg .

III. LAYER-SYMMETRY AND BASIS FUNCTIONS
FOR ORDER PARAMETERS

AND ENERGY-GAP FUNCTIONS Eg„k…

In general, the symmetry ofDI (k) as a function of the
three-dimensional wave vectork is determined by the trans
lational and point-group symmetry of the unit cell of th
crystal. Because of the lattice periodicity, it satisfies the
lation

DI ~k1G!5DI ~k!, ~27!

whereG is any reciprocal-lattice vector. For the spin-sing
pairing, one in addition has the relation~20!: DJ1J2

(k)
5DJ2J1

(2k). Similarly, the interaction functionV= (k,k8) is

invariant under the transformationk→k1G and k85k81

G. Any such functionf (k), satisfying the condition~27!,
e
nt

s

of

-

t

can of course be expanded in terms of the direct lattice v
torsR,

f ~k!5(
$R%

f ~R!eik•R5(
G

f GcG~k!, ~28!

in which one can rearrange the plane waveseik•R in terms of
the basis functionscG(k) for each irreducible representatio
~IRR! G of the point group. Since high-Tc cuprates occur as
orthorhombic or tetragonal crystals with highly layered u
cells, it is better for us to consider only the residual symm
tries and the corresponding basis functions for expanding
order parameters and pairing interactions, which are relev
to layered systems. We will assume that the layered cry
has the translational lattice symmetry in thez direction per-
pendicular to the layers, and the residual two-dimensio
~2D! translational and point-group symmetry for the plan
unit cell in each layer. For example, for an orthorhomb
crystal ~with the simple lattice!, the residual 2D symmetry
will be that of a rectangular unit cell with sidesa and b,
whereas for the case of a tetragonal crystal~with the simple
lattice!, the symmetry will be that of a square unit cell wit
sidesa.

Since in thekz direction, one can expand the functio
f (k) in the form
f ~kt ,kz!5(
M

f~M !~kt!e
ikzMd, M50,61,62,63,...

5f~0!~kt!1 (
M51

`

$@f~M !~kt!1f~2M !~kt!#cosMkzd1 i @f~M !~kt!2f~2M !~kt!#sinMkzd%, ~29!
t-
ple

se

e-
ss,

ms
tor

the
ies.
II,

e-
ys-
the basis functions for expanding it as a function ofkz can be
taken to be

cG~z!~kz!;1,coskzd,sinkzd,... ~30!

as classified in Table I. Since the coefficients with high
values ofM involve overlaps of spatial functions in dista
unit cells, we can keep only terms up touM u51. For expand-
ing functionsf(kt) in layered crystals, the basis function
can be constructed by using the expansion

f~kt!5 (
$RL%

f~RL!eikt•RL5(
G~2!

fG~2!cG~2!~kt!, ~31!

where one has to regroup the plane waveseikt•RL involving
different two-dimensional direct lattice vectorsRL to trans-
form as each of the IRR’sG (2) of the residual two-
dimensional point group. For the rectangular lattice,RL

TABLE I. Basis functions forkz expansion.

IRR Basis functions (M50,1,2,...)

Gg
(z) cg

(z)M5cosMkzd:1,coskzd, . . .
Gu
(z) cu

(z)M5sinMkzd:sinkzd, . . .
r

5max̂1nbŷ, and for the square latticeRL5max̂1naŷ;
m,n50,61,62,... . In the two-dimensional residual poin
group symmetry of a square corresponding to the 3D sim
tetragonal case (D4h), which is isomorphic to the group
C4v , there are eight elements,h1 , h14, h26, h37, h4
5I 2h1 , h155I 2h14, h275I 2h26, h405I 2h37, as defined by
Kovalev,11 where I 25C2 is the two-dimensional ‘‘inver-
sion’’ operation in whichkx→2kx , ky→2ky . In the two-
dimensional residual symmetry point group~of rectangular
unit cell! corresponding to the 3D simple orthorhombic ca
(D2h), one has only four elements,h1 , h26, h45I 2h1 , h27
5I 2h26. The complete IRR’s for both these residual symm
try groups are given in Tables II and III. For completene
these tables also define the group elementshi by listing be-
low each one the resulting coordinates to which it transfor
when it acts on the reciprocal space coordinate vec
(kx ,ky). Starting from the plane-wave expansion~31!, and
following the standard procedure, one can then construct
basis functions for each IRR for these 2D layer symmetr
They are also listed in the last column of Tables II and I
for these 2D symmetries under consideration.

For the spin-singlet pairing, one may obtain thre
dimensional even-parity basis functions for the layered cr
tal by combining the even planarGg

(2) representations with
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TABLE II. Irreducible representations and basis functions for 2D square lattice symmetry,C4v ~corresponding to 3-d simple tetragon
D4h!.

IRR
h1

(kx ,ky)
h14

(2ky ,kx)
h26

(2kx ,ky)
h37

(ky ,kx)
h4

(2kx ,2ky)
h15

(ky ,2kx)
h27

(kx ,2ky)
h40

(2ky ,2kx)
Basis functions

(m,n50,1,2, . . . )

G1g
(2tet)(A1g)

;(1,kx
21ky

2)
1 1 1 1 1 1 1 1 c1g

(2tet)mn

5cosmkxa cosnkya
1cosnkxa cosmkya
~s-wave like)

G2g
(2tet)(A2g)

;kxky(kx
22ky

2)
1 1 21 21 1 1 21 21 c2g

(2tet)mn

5sinmkxa sinnkya
2sinnkxasinmkya

G3g
(2tet)(B1g)

;kx
22ky

2
1 21 1 21 1 21 1 21 c3g

(2tet)mn

5cosmkx cosnkya
2cosnkxa coskya
~dk

x
22k

y
2-wave like!

G4g
(2tet)(B2g)

;kxky

1 21 21 1 1 21 21 1 c4g
(2tet)mn

5sinmkxa sinnkya
1sinnkxa sinmkya
(dkxky-wave like!

G5u
(2tet)(Eu)

$kx ,ky% S1 0

0 1D S0 21

1 0 D S21 0

0 1D S0 1

1 0D S21 0

0 21D S 0 1

21 0D S1 0

0 21D S 0 21

21 0 D $c5up1
(2tet)mn ,c5up2

(2tet)mn%
5$sinmkxa cosnkya
7sinnkxa cosmkya,
7cosmkxa sinnkya
1cosnkxa sinmkya%
p51,2⇒7
si
ho

of

nc-
l set

en

red
the evenGg
(z) , and the odd planarGu

(2) representations with
the oddGu

(z) . In other words, for symmetric functionsf (k)
5 f (2k), one can use the following three-dimensional ba
functions for its expansion in layered tetragonal and ort
rhombic systems:

Tetragonal:

cLg
~2tet!mn~kx ,ky!cg

~z!M~kz!,c5upq
~2tet!mn~kx ,ky!cu

~z!M~kz!;

@cm
~3!~k!#

L51,2,3,4; m,n,M50,1,2,..., p,q51,2, ~32!
s
-

Orthorhombic

cLg
~2orth!mn~kx ,ky!cg

~z!M~kz!,cLu
~2orth!mn~kx ,ky!cu

~z!M~kz!;

@cm
~3!~k!#

L51,2; m,n,M50,1,2,..., ~33!

where these functions are defined in the last column
Tables I–III.

It should be emphasized here that although the basis fu
tions as shown in the above equations form an orthogona
in each case if one integrates over allk in the Brillouin zone
~BZ!, one cannot take advantage of this property fully ev
while solving the linear gap equation forDI (k), because the
integration is restricted through Fermi factors. For a laye
crystal, with a widely open BZ in thekz direction, whereas
TABLE III. Irreducible representations and basis functions for 2D rectangular lattice symmetry~corre-
sponding to 3D-orthorhombicD2h!.

IRR
h1

(kx ,ky)
h26

(2kx ,ky)
h4

(2kx ,2ky)
h27

(kx ,2ky)
Basis functions
m,n50,1,2,...

G1g
(2)

;(1,kx
2,ky

2)
1 1 1 1 c1g

(2 orth)mn

5cosmkxa cosnkyb
G2g
(2)

;kxky

1 21 1 21 c2g
(2 orth)mn

5sinmkxa sinnkyb
G1u
(2)

;ky

1 1 21 21 c1u
(2 orth)mn

5cosmkxa sinnkyb
G2u
(2)

;kx

1 21 21 1 c2u
(2 orth)mn

5sinmkxa cosnkyb
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TABLE IV. Forms for two-dimensional basis functions in cylindrical coordinates.

Basis functions for 2D layer of simple tetragonal lattice

A1g(;1,kx
21ky

2) : 1,(coskxa1coskya),coskxa coskya,...
~s-wave like!

c1g
(2tet)(kt) ; 1,f 0(kta)1 f 4(kta)cos4f1 f 8(kta)cos8f1•••

B1g@;(kx
22ky

2)# : (coskxa2coskya),(cos2kxa2cos2kya),...
~dk

x
22k

y
2-like!

c3g
(2tet)(kt) ; f 2(kta)cos2f1 f 6(kta)cos6f1•••

B2g(;kxky) : sinkxa sinkya,(sin2kxa sinkya1sinkxa sin2kya),...
~dxy-like!

c4g
(2tet) ; f 28(kta)sin2f1 f 68(kta)sin6f1•••

A2g@;kxky(kx
22ky

2)# : (sin2kxa sinkya2sinkxa sin 2kya),...

c2g
(2tet) ; f 48(kta)sin 4f1 f 88(kta)sin 8f1•••

G5u
(2tet)(;kx ,ky) : sinkxa,sinkya,...

c5u
(2tet) ; f 1(kta)cosf1f3(kta)cos3f1••• ,

f 18(kta)sinf1f38(kta)sin3f1•••

Basis functions for 2D layer of simple orthorhombic lattice
G1g
(2)(;1,kx

2,ky
2) : 1,coskxa,coskyb,coskxa coskyb,...

→ ~Mixed A1g1B1g of tetragonal system!
c1g
(2orth)(kt) ; 1,x0(kt)1x2(kt)cos2f1x4(kt)cos4f1•••

G2g
(2)(;kxky ,kx

3ky ,kxky
3) : sinkxa sinkyb,sin2kxa sinkyb,sinkxa sin2kyb,...

→ ~Mixed A2g1B2g of tetragonal system!
c2g
(2orth)(kt) ; x28(kt)sin2f1x48(kt)sin4f1•••

G1u
(2)(;ky) : sinkyb,sinkyb coskxa,...

→ ~deg.G5u
(2tet) of tetragonal!

c1u
(2orth)(kt) ; x18(kt)sinf1x38(kt)sin3f1•••

G2u
(2)(;kx) : sinkxa,sinkxa coskyb,...

→ ~deg.G5u
(2tet) of tetragonal!

c2u
(2orth)(kt) ; x1(kt)cosf1x3(kt)cos3f1•••
e

n

t

fu

r
n

bic
his

ave
l

xed

let
the

ns
the integration overkz , for any reasonable values of th
carrier density, is over the full BZ,2p/d<kz<p/d, the
integrations overkx , ky do not cover the full BZ in the
reciprocal-layer plane. In view of this, it is more convenie
to use the cylindrical coordinateskt , f, and kz , to take
advantage of an additional orthogonality condition related
the integration overf, with

kx5ktcosf, ky5ktsinf, kz5kz , 0<f<2p. ~34!

In fact, for integrations near the Fermi surface, one can
ther transform the remaining third variablekt to a suitable
energy variablej. The two-dimensional basis functions fo
the tetragonal and orthorhombic systems can be rewritte
terms of the variableskt and f, instead ofkx and ky , by
using the Bessel-function„Jm(z)… expansions

12

coskxa5J0~kta!22J2~kta!cos2f12J4~kta!cos4f2••• ,
~35!

coskyb5J0~ktb!12J2~ktb!cos2f12J4~ktb!cos4f1••• ,
~36!

sinkxa52J1~kta!cosf22J3~kta!cos3f12J5~kta!cos5f

2••• , ~37!
t

o

r-

in

sinkyb52J1~kta!sinf12J3~ktb!sin3f12J5~ktb!sin3f

1••• . ~38!

More explicitly, one can rewrite in terms off the forms of
2D basis functions relevant to tetragonal and orthorhom
layered crystals, as shown in Table IV. We also give in t
table some of the simpler basis functions inkx , ky variables,
for easy identification.

Note that for the orthorhombic case, one does not h
any puredk

x
22k

y
2 or dkxky-like basis functions of the spherica

symmetry, which are related, respectively, toB1g and B2g
symmetries of the tetragonal system. They are always mi
with extendeds-wave-like (A1g) or A2g-like basis functions.
However, a pure isotropics-wave-like basis function~1! is
always possible in each case.

IV. PROBLEMS OF ONE AND TWO LAYERS
PER UNIT CELL

To apply the symmetry considerations to the spin-sing
theory in layered crystals, in this section we consider
case ofN51 as well asN52 layers per unit cell. This will
illustrate the application of our method to both the situatio
in which either only intralayer pairing is possible (N51) or
both intralayer and interlayer pairings are allowed (N52).
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A. The N51 problem

The problem of one layer (N51) per unit cell is simplest
to consider because in this case we have only intralayer p
ing, with a nonmatrix order parameterD11(k)[D(k), which
is also the quasiparticle energyEg ~at FS! in the supercon-
ducting state. Here,g(k)5( ivm2j)21, j5j(k)5e(kt)
22t8coskzd2m, gtrans(2k)5(2 ivm2j)21. If one further
assumes thatV(k,k8) andD(k8) are independent of frequen
cies, except for the frequency cutoffs, the usual summa
overvm8 in Eq. ~18! then leads to the well-known BCS ga
equation

D~k!52(
k8

V~k,k8!D~k8!T~b,E8!, ~39!

T~b,E8![tanh~bE8/2!/2E8, b51/kBT,

E85E~k8!5@j2~k8!1D2~k8!#1/2. ~40!

Near T5Tc , the linearized form of the BCS equation
immediately obtained by replacingE8 by j85j(k8) in the
above equation.

In terms of the three-dimensional basis functions given
Eqs.~32! and ~33! for tetragonal and orthorhombic system
which we label bycm

(3)(k), m51,2,..., theinteraction func-
tion V(k,k8) can be expanded in the form

V~k,k8!5(
m

(
n

V~m,n!cm
~3!~k!cn

~3!~k8!, V~m,n!5V~n,m!.

~41!

The solution for the order parameter, which is also the g
functionEg(k), has then the general form
o-

th

n
gs

ea
ir-

n

n
,

p

D~k!5(
m

D~m!cm
~3!~k!

.(
Gg

@D~0!GgcGg

~2!~kt!1D~1!GgcGg

~2!~kt!coskzd#

1(
Gu

D~1!GucGu

~2!~kt!sin kzd, ~42!

wherecG
(2)(kt) are basis functions of the corresponding tw

dimensional representations, given in Table IV. NearT
5Tc , when one is solving the linear gap equation for findi
Tc , it is possible to assume that only one two-dimensio
IRR in the summation in Eq.~42!, which gives maximum
Tc , is relevant. In Ref. 10, we have analyzed a part of t
problem in detail to explore the mixing of thes-wave-like
andd-wave like symmetries in the possible solutions and
correspondingTc , in which we restricted the energy integra
tion overj8 close to the FS. It also included an approxima
analysis of the more general problem ofN layers per unit cell
in which only intralayer pairings were allowed and the inte
layer single-particle tunneling within each unit cell was n
glected. We showed that in the orthorhombic system, it is
possible to obtain a planardk

x
22k

y
2-like (B1g) solution

(;cos 2f), without any admixture of the plana
s-wave-like (A1g) solution (; f 01 f 1cos4f). Similarly, it is
easy to show that one does not have adkxky-like (B2g) solu-
tion (;sin 2f) without the admixture ofA2g-like solution
(;sin 4f) in the orthorhombic system. Of course, there a
additional correction terms in the gap function proportion
to coskzd, as shown in Eq.~42!. Because of the orthogonalit
of functions, cosmf8, cosnf8, sinmf8, sinnf8, etc., when
integrated overf8 in the gap equation, and because of t
general structure of the basis functions for the orthorhom
and tetragonal systems, as shown in terms of these funct
in Table IV, the above result is valid more generally, and o
does not need the approximation to restrict the energy i
grations close to the FS. In the orthorhombic case, the p
sible solutions are of the form
D~k!5D~0!01D~1!0coskzd;@D~0!0~kt!1D~0!1~kt!cos2f1D~0!2~kt!cos4f1•••#

1@D~1!0~kt!1D~1!1 cos2f1D~1!2cos4f1•••#coskzd;••• ••• ••• ;etc., ~43!
tion
which can be written down directly from the possible tw
dimensional basis functionscG

(2 orth)(kt) given in Table IV.
Similarly, the form of possible solutions forD(k) in the
tetragonal system can be immediately obtained by using
form of the basis functionscG

(2 tet)(kt) given in Table IV and
Eq. ~42!. Here, planardk

x
22k

y
2-like or dkxky-like pairing sym-

metries can occur without any admixture ofA1g or A2g sym-
metry. Next, we consider the problem of two layers per u
cell (N52), where both intralayer and interlayer pairin
are possible.

B. The N52 problem

In the case of two layers per unit cell, we have to d
with 232 matricesgI (k), gI

trans(2k) andDI (k). Here, in our
e

it

l

layer representation the normal-state inverse Green func
for two layers per unit cell can be taken to be of the form

gI
21~k!5S ivm2 j̃1

2utue2 ih

2utueih

ivm2 j̃2
D ,

@gI
trans~2k!#215S 2 ivm2 j̃1

2utue2 ih

2utueih

2 ivm2 j̃2
D , ~44!

where

j̃1,2~k!5 ẽ1,2~k!2m5e1,2~kt!22t1,28 coskzd2m, ~45!

t[t~k!5ut~k!ueih~k!5t12~kt!1t128 ~kt!exp~ ikzd!, ~46!
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tanh5t128 sinkzd/~ t121t128 coskzd!,

h~2k!52h~k!52h. ~47!

In this layer representation, if we ignore the frequency
pendence of the order parameter~except for the frequency
cutoff!, it has the general form

DI ~k!5S D11~k!

D21~k!

D12~k!

D22~k! D , ~48!

where we may assumeD11 and D22 to be real symmetric
functions ofk andD21(k)5D12(2k)5D12* (k). In terms of
real functionsD'(k) andu(k), one may assume

D12~k!5D'~k!eiu~k!, D'~2k!5D'~k![uD12~k!u,

u~2k!52u~k!. ~49!

In view of the nondiagonal form for bothgI andDI in the
layer representation, the general consideration of this p
lem for obtaining the gap equation forDI (k) from Eq. ~18!,
after performing the summation overvm8 , and for finding
the quasiparticle excitation energiesE(k) by determining the
zeroes of the determinant of the inverse Green func
G21(k,ivm5E) from Eq. ~17!, is somewhat tedious. In
stead, as discussed in I, one may take advantage of the
called a representation in whichgI (k) and gI

trans(2k) are
diagonal. The unitary matrixS(k) which diagonalizes thes
matrices are given by

SI 21~k!gI ~k!SI ~k!5gI
~a!~k!,

SI 21~k!gI
trans~2k!SI ~k!5gI

~a!trans~2k!, ~50!

SI ~k!5S cosC
e2 ih sin C

2eihsinC
cosC D ,

SI 21~k!5S cosC
2e2 ihsin C

eihsinC
cosC D , ~51!

gI
~a!~k!5S ~ ivm2j1!

21

0
0

~ ivm2j2!
21D , ~52!

gI
~a!trans~2k!5S 2~ ivm1j1!

21

0
0

2~ ivm1j2!
21D , ~53!
-

b-

n

so-

j1,2~k!5 1
2 @ j̃1~k!1 j̃2~k!#6 1

2 @@ j̃1~k!2 j̃2~k!#2

14ut~k!u2#1/2, ~54!

tan2C52ut~k!u/@ j̃1~k!2 j̃2~k!#, with j1Þj2 . ~55!

In this representation,DI (a) has the form

DI ~a!~k!5SI 21~k!DI ~k!SI ~k!5S D11
~a!~k!

D21
~a!~k!

D12
~a!~k!

D22
~a!~k! D ~56!

with

D11
~a!5@ 1

2 ~D111D22!1 1
2 ~D112D22!cos 2C

1uD12usin 2C cos~u2h!#, ~57!

D12
~a!5eih@2 1

2 ~D112D22!sin 2C1uD12ucos 2C cos~u2h!

1 i uD12usin~u2h!#, ~58!

D21
~a!5D12

~a!* , ~59!

D22
~a!5@ 1

2 ~D111D22!2 1
2 ~D112D22!cos2C

2uD12usin2Ccos~u2h!#. ~60!

Note that even for a system with two equivalent laye
where j̃15 j̃2 , so thatC5p/4, D225D115D, D (a)(k) is
diagonal only if t(k) andD12(k) are real functions~i.e., u
5h50! or if accidentallyu5h. In such special cases, on
can write down the BCS equations for two branches se
rately, each one being similar to Eq.~39!, where quasiparti-
cle energies in these two branches are given byE1,2(k)
5@j1,2

2 (k)1Eg1,2
2 #1/2, where Eg15D(k)1D'(k), Eg2

5D(k)2D'(k). However, these expressions are not sim
in general.

For the more general case, in whicht(k)5utueih and
D12(k)5uD12ueiu are complex, the problem of findingTc and
the zeroes of the determinant ofGI 21(k,ivm5E) to obtain
an expression for the quasiparticle energyE(k) can still be
solved more easily by using thea representation in which
g is diagonal. This method was used by us in I where we h
ignored thekt dependence ofDI . Working in thea represen-
tation, if we ignore the frequency dependence ofDI (a) and
V= (2) ~except for the cutoffs! one can perform the summatio
overvm8 in the linear gap Eq.~19! to obtain the following
equation to determineTc :
Da1a2
~a! 52(

k8
(

a3a4

Va1a2 ,a3a4
~a! ~k,k8!Aa3a4

~k8!, ~61!

AI ~k8!5S D11
~a!~k8!T11~bc ,j18 ,j18!

D21
~a!~k8!T21~bc ,j28 ,j18!

D12
~a!~k8!T12~bc ,j18 ,j28!

D22
~a!~k8!T22~bc ,j28 ,j28! D , ~62!

Ti j ~b,j i ,j j ![
@ tanh~bj i /2!1tanh~bj j /2!#

2~j i1j j !
, ~63!
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Va1a2 ,a3a4
~a! ~k,k8!5 (

J1J2
(
J3J4

Sa1J1
21* ~k!Sa2J2

21 ~k!VJ1J2 ,J3J4
~k,k8!SJ3a3

* ~k8!SJ4a4
~k8!. ~64!

Here,Ti j5Tji andD12
(a)(k)5D21

(a)* (k). To find the nature ofTc , one can again use the same method as in I, by usin
suitable parametrization of the interaction functionV= .

Coming back to the layer representation, from the roots of the determinantal equation

detuGI 21~k,E!u5det$gI
21~k!@ II1gI ~k,E!DI ~k!gI

trans~2k,2E!DI ~k!#50, ~65!

we find the most general expression for the quasiparticle energy~for N52! in the form

E1,2
2 ~k!5 1

2 @j1
21j2

21D11
2 1D22

2 12uD12u2#6 1
2 @$j1

22j2
21~D111D22!@~D112D22!cos2C12uD12usinC cos~u2h!#%2

1$@~D222D11!sin2C12uD12ucos2Ccos~u2h!#214uD12u2sin2~u2h!%$~j12j2!
21~D111D22!

2%#1/2. ~66!
gy
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Note that for the case of two equivalent layers (C5p/4),
this goes over to the special decoupled formE1,2

2 (k)
5j1,2

2 (k)1@D(k)6D'(k)#
2, when D115D22[D(k),

uD12(k)u[D'(k), only if D12(k) and t(k) are real~i.e., u
5h50!. One can immediately obtain the form of the ener
gap functionEg(k), by puttingj15j250 in the above ex-
pression. However, there is no need to follow this tedio
route to findEg(k), since we are primarily interested in th
paper in the symmetry aspects of the gap functionEg(k),
i.e., in the quasiparticle energy the layer representation it
without using thea representation. ForN52, it implies

detU D11~k!7Eg

D'~k!e2 iu~k!

D'~k!eiu~k!

D22~k!7Eg
U50. ~67!

Suppressing the overall sign in each case, this leads to
following expressions for the gap function in the tw
branches:

Eg1,2~k!5 1
2 $„D11~k!1D22~k!…

6@„D11~k!2D22~k!…214D'
2 ~k!#1/2%, ~68!

which reduces to the same form,Eg1,25D(k)6D'(k), as
obtained in the special case of realt(k) andD12(k), when
D11(k)5D22(k)5D(k). However, in the general case on
does not get simple decoupled forms for the quasipart
energy away from the FS, if one examines Eq.~66!. It may
be noted from the expressions forDa1a2

(a) (k) given in Eqs.

~56!–~60! that the form ofEg1,2 is exactly the same as give
in Eq. ~68!, even in thea representation forD (a). Similarity
transformation does not change the eigenvalues. In any c
as far as the gap functionEg at the FS in the two branches
concerned, we have the general result~68! for N52 in the
layer representation, where one has nonvanishing order
rameters for both intralayer pairings and interlayer pairin
The intralayer functionsD11(k) andD22(k) as well as inter-
layer functionsD'(k) are real and symmetric functions ofk.
These functions can therefore be expanded in terms of
basis functions already discussed for theN51 case. For
equivalent layers, for realD11(k) andD22(k), intralayer or-
der parameters can differ at most by a sign,D22(k)5
6D11(k), but interlayer order parameterD'(k) need not
have the same symmetry. For example, for a tetragonal
tem D11(k) andD22(k) can both have thedk

x
22k

n
2-like B1g
s

lf

he

le

se,

a-
.

he

s-

symmetry in the layer plane, butD'(k) may have even an
isotropic kt-independents-wave-like form of theA1g sym-
metry. Note that in the presence of interlayer pairings,
nodes due to the zeroes in the intralayer order parame
alone will get shifted in the two branches of the energy g
function. In what follows, in the next section we will now
apply our method to explore the symmetry of the gap fu
tions in the general case ofN layers per unit cell.

V. THE ENERGY-GAP FUNCTION AND ITS SYMMETRY
FOR THE CASE OF N LAYERS PER UNIT CELL

As discussed in the last section, asN increases from 1 the
general problem ofN layers per unit cell becomes more an
more difficult to handle in the presence of the compl
single-particle tunneling matrix elements between the lay
in a given unit cell. Only if this tunneling is very weak s
that it can be neglected in the first approximation, in pr
ciple, can one then consider the case of gene
N-inequivalent layers per unit cell more easily. In such
case,gI (k) and gI

trans(k) are diagonal, withgJJ(k)5( ivm

2jJ)
21, gJJ

trans(2k)52( ivm1jJ)
21. Here,jJ is the single-

particle energy for the layerJ, which need not be equivalen
With the usual approximation regarding the frequency
pendence ofV= (k,k8) andDI (k), the summation overvm8 in
Eq. ~19! then leads to the generalized linear BCS gap eq
tion

DJ1J2
~k!52(

k8
(
J3J4

VJ1J2 ,J3J4
~k,k8!DJ3J4

~k8!

3TJ3J4~b,jJ38 ,jJ48 !, ~69!

TJ3J4~b,jJ38 ,jJ48 ![
1

2 F tanhbjJ3~k8!1tanhbjJ4~k8!

jJ3~k8!1jJ4~k8! G .
~70!

This includes both intralayer and interlayer pairings. In ca
one restricts to intralayer pairings only, withDJ1J2

(k)
5DJ1

dJ1 ,J2, the above equation simplifies further to the f
miliar form
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DJ~k!52(
k8

(
J8

VJ,J8~k,k8!DJ8~k8!

3
tanh@jJ8~k8!/2kBTc#

2jJ8~k8!
, ~71!

whereVJJ,J8J8[VJ,J8 . The consideration of possible sym
metries forDJ(k) and the expression for the correspondi
-
th
l
go

e

.

a

Tc in this case has already been discussed by us earlier10

As we have emphasized here in this paper, without m
ing any of the above approximations regarding the tunne
matrix elements and interlayer order parameters, the sym
try of the gap functionEg can be analyzed in the most ge
eral case by diagonalizing the matrixDI in the layer represen
tation. In other words, one has just to find the roots of
determinant
detUD11~k!2Eg

D12* ~k!

D13* ~k!
•

•

•

D1N* ~k!

D12~k!

D22~k!2Eg

D23* ~k!
•

•

•

D2N* ~k!

D13~k!

D23~k!

D33~k!2Eg
•

•

•

D3N* ~k!

•••
•••
•••
•

•

•

•••

D1N~k!

D2N~k!

D3N~k!
•

•

•

DNN~k!2Eg

U50 ~72!
ym-

RR,

rst-
on-

le
in

cor-
red
lat-
in
up
its
n
ns

-
ic

as
ak

e
te-

s

to obtain theN branches ofEg(k). Here,DJJ(k) may be
taken to be real symmetric functions ofk, whereas the am
plitudes of the off-diagonal elements are symmetric but
phases are antisymmetric functions ofk. The above genera
analysis simplifies considerably for the case in which dia
nal elementsD115D225•••5D(k), for equivalentN layers,
and there are interlayer pairings only between the near
neighbor layers, with DJ,J11(k)5D12(k)5D'(k)e

iu(k),
DJ11,J(k)5D21(k)5D'(k)e

2 iu(k). The determinant in Eq
~72! in this case reduces to the form

detU x
e2 iu

0
•••
•••
0

eiu

x
e2 iu

•••
•••
0

0
eiu

x
•••
•••
0

0
0
eiu

•••
•••
0

•••
•••
•••
•••
•••
•••

•••
•••
•••
•••
•••
•••

•••
•••
•••
•••
•••
0

•••
•••
•••
•••
•••
e2 iu

0
0
0

•••
•••
x

U
50, ~73!

where

x[~D~k!2Eg!/D'~k!. ~74!

For a givenN, as a function onx the above determinant is
Chebyshev polynomial12 SN(x) of order N which satisfies
the recurrence relation

SN11~x!5xSN~x!2SN21~x!,

with S0~x!51, S1~x!5x. ~75!

Since the zeroes of the polynomialSN(x) are given by
2 cos@pp/(N11)#, p51,2,...,N, we immediately obtain the
expression forEg in all theN branches:

Egp~k!5D~k!22D'~k!cos†pp/~N11!‡, p51,2,...,N.
~76!

This gives the correct results forN51 and 2, already ob-
tained in the last section, and it implies that asN→`, the
N branches of the gap function are bounded betweenD(k)
22D'(k) andD(k)12D'(k). As already explained for the
e

-

st-

case ofN52 layers per unit cell, the symmetry ofEgp(k) is
determined by the possible symmetries of the real and s
metric intralayer and interlayer pairing functionsD~k! and
D'(k), along with expression~58!. These two functions
need not correspond to the basis functions of the same I
listed in Table IV.

VI. CONCLUDING REMARKS

In the preceding sections, we have presented a fi
principles analysis of possible symmetries of the superc
ducting order parametersDJJ8(kt ,kz) and the corresponding
quasiparticle energy gap functionEg(kt ,kz) at the Fermi sur-
face in high-Tc layered superconductors with either a simp
orthorhombic or tetragonal unit cell. This has been done
terms of all possible irreducible representations and the
responding basis functions, which are relevant to laye
crystals in which the symmetry may be restricted to the
tice periodicity perpendicular to the layers for each layer
the unit cell, and the residual two-dimensional point-gro
symmetry of the planar unit cell in each layer along with
lattice periodicity in the (x,y)-layer plane. Our consideratio
clearly shows that many reported experimental observatio1

claiming planardk
x
22k

y
2-like (B1g) symmetry for the energy

gap function in several high-Tc materials can only be ap
proximate, for various reasons. First of all, in orthorhomb
systems the planardk

x
22k

y
2-like (B1g) symmetry is always

mixed with thes-wave-like (A1g) symmetry of the corre-
sponding tetragonal system. Also, in both orthorhombic
well as tetragonal systems, there is a possibility of a we
modulation of the energy gap function (;coskzd) in the di-
rection perpendicular to the reciprocal (kx ,ky)-layer plane.
In addition, for more than one layer per unit cell, in th
presence of interlayer pairings we find that even in the
tragonal case it is not necessary to find a puredk

x
22k

y
2-like

(B1g) symmetry with nodes atkx56ky for the correspond-
ing gap functionsEgp(k). The interlayer order parameter
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DJJ8(k), JÞJ8, which may not have the same symmetry
the intralayer pairing parametersDJJ(k), always modify the
structure of the energy gap functionEg(k).

In view of the results obtained here, it may not be possi
to determine the symmetry ofEg(k) correctly, unless one
obtains its full form experimentally13 as a function off. If
one can suppress the possible weak dependence ofEg(k) on
kz , the experimental observations should first be fitted wit
general form

Eg~k!5 (
n50

`

@Ancosnf1Bnsinnf# ~77!

to determine the coefficientsAn and Bn , at least up ton
54. Then, with the help of the basis functions for differe
IRR’s as listed in Table IV, it would be possible to determi
its symmetry. In particular, it is expected that in orthorho
bic systems, with, e.g., dominantdk

x
22k

y
2-like symmetry for

Eg(k), one may be able to fit most of the data with the for
A01A2cos2f1A4cos4f, consistent with symmetry consid
erations.

In this paper, we have emphasized the role of the resid
layer symmetry in exploring the form of the energy g
function Eg(k) in layered high-Tc crystals. However, one
may ask the question, why should we not analyze the s
metry in terms of the usual full three-dimensional repres
tations of the crystal unit cell? The reason for advocating
route adopted here is that high-Tc cuprates are highly layere
materials with almost two-dimensional dynamics for ea
layer. The interlayer tunneling matrix elements are qu
ta

.
re

s
.

.

A.
-

nc
e
n
xe
k

.

s

e

a

t

-

,

al

-
-
e

h
e

weak, with a widely open Fermi surface in thekz direction.
In the layer-representation approach, one can even study
limiting case when this tunneling takes vanishing values.
such a case, when tunneling matrix elements become sm
than kBTc and when there are no interlayer pairings, o
will, of course, go over to the regime of ‘‘intrinsic’’ Joseph
son tunneling9 between the ‘‘independent’’ superconductin
layers in the unit cell, for which there is already experimen
evidence14 reported in the literature. We hope to discuss t
relationship in a future publication. Another class of tunn
ing phenomena in a variety of junctions considered
Tanaka and co-workers1 gives rise to mid-gap surface state
due to the interface structure, which will exhibit strong a
isotropy. These may be expected to display further struc
due to interlayer coupling discussed in this paper. We exp
that these effects will shed more light on the intrinsic anis
ropy of pairing phenomena in high-Tc superconductors and
we hope to address these issues in another publication
any case, as long as the single-particle tunneling matrix
ments remain small compared tom, our formulation of the
problem should be very good for layered materials, beca
it includes all the essential elements of the problem in s
systems.
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