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Anisotropy and the wave-vector dependence of the energy gap function determine many important proper-
ties of a superconductor. Starting from first principles, we present here a complete analysis of possible sym-
metries of the superconducting gap functigg(k) at the Fermi surface in highz layered superconductors
with either a simple orthorhombic or a tetragonal unit cell. This is done within the framework of Gorkov’s
mean-field theory of superconductivity in the so-called “layer representation” introduced by us earlier. For
N conducting cuprate layerd=1,2,...N, in each unit cell, the spin-singlet order parametkss (k) can be
expanded in terms of possible basis functions of all the irreducible representations relevant to layered crystals,
which are obtained here. In layered materials, the symmetry is restricted to the translational lattice periodicity
in the direction perpendicular to the layers and the residual point group and translational symmetries for the
two-dimensional unit cell in each layer of the three-dimensional unit cell. We derive an exact general relation
to determine different branches of the energy gap fundiigfk) at the Fermi surface in terms df;; (k),
which include both intralayer and interlayer order parametersNFo2, we also obtain an exact expression for
quasiparticle energieB,(k), p=1,2, in the superconducting state in the presence of intralayer and complex
interlayer order parameters as well as complex tunneling matrix elements between the two layers in the unit
cell, which need not be equivalent. The form of the possible basis functions are also listed in terms of
cylindrical coordinate; , ¢,k, to take advantage of the orthogonality of functions with respee totegra-
tions. In layered materials, with open Fermi surfaces in khelirection, there is orthogonality of basis
functions with respect t&, also (— w<k,d<). Our results show that in orthorhombic systems, planar
dki,k)z/-like (Byg) and dkxky-like (Byg) symmetries are always mixed, respectively, with the planar
s-wave-like (A;4) andA,4-like symmetries of the corresponding tetragonal system. There is also the possibil-
ity of a weak modulation oE4(k) as a function ok, (~coskyd). In addition, in the presence of interlayer
pairings which may or may not have the same symmetry as the intralayer order parameters, even in tetragonal
systems the nodes of thﬁi,kz-like intralayer gap function will be shifted. In view of this, some suggestions
for analyzing experimental data are also preser{t8d163-182607)02922-9

[. INTRODUCTION form for the spin-fluctuation exchange mecharfiSnin
CuG, layers in the Hubbard model, there are many other
The problem of the actual symmetry and the wave-vectoexperimentd which give either anisotropic extended
dependence of the spin-singlet pairing gap functidh) in s-wave-like or mixeds-wave andd-wave-like symmetries,
high-T. cuprate superconductors has attracted greads far as the dependence of the gap function kgn
attentiort? during the last several years, because of its un=(ky,k,) in the layer plane is concerned. In reality, there
conventional behavior in comparison to its almost isotropicneed not be any universal behavior in all high-cuprates,
form in low-T. materials. Since the anisotropy and tke but the answer is still not clear.
dependence of the energy gap function, including its possible High-T. cuprate superconductors are known to be layered
nodes at the Fermi surface, determine the nature of quasipamaterials, with orthorhombic or tetragonal unit-cell symme-
ticle excitations and various important properties of a supertry, and very weak interaction and single-particle tunneling
conductor, the significance of knowing its form for practical between the layers. It is assumed that holes or electrons in
applications of these materials cannot be minimized. This i€uQ, layers of each unit cell are directly involved in the
also important from the theoretical point of view if we have spin-singlet pairing in these materidl©ther layers in the
to move towards a proper understanding of the superconynit cell contribute to the superconducting state of these ma-
ducting pairing in these materials at a more basic level. Alygrials only indirectly through their weak coupling to CLO
though recent Josephson coupling experimémtsng with  |ayers, In such a layered system, it is, therefore, more appro-
several other types of observations, have shown eV“"]enc?)riate to characterize the superconducting state in terms of
fora planardki,ki—like symmetry in some higfi materials,  possible intralayer pairing order parametars(k, ,k,) and
which seems to be consistent with the usual Berk-Schrieffeinterlayer pairing order parameterd;; (k;,k;), J#J’,
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whereJ and J’ label the Cu@ layers in a unit cell, and ductivity in layered materials within the framework of the

wherek, andk, are the wave vector in the layer plane and in Gorkov mean-field theory. This will establish the .notation
the direction perpendicular to it. Instead of the usual expresf-Or our layer representation and the qorrespondlng math-
sion for the energy gap at the Fermi surfacA(K, in the ematical framework. The formulation is in terms of the
familiar one-band three-dimensional case, whkfle) is the normal-state single-particle Green functig(ry,r2,) and

: . . he general effective dynamical interactidfr,r,,), both
corresponding energy gap function, the energy gap is novE/ . : s
determined by the set of order parametersy (k;.k,): in our layer representation. It includes the possibility of both

. . . intralayer and interlayer pairings. A general expression for
JJ'=1.2,... N whereN is the number of fsuperconductmg the energy gap functioBy(k) for quasiparticle excitations at
layers per unit cell. In order to tackle this problem effec-

. ~ . , the Fermi surface in terms of the order parameteys (k),
tively, we have already developed microscopic framework 3,3'=1,2,...N, is also derived in this section. For layered

for spin-singlet pairing theory of superconductivity in such crystals, with orthorhombic or tetragonal symmetry, it is
layered materials, in terms of a general effective dynamicaénough to consider the periodicity of the unit cell in the
interaction,V(ry,rp,w), between the charge carriers, and angjrection, perpendicular to the layers, and the corresponding
appropriate set of single-particle electronic states definingesidual two-dimensional point-group and translational sym-
the so-called “layer” representation. To start with, for sim- metry for each Cu@layer in the unit cell. To be complete
plicity, this theory was applied to the case Wfequivalent  and to avoid confusion, in Sec. Ill we obtain and list the
layers per unit cell, with only intralayer pairing independentpossible irreducible representatiod&®R’s) and their basis
of k; (i.e., isotropics-wave-like in the layer planeto study  functions which can be used to expand order parameters
the saturatioh® properties_ of the supercondugting transition A;y(k) andEg(k), in simple tetragonal and orthorhombic
temperatureT as a function ofN, and the anisotropy’ of  |ayered systems. Basis functions are also given in terms of
the gap parametets;;(k,) as a function ok,. The case of  the cylindrical coordinatek; , ¢,k,, since in layered crystals
tW(_)_Iayers per unit cell, v_vith bot_h intralayer _a_nd interlayer with widely open Fermi surfaces, the integrations okgt
pairings, were also considered in great détail terms of  and ¢ cover the full period in each case, so that the orthogo-
phenomenological pairing interactions, but the analysis wagg|ity of the basis functions in these coordinates can be used
again restricted to the case kf-independent order param- in our analysis.
eters.. For two equivale_nt layers per unit cell, thg energy gap The problems of one layerN(=1) and two layers i
function for the resulting two branches was given By ~ =2) per unit cell are examined in detail in Sec. IV, with
=A(k)=A, (ky), whereA=A;;=A,, was the real intra-  yarious possible symmetries for the order parameters and the
layer pairing order parameter, and, (k)=|A12(k)|  energy gap functiorEy(k). For two layers per unit cell,
=|A21(—k,)| was the amplitude of the interlayer pairing or- which need not be equivalent, we also give an exact expres-
der parameter. Note that in our notation, the minimum ensjgn for the two branches of the quasiparticle eneggi),
ergy gap for pair breaking is&; . in the presence of intralayer and interlayer pairings as well as
In view of the possibility of unconventional symmetry complex tunneling matrix elements between the layers. In
andk; dependence of the intralayer order parameters in thgec. v, we briefly consider the general caseéNolayers per
layer plane, recently we used our approach to analythés  ynit cell. In particular, we emphasize how one can analyze
situation for layered systems with either orthorhombic or tethe symmetry of the energy gap functiggg(k) in this case,
tragonal symmetry in the case Rfequivalent layers per unit if the interlayer pairings are allowed only between the
cell, with no interlayer pairings. We showed that for tetrag-nearest-neighbor layers in the unit cell. We conclude our

onal systems there is a possibility of pure planarpaperin Sec. VI with a short discussion.
d-wave-like symmetry for the order parametevsg;(k,,k,)

near T=T., apart from its weak modulatioli~ cosk.d,

whered is the length of the unit cell in the direction as a . MATHEMATICAL FRAMEWORK

function ofk,. In orthorhombic systems, planégz_2-like FOR THE SPIN-SINGLET PAIRING THEORY
X Ty

symmetry is always mixed with the plansswave-like sym- IN A LAYERED CRYSTAL

ymmetrics. even in ihe.teliagonal case it is imporiant tg_FO" describing the generalized paiting theory in Iayered
extend our analysis to the most generél case where bo gaterlals, it is convenient to mtroduge the Bloch-perlodlc
intra- and interlayer pairings are considered simultaneously yer representatidfor the single-particle electronic states

. . ; : . ; ) h terms of a set of orthonormalized functiogsa ,(X,Y,2
with various possible basis functions which are conssten% ) - ) a;
with the symmetry of the conducting layers in the unit cell of ~Znu) localized at different layers in the crystal. Here, the
the crystal. To be more particular and focused, in this papeyertlcalz coordinate of thanth layer in theMth v_ertlcal unit
we will address this general problem in greater detail for thecell has been denoted layy =z, +Md, whered is the unit-
case of two layersN=2) per unit cell. Based on this, we Cell length in thez direction perpendicular to the layers, and
will then discuss the case of arbitrary number of layers pe#’ refers to the effective spin-up and spin-down states which
unit cell. Our work is expected to establish a sound basis t§"€ degenerate in the absence of any external magnetic field.
analyze past and future experimental data exploring the pos-nN€ functions x,4.,(r) are products of two-dimensional
sible symmetry of the superconducting state in highay-  Bloch-like band functions, labeled by the band index”*
ered crystals. and the layer wave vectdk,=(ky,ky) in the x—y layer

In Sec. Il of this paper, we will briefly review our earlier plane, and one-dimensional Wannier-like functions in zhe

formulatior’ of the generalized pairing theory of supercon- direction localized at different layers in the crystal. They
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satisfy the orthonormalization conditions ) _
G"l”Z(rl,rz,|wm)=g"1”2(r1,r2,|wm)~l—f d3r3j dr,

J dng:’alkt’u—(X’y!z_Zn’M')XnaktO'(le’z_an) XE z g"l"3(r1,r3,iwm)A”3"4
(7'3 (7'4
=067nOM'MOa’ a0k’ k.- 1 —
nnEMIM Tata ke @ X (I3, 2,1 @m) FT472(1 4,5 i o),
The basis functions for each of the layerg any unit cell of (4)
the crystal, which define our Bloch-periodic layer represen-
tation are then just the Bloch sum ?’1"2(& Fyiw ):f dgrsf dr,,
H y m

Lnako(r):<r|nak0'> xz E ?las(rl’rame)Egoq

1 g3 Ty

% eikZManakto(X!yvz_ Zn— M d)’

N3 ><(r3,r4,iwm)G"4'”2(r4,r2,iwm)

—aldsk,<w/d, 2 (5
with similar equations folG?1?2 and F 71?2, where in Egs.

whereNj is the number of unit cells in the verticaldirec-  (4) and(5), g—g, A—A, G—G, andF—F.
tion of the crystal. Note that the above basis functions are not |f we restrict ourselves only to the spin-singlet pairing, in

the eigenstates of the three-dimensional Bloch Hamiltoniamhe absence of any external magnetic field, the generalized
Ho, and there are still nonvanishing single-particle “tunnel- pajring theory can be written down in terms of the single-
ing” matrix elements OfHO between different Iayers in the partic]e Green functiorG:GTT:GU, the Sing]et anoma-

unit cell. Since the extension of the single-particle energyous Green functiorF and the corresponding gap function
bandwidth in thek, direction is expected to be very narrow A together with the two input functions, namely, the
and small compared to the Fermi energyin any highly  normal-state Green functiog=g''=g'! and the effective
layered metal, all states with w/d<k,=<m/d are occupied pajring interaction functio’/. They are represented by Egs.
at the Fermi surfacéfS). In othgr words_, thg Fermi surfgce (1)—(3) in the first paper of Ref. Tto be referred to as I,
is expected to be widely open in the direction perpendiculahereaftey. For the sake of clarity, if we further restrict this
to the reciprocal layek; plane. exposition to an effective Hamiltonian in which only the
In the  Gorkov  decoupling  scheme,  the conducting layers)=1,2,...N, in each unit cell, are di-
generalized pairing theory of superconductivity is rectly involved in the pairing, with only one two-dimensional
described in terms of the single-particle Green pand for each layer, one can rewrite the set of these three

functions G (Xq,X5) =—(T(¢5(x1) ¢Z,(X2))>; equations of the spin-singlet theory in terms of a set of three
E""(xl,xz) =—(TW (X)) ¥, (X)) =—G 7(Xp,X1), equations foNXN matricesG, F, andA in the layer rep-
and the angmalougs Green functions "ésentation. Using the following expansions and notations:
P77 (x00) = = (PIT (1 (x2) 5 (32)), Fo (X1, %)

= —(PT(¥o(X1) ¥, (X2))), wherex stands for ¢,it), T is G(ry,foiom=2 2 Ly(r)L}«,(r2)Gyu,(K),

the usual time-ordering operator, afdand P' change N k' 3192 6

+2) and (N—2)-particle states to thil-particle state. The ©®)

self-energies corresponding to the anomalous Green func-
tions F”' and F*”’, in the presence of the effective dy- F(ry,r,iom=2> > L5 (r)L% 4(1)F, 5 (K)
namic pairing interactiorV(r,r,,ion—iwy), where the kK 33, 7t 2
Matsubara frequencieswy,=(2m+1)wkgT, m=0,%£1,
+2,..., are the gafunctionsA””’ andA”?’, with :Ek: sz Lokt (roLy, —k (r2)Fj0,(K),
12
, @
AT (11 f o iwn) =K T V(I oiwn—iwm)
m!

As(rleraiwm):; JEJ Lokt (roby, —k (r2)A g 4,(k)
1:v2

XE7 (1,5, iom), etc. 3)
In the absence of pairing in the normal state, the single- :; JEJ L3, ki (roLY, s (r2)A5,5,(K),
particle Green function§°" andG"”" are supposed to be v
given byg?? andg?’ . Then the full set of self-consistent (8)

generalized Gorkov equations for superconductivity, with the

possibility of both spin-singlet and spin-triplet pairings, ey, o= > LTl (r)gs5.(K) 9)
given by nEr M g, Thke ke %2



Vi,0,:050,(KK )=V 500, (KK Ton—Toy)

:<‘]lkT;J2v_ki|v(rl!r21iwm_iwm’)

X|Jdgk'1,ds,—K"]), (10)
k= (K,i wm) = (K¢,Ky,io0m);
K'=(k,iom)=(k{ K, iom) (11)

the resulting set of self-consistent coupl&tX N matrix
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of its analytic properties in the plane, it satisfies the usual
Kramer's-Kranig relations between its real and imaginary
parts, withA(w)=A*(—w). If the frequencies involved in
the pairing exchange mechanism are large compared to
kgT., one may assume thatis almost frequency indepen-
dent up to the frequencies of the order of a few times
kgT., with a negligible imaginary part in that low-frequency
region. For the spin-singlet pairing, because of the require-
ment of symmetric spatial part, one has also the relation
[examine, e.g., Eq8)]

equations for the spin-singlet pairing theory for layered met-

als are given by

G(k)=g(k)+g(K) AK)E(K), (12
F(k)=—g""—k)AK)G(K) (13
[A(K)]5,0,= 2 2 Vi,3,:0,9,(K K )F 5, (K)
k' J3.4
E{E y<k,k'>F<k’>} : (14)
k/

J1dp
where the matrixg"®™is the usual transpose of the matrix
g, related tog' of I by

95— k) =0,,5,(—kK) =03 3,(K).

In the above set of Eqg12)—(14), the super matriy/ is
defined in Eq(14) itself, and the summation ové&f implies,

(19

d?k (=d dk]
=keT2 f (2m)? Lﬂd @ald)

for an open Fermi surface in theg direction.
The set of coupled Eq$12)—(14) has the formal solu-
tions for G and A which can be rewritten in the form

(16)
kl

G(k=g(k[1+A g™ -kAKg(k] ™, (17
A=~ 2 V(kKk)[[g™ k") AK)g(k")]
k/
X[1+Ak)g™ ™ —k")Ak)g(k)] '], (18

where | is the unitNXN matrix, and the inverse of any
matrix has the usual definition.

Note that neaff~T., whenA is small, one has the lin-
earized form of Eq.(18), whose nontrivial solution corre-
sponding to the maximum possible determines the super-

AJlJz(k):AJZJl( —k).

Similarly, the pairing interactioV;; ;;(K,k",ion—iwgy) is
symmetric with respect to the interchangekoandk’, etc.,
and the transformatioh— —k, k' — —k’.

The poles of the normal-state Green function in the
plane in the representation in which it is diagon@r,'gS
=g(® (diagonal, represent the normal-state single-particle
energies and their damping. If one ignores the imaginary part
and the frequency dependence of the normal-state self-
energy, one can assume a simplified form

(20

9\ (ki wp)=(ion—£,) 718 N

for it in the « representation in which it is diagonal. Exactly
at the Fermi surface, defined ly,=0 for all the N sheets
(a=1,2,...N), g'¥ reduces to the formi ) "l. In other
words, exactly at the Fermi surfa¢gS), in the layer repre-
sentation alsog=Sg‘“'$™!=(iwy) ~!l, and one has

s @=12,... (21)

gfl(k,iwm)ziwml,

gtranS(_k,_iwm):_(iwm)*ll, at FS. (22

We also know that the poles of the full Green function
G(k,w) in the w plane, or the zeroes of the determinant of
G (k,») determine the quasiparticle excitation energies
E, in the superconducting state. Exactly at the Fermi surface,
with all £,=0, they can be identified with the energy gap
functionsEgy, for the N branches. In fact, Eq$17) and(22)
imply that these poles are determined by the vanishing of the
determinant

defAA—E3l[=0, iwn—Eq (23)
in the layer representation. This can be rewritten, after fac-
torization, in the simpler form

defATEgl|=0. (24)

conducting state. One has to solve the linear elgenvalue

equation

T=T,,

(19
in which the summation ovek’ includes the summation
over wy,y=(2m’+1)wkgT,, m=0,£1,+2,... .

In general, when we analytically contindgi w,,) to real
frequenciesw, the gap functiom(k,w) is a complex func-

A(k)= =2 V(kK)[g™™ —k")AK)g(k')],
<

In other words, ifA can be assumed to be frequency inde-
pendent, the eigenvalues af(k), with the appropriate
choice of their sign, give the energy gap functidig,, p

=1,2,...N. In particular, forN=2, (two layers per unit
cell), with
[ Aqa(k) Alz(k))
2= Ak Agak) @9

in the J-J' layer representation, the two branches of the

tion, even for a single layer per unit cell. However, becausenergy gap function are given by



15 252 SUDHANSHU S. JHA AND A. K. RAJAGOPAL 55

(£)Eg12=7 [A12(K) +Agp(K)]£ 7 [(Agx(k) — Age(K))? can of course be expanded in terms of the direct lattice vec-
' tors R,
+4A 1K) Agy(K)]Y2, (26)
where one may assEmA,JJ(k)=AJJ(—k) to bg regl, and f(k)=> F(R)ENR= fryp(k), (28)
As(K)=A1(—K)=AT,K). Note that the(x) sign in the {R} r

left-hand side of the above equation represents the choice of . R
: in which one can rearrange the plane wag¥s? in terms of
any overall sign forE, .

the basis functiongr (k) for each irreducible representation
(IRR) T" of the point group. Since highz cuprates occur as
orthorhombic or tetragonal crystals with highly layered unit
cells, it is better for us to consider only the residual symme-
tries and the corresponding basis functions for expanding the
In general, the symmetry of(k) as a function of the order parameters and pairi_ng interactions, which are relevant
three-dimensional wave vectris determined by the trans- 10 layered systems. We will assume that the layered crystal
lational and point-group symmetry of the unit cell of the has the translational lattice symmetry in thelirection per-

crystal. Because of the lattice periodicity, it satisfies the rePendicular to the layers, and the residual two-dimensional
lation (2D) translational and point-group symmetry for the planar

unit cell in each layer. For example, for an orthorhombic

Ak+G)=A(k), (27) crystal (with the simple latticg the residual 2D symmetry
. . latti P will be that of a rectangular unit cell with sidess and b,
Wh.e_reG IS any remprp_cal lattice vector. I_:or th_e spin Smgletwhereas for the case of a tetragonal cryétéath the simple
pairing, one in addition has the relatiof20): A; j (k) . . . .

o ) ) ) 1928 lattice), the symmetry will be that of a square unit cell with
=AJZJ1(—k). Similarly, the interaction functioW(k,k") is  gjgesa.
invariant under the transformatidn—k+G andk’=k’+ Since in thek, direction, one can expand the function
G. Any such functionf(k), satisfying the condition27),  f(k) in the form

Ill. LAYER-SYMMETRY AND BASIS FUNCTIONS
FOR ORDER PARAMETERS
AND ENERGY-GAP FUNCTIONS E4(k)

f(ke k)= dM(k)ekMd  M=0,+1,+2+3,...
M

=V (k) + le {Ld™ (k) + ¢ "™ (k) JcoMkd+i[ ™M (k) — ¢~ (ky) IsinMkd}, (29
|
the basis functions for expanding it as a functiorkkptan be  =maXx+nby, and for the square latticR,_=maXx+nay;
taken to be m,n=0,=1,+2,... . In the two-dimensional residual point-
dro(ky)~ 1,cosk,d, sirk,d (30) group symmetry of a square corresponding to the 3D simple
T(z z) 4, U, ZU,...

tetragonal caseld,,), which is isomorphic to the group
as classified in Table I. Since the coefficients with higherC,,, there are eight element$);, hiys, hyg, hgs, hy
values ofM involve overlaps of spatial functions in distant =1,h;, his=15h14, hoy=15h56, hsg=15h37, as defined by
unit cells, we can keep only terms up|td|=1. For expand- Kovalev}! where 1,=C, is the two-dimensional “inver-
ing functions¢(k,) in layered crystals, the basis functions sion” operation in whichk,— —k,, k,— —k, . In the two-
can be constructed by using the expansion dimensional residual symmetry point gro(gf rectangular
unit cell) corresponding to the 3D simple orthorhombic case
_ ike- R — (Dyp), one has only four elemently, hyg, hy=15h, hyy
k) {;L} d(Rue r%) dreyratk). (&Y =1,h,. The complete IRR’s for both these residual symme-
try groups are given in Tables Il and lll. For completeness,
these tables also define the group eleméntlsy listing be-
low each one the resulting coordinates to which it transforms
when it acts on the reciprocal space coordinate vector
(kx,ky). Starting from the plane-wave expansi@i), and
following the standard procedure, one can then construct the
basis functions for each IRR for these 2D layer symmetries.
They are also listed in the last column of Tables Il and lll,

where one has to regroup the plane wag¥sRt involving
different two-dimensional direct lattice vectoRs to trans-
form as each of the IRR'SI'® of the residual two-
dimensional point group. For the rectangular latti¢g,

TABLE I. Basis functions folk, expansion.

IRR Basis functions 1 =0.1.2,..) for these 2D symmetries under consideration.
ng) lpéZ)M:COSMkZd;]_’COQ(Zd, o For the spin-singlet pairing, one may obtain three-
re POV = sinMkd:sink,d, . . . dimensional even-parity basis functions for the layered crys-

tal by combining the even plandt{”) representations with
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TABLE Il. Irreducible representations and basis functions for 2D square lattice symr@gfrycorresponding to 3-d simple tetragonal
Dap).

hy haq hze hs7 hy his hy7 hao Basis functions
IRR (Keoky) (kg k) (—kyeky)  (kyok) (ke —ky) Ky, —ko  (Ke,—ky) (=K, =k (Mn=0,12...)
r(zte‘)(/.\ o) 1 1 1 1 1 1 1 1 w(fgtel)mn
(1 K2+ k2) =cosnka coska
+cogka cosnka
(s-wave like)
(2teD(A 29) 1 1 -1 -1 1 1 -1 -1 l/,(ZZQtel)mn
~k ky(KZ— k2 =sinmka sinnka
y
—sinnkxasinmkya
(ZteD(Blg) 1 -1 1 -1 1 -1 1 -1 w(szgtet)mn
~ k k =cosmk cosika
—cogkacoka
(dkz,kz-wave like
rglzg;teo(BZg) 1 -1 -1 1 1 -1 -1 1 l/I(ZteI)mn
~kyky —smmlga sinnk,a

+ sinnka sinmka
(dy, K, wave like

rZe(E,) 10 (0 -1, (-1 0, (0 1) (-1 O 0 1 (1 0 0 -1y {wmn, ylmny

{hec Ky} (0 1) (1 0) (0 1) (1 0) (0 —1) ( ) ( ) ( ) ={sinmka coska
+sinnk.a coamksa,
+ cosnka sinnk,a
+ cogka sinmk a}
p=12=7

the evenF%z) , and the odd planaF?) representations with Orthorhombic
the oddI'{? . In other words, for symmetric functiorfgk) (20rthymn (M (2orthymn @M
=f(—k), one can use the following three-dimensional basis "btg (kx'ky)'f/’ (ko) ¥l (ke ky) 9y (k)
functions for its expansion in layered tetragonal and ortho- [lﬂ(s)(k)]

rhombic systems:

Tetragonal: L=12;, mnM=012..., (33)
where these functions are defined in the last column of
Tables 1-111.
(2ted ()M (2ted ()M .
'i”Lge "k ky) ’/’gz (kz)"/’5ugqmn( K ky) P (kp); It should be emphasized here that although the basis func-
[ (K)] tions as shown in the above equations form an orthogonal set
M

in each case if one integrates overlalh the Brillouin zone
(BZ), one cannot take advantage of this property fully even
while solving the linear gap equation fark), because the
L=1234; mnM=012..., p,g=12, (32 ntegration is restricted through Fermi factors. For a layered
crystal, with a widely open BZ in thi&, direction, whereas

TABLE IIlI. Irreducible representations and basis functions for 2D rectangular lattice symioetrg-
sponding to 3D-orthorhombib ).

h, hog h, hyy Basis functions
IRR (ky ky) (—ky ky) (—ke,—ky) (ke —ky) m,n=0,1,2...
1“(2) 1 1 1 1 lﬂgz orthmn
(1 kZ.Kk2) —cosnk@ cosikb
FZg 1 -1 1 -1 1//(2 orthymn
~kyk —smkaa sinnkb
y
re 1 1 -1 -1 (2 ortymn
~k —cosnk@smnlg,b
F(ZZL?, 1 -1 1 1 ¢20nh)mn

~Kky =sinmka cognkb
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TABLE IV. Forms for two-dimensional basis functions in cylindrical coordinates.

Basis functions for 2D layer of simple tetragonal lattice

Arg(~1Ki+K))

P5 (k)
Bigl ~ (ki —k3)]

A
BZg(N kxky)

¢(2teo
2
AZg[ -~ I(xky( kx - ky)]
i
P& (~ky ky)

(2ted
5u

I{2(~1KkZ k)

Y5 (ky)

T2 (~keky ,kky  kekd)

P (ko)
T (~ky)

P2 (ko)
& (~ky)

Y5 (ky)

1,(cok,a+cok,a),cok,a coka,...

(s-wave like

1,fo(ki@) + f4(kia)cosdp + fg(ka)cos8h+ - - -
(coka—coka),(cosk,a—cosk,a),...

(dy2_ 2-like)

f,(ka)cosap+ fo(k.a)cosp+ - - -

sinka sink a,(sinX,a sink,a+sink.a sinX,a), ...
(dyy-like)

f5(k@)sin2¢+ fg(ka)sinép+ - - -

(sinX,a sink a—sinkasin X, a),...
fi(ke@)sin 4¢p+ fg(ka)sin 8p+ - - -
sinka,sirk a, ...
f,(k;a)cosp+fa(ka)cosdp+--- ,
f1(ke@)sing+fi(ka)sin3p+ - - -

Basis functions for 2D layer of simple orthorhombic lattice

1,cok,a,cok b,cok.acokpb,...

— (Mixed A4+ B4 Of tetragonal systejm
Lxo(ky) + x2(k) cos2h + xa(ki) cOS4p+ - -+
sink.a sink b,sinXk,a sinkb,sink,a sinXb, ...
— (Mixed A4+ B, Of tetragonal systejm
X3(ko)sin2p+ x4 (k) sinde+ - -
sink/b,sink b cok.a, ...

— (deg.T'&*® of tetragonal

Xi(k)sing+ x4(k)sin3p + - -

sink,a,sink,a cokb,...

— (deg.T'&"® of tetragonal

x1(Ki) cosp+ xa(k)cos3p+ - --

the integration ovek,, for any reasonable values of the sinkyb=2J,(kia)sing +2J3(kib)sin3¢4 + 2J5(kb)sin3s
carrier density, is over the full BZ;- w/d<k,<w/d, the

integrations overk,, k, do not cover the full BZ in the T (38

reciprocal-layer plane. In view of this, it is more convenient

to use the cylindrical coordinatds, ¢, and k,, to take More explicitly, one can rewrite in terms @f the forms of

advantage of an additional orthogonality condition related t®2D basis functions relevant to tetragonal and orthorhombic

the integration overp, with layered crystals, as shown in Table IV. We also give in this
table some of the simpler basis functionsin k,, variables,

= =K,Si = < b= for easy identification.

Ke=keosp, k=g, ko=l 0<g=<2m. S Note that for the orthorhombic case, one does not have

In fact, for integrations near the Fermi surface, one can furany pured_2 or dy i -like basis functions of the spherical

ther transform the remaining third variabke to a suitable  symmetry, which are related, respectively, B, and B,

energy variablef. The two-dimensional basis functions for symmetries of the tetragonal system. They are always mixed

the tetragonal and orthorhombic systems can be rewritten ifith extendeds-wave-like (Aqg) or Ayg-like basis functions.

terms of the variableg; and ¢, instead ofk, andk,, by  However, a pure isotropis-wave-like basis functiorl) is

using the Bessel-functiof,,(z)) expansion¥ always possible in each case.

cok,a=Jg(kia) —2J,(kia)coszp+ 2J,(kia)cosdp—---

(35) IV. PROBLEMS OF ONE AND TWO LAYERS

PER UNIT CELL

cok,b=Jg(kib) +2J,(kib)cos2p+ 2 4(kib)cosdp+- -+, To apply the symmetry considerations to the spin-singlet
(36)  theory in layered crystals, in this section we consider the
case ofN=1 as well adlN=2 layers per unit cell. This will
ink.a=2J-(k —23.(k +2Ju(k illustrate the application of our method to both the situations
sina (ka)cosp a(ka)cos3p s(kia)coss in which either only intralayer pairing is possiblBl€1) or
—— (37 both intralayer and interlayer pairings are allow@d=2).
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A. The N=1 problem

= (1) (3
The problem of one layeiN=1) per unit cell is simplest Ak) % Ay (k)
to consider because in this case we have only intralayer pair-

ing, with a nonmatrix order parametar;(k)=A(k), which = [A(O)Fglﬂ(rzg)(kt)+A(1)F9¢(rzg)(kt)005 k.d]

is also the quasiparticle enerdy, (at FS in the supercon- Yo

ducting state. Hereg(k)=(ion,—&) 1, &£=£&(k)=e(k,) +3 ALy (k) sin k,d, 42
—2t'cokd—pu, 9" (—K)=(—ion—&) 1. If one further T, u

assumes that(k,k’) andA (k') are independent of frequen- \ypare(2)(k,) are basis functions of the corresponding two-
cies, except for the frequency cutoffs, the usual summatioiensional representations, given in Table IV. Né&ar
over wy, in Eq. (18) then leads to the well-known BCS gap —1_ when one is solving the linear gap equation for finding

equation T., it is possible to assume that only one two-dimensional
IRR in the summation in Eq(42), which gives maximum
T., is relevant. In Ref. 10, we have analyzed a part of this
A(K)=— 2, V(k,k)A(K)T(B,E"), (399  problem in detail to explore the mixing of thewave-like
K’ andd-wave like symmetries in the possible solutions and the
correspondind ¢, in which we restricted the energy integra-
N , , _ tion over¢’ close to the FS. It also included an approximate
T(B,E")=tant(BE'/2)I2E", f=1KeT, analysis of the more general problemMbfayers per unit cell
in which only intralayer pairings were allowed and the inter-
E'=E(k')=[&3(k")+A2(k')]¥2 (40) layer single-particle tunnv_aling within each _unit cell was ne-
glected. We showed that in the orthorhombic system, it is not

) ) .. possible to obtain a planad,z_2-like (By4) solution
Near T=T., the linearized form of the BCS equation is , ithout dx .yt f th |
immediately obtained by replacing’ by ¢'=¢&(k") in the (~cos2p), without any admixture of the planar
above equation. s-wave-like (A14) solution (~fq+f,cos4p). Similarly, it is

In terms of the three-dimensional basis functions given in-=>Y to show that one does not havehg, -like (Bag) solu-

Egs.(32) and(33) for tetragonal and orthorhombic systems, 10N (~sin 2¢) without the admixture oAy4-like solution
which we label bwa)(k), pn=1.2,..., thenteraction func- ~sin 4¢) in the orthorhombic system. Of course, there are
tion V(k,k') can be expanded in the form additional correction terms in the gap function proporthnal
' to cokd, as shown in Eq42). Because of the orthogonality

of functions, cosn¢’, cosng’, sinm¢’, sinng’, etc., when
integrated overp’ in the gap equation, and because of the
Vik,k')=2 2 VEy® )P k'), vEr=vem - general structure of the basis functions for the orthorhombic

meov (41) and tetragonal systems, as shown in terms of these functions

in Table 1V, the above result is valid more generally, and one

does not need the approximation to restrict the energy inte-
The solution for the order parameter, which is also the gagrations close to the FS. In the orthorhombic case, the pos-
function E4(k), has then the general form sible solutions are of the form

A(k)=A©9+ AMOcode,d:[A@O(k,) + A©@(k,)cosap+ A D2 (k,)cosdp+ -]
+[AMO(k) +ADT cos2p+ AV2cosdp+ - - - Jcok,d; - e e etc., (43

which can be written down directly from the possible two- layer representation the normal-state inverse Green function
dimensional basis functiong{?°™(k,) given in Table IV. for two layers per unit cell can be taken to be of the form
Similarly, the form of possible solutions fak(k) in the _ _
tetragonal system can be immediately obtained by using the 1 |Tom—& — |t|e'”
form of the basis functiong{?*®Y(k,) given in Table IV and g (k={_ tle™ 7 iwn—E&
Eq. (42). Here, planaldki,ki-like or dkxky—like pairing sym-

metries can occur without any admixtureAfy or A,y sym- wran I wm—zl - |t|e‘i
metry. Next, we consider the problem of two layers per unit [g™ -] ={ _ ltle "  —iwn—§&)" (44)
cell (N=2), where both intralayer and interlayer pairings
are possible. where
B. The N=2 problem E1,2( k)="e1 AK) — =€ A k) —2t1 , cok,d—p, (45)

In the case of two layers per unit cell, we have to deal k) ) )
with 2x 2 matricesg(k), g""{—k) andA(k). Here, in our t=t(k)=[t(k)|e'""" =t1(ke) +t1(ko) explikd), (46)
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tany=1t7,sink,d/(t;,+t;,c0%,d),

n(—k)=—nk)=—17. (47)

In this layer representation, if we ignore the frequency de-
pendence of the order parametexcept for the frequency

cutoff), it has the general form

Aqq(k)

A= A pk)

A1z(k)> 48)

Azy(k)

where we may assum&,; and A,, to be real symmetric
functions ofk and A,;(k) =A(—k)=AT,(K). In terms of

real functionsA | (k) and 6(k), one may assume
Ap(k)=A, (k)" A (—k)=A, (k)=[A(k)],
0(—k)=—0(k). (49

In view of the nondiagonal form for bot and A in the

layer representation, the general consideration of this prob-

lem for obtaining the gap equation far(k) from Eg. (18),

after performing the summation over,,, and for finding
the quasiparticle excitation energigék) by determining the
zeroes of the determinant of the inverse Green function

SUDHANSHU S. JHA AND A. K. RAJAGOPAL 55

E1AK) =2 [E1(K) + Ex(K) 1= 2 [[E1(K) — Ex(K)]?

+4t(k)[21, (54)
tan2¥ = 2|t(K)|[/[£,(k)— &(K)], with &#&,. (59)
In this representatiom\(®) has the form

. B ARk A (K)
AD=[3(A+Ap) + 3(A1—Agp)cos 2
+|Ay7sin 2F cog 6— )], (57)

AW =€ — (A1~ Apy)sin 20 +|A,/cos 2F cog 0— 7)
+ilAdsin(6—7)], (58)
ALY =A™, (59

ALY =[3(A11+Ap) — 3(Ay—Ay)cosW
—|Asin2Pcog 6— 7)]. (60)

G '(k,iw,=E) from Eq. (17), is somewhat tedious. In- Note that even for a system with two equivalent layers,
stead, as discussed in I, one may take advantage of the sahere £&,=¢,, so that¥=m/4, A,,=A;;=A, AD(K) is

called « representation in whicly(k) and g"*"{—k) are

diagonal. The unitary matri$(k) which diagonalizes these

matrices are given by

S (k)g(k)s(k)=g'“(k),

S™H(k)g"" —k)S(k)=g'“"a ~k), (50)
_( cos¥ —e"’sin\lf)
S(K={ g7 ginw cosV |
N cos¥V e 7siny
S (K= _g-inginw  cosp |- (51)
o — &)1 0
gito=( " el 62
—(iopt €)1t 0
g("‘)"a”?—k)z( (|w0 §1) _(iwm+§2)—l>v (53)

M3 S v,

k" azag

AP (K Ty Be, €1 ,€1)
AL (K Tox(Be Eh €1

A(k")=

[tani(B§;/2) +tanh(B¢;/2)]

diagonal only ift(k) and A;,(k) are real functiongi.e., 6
=7=0) or if accidentallyd= 7. In such special cases, one
can write down the BCS equations for two branches sepa-
rately, each one being similar to E@®9), where quasiparti-
cle energies in these two branches are givenHy(k)
=[& AK)+E5, "2 where Eg=A(k)+A,(k), Eg
=A(k)—A, (k). However, these expressions are not simple
in general. _

For the more general case, in whittk)=|t|e'” and
A(k)=|A €'’ are complex, the problem of findirlg, and
the zeroes of the determinant 6f (k,i w,,=E) to obtain
an expression for the quasiparticle enekfk) can still be
solved more easily by using the representation in which
g is diagonal. This method was used by us in | where we had
ignored thek; dependence ak. Working in thea represen-
tation, if we ignore the frequency dependenceAd? and
\=/(2) (except for the cutoffsone can perform the summation
over oy, in the linear gap Eq(19) to obtain the following
equation to determin@&,:

(KK Ay (K, (61)

,agay

A (KT Be €1, ED)

A (K )T ol Be &5, 85) ) (62

Tij(ﬂ!gi 1§J)E

26+E) ' ©3
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(a) . — 1% -1 1\ k% ’ ’
Vg, aga, (KK )_J%z J§4 S5, (K)So5,(K)Vy, 3, 0,0,(K K S) (K') Sy 4, (K). (64)

Here, T;;=T;; and A{3(k)=A%Y* (k). To find the nature off,, one can again use the same method as in |, by using a
suitable parametrization of the interaction functign
Coming back to the layer representation, from the roots of the determinantal equation

detG™(k,E)|=def{g~*(k)[1 +g(k,E)A(k)g"" —k,—E)A(k)]=0, (65)
we find the most general expression for the quasiparticle er@mgyN=2) in the form
ES Ak)= 3+ &+ A%+ A5+ 2|A15%) = 5 [{E] &+ (Any+ Ap)[(Ay—Agp)cos2V +2[Ag]sin W cog - 7)]}?
+{[(Azp— A11)sSiN2¥ +2|A 15| cos2¥ cog 6— 1) 12+ 4| A1) *Sin (60— ) H (£~ £)2+ (AT A2 M2 (66)

Note that for the case of two equivalent layetg =€ 7/4), symmetry in the layer plane, but, (k) may have even an
this goes over to the special decoupled foiE] (k) isotropic k,-independens-wave-like form of theA;q sym-
=§§‘2(k)+[A(k)tAl(k)]2, when A ;=A,,=A(k), metry. Note that in the presence of interlayer pairings, the
|[A1(k)|[=A, (K), only if Ajx(k) andt(k) are real(i.e., # nodes due to the zeroes in the intralayer order parameters
= »=0). One can immediately obtain the form of the energyalone will get shifted in the two branches of the energy gap
gap functionEgy(k), by puttingé,;=£,=0 in the above ex- function. In what follows, in the next section we will now
pression. However, there is no need to follow this tediousapply our method to explore the symmetry of the gap func-
route to findE4(k), since we are primarily interested in this tions in the general case &f layers per unit cell.

paper in the symmetry aspects of the gap functgk),

i.e., in the quasiparticle energy the layer representation itself
without using thea representation. FAl=2, it implies V. THE ENERGY-GAP FUNCTION AND ITS SYMMETRY

FOR THE CASE OF N LAYERS PER UNIT CELL

= i 6(K)
e A“(k):'f(g) Ai(k)e_ =0. (67) As discussed in the last section,sncreases from 1 the

A (ke AzAk) T Eq general problem oN layers per unit cell becomes more and
Suppressing the overall sign in each case, this leads to tHBore difficult to handle in the presence of the complex
following expressions for the gap function in the two Single-particle tunneling matrix elements between the layers

d

branches: in a given unit cell. Only if this tunneling is very weak so
that it can be neglected in the first approximation, in prin-
EquAK)= 3{(Aps(K)+AnK)) ciple, can one then consider the case of general

N-inequivalent layers per unit cell more easily. In such a

“[(A(K)—Ayl(k))?+4A%(k)1¥2, (68  case,g(k) and g"@'{k) are diagonal, withg;;(k)=(iwon
=&)L g5 —K) = —(iwn+ &) L. Here,¢; is the single-
particle energy for the layel, which need not be equivalent.
With the usual approximation regarding the frequency de-

endence o¥(k,k') andA(k), the summation ove®,, in

g. (19 then leads to the generalized linear BCS gap equa-
tion

which reduces to the same formag, ,=A(k)*A, (k), as
obtained in the special case of réék) and A;,(k), when
Aq1(kK)=A5(k)=A(k). However, in the general case one
does not get simple decoupled forms for the quasiparticl
energy away from the FS, if one examines Ef). It may
be noted from the expressions far?), (k) given in Egs.
(56)—(60) that the form ofE; , is exactly the( s)ame as given
in Eq. (68), even in thex representation foA'*. Similarity __ / ,
transformation does not change the eigenvalues. In any case, AJlJZ(k) % JZJ VJlJZ‘J3J4(k'k )AJ3J4(k )

as far as the gap functidg, at the FS in the two branches is .

concerned, we have the general re¢6B) for N=2 in the XTJ3J4(B’§J3v§J4)’ (69)
layer representation, where one has nonvanishing order pa-

rameters for both intralayer pairings and interlayer pairings.

The intralayer functiona ;,(k) andA,,(k) as well as inter- ., 1[tanhBg, (k') +tanhBE, (k')
layer functionsA | (k) are real and symmetric functions lof TJsJa(ﬂ’ng '534): 2 & (K + &5 (k")
These functions can therefore be expanded in terms of the 3 4 (70)

basis functions already discussed for tNe=1 case. For

equivalent layers, for real ;1(k) andA,,(k), intralayer or- . . . .
der parameters can differ at most by a sigh(K)= This includes both intralayer and interlayer pairings. In case

+A,,(k), but interlayer order parametey, (k) need not ©ON€ resticts to intralayer pairings .(.)nly, with;,5,(k)
have the same symmetry. For example, for a tetragonal sys= 23,83, 3, the above equation simplifies further to the fa-
tem A44(k) and A,,(k) can both have thelki_kz—like Big miliar form
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T, in this case has already been discussed by us edftlier.

AyK)=—2 2 Vyy(kk)Az(K) As we have emphasized here in this paper, without mak-
k' ing any of the above approximations regarding the tunneling
tant &5, (k' )/2kgT,] matrix elements and interlayer order parameters, the symme-
28, (K') ' (7D try of the gap functiorg, can be analyzed in the most gen-

eral case by diagonalizing the matidxin the layer represen-
whereV;; 5:3=V; ;. The consideration of possible sym- tation. In other words, one has just to find the roots of the
metries forA;(k) and the expression for the correspondingdeterminant

An()—Eg  AslK) Adk) o An(K)
ALK ApK)—Eg  Apk) o Agy(K)

det To(K) 53(k) Agg(k)—Eg - Asn(k) | Zg (72)
A%(K) 5n(K) 5K Au(K)—Eg

to obtain theN branches ofEy(k). Here, A 5(k) may be  case ofN=2 layers per unit cell, the symmetry &f;,(k) is

taken to be real symmetric functions lof whereas the am- getermined by the possible symmetries of the real and sym-
plitudes of the off-diagonal elements are symmetric but thgnetric intralayer and interlayer pairing functiongk) and
phases are antisymmetric functionskofThe above general A, (K), along with expression58). These two functions

analysis simplifies considerably for the case in which diago-need not correspond to the basis functions of the same IRR
nal elements\ ;= A,,=---=A(k), for equivalentN layers, isted in Table IV '

and there are interlayer pairings only between the neares{—
neighbor layers, with A ;. (k)=A1(k)=A, (k)e'/®),
Aji13(K)=A(k)=A, (k)e . The determinant in Eq.

(72) in this case reduces to the form V1. CONCLUDING REMARKS

X €’ 0 0 e e e e 0 In the preceding sections, we have presented a first-
e x €% 0 0 principles analysis of possible symmetries of the supercon-
0 e x @ ... . .. .00 ducting order parameters;; (k;,k,) and the corresponding
det quasiparticle energy gap functi@(k; ,k,) at the Fermi sur-
face in highT layered superconductors with either a simple
0 0 0 0 -« -+ 0 el x orthorhombic or tetragonal unit cell. This has been done in

terms of all possible irreducible representations and the cor-
=0, (73 responding basis functions, which are relevant to layered
crystals in which the symmetry may be restricted to the lat-
tice periodicity perpendicular to the layers for each layer in
x=(A(k)—Eg/A, (k). (74  the unit cell, and the residual two-dimensional point-group
symmetry of the planar unit cell in each layer along with its
lattice periodicity in the X,y)-layer plane. Our consideration
clearly shows that many reported experimental observdtions
claiming planardki_kz—like (B1g) symmetry for the energy
St 1(X) =XSy(X) — Sy_1(X), gap function in several high; materials can only be ap-
proximate, for various reasons. First of all, in orthorhombic
with Sp(x)=1, S;(x)=x. (75  systems the plananjki_ki-like (B1g) symmetry is always

Since the zeroes of the polynomi&(x) are given by mixed with thes-wave-like (A;5) symmetry of the corre-

2 cogmp/(N+1)], p=1,2,...N, we immediately obtain the sponding tetragonal system. Also, in both orthorhombic as

expression folE, in all the N branches: well as tetragonal systems, there is a possibility of a weak

modulation of the energy gap function-¢osk.,d) in the di-

Egp(K)=A(k)—2A, (k)codmp/(N+1)], p=1,2,...N. rection perpendicular to the reciprocai,(k,)-layer plane.
(76) In addition, for more than one layer per unit cell, in the

This gives the correct results foi=1 and 2, already ob- Presence of interlayer pairings we find that even in the te-

tained in the last section, and it implies thatMssc, the  ragonal case it is not necessary to find a pagg--like

N branches of the gap function are bounded betwék) (B1g) symmetry with nodes &, = *k, for the correspond-

—2A, (k) andA(k)+2A, (k). As already explained for the ing gap functionsEgy,(k). The interlayer order parameters

For a givenN, as a function orx the above determinant is a
Chebyshev polynomitl Sy(x) of order N which satisfies
the recurrence relation
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Aj5(K), J#J’, which may not have the same symmetry asweak, with a widely open Fermi surface in thgdirection.

the intralayer pairing parametes;;(k), always modify the I_n t_he Iayer—represent'ation approach, one can even study the

structure of the energy gap functidmy(k). limiting case when this tunneling takes vanishing values. In
In view of the results obtained here, it may not be possiblesuch a case, when tunneling matrix elements become smaller

to determine the symmetry dy(k) correctly, unless one th_an kgT. and when there are no mterlgye_r pairings, one

obtains its full form experimentally as a function ofg. If ~ Will, of course, go over to the regime of “intrinsic” Joseph-

one can suppress the possible weak dependengg(kj on ~ SON tunneling between the “independent” superconducting

k,, the experimental observations should first be fitted with dayers in the unit cell, for which there is already experimental
general form evidencé’ reported in the literature. We hope to discuss this

relationship in a future publication. Another class of tunnel-
ing phenomena in a variety of junctions considered by
Eq(k)= > [Ascomg+B,sime] (777 Tanaka and co-workergjives rise to mid-gap surface states
n=0 due to the interface structure, which will exhibit strong an-
to determine the coefficientd, and B,,, at least up ton isotropy. These may be expected to display further structure
=4. Then, with the help of the basis functions for differentdue to interlayer coupling discussed in this paper. We expect
IRR’s as listed in Table 1V, it would be possible to determinethat these effects will shed more light on the intrinsic anisot-
its symmetry. In particular, it is expected that in orthorhom-ropy of pairing phenomena in highs superconductors and
bic systems, with, e.g., dominadt(i:_ks-like symmetry for we hope to address these issues in another publication. In

E4(k), one may be able to fit most of the data with the form,@NYy case, as long as the single-particle tunneling matrix ele-
Ao+ A,cOS2h+A,c0s4h, consistent with symmetry consid- ments remain small compared tg our formulation of the

[

erations. problem should be very good for layered materials, because
In this paper, we have emphasized the role of the residuai includes all the essential elements of the problem in such

layer symmetry in exploring the form of the energy gapSYSEMS:

function Ey4(k) in layered hight, crystals. However, one ACKNOWLEDGMENTS
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