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Fractional vortices on grain boundaries: The case for broken time-reversal symmetry
in high-temperature superconductors
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We discuss the problem of broken time-reversal symmetry near grain boundaries in ad-wave supercon-
ductor based on a Ginzburg-Landau theory. It is shown that such a state can lead to fractional vortices on the
grain boundary. Both analytical and numerical results show the structure of this type of state.
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I. INTRODUCTION

During the last few years the understanding of the mic
scopic properties of the high-temperature superconduc
~HTSC’s! has gradually improved.1 While for a long time
studies have focused on the exotic normal state proper
recently the interest turned more towards the supercond
ing phase, in particular, the symmetry of the order parame
For a tetragonal system the list of possible order param
symmetries is rather long.2 However, the recent debate ha
essentially concentrated only on two symmetries of the C
per pair wave function.3 One is due to ‘‘s-wave’’ pairing, the
most symmetric pairing channel. The other is ‘‘d-wave’’
pairing, where the pair wave function@c(k)}coskx2cosky#
changes sign under 90° rotations in the basal plane of
tetragonal crystal lattice. As a consequence, the latter w
function has nodes along the@110# direction. A possible al-
ternative to the standards wave was presented with the ‘‘ex
tendeds-wave’’ pairing state@c(k)}coskx1cosky# which
also has nodes in the first Brillouin zone, but is complet
symmetric under all operations of the tetragonal point gro
D4h .

4 For the orthorhombically distorted system, thes- and
d-wave channels are not distinguished by symmetry. Nev
theless, we expect that basic properties of the pair w
function such as the existence of sign changes and node
retained if they were present in the tetragonal case.5

A variety of experiments have been performed in orde
distinguish among the order parameter symmetries. O
class of experiments considers the properties of the quas
ticle excitations in the superconducting state. The existe
of nodes in the pair wave function implies that there are a
nodes in the excitation gap. Low-lying excitations at t
nodes modify the low-temperature behavior of certain th
modynamic properties compared with that of a superc
ductor which opens a complete gap. The clearest sign of s
an effect was observed for the London penetration de
550163-1829/97/55~22!/15239~9!/$10.00
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which behaves asl(T)2l(0)}T in contrast to the conven
tional exponential law,}exp(2D/kBT).

6 This result strongly
suggests that there are nodes in the gap and the pair w
functions, which are compatible with both extendeds wave
andd wave as well as with a very anisotropics-wave state.

Another class of experiments is aimed at the direct obs
vation of the intrinsic phase structure, the sign changes of
pair wave function. The Josephson effect as a phase cohe
coupling of the order parameters of two superconduct
provides the natural means for this purpose.7–9Arrangements
connecting YBCO single crystals at two perpendicular s
faces to a standards-wave superconductor to form a loop fo
a SQUID have been used to detect a phase difference
tween thex andy directions of the pair wave function.10 The
experiments observe with good precision a phase differe
of p compatible with thedx22y2-wave order parameter.

The intrinsicp phase shift in this configuration leads
frustration effects which manifest themselves in the form
a spontaneous supercurrent flowing around the loop. The
percurrent generates a fluxF56F0/2 whereF05hc/2e is
the standard flux quantum. This property has recently b
detected and the flux was measured with very h
accuracy.11

On the other hand, several other experiments based on
Josephson effect seem at present to contradict the pres
of a d-wave order parameter. Chaudhari and Lin analyz
the Josephson current through a grain boundary in the b
plane with a special geometry giving a basal plane con
between two segments of a YBCO film.12 They demon-
strated that various properties might support an order par
eter withs-wave rather than simpled-wave symmetry. The
interpretation of this experiment, however, has recently b
contested by Millis.13 In contrast, Sun and co-workers inve
tigated Josephson tunneling between a standards-wave su-
perconductor~Pb! and YBCO, where the tunneling directio
is the c axis of YBCO.14 These data so far could not b
15 239 © 1997 The American Physical Society
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explained consistently within the picture of pured-wave su-
perconductivity. Therefore, the simpled-wave scenario may
not be sufficient for a complete understanding of all expe
ments introduced here.15

Indeed a recent experiment by Kirtley and co-worke
suggests that the situation is more complicated than migh
naively expected for ad-wave superconductor.16 Their ex-
perimental arrangement consists of two segments ofc-axis
textured YBCO films where one is a triangular inclusi
within the other. The basal plane crystalline axes are m
aligned with one another. The boundary of the triangle a
as junction between the two segments. We will show in S
II that if YBCO were ad-wave superconductor we woul
expect vortices to appear spontaneously at two of the th
corners of the triangle each containing a flux of6F0/2. The
experiment does find spontaneous vortices at corners,
these vortices have fluxes different fromnF0/2 (n: integer!.
In addition, flux appears at all three corners and occasion
also on an edge of the triangle. We will argue in Sec. II t
this can be explained by a superconducting state which
lates time-reversal symmetryT. Therefore, the simple pictur
of a single-componentdx22y2-wave order parameter migh
not apply here.
T violation is not uncommon in the field of unconve

tional superconductivity. A large number of superconduct
states classified by symmetry indeed break time-reve
symmetry.2,17 In the complex superconducting phase d
grams of the heavy fermion compounds, UPt3 and
U12xThxBe13 (0.02<x<0.045) states appear which pro
ably break time-reversal symmetry. It was shown theor
cally that such superconducting states can generate sp
neous supercurrents and magnetic field distributions in
vicinity of lattice defects and surfaces.18 In both compounds
the occurrence of such local fields in connection with
superconducting phase transition has been detected by m
of muon spin rotation (mSR! measurements.19 For both com-
pounds, consistent phenomenological theories for this ef
have been formulated.17

In the field of HTSC, various theories and mechanis
leading toT-violating superconducting states have been p
posed. The effective two-dimensionality of the cuprates m
serve as a basis for particles with fractional statistics,
so-called anyons.20 Laughlin showed that the resulting supe
conducting state has a composite order parameter of the
dx22y21 i edxy which obviously breaks time-reversa
symmetry.21 Alternative mechanisms can lead
T-violating states with the symmetrys1 idx22y2.

22 At
present there is no indication beyond any doubt that s
states are realized in the HTSC.23 On the contrary, recen
experiments demonstrate that at least at the onset of su
conductivity (T'Tc) the critical behavior of the London
penetration depth is that of a single-component order par
eter belonging to the universality class of theXY-spin
model.24 Only below an additional superconducting tran
tion at lower temperature could the compositeT-violating
order parameter appear. No signs of such an additional p
transition have yet been observed in the thermodyna
properties. In addition, it should be noted that each of
T-violating states mentioned above lacks gap nodes. T
fact would also lead to inconsistency with low-temperatu
measurements of the London penetration depth which d
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onstrate the presence of nodes, as mentioned above.6

In this paper we will show that there is no conflict b
tween the interpretation of the experiment by Kirtley a
co-workers16 which could indicateT violation and the other
experiments which obviously rule out the existence of suc
state.25 We argue that the latter experiments address b
properties, while the former one considers effects in conn
tion with interfaces and grain boundaries. The seeming c
flict is resolved when we assume thatT violation occurs only
locally in the immediate vicinity of an interface. The bul
on the other hand, may only have a single-component o
parameter, presumably withd-wave symmetry, but we can
not rule out other symmetries. As we will discuss below, t
extension of theT-violating state towards the bulk is rathe
short, of the order of coherence lengthj.

II. A FIRST INTERPRETATION OF THE EXPERIMENT

Let us now examine the properties of an arrangem
similar to the one used by Kirtley and co-workers.16 As il-
lustrated in Fig. 1~a!, it is a superconducting film of triangu
lar shape as an inclusion in another superconducting fi
both of the same material. The crystal symmetry is tetrago
~for simplicity we neglect here the orthorhombic distortio
present in many HTSC’s! and the film isc-axis textured. The
basal plane axes~of the inclusion and the surrounding! are
misoriented with each other. The interfaces~the edges of the

FIG. 1. Triangular grain boundary in ad-wave superconductor
~a! The edges act as Josephson junctions with phase shifts,
p; ~b! the phasew tries to be pinned at phase shift values~indicated
by dashed lines! and change in an antikink~kink! of width lJ at the
corners 2 and 3. There are several possible solutions forw due to
the 2p periodicity of the phase. The solution with an antikink an
a kink leads to an overall phase winding 0 around the triangle.
equivalent solution with two kinks~also shown! would give 2p
winding.
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triangle, each of lengthL) are weak links between the inne
and the outer film. For simplicity we will treat them as J
sephson contacts so that the standard sinusoidal cur
phase relation applies.

A. Pure d-wave symmetry

Let us analyze the properties of this arrangement un
the assumption that the superconductor here is ad-wave su-
perconductor with an order parameter symmetry as the
wave functioncd(k)5coskx2cosky . This means that we
should carefully consider the intrinsic phase structure of
order parameter when deriving the Josephson current-p
relation. The phase difference between the positive and n
tive lobes of the pair wave function isp. If dominant lobes
of the same sign face each other at an interface, the co
sponding Josephson current-phase relation has the stan
form and the interface energy is minimized by a vanish
difference the order parameter phases~0 junction!. However,
if the facing lobes have opposite sign, an additional ph
p enters and the energy is minimized by a phase differe
of p (p junction!.9 We have

EJ~w!52
I cF0

2pc
cos~w2a!, ~1!

wherea50 for a 0 junction andp for ap junction, andw is
the phase difference through the interface. In Fig. 1~a! we
assume that the edge segments 1-2 and 3-1 can be labe
ap junction and segment 2-3 as a 0 junction. This definition
is not unique. A redefinition of the order parameter phase
one of the two superconductors (f→f1p) would reverse
this labeling.

We now map all segments of the interface onto a o
dimensional axis with periodic boundary conditions for t
coordinatex̃ as shown in Fig. 1~b! ( x̃13L5 x̃ ). Here we
can study the spatial variation ofw along x̃ by using the
sine-Gordon equation

] x̃
2
w5lJ

22sin@w2a~ x̃ !#, ~2!

where both the Josephson penetration de
lJ5(f0c/8p2dIc)

1/2 (d, magnetic width of the interface!
and the intrinsic phase shifta are assumed to be consta
within each segment@see Fig. 1~b!#.26 For good junctions
(lJ!L), w tends to be pinned to thea value in each seg
ment of the interface, but has to change at the bounda
where a is discontinuous. The solution of Eq.~2! shows
kinks at these boundaries with an extension oflJ @Fig. 1~b!#.
Note that the two kinks at 2 and 3 can be either ‘‘kink’’ an
‘‘antikink’’ or both ‘‘kinks’’ as a consequence of the period
icity of Eq. ~2!. Other types of kink solutions are energe
cally more expensive.

The spatial variation ofw induces a local magnetic flu
density on the interface given by the expressionf( x̃ )
5F0] x̃w( x̃ )/2p Therefore, each kink corresponds to a l
cal flux line or vortex with a magnetic flux
F5F0(w r2w l)/2p, wherew r ( l ) denotes the values ofw far
enough to the right~left! of the kink such that] x̃w is essen-
tially zero. Both kinks in Fig. 1~b! indicate vortices with
F56F0/2. Due to the periodicity of x̃ we find that
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w( x̃13L)5w( x̃ )12pn (n, integer!, which requires that
the total flux integrated over the whole triangle interface
an integer multiple ofF0. Of course, the triangle is sur
rounded by a superconductor whose single-valued order
rameter allows phase windings of 2pn only. This ‘‘sum
rule’’ implies that half-integer flux lines can only appear
two of the three corners. Because the flux on each corner
only vary bynF0, at corner 2 and 3 there is always a flu
line with a flux of at leastF0/2. Larger fluxes could be
stabilized by an external field. This result is equivalent to
one presented in Refs. 8 and 13.

The comparison of our ‘‘experiment’’ with the one pe
formed in reality shows that the simple picture we tried
draw here does not explain the measurement by Kirtley
co-workers.16 They found fluxes at all corners, all of whic
are clearly smaller thanF0 /2. We call themfractional vor-
tices. In all samples checked, the sum rule constraining
total flux on the boundary to an integer multiple ofF0 was
satisfied with good accuracy.

In the Introduction we claimed that the existence of fra
tional vortices requires a superconducting phase with bro
time-reversal symmetry. We give here a brief argument
this statement. Consider one of the corners of the triangle~or
a similar structure! with a vortex whose flux isF. Apply the
time-reversal operation to this system. This reverses the
(F→2F). If the superconductor is otherwise invariant u
der this operation (T invariant!, the difference betweenF
and2F must be an integer multiple ofF0 as in every stan-
dard superconductor: F52F1nF0. Therefore, F
(5nF0/2) is an integer or half-integer quantum ofF0 as
seen above. Consequently the observation of a vortex wi
flux different from those values can only mean that the
perconducting state is not invariant under the time-reve
operation.27

B. Josephson effect for aT-violating interface

A T-violating superconducting order parameter consists
at least two components~e.g.,dx22y21 idxy or s1 idx22y2).
We therefore restrict ourselves to the case of a tw
component order parameter with a generic pair wave fu
tion c(k)5h1c1(k)1h2c2(k). Hereh1 andh2 are the two
complex order parameters with the symmetry properties
the corresponding pair wavefunctions. Time-reversal tra
forms the order parameter to its complex conjug
(h j→h j* ). If time-reversal symmetry is conserved, the
(h1 ,h2) is up to a common phase factor equal to (h1* ,h2* )
or h1 /h25h1* /h2* . Otherwise, the order parameter brea
time-reversal symmetry and the state is at least twofold
generate, since both (h1 ,h2) and (h1* ,h2* ) have the same
free energy. We will consider here the standard situat
where h1 /h2 is imaginary: f12f256p/2 @h j
5uh j uexp(ifj)#.

For an interface between two superconductors (A and
B) both with order parameter (h1

A(B) ,h2
A(B)) the Josephson

current phase relation has the form

J5 (
i , j51

2

Jci jsin~f i
B2f j

A!, ~3!
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whereJ is the supercurrent density at a given point on
interface. There are four different combinations for the ph
coherent coupling andJci j denotes the coupling strength b

tween the componentsh i
B on sideB and with h j

A on side
A @h j

m5uh j
muexp(ifj

m)# with j51,2 andm5A,B). The en-
ergy for a uniform interface of areaS is given by

EJ52
F0S

2pc (
i , j51

2

Jci jcos~f i
B2f j

A!. ~4!

For simplicity we restrict ourselves to the situation whe
f1
A2f2

A5f1
B2f2

B5p/2 is fixed on both sides of the inter
face.~This phase difference can be different in the vicinity
the junction without changing the conclusion we will dra
here for the simplified case.! The current densityJ and the
interface energy densityeJ depend only on one phase diffe
ence through the interface, sayw5f1

B2f1
A .

J~w!5 J̃ csin~w2ã !,

eJ~w!52
F0 J̃ cS

2pc
cos~w2ã ! ~5!

with

J̃ c5A~Jc111Jc22!
21~Jc122Jc21!

2,

tan~ ã !5
Jc122Jc21
Jc111Jc22

. ~6!

The phase shiftã corresponds tow minimizing the interface
energy. In this sense the correct solution forã must be cho-
sen in Eq.~6!.8 Obviously, ã can assume any value an
depends only on the relative magnitude of the different c
pling components which parameterize here the interf
properties. It is easy to follow the same consideration for
T-invariant combination ofh1 andh2 where we find thatã
is strictly either 0 orp.

Let us apply this result to the triangle studied above,
sumingT-violating superconducting states. Each of the int
face segments as a uniform junction is characterized b
phase shiftã (0,ã,p). Analyzing Eq.~2! for this situa-
tion we find that there are now kinks ofw at all three corners
connecting the different values ofã in each segment~Fig. 2!.
This leads to vortices at these corners whose fluxes are g
by

F5F0

ã r2ã l

2p
~7!

with ã r ( l ) as the values ofã on the segments on right~left!
of the corner. It is obvious that in this case the fluxF need
not beF0 or F0/2. Thus, these kinks correspond to what w
described as fractional vortices above. Note, that also h
the sum of all fluxes must add up to an integer multiple
F0 because of the periodic boundary condtions forw.
e
e

-
e
e

-
-
a
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re
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As mentioned earlier, the assumption of aT-violating bulk
superconducting state is incompatible with a number of
periments. It is, however, possible thatT violation occurs
only in the vicinity of the interface~grain boundary!. This is
enough to generate fractional vortices at grain boundary
ners. In this section we would like to discuss such an int
face state based on a Ginzburg-Landau theory.

C. Ginzburg-Landau theory

We use a Ginzburg-Landau free energy functional of t
complex order parametersh1 andh2. The first order param-
eter shall be the dominant one corresponding to
dx22y2-wave pairing state. For the second we choose
dxy-wave pairing state. Thus the pairing state is a combi
tion of the two components

c~k!5 (
i51,2

h ic i~k!5h1c1~k!1h2c2~k! ~8!

with

c1~k!5kx
22ky

2 and c2~k!5kxky . ~9!

The free energy functional must be invariant under
symmetry transformations of the crystal group~in this case
tetragonal,D4h), time reversal, and U~1!-gauge symmetry.
Keeping terms up to fourth order in the expansion with
spect to the order parameter, we have

F5E d2xFFI1F121 (
i51,2

Fi G , ~10!

where

Fi5a i uh i u21
b i

2
uh i u41Ki uDh i u2, ~11!

F125guh1u2uh2u21d~h1
2h2*

21c.c.!1k2~¹3A!2

1K̃@~Dxh1!* ~Dyh2!2~Dyh1!* ~Dxh2!1c.c.#,

~12!

FIG. 2. Phasew for a triangle withT-violating interface states
The phase shiftsa i j are indicated by the dashed line.w follows
these phase shifts by creating~anti-!kinks at all three corners. The
kink heights are different from a multiple ofp in general and lead
to fractional fluxes.
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FI5 (
i51,2

S (
s5A,B

gi
suh i

su2

2
F0

2pc (
j51,2

J̃ i jReh i
Bh j*

AD d~ interface!. ~13!

We work in units whereD5¹2 i2pA/F0 (A, vector po-
tential!. The coefficients are all phenomenological para
eters which contain the relevant information of microsco
origin. The second-order coefficients depend on the temp
ture in the usual way@a i5a8(T2Tci) whereTci is the bare
transition temperature ofh i#. The interface free energyFI
includes the pair breaking effect in the first term and
Josephson junction energy in the second term~note,
J̃125 J̃21). The superscriptsB and A denote the different
sides of the interface, or ‘‘outside’’ and ‘‘inside’’ if the in
terface is a closed curve.

It is worth noting that the free energy expansion witho
the interface term is cylindrical symmetric withz as the ro-
tation axis, although the system has only tetragonal sym
try. Anisotropy enters via the interface term. The coefficie
gi and J̃ i j depend in general on the angle between cry
axes and the interface. Pair breaking for thedx22y2-wave
(dxy-wave! phase is most effective when the interface n
mal vector points along the@1,1# ~@1,0#! direction, i.e., along
the nodes of the pair wave function.17 On the other hand, pai
breaking is weaker when the lobes of the pair wave functi
point towards the interface. Consequently, thedx22y2-wave
component of the order parameter is suppressed we
where thedxy-wave component is affected most~and vice
versa!. Similarly, the interface coupling coefficients depe
on the internal structure of the pair wave function. If w
denote the angle between the interface normal vector and
crystalline x axis by q, they are J̃ i j5J0f i(qB) f j (qA),
where the functions have the generic angular struc
f 1(q)5cos(2q) and f 2(q)5sin(2q) which indicate the in-
ternal phase structure of the two pair wave functions.

The variation ofF with respect toh i* and A yield the
following Ginzburg-Landau equations:

KiD
2h i5a ih i1b i uh i u2h i1guh32 i u2h i12dh32 i

2 h i*

2~21! i K̃Bzh32 i ~14!

and

k2¹3~¹3A!5k2j5 (
i51,2

Ki~ Imh i*¹h i2uh i u2A!

1K̃¹3~ ẑImh1h2* !. ~15!

The termFI generates the boundary condition at the int
face with normal vectorsnA,B,

Kin
A
•S ¹2 i

2p

F D Ah i
A5gi

Ah i
A2

F0

2pc (
j51,2

Ji jh j
B,

Kin
B
•S ¹2 i

2p

F D Ah i
B5gi

Bh i
B2

F0

2pc (
j51,2

Ji jh j
A . ~16!
-
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The imaginary part is related to the expression for the sup
current j perpendicular to the interface and leads to the
sephson current@Eq. ~3!# with

Jci j5Ji j uh i
Buuh j

Au, ~17!

where the order parameter values are taken at the interf
Before discussing the interface problem, we consider

properties of the order parameter in the bulk. We assume
Tc1.Tc2 such that for temperatures immediately belowTc1
only the componenth1 becomes nonzero, whileh2 remains
zero. The instability condition for the occurrence ofh2 is
given by

a2~T* !1~g22udu!uh1~T* !u250, ~18!

defining the transition temperatureT*,Tc1. This second
transition leads to a state where bothh1 andh2 are nonzero.
The relative phase,u5f12f2, depends on the sign ofd.
For d,0 the combination is real,u50 or p and for d.0
u56p/2. The latter state breaks time-reversal symme
For the following we will assume thatd.0. However, the
other parameters shall be chosen so thatT*<0 in order to
avoid the second transition as it is not observed in the
periment. We also require thatg.2d so that the two order
parameter components tend to suppress each other.

D. Order parameter

We consider now an infinitely extended interface. In th
case the order parameter and the vector potential only
pend on the coordinate perpendicular to the interface. W
certain simplifications a qualitative discussion is possible
we showed in Ref. 25. We would like to present here
analytical study and then substantiate the result by a c
plete numerical treatment.

The basic concept leading to an unconventional interf
state is the following. Pair breaking at the interface redu
the h1 component locally. It recovers, however, over a c
herence lengthj5AK1 /ua1u. It is easy to see from Eq.~18!
that a local reduction ofh1 leads to a local enhancement
T* ~note,g.2d). Consequently, theh2 component can ap
pear at the interface at sufficiently low temperatu
(T,T8), but it decays exponentially towards the bulk. T
extension ofh2 diverges whenT approaches the bulkT* .
Thereforeh2 does not possess the same length scale ash1 in
general. Becaused.0, the combination ofh1 and h2 is
complexuÞ0 or p.

Let us now consider a simplified analytic solution of th
Ginzburg-Landau equations for an interface whose nor
vector is parallel to thex axis. We neglect the vector poten
tial and the coupling between the two sides (J̃ i j50). A
qualitatively good view of the interface state is obtained
the limit where the length scalesj i of the order parameter
are very different, i.e., forj1!j2. At the interface,h1 be-
haves approximately like

h1~x!5h10tanhS uxu1x0
j1

D ~19!
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as can be found by solving the Ginzburg-Landau equa
with h250. The boundary condition at the interface det
minesx0 andh105Aua* u/2b1 is the bulk value of the orde
parameter. Fixingh1(x) the equation forh2 becomes

K2]x
2h25@a21gh1

2~x!#h212dh1
2~x!h2*1b2uh2u2h2

1g2h2d~x!. ~20!

Following our assumption about the coherence lengths,
approximate the spatial dependence ofh1(x) by ad function
in this equation. It is easy to see thath2 is purely imaginary,
h25 iu(x) and satisfies the equation

K2]x
2u5a* u1b2u

31@g22~g22d!h10
2 sj1#d~x!.

~21!

The factors is of the order 1. The solution is a hyperbol
function,

u~x!5A2a*

b2

1

sinh@~ uxu1 x̃0!/j2#
, ~22!

where j2
25K2 /a* . We use the boundary condition at th

interface to find the shiftx̃0 (.0),

cothS x̃0
j2

D 5
~g22d!h10

2 j2
2s2g2j2

2K2
. ~23!

Setting the right-hand side equal one determines the cri
temperatureT8 for the occurrence ofh2. At this point
x̃05`. Note thatT8.T* and thath2 extends into the whole
superconductor when we approachT5T* . In the range
T*,T,T8 it decays exponentially on the lengthj2. Our
numerical results below will show that this approximate s
lution describes the interface state well apart from the f
that we do not resolve here variations on length scales
j1.

For nonzeroJ̃ i j we can determine the phase shifta. In
this symmetric formulation of the interface problem t
phase shifta would be strictly 0 orp even if the state is a
complex combination ofh1 and h2, i.e., it breaks time-
reversal symmetry. We find immediately that Eqs.~6! and
~17! lead toa50 orp, becauseJ̃125 J̃21. A condition suf-
ficient for a different from these trivial values would b
different coefficientsgi on both sides of the interface, whic
means, for example, that the crystal orientation on sideA
andB is different ~as it is for a grain boundary!. It can be
shown that the violation of ‘‘parity,’’ the mirror symmetry
due to reflection at the interface, is necessary~see Ref. 27!.

E. Magnetic properties

The interface state is an inhomogeneousT-violating su-
perconducting state for temperatures belowT8. It shows un-
usual magnetic features which originate from an orbital m
netic degree of freedom of the Cooper pairs. Remember
the two pairing components we consider both belong to
d-wave channel. If they are combined with a relative pha
different from u50,p, then the pairing state has a comp
n
-

e

al

-
t
of

-
at
e
e

nent belonging to the spherical harmonicY2,62( k̂)
}(kx6 iky). This Cooper pair state has an orbital magne
momentM ẑ parallel to thez axis. The moment generate
circular currents in thex-y-plane which cancel in the uni
form superconducting phase. However, in the inhomo
neous region at the interface they can appear as curre
j5¹3 ẑM (r ). These currents are included within our ph
nomenological description.

Let us discuss the magnetic part of the Ginzburg-Land
~GL! equation, Eq.~14!. Due to the translational invarianc
parallel to the interface, no currents are allowed to flo
through the interface in the energetically lowest state~other-
wise, the Josephson energy would not be minimize!.
Through the equation for theAx component, we find that this
requiresAx50. TheAy component then satisfies the follow
ing equation:

]x
2Ay2l22Ay52

K̃

k2 ]xh1h2 , ~24!

wherel225K2h10
2 /k2 is the London penetration depth. Th

right-hand side denotes the current due to the magnetic
ment, which is proportional toi ẑ(h1*h22h1h2* ). This cur-
rent j y flows parallel to the interface. We do not discuss t
influence of the vector potential on the order parameter h
Inserting the solution found above for the interface state,
find

j y52
K̃h10

k2 A2a*

b2
F sinh@~ uxu1 x̃0!/j2#

cosh2@~ uxu1 x̃0!/j2#

uxu
xj2

2
s]xd~x!

sinh~ x̃0 /j2!
G . ~25!

This current distribution is odd under reflection through t
interface. Starting at zero on the interface, it rises quic
and has a maximium at a distance of aboutj1. Then it
changes sign and decays on the length scalej2. The mag-
netic field generated by this current has a narrow peak
width j1 on the interface followed by two wings of opposi
sign. Within our approach we obtain

Bz5
K̃h10

k2 @u~x!2sd~x!#, ~26!

where we neglect the screening effects due to the sec
term on the left-hand side of Eq.~24!. Because the field in
Eq. ~26! leads to a nonzero magnetic flux, screening curre
are induced which yield a compensating diamagnetic fi
with the length scalel. This screening effect can be rath
small if the two contributions in Eq.~26! nearly cancel each
other. The net magnetization vanishes exactly, because in
interior of a superconductor phase coherence allows for a
magnetic flux only if there is a winding of the order param
eter phase.
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F. Numerical solution for the infinite interface state

Finally we solve the complete set of coupled GL equa
tions for the uniform interface in order to show that ou
analytic treatment gives the correct qualitative behavior. W
choose the coherence lengthj15AK1 /ua1u as the unit length
and the London penetration depth about 10 timesj1. For the
coefficients we use values of order unity:a85b25b15K2

5K151, K̃50.1,g51, andd51/4. The transition tempera-
ture of thedxy component isTc250.4Tc1. For the space
coordinate we introduce a fine mesh and the interface
taken as single point. For simplicity we consider the sym
metric situation by representing the interface via a local su
pression ofTc1: g1uh1u2d(x).

The solution forg154, g250 is shown in Fig. 3. The
shapes of the order parameters~top! are in good qualitative
agreement with the analytic result. We see that the leng
scalesj1 andj2 are different and that the latter is larger than
the former. The relative phaseu between the two compo-
nents is constant,u5p/2. The magnetic field has a narrow
peak with a width of the orderj1 on the interface~bottom!.
Towards the bulk, the field changes sign and decays on t
lengthl (57j1). The positive and negative parts of the field
distribution cancel each other such that no net magnetizati
is present, as anticipated above.

FIG. 3. Numerical solution of the infinite interface state. Top
The modulus of the two order parameter components. The relati
phase is constantp/2. Bottom: Thez component of the magnetic
field ~multiplied by k2). In these units, j151 and l57
(k2549). The magnetic field exhibits variations on the length
scalesj1 and j2 in the immediate vicinity of the interface, and is
screened away from the interface on the length scalel.
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G. Numerical solution for the grain boundary corner

In Sec. II we showed that at the border between two di
ferent grain boundary segments withT-violating states a vor-
tex with fractional flux can appear. We would like to dem
onstrate this fact here by solving the complete GL proble
for a system with a grain boundary which has a corner. F
simplicity we use a right angle corner which matches we
with our choice for the two-dimensional~2D! square lattice
mesh. A variable grid has been introduced to enhance t
accuracy in the vicinity of the interface where the order pa
rameter and magnetic field have the largest variations.
steepest descent~relaxation! method was used to minimize
the GL free energy with open boundary conditions at th
borders of the mesh.

The coefficients of the GL free energy are the same
both grains~see caption of Fig. 5!. However, the interface
terms for the grain boundary are different for the two seg
ments separated by the corner. The geometry of the gra
boundary configuration is shown in Fig. 4. TheA and B
superconducting regions are separated by the grain bou
ary, represented as a thick black line. For the segment of t
interface parallel to thexA (yA) axis we chooseJ̃1150.1,
J̃1252(1)0.2, J̃2152(1)0.2, andJ̃2250.1. In regionA,
g152.5 andg250. In regionB, g155 andg250. As dis-
cussed above, the difference in these boundary conditio
yields different phase shiftsa in the two segments. For the
parameters chosen, the phase shifts are equal in magnit
and opposite in sign in the two segments, as expected fro
Eqs.~6! and ~7!.

In Fig. 5 we show the magnetic field distribution around
the corner which has a pronounced peak indicating the po

ve

FIG. 4. Grain boundary configuration used in the calculation o
fractional flux. The grain boundary is indicated by the thick line
TheA region andB region represent different crystal grains, char
acterized by their respective principal axis vectors as shown. T
normal vectors at each interface are also shown. In the numeri
calculation, the density of mesh points is greatest near the gra
boundaries.
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tion of the vortex. The flux is fractional of the siz
F'20.15F0. Along the grain boundary the small field pea
occurs which we found already for the uniform bounda
case. This peak is distorted somewhat by the Josephson
pling of the order parameters across the interface. We
see a slight difference in the decay of the magnetic fi
towards the grains and along the grain boundaries. The g
boundaries are usually good contacts so that the magn
flux at the corner is well defined. The sign and magnitude
the flux can be manipulated by tuninggi andJi j . Setting all
theJi j to 0 eliminates the flux, of course. Switching the sig
of J12 andJ21 while leavingJ11 andJ22 unchanged reverse
the sign of the magnetic flux, as expected from Eqs.~6! and
~7!. Interestingly, by choosing theJi j and gi appropriately
we can favor the formation of a domain wall along the gra
boundary at one or both interfaces. The magnetic field
tribution along the grain boundary in this case becomes
tisymmetric with respect to reflection across the bounda
The parameters chosen for Fig. 5 do not lead to such a
main wall on either interface.

FIG. 5. The magnetic field distribution at this grain bounda
corner. Top: contour plot. Lighter~darker! shades indicate more
positive ~negative! magnetic fields. Bottom: surface plot o
2k2Bz . The parameters used arej151, k57, K15K25a15b1

5b25g51, d51/4, K̃50.1, andk57. For the segment of the

interface parallel to thexA (yA) axis, J̃115 J̃2250.1, J̃125 J̃12
52(1)0.2. In regionA, g152.5 andg250. In regionB, g155
andg250. The enclosed flux isF'20.15F0.
ou-
so
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tic
f
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The grain boundaries themselves are naturally good c
duits for magnetic flux. In the case shown in Fig. 5, negat
magnetic flux pours into the central dip inBz along the in-
terface and drags down the side lobes~Fig. 3, bottom!. In
general, we expect the grain boundary to pin bulk vortic
(F56nF0) on top of the fractional vortices due to th
tendency to grab magnetic flux. This is consistent with
experimental observations of Kirtley and co-workers.16

III. CONCLUSIONS

We have studied the properties of grain boundaries
d-wave superconductors. We have demonstrated how
can support a superconducting state with broken tim
reversal symmetry. We established a connection betw
such a state and the existence of vortices carrying a fracti
flux. The key to this connection lies in the observation tha
T-violating state at the grain boundary can lead to a n
trivial phase shift in the Josephson current-phase relat
Vortices occur at locations where this phase shift chang
Corners of grain boundaries are important places for s
vortices, because they separate segments with different p
erties.

Our results compare qualitatively well with the expe
mental observation by Kirtley and co-workers.16 At present it
is, however, unclear whether we should consider these
perimental results as evidence for fractional vortices a
consequently, for the presence of aT-violating superconduct-
ing phase. Obviously, if the length scale of the magnetic fi
along the grain boundary is comparable with the dista
between the corners or the vortices, then it is impossible
associate a definite flux with each vortex separately. In or
to draw a firm conclusion, this point has to be clarified e
perimentally.

The conditions for the observation of this effect are bes
the crystal orientations of the grains are chosen so that
grain boundary faces a lobe of thedx22y2-wave pair wave
function on one side and nearly a node on the other. As
pointed out in Sec. III, the latter boundary provides a p
ticularly good situation for pair breaking of th
dx22y2-wave component, which is an important condition f
our scenario. Similar conclusions where found with altern
tive mechanisms.28,29Unfortunately, grain boundaries of thi
type are intrinsically difficult to produce as homogeneo
interfaces and are often hampered by irregularities.

In conclusion we would like to emphasize that the effe
discussed here is a consequence of the exotic nature o
superconducting order parameter. No analoguous effec
possible in the case of a conventionals-wave supercon-
ductor, because grain boundaries have little effect on
pairing type.
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