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We discuss the problem of broken time-reversal symmetry near grain boundaried-ivaze supercon-
ductor based on a Ginzburg-Landau theory. It is shown that such a state can lead to fractional vortices on the
grain boundary. Both analytical and numerical results show the structure of this type of state.
[S0163-18207)03422-X]

I. INTRODUCTION which behaves as(T)—\(0)=T in contrast to the conven-
tional exponential lawg:exp(—A/kgT).6 This result strongly
During the last few years the understanding of the microsuggests that there are nodes in the gap and the pair wave
scopic properties of the high-temperature superconductorfginctions, which are compatible with both extendediave
(HTSC's) has gradually improvet While for a long time andd wave as well as with a very anisotropewave state.
studies have focused on the exotic normal state properties, Another class of experiments is aimed at the direct obser-
recently the interest turned more towards the superconductation of the intrinsic phase structure, the sign changes of the
ing phase, in particular, the symmetry of the order parametepair wave function. The Josephson effect as a phase coherent
For a tetragonal system the list of possible order parametesoupling of the order parameters of two superconductors
symmetries is rather lorfgHowever, the recent debate has provides the natural means for this purpéseArrangements
essentially concentrated only on two symmetries of the Cooeonnecting YBCO single crystals at two perpendicular sur-
per pair wave function.One is due to ‘$-wave” pairing, the  faces to a standastwave superconductor to form a loop for
most symmetric pairing channel. The other igl-tvave” a SQUID have been used to detect a phase difference be-
pairing, where the pair wave functidn/(k) o cosk,—cosk] tween thex andy directions of the pair wave functioff.The
changes sign under 90° rotations in the basal plane of thexperiments observe with good precision a phase difference
tetragonal crystal lattice. As a consequence, the latter wavef 7 compatible with thed,2_,2-wave order parameter.
function has nodes along th&10] direction. A possible al- The intrinsic 7w phase shift in this configuration leads to
ternative to the standasiwave was presented with the “ex- frustration effects which manifest themselves in the form of
tendeds-wave” pairing state[ (k)= cok+cosk ] which  a spontaneous supercurrent flowing around the loop. The su-
also has nodes in the first Brillouin zone, but is completelypercurrent generates a fldx= = ® /2 where®,=hc/2e is
symmetric under all operations of the tetragonal point groughe standard flux quantum. This property has recently been
D, .* For the orthorhombically distorted system, theand  detected and the flux was measured with very high
d-wave channels are not distinguished by symmetry. Neveraccuracy'!
theless, we expect that basic properties of the pair wave On the other hand, several other experiments based on the
function such as the existence of sign changes and nodes atesephson effect seem at present to contradict the presence
retained if they were present in the tetragonal Case. of a d-wave order parameter. Chaudhari and Lin analyzed
A variety of experiments have been performed in order tahe Josephson current through a grain boundary in the basal
distinguish among the order parameter symmetries. Onplane with a special geometry giving a basal plane contact
class of experiments considers the properties of the quasipabetween two segments of a YBCO fifh.They demon-
ticle excitations in the superconducting state. The existencstrated that various properties might support an order param-
of nodes in the pair wave function implies that there are als@ter withs-wave rather than simpld-wave symmetry. The
nodes in the excitation gap. Low-lying excitations at theinterpretation of this experiment, however, has recently been
nodes modify the low-temperature behavior of certain thercontested by Millis In contrast, Sun and co-workers inves-
modynamic properties compared with that of a supercontigated Josephson tunneling between a standamdve su-
ductor which opens a complete gap. The clearest sign of sugherconductofPb) and YBCO, where the tunneling direction
an effect was observed for the London penetration deptis the ¢ axis of YBCO* These data so far could not be
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explained consistently within the picture of pudevave su-
perconductivity. Therefore, the simpiewave scenario may
not be sufficient for a complete understanding of all experi-
ments introduced her@.

Indeed a recent experiment by Kirtley and co-workers
suggests that the situation is more complicated than might be
naively expected for a-wave superconductdf. Their ex-
perimental arrangement consists of two segments-axis
textured YBCO films where one is a triangular inclusion
within the other. The basal plane crystalline axes are mis-
aligned with one another. The boundary of the triangle acts
as junction between the two segments. We will show in Sec.
Il that if YBCO were ad-wave superconductor we would
expect vortices to appear spontaneously at two of the three
corners of the triangle each containing a fluxzo® /2. The B
experiment does find spontaneous vortices at corners, but
these vortices have fluxes different framd /2 (n: intege).
In addition, flux appears at all three corners and occasionally , . |
also on an edge of the triangle. We will argue in Sec. Il that 0
this can be explained by a superconducting state which vio-
lates time-reversal symmet® Therefore, the simple picture
of a single-componend,._,2-wave order parameter might -
not apply here.

7 violation is not uncommon in the field of unconven-
tional superconductivity. A large number of superconducting FIG. 1. Triangular grain boundary indrwave superconductor:
states classified by symmetry indeed break time-reversah) The edges act as Josephson junctions with phase shifts, 0 or
symmetry>!’ In the complex superconducting phase dia-; (b) the phasep tries to be pinned at phase shift valueslicated
grams of the heavy fermion compounds, YPand by dashed lingsand change in an antikinkink) of width A ; at the
U,;_,Th,Be;3 (0.02<x=<0.045) states appear which prob- corners 2 and 3. There are several possible solutiong fdue to
ably break time-reversal symmetry. It was shown theoretithe 27 periodicity of the phase. The solution with an antikink and
cally that such superconducting states can generate spon@_kink leads to an overall phase winding 0 around the triangle. An
neous supercurrents and magnetic field distributions in th&duivalent solution with two kinkgalso shown would give 2w
vicinity of lattice defects and surfacé$In both compounds ~ Winding.
the occurrence of such local fields in connection with the
superconducting phase transition has been detected by mea@nstrate the presence of nodes, as mentioned dbove.

b)

of muon spin rotation £SR) measurements.For both com- In this paper we will show that there is no conflict be-
pounds, consistent phenomenological theories for this effedwveen the interpretation of the experiment by Kirtley and
have been formulated. co-workers® which could indicateZ violation and the other

In the field of HTSC, various theories and mechanismsexperiments which obviously rule out the existence of such a
leading toZ-violating superconducting states have been prostate’> We argue that the latter experiments address bulk
posed. The effective two-dimensionality of the cuprates mayproperties, while the former one considers effects in connec-
serve as a basis for particles with fractional statistics, thdion with interfaces and grain boundaries. The seeming con-
so-called anyon#’ Laughlin showed that the resulting super- flict is resolved when we assume tiaviolation occurs only
conducting state has a composite order parameter of the fortacally in the immediate vicinity of an interface. The bulk,
dy2_,2+iedy, which obviously breaks time-reversal on the other hand, may only have a single-component order
symmetry?! ~ Alternative mechanisms can lead to parameter, presumably withwave symmetry, but we can-
T-violating states with the symmetrys+idxz,yz.22 At not rule out other symmetries. As we will discuss below, the
present there is no indication beyond any doubt that suckxtension of theZ-violating state towards the bulk is rather
states are realized in the HTSEON the contrary, recent short, of the order of coherence length
experiments demonstrate that at least at the onset of super-
conductivity (T~T) the critical behavior of the London s £t INTERPRETATION OF THE EXPERIMENT
penetration depth is that of a single-component order param-
eter belonging to the universality class of the€Y-spin Let us now examine the properties of an arrangement
model?* Only below an additional superconducting transi- similar to the one used by Kirtley and co-worké?PsAs il-
tion at lower temperature could the compos#iolating lustrated in Fig. (8), it is a superconducting film of triangu-
order parameter appear. No signs of such an additional phat& shape as an inclusion in another superconducting film,
transition have yet been observed in the thermodynamiboth of the same material. The crystal symmetry is tetragonal
properties. In addition, it should be noted that each of thefor simplicity we neglect here the orthorhombic distortion
7T-violating states mentioned above lacks gap nodes. Thipresentin many HTSCJjsand the film isc-axis textured. The
fact would also lead to inconsistency with low-temperaturebasal plane axe®f the inclusion and the surroundingre
measurements of the London penetration depth which denmisoriented with each other. The interfacdse edges of the
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triangle, each of length) are weak links between the inner (% +3L)=¢(X)+27n (n, intege), which requires that

and the outer film. For simplicity we will treat them as Jo- the total flux integrated over the whole triangle interface be
sephson contacts so that the standard sinusoidal currern integer multiple of®,. Of course, the triangle is sur-

phase relation applies. rounded by a superconductor whose single-valued order pa-
rameter allows phase windings of#2 only. This “sum
A. Pure d-wave symmetry rule” implies that half-integer flux lines can only appear at

Let us analyze the properties of this arrangement unddwo of the three corners. Because the flux on each corner can
the assumption that the superconductor heredsasave su- c_)nly vary byndo, at corner 2 and 3 there is always a flux
perconductor with an order parameter symmetry as the pa||ﬂe _V_‘"th a flux of at Iea_st(I)O/ 2‘. Larger _fluxes_ could be
wave function y(k) = cosk,—cosk,. This means that we stabilized by an external field. This result is equivalent to the
should carefully consider the intrinsic phase structure of thé"€ presented n Refs. 8 and 13'. .
order parameter when deriving the Josephson current-pha; eThe comparison of our “experlment” W'th the one per-
relation. The phase difference between the positive and neg%c—’rmed in reality shows that the simple picture we tried to
tive lobes of the pair wave function is. If dominant lobes 9@V here d60es not explain the measurement by Kirtley and
of the same sign face each other at an interface, the Corré:_o—workersl. They found fluxes at all corners, all of which

sponding Josephson current-phase relation has the stand&§ clearly smaller thad,/2. We call themractional vor-

form and the interface energy is minimized by a vanishingt'ces In all samples checked, the sum rule constraining the

difference the order parameter phag@gunction. However, tOt"’.‘l flux on the boundary to an integer multiple @ was
if the facing lobes have opposite sign, an additional phasgatisfied with good accuracy.

7 enters and the energy is minimized by a phase differencg[e Inlthe !{_ntroducthn we claimed tZat tt_he eﬁstencetr?fbfralf-
of 7 (7 junction).9 We have ional vortices requires a superconducting phase wi roken

time-reversal symmetry. We give here a brief argument for
this statement. Consider one of the corners of the triafayle
cof p— a), (1) a similar structurgwith a vortex whose flux isp. Apply the
time-reversal operation to this system. This reverses the flux
wherea=0 for a 0 junction andr for a 7 junction, andp is (P — —®). If the superconductor is otherwise invariant un-
the phase difference through the interface. In Fi@) ve  der this operation T invariand, the difference betweed
assume that the edge segments 1-2 and 3-1 can be labeledaasl —® must be an integer multiple @b, as in every stan-
a  junction and segment 2-3a 0 junction. This definition dard superconductor: ®=—-®+nd,. Therefore, P
is not unique. A redefinition of the order parameter phase i{=n®/2) is an integer or half-integer quantum &, as
one of the two superconductorg{~ ¢+ 7) would reverse seen above. Consequently the observation of a vortex with a
this labeling. flux different from those values can only mean that the su-
We now map all segments of the interface onto a oneperconducting state is not invariant under the time-reversal
dimensional axis with periodic boundary conditions for theoperatior?’

coordinatex as shown in Fig. () (X +3L=X). Here we

can study the spatial variation of along X by using the B. Josephson effect for al-violating interface
sine-Gordon equation

lPo

Ey(eo)=— oC

A 7T-violating superconducting order parameter consists of

2 N2 Y at least two componen{®.g.,d,2_,2+id,, or s+id,2_,2).

Fe=hyTsine—alx)], @ We therefore repstrict ou?selilesy to txhye case Xof ya) two-
where both the Josephson penetration depttffomponent order parameter with a generic pair wave func-
\;=(¢oc/8m2dI) Y2 (d, magnetic width of the interfage tion ¥(K)=7,1(K) + 7,¢,(k). Heren, and 7, are the two
and the intrinsic phase shift are assumed to be constant complex order parameters with the symmetry properties of
within each segmeniisee Fig. 1)].%° For good junctions the corresponding pair wavefunctions. Time-reversal trans-
(A y<L), ¢ tends to be pinned to the value in each seg- forms the order parameter to its complex conjugate
ment of the interface, but has to change at the boundaries7;— 7}). If time-reversal symmetry is conserved, then
where « is discontinuous. The solution of E¢2) shows (71,7,) is up to a common phase factor equal tg (75 )
kinks at these boundaries with an extensiom pfFig. 1(b)].  or %,/75,=7i/7%5 . Otherwise, the order parameter breaks
Note that the two kinks at 2 and 3 can be either “kink” and time-reversal symmetry and the state is at least twofold de-
“antikink” or both “kinks” as a consequence of the period- generate, since bothy(, 7,) and (75 ,m5) have the same
icity of Eq. (2). Other types of kink solutions are energeti- free energy. We will consider here the standard situation

cally more expensive. where 71/7, is imaginary: ¢;—¢,=*m2 [
The spatial variation ofp induces a local magnetic flux =|n;lexpi)].
density on the interface given by the expressigfx) For an interface between two superconductofs and

= ® o957 ¢(X)/27 Therefore, each kink corresponds to a lo- B) both with order parametersg®, 5®)) the Josephson

cal flux line or vortex with a magnetic flux current phase relation has the form
O=Dy(p,— )27, whereg, ;) denotes the values of far
enough to the righfleft) of the kink such that; ¢ is essen-
tially zero. Both kinks in Fig. (b) indicate vortices with

®O=+dy/2. Due to the periodicity ofx we find that

2

3= 2 Jaijsin(¢P— ), 3
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whereJ is the supercurrent density at a given point on the
interface. There are four different combinations for the phase

coherent coupling and;; denotes the coupling strength be- - O -
tween the components® on sideB and with " on side / e S
A [nf=[n{|exp(#)] with j=1,2 andu=A,B). The en- O/ .
ergy for a uniform interface of aredis given by oY ; | :
1 2 3 1
®oS é B A
Ey=- ﬁi,jz:l JC”COS{ ¢ ¢j )- “) FIG. 2. Phasep for a triangle with7-violating interface states.

. . . . . The phase shiftgy; are indicated by the dashed line. follows
For SITpIICIBty we restrict ourselves to the situation wherethese phase shifts by creatitanti-kinks at all three corners. The
d1— Py= ¢ — ¢, =m/2 is fixed on both sides of the inter- kink heights are different from a multiple ef in general and lead
face.(This phase difference can be different in the vicinity of to fractional fluxes.
the junction without changing the conclusion we will draw

here for the simplified caseThe current density and the As mentioned earlier, the assumption df-aiolating bulk
interface energy density;, depend only on one phase differ- superconducting state is incompatible with a number of ex-
ence through the interface, say= qﬁf—(;b’f. periments. It is, however, possible thatviolation occurs

only in the vicinity of the interfacégrain boundary This is
enough to generate fractional vortices at grain boundary cor-
ners. In this section we would like to discuss such an inter-
face state based on a Ginzburg-Landau theory.

J(@)=Tsin(p—a),

®,J.S

0 —~
alp)=—-—_Code—a) (5) C. Ginzburg-Landau theory
with We use a Ginzburg-Landau free energy functional of two
complex order parametetg and 7,. The first order param-
_ eter shall be the dominant one corresponding to the
Je=V(Ie11+ Ie22)°+ (Je1o— o) 2 dy2_,2-wave pairing state. For the second we choose the
dy,-wave pairing state. Thus the pairing state is a combina-
tion of the two components
tar(E)z Jch_Jc21 (6)
Jeart Jeoz”
The phase shift corresponds te minimizing the interface '/’(k):ig{z 1 (K) = 7141 (K) + m2p2(K) 8)

energy. In this sense the correct solution Zomust be cho-

sen in Eq.(6).2 Obviously, @ can assume any value and With

depends only on the relative magnitude of the different cou-

pling components which parameterize here the interface d(K)=k2—k2 and g,(k) =Kk, . 9)
properties. It is easy to follow the same consideration for the ! x 2 i

T-invariant combination ofy; and 7, where we find thatr The free energy functional must be invariant under the

is strictly either O or. _ _ symmetry transformations of the crystal gro(ip this case
Let us apply this result to the triangle studied above, aStetragonal,Dyy,), time reversal, and (1)-gauge symmetry.

suming7Z-violating superconducting states. Each of the i”ter'Keeping terms up to fourth order in the expansion with re-

face segments as a uniform junction is characterized by 8pect to the order parameter, we have

phase shifte (0<a< ). Analyzing Eq.(2) for this situa-

tion we find that there are now kinks gfat all three corners

connecting the different values afin each segmeriFig. 2). F= J d2x| 7+ Fro+ > fi}, (10)
This leads to vortices at these corners whose fluxes are given i=12
b
y where
o=y (7) 8
=®, :
2m ~7:i:ai|77i|2+EI|77i|4+Ki|D77i|21 (12)

with @, as the values of on the segments on riglieft)

of the corner. It is obvious that in this case the ftbxneed

not be®, or ®,/2. Thus, these kinks correspond to what we
described as fractional vortices above. Note, that also here = * _ *
the sum of all fluxes must add up to an integer multiple of +KI(Dyx71)* (Dy72) = (Dy71)* (Dy72) +C.C,
®, because of the periodic boundary condtions gor (12

Fro= Y m1l? mal 2+ 8( 95 m3 2+ c.c) + k3(V X A)?



55 FRACTIONAL VORTICES ON GRAIN BOUNDARIES: ... 15 243

o sio The imaginary part is related to the expression for the super-
,212 EAB HE currentj perpendicular to the interface and leads to the Jo-
mheASEA sephson currefEq. (3)] with

Fi

Do &1 B, *xA ;
_%j;’Z JijRen; 7t | d(interface.  (13)

Jcij:Jij|77iB||77}L\|1 (17)

We work in units wherd®=V —i2wA/® (A, vector po-  where the order parameter values are taken at the interface.
tentia). The coefficients are all phenomenological param- Before discussing the interface problem, we consider the
eters which contain the relevant information of microscopicproperties of the order parameter in the bulk. We assume that
origin. The second-order coefficients depend on the temperar_, >T_, such that for temperatures immediately bel®y
ture in the usual waya;=a’(T—T;) whereT,; is the bare  only the component;; becomes nonzero, whilg, remains

transition temperature of]. The interface free energff,  zero. The instability condition for the occurrence 9§ is
includes the pair breaking effect in the first term and thegjven by

Josephson junction energy in the second tefnote,
J1,=J,1). The superscript® and A denote the different
sides of the interface, or “outside” and “inside” if the in-
terface is a closed curve.

ap(T*) +(y=2|8)| 72(T*)|*=0, (18

defining the transition temperatuf8 <T.,. This second

th It. '? V\;mth ?otmg thalt. tge_ frlee energty. expgqnsmtr;] WIthOUttransition leads to a state where boathand 5, are nonzero.
e interface term is cylindrical symmetric withas the ro- "o o4ive phased= ¢, — ¢, depends on the sign of.

tation axis, although the system has only tetragonal SYMME= " s 0 the combination is real=0 or « and for 5>0

try. Anisotropy enters via the interface term. The coefﬁmentse: + /2. The latter state breaks time-reversal symmetry.

gi and J;; depend in general on the angle between crystakor the following we will assume thas>0. However, the
axes and the interface. Pair breaking for #he_yo-wave  gther parameters shall be chosen so a0 in order to
(dx,-wave) phase is most effective when the interface nor-ayoid the second transition as it is not observed in the ex-
mal vector points along thi, 1] ([1,0)) direction, i.e., along  periment. We also require that>246 so that the two order

the nodes of the pair wave functiohOn the other hand, pair parameter components tend to suppress each other.
breaking is weaker when the lobes of the pair wave functions

point towards the interface. Consequently, the >-wave
component of the order parameter is suppressed weakly
where thed,,-wave component is affected mo&nd vice We consider now an infinitely extended interface. In this
versa. Similarly, the interface coupling coefficients dependcase the order parameter and the vector potential only de-
on the internal structure of the pair wave function. If we pend on the coordinate perpendicular to the interface. With
denote the angle between the interface normal vector and theertain simplifications a qualitative discussion is possible as
crystalline x axis by 9, they arejij:JOfi(ﬂB)fj(ﬁA), we showed in Ref. 25. We would like to present here an
where the functions have the generic angular structur@nalytical study and then substantiate the result by a com-
f1(9) =cos(29) and f,(9)=sin(29) which indicate the in- Plete numerical treatment.

The variation of F with respect to* and A vield the state is the following. Pair breaking at the interface reduces
I

the »; component locally. It recovers, however, over a co-
herence lengtlf= K, /|a4]. It is easy to see from Eq18)
that a local reduction of;; leads to a local enhancement of

D. Order parameter

following Ginzburg-Landau equations:

2 — 2 2 2 *
KD =aimi+ Bil mil*mi+ Y| mail*mi+ 26w 7] T* (note,y>24). Consequently, the;, component can ap-
—(-1)RB,75_, (14  Pear at the interface at sufficiently low temperature
z73- (T<T'), but it decays exponentially towards the bulk. The
and extension ofz, diverges wherl approaches the bulk*.

Thereforezn, does not possess the same length scalg, as
general. Becausé>0, the combination ofp, and #, is

K2VX(VXA)= k%= > Ki(Imy} V=] 7|?A) complex9+0 or 7.
i=1,2 . . . . .
Let us now consider a simplified analytic solution of the
+RVX (Zimpy5%). (15 ~ Ginzburg-Landau equations for an interface whose normal

B . vector is parallel to the axis. We neglect the vector poten-
The term 7, generates the boundary condition at the interi5| and the coupling between the two sideiijFO). A

: AB ang . . ; A
face with normal vectors™", qualitatively good view of the interface state is obtained in
the limit where the length scales of the order parameters

KA V_i2_7-r Ar;A=gA1;A— 0 1 7}-B are very diffefent, i.e.! fog,<&,. At the interface,n, be-
i ® PSR e haves approximately like
27 P X[ +Xo
B v=iZZ| ApB=qgBsB- 2 A X)= tan)'( ) 19
Kin (V |®)Ar;, gt chj;’ZJ,Jn,. (16) 71(X) = 714 £ (19
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as can be found by solving the. .Ginzburg-l_.andau equation ant belonging to the spherical harmonilt’zrz(lz)
with 7,=0. The boundary condition at the interface deter—x(kxiiky)_ This Cooper pair state has an orbital magnetic
minesxq and 7,0= V| @* /28, is the bulk value of the order

g . momentMz parallel to thez axis. The moment generates
parameter. Fixingy,(x) the equation forp, becomes

circular currents in the-y-plane which cancel in the uni-
) ) ) ) form superconducting phase. However, in the inhomoge-
Kadymo=[az+ yn1(X) 112+ 2871(X) 73 + B2l 72| * 2 neous region at the interface they can appear as currents,

+057,8(X). (20) j=V><2M(r_). These .cu.rrents are included within our phe-
nomenological description.
Following our assumption about the coherence lengths, we Let us discuss the magnetic part of the Ginzburg-Landau
approximate the spatial dependenceygfx) by aé function  (GL) equation, Eq(14). Due to the translational invariance
in this equation. It is easy to see that is purely imaginary, parallel to the interface, no currents are allowed to flow

n,=iu(X) and satisfies the equation through the interface in the energetically lowest statber-
wise, the Josephson energy would not be minimized
Kod2u= a* U+ B-u+1as— (v—28) 2 5(X). Through the equation for th&, component, we find that this
20 P2 [g2= (v ) 71656110(%) (21) requiresA,=0. TheA, component then satisfies the follow-
ing equation:
The factors is of the order 1. The solution is a hyperbolic
function,
2 -2 R
2a* 1 KAy=N A= =3 dxmma, (29)
u(x)= (22)

B2 sinH (|x|+Xo)/ &)
X+ xo) ¢ where\ ~2=K, 72, «? is the London penetration depth. The

where £=K,/a*. We use the boundary condition at the right-hand side denotes the current due to the magnetic mo-

interface to find the shifk, (>0), ment, which is proportional toz( 7% 7,— 7,7%). This cur-
rentj, flows parallel to the interface. We do not discuss the
3 —28) n2£25— mfluer_wce of the ve_ctor potential on the ord_er parameter here.
otr( _0) _(r=29) miof 9252. (23)  Inserting the solution found above for the interface state, we
& 2K find

Setting the right-hand side equal one determines the critical
temperatureT’ for the occurrence ofy,. At this point

Xo=. Note thafT’ >T* and thaty, extends into the whole Jy=— Ko [2a* sint (x| +xo0)/&] [X|
superconductor when we approadh=T*. In the range Y K° B2 | cosH[(|x| + X o)/ &,] Xé2
T*<T<T’ it decays exponentially on the leng;. Our )

numerical results below will show that this approximate so- Sdxd(X)

lution describes the interface state well apart from the fact N sinh(Xo/&,) ' (25)
that we do not resolve here variations on length scales of

&1

~ ) ) This current distribution is odd under reflection through the
_For nonzeroJ;; we can determine the phase shift In  jyierface. Starting at zero on the interface, it rises quickly
this symmetric formulation of the interface problem the 504 has a maximium at a distance of abdyt Then it
phase shifte would be strictly O orm even if the state is a changes sign and decays on the length séaleThe mag-
complex combination ofy; and 7, i.e., it breaks time-  netic field generated by this current has a narrow peak of
reversal symmetry. We find immediately that EG8) and \yigth £, on the interface followed by two wings of opposite
(17) lead toa=0 or 7, becausel 1,= J,;. A condition suf- sign. Within our approach we obtain
ficient for « different from these trivial values would be
different coefficientgy; on both sides of the interface, which
means, for example, that the crystal orientation on siles “’7710
and B is different(as it is for a grain boundayyIt can be B,=
shown that the violation of “parity,” the mirror symmetry
due to reflection at the interface, is necesgase Ref. 2¥.

[u(x)—sé(x)], (26)

K2

where we neglect the screening effects due to the second
term on the left-hand side of E@R4). Because the field in
Eq. (26) leads to a nonzero magnetic flux, screening currents
The interface state is an inhomogenedasiolating su-  are induced which yield a compensating diamagnetic field
perconducting state for temperatures belbW It shows un-  with the length scale.. This screening effect can be rather
usual magnetic features which originate from an orbital magsmall if the two contributions in Eq26) nearly cancel each
netic degree of freedom of the Cooper pairs. Remember thatther. The net magnetization vanishes exactly, because in the
the two pairing components we consider both belong to thénterior of a superconductor phase coherence allows for a net
d-wave channel. If they are combined with a relative phasenagnetic flux only if there is a winding of the order param-
different from 6= 0,7, then the pairing state has a compo- eter phase.

E. Magnetic properties
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FIG. 4. Grain boundary configuration used in the calculation of
fractional flux. The grain boundary is indicated by the thick line.
The A region andB region represent different crystal grains, char-
acterized by their respective principal axis vectors as shown. The
normal vectors at each interface are also shown. In the numerical
X calculation, the density of mesh points is greatest near the grain
boundaries.

FIG. 3. Numerical solution of the infinite interface state. Top: G. Numerical solution for the grain boundary corner

The modulus of the two order parameter components. The relative .
phase is constant/2. Bottom: Thez component of the magnetic In Sec. Il we showed that at the border between two dif-

field (multiplied by «2). In these units,&=1 and A=7  ferent grain boundary segments wittviolating states a vor-
(k2=49). The magnetic field exhibits variations on the lengtht€x with fractional flux can appear. We would like to dem-
scales¢; and &, in the immediate vicinity of the interface, and is onstrate this fact here by solving the complete GL problem
screened away from the interface on the length skale for a system with a grain boundary which has a corner. For
simplicity we use a right angle corner which matches well
with our choice for the two-dimension&2D) square lattice
Finally we solve the complete set of coupled GL equa-mesh. A variable grid has been introduced to enhance the
tions for the uniform interface in order to show that our accuracy in the vicinity of the interface where the order pa-
analytic treatment gives the correct qualitative behavior. Weameter and magnetic field have the largest variations. A
choose the coherence length= K, /|a,| as the unit length ~ steepest descefitelaxation method was used to minimize
and the London penetration depth about 10 tidiesor the the GL free energy with open boundary conditions at the
coefficients we use values of order unig/:=3,=8,=K,  borders of the mesh.
=K,=1, 'Kzo.l,y:l, andé= 1/4. The transition tempera- The c_oefficients o_f the GIT free energy are the same in
ture of thed,, component isT.,=0.4T;,. For the space both grains(see caption of Fig. b prever, the interface
coordinate we introduce a fine mesh and the interface i£rms for the grain boundary are different for the two seg-
taken as single point. For simplicity we consider the sym-Ments separated by the corner. The geometry of the grain

metric situation by representing the interface via a local supPoundary configuration is shown in Fig. 4. THeand B
pression ofTe: | 74|28(x). superconducting regions are separated by the grain bound-

The solution forg,=4, g,=0 is shown in Fig. 3. The & represented as a thick black line. For the segment of the

shapes of the order parametéisp) are in good qualitative interface parallel to the, (y,) axis we choosel;;=0.1,
agreement with the analytic result. We see that the lengtl,,= —(+)0.2, J,,= — (+)0.2, andJ ,,=0.1. In regionA,
scalest; and¢, are different and that the latter is larger than g, =2.5 andg,=0. In regionB, g;=5 andg,=0. As dis-

the former. The relative phasg between the two compo- cussed above, the difference in these boundary conditions
nents is constany=7/2. The magnetic field has a narrow yields different phase shifta in the two segments. For the
peak with a width of the ordeg; on the interfacébottom).  parameters chosen, the phase shifts are equal in magnitude
Towards the bulk, the field changes sign and decays on th&nd opposite in sign in the two segments, as expected from
lengthh (=7£&,). The positive and negative parts of the field Egs. (6) and (7).

distribution cancel each other such that no net magnetization In Fig. 5 we show the magnetic field distribution around

is present, as anticipated above. the corner which has a pronounced peak indicating the posi-

F. Numerical solution for the infinite interface state
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The grain boundaries themselves are naturally good con-
duits for magnetic flux. In the case shown in Fig. 5, negative
magnetic flux pours into the central dip By, along the in-
terface and drags down the side lok&sy. 3, botton). In
general, we expect the grain boundary to pin bulk vortices
(®==ndy) on top of the fractional vortices due to this
tendency to grab magnetic flux. This is consistent with the
experimental observations of Kirtley and co-work#ts.

Ill. CONCLUSIONS

We have studied the properties of grain boundaries in
d-wave superconductors. We have demonstrated how they
can support a superconducting state with broken time-
reversal symmetry. We established a connection between
such a state and the existence of vortices carrying a fractional
flux. The key to this connection lies in the observation that a
7-violating state at the grain boundary can lead to a non-
trivial phase shift in the Josephson current-phase relation.
Vortices occur at locations where this phase shift changes.
Corners of grain boundaries are important places for such
vortices, because they separate segments with different prop-
erties.

Our results compare qualitatively well with the experi-
mental observation by Kirtley and co-workéfsAt present it
is, however, unclear whether we should consider these ex-
perimental results as evidence for fractional vortices and,
consequently, for the presence df-wiolating superconduct-
ing phase. Obviously, if the length scale of the magnetic field
along the grain boundary is comparable with the distance
o o ) ] between the corners or the vortices, then it is impossible to

FIG. 5. The magnetic field distribution at this grain boundary 45¢qciate a definite flux with each vortex separately. In order
corner. Top: contour plot. Lightefdarke) shades indicate more o\ 5 firm conclusion, this point has to be clarified ex-
positive (negative magnetic fields. Bottom: surface plot of .

—k?B,. The parameters used afe=1, k=7, K;=K,=a;=p perlmentally'.. . . .

z _ : P e T The conditions for the observation of this effect are best if
=Bz=y=1, 6=1/4, K=0.1, andx=7. For the segment of the ¢ ¢rystal orientations of the grains are chosen so that the
interface parallel to thexs (ya) axis, J11=J2,=0.1, J1,=J12  grain boundary faces a lobe of tigz_,.-wave pair wave
=—(+)0.2. In regionA, 9,=2.5 andg,=0. In regionB, 9:=5  fnction on one side and nearly a node on the other. As we
andg,=0. The enclosed flux i®~—0.15b,. pointed out in Sec. lll, the latter boundary provides a par-

ticularly good situation for pair breaking of the
d,2_,2-wave component, which is an important condition for
tion of the vortex. The flux is fractional of the size our scenario. Similar conclusions where found with alterna-
®~ —0.15D,. Along the grain boundary the small field peak tive mechanismé®2° Unfortunately, grain boundaries of this
occurs which we found already for the uniform boundarytype are intrinsically difficult to produce as homogeneous
case. This peak is distorted somewhat by the Josephson cdiiterfaces and are often hampered by irregularities.
pling of the order parameters across the interface. We also In conclusion we would like to emphasize that the effect
see a slight difference in the decay of the magnetic fielcddiscussed here is a consequence of the exotic nature of the
towards the grains and along the grain boundaries. The graisuperconducting order parameter. No analoguous effect is
boundaries are usually good contacts so that the magnetfossible in the case of a conventiorslwave supercon-
flux at the corner is well defined. The sign and magnitude ofluctor, because grain boundaries have little effect on this
the flux can be manipulated by tuniggandJ;; . Setting all ~ pairing type.
theJ;; to O eliminates the flux, of course. Switching the signs
of J;, andJ,; while leavingJ; andJ,, unchanged reverses
the sign of the magnetic flux, as expected from Efsand
(7). Interestingly, by choosing th&; and g; appropriately We benefited from discussions with P. A. Lee, Y. B. Kim,
we can favor the formation of a domain wall along the grainK. Kuboki, S. Bahcall, and S. Yip. This work was supported
boundary at one or both interfaces. The magnetic field disin part by NSF Grant No. DMR-9120361-002 and the NSF
tribution along the grain boundary in this case becomes anMRL program through the Center for Materials Research at
tisymmetric with respect to reflection across the boundaryStanford Univerity. M.S. gratefully acknowledges support
The parameters chosen for Fig. 5 do not lead to such a ddrom Swiss Nationalfonds and financial support from the
main wall on either interface. NSF-MRSEC Grant No. DMR-94-00334.
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