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Helicity modulus and fluctuating type-II superconductors:
Elastic approximation and numerical simulations

Tao Chen and S. Teitel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

~Received 31 January 1997!

We develop the helicity modulus as a criterion for superconducting order in the mixed phase of a fluctuating
type-II superconductor. We show that there is a duality relation between this helicity modulus and the super-
fluid density of a system of analog two-dimensional~2D! bosons. We show that the vortex line lattice exhibits
a perfect Meissner effect with respect to a shearing perturbation of the applied magnetic field, and this becomes
our criterion for ‘‘longitudinal superconductivity’’ parallel to the applied field. We present arguments based on
the 2D boson analogy, as well as the results of numerical simulations, that suggest that longitudinal supercon-
ductivity can persist into the vortex line liquid state for systems of finite thickness, comparable to those
commonly found in experiments.@S0163-1829~97!01022-9#
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I. INTRODUCTION

The mixed state of a type-II superconductor in an appl
magnetic fieldH is characterized, inmean-fieldtheory, by a
spatially varying order parameterc(r ) whose amplitude van
ishes continuously asTc2(H) is approached from below.1

While this description is adequate for traditional superc
ductors, the importance of thermal fluctuations in determ
ing the behavior of the high-temperature superconduct2

now requires one to find a reasonable criterion for superc
ducting coherence in the mixed state that is defined in te
of an average over all fluctuating configurationsc(r ). One
possibility is the correlation function̂c* (r )c(0)&. How-
ever, controversy has arisen over the proper gauge-inva
definition for this correlation function;3–7 the most straight-
forward definition leads in three dimensions~3D! to correla-
tions which decay exponentially3,4 ~albeit with a long decay
length! even within the Abrikosov vortex line lattice stat
once harmonic elastic fluctuations of the vortex lines are
cluded. The flux flow resistance of an unpinned vortex latt
in a completely clean material also is contrary to the conv
tional idea of a superconductor as a state with zero re
tance. In this paper we propose using the helicity modulu
a clear equilibrium quantity that can distinguish superc
ducting from normal behavior in the mixed state. We w
show that the helicity modulus, which for aneutral super-
fluid is proportional to the superfluid density,8 is in a super-
conductor~or charged superfluid! related to the magnetic
susceptibility of the system to a small perturbation in appl
magnetic field, about the uniform appliedH. Recall that it is
the magnetic response, rather than electrical resistivity,
gives the true defining equilibrium signature of the Meiss
transition in either a type-I or type-II superconductor. He
we will show that for the mixed state of a type-II superco
ductor, the vortex line lattice displays~in the absence o
dislocations! a perfect Meissner effect with respect to a c
tain type of shear perturbation of the applied field, fo
which the screening currents run parallel toH. Such a shear
Meissner effect, also referred to aslongitudinal
superconductivity,9 we will take as the defining equilibrium
550163-1829/97/55~22!/15197~26!/$10.00
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criterion for superconducting order within the mixed sta
We will then give a set of arguments, including the results
numerical simulations, that suggest that for system size
experimental interest, longitudinal superconductivity c
persist above the vortex line lattice melting transition, in
the vortex line liquid state. Some of our results have be
briefly presented earlier,7,10 for the case of an isotropic sys
tem. Here we provide much greater detail, and generalize
formalism to the uniaxial anisotropic case.

The rest of this paper is organized as follows. In Sec
we define our London model for a continuous anisotro
superconductor, giving the mapping of the Hamiltonian fro
its representation in terms of the wave function phase an
to its representation in terms of interacting vortex lines.
Sec. III we define the helicity modulusYmn(q), discuss its
relation to the magnetic susceptibility, and describe the
portant physical parameters that may be extracted from
We also discuss in some detail the mapping between
interacting vortex lines and an analog system of interact
two dimensional~2D! bosons.11 We show that an interesting
duality exists between the helicity modulus of the 3D sup
conductor model and the helicity modulus of the 2D ana
bosons, for both the superconductor with a finite magne
penetration lengthl ~our main concern in this work! and the
superconductor in thel→` approximation. In Sec. IV we
analyze the helicity modulus within the elast
approximation12,13 for a vortex line lattice, and demonstra
the existence of the shear Meissner effect. We calculate
the penetration length for the shear perturbation increa
with temperature, due to second-order elastic fluctuations
Sec. V we consider the vortex line liquid, and show how t
hydrodynamic approximation14 yields the disappearance o
the perfect shear Meissner effect. We discuss how
Kosterlitz-Thouless transition15 of the analog 2D bosons ca
yield a crossover from a normal vortex line liquid to a lin
liquid with longitudinal superconductivity, and estimate th
crossover temperature as a function of system thickness
applied magnetic field. In Sec. VI we discuss our numeri
Monte Carlo~MC! simulations. We define the Hamiltonia
and helicity modulus for a discretized lattice
15 197 © 1997 The American Physical Society
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superconductor,16,17 discuss our MC algorithm, and prese
our numerical results for an isotropic model. We comp
the helicity modulus and other measures of vortex fluct
tions, and find evidence for longitudinal superconductiv
within the vortex line liquid state. In Sec. VII we present o
conclusions and discussion.

II. LONDON SUPERCONDUCTOR MODEL

We will model our uniaxial superconductor as a thre
dimensional continuum with the weak coupling directi
parallel to theẑ axis. The bare magnetic penetration leng
along this weak direction islz , while l' is the penetration
length within the more strongly coupledxy planes.
h[lz /l' is the anisotropy parameter.

The Ginzburg-Landau Hamiltonian for the Gibbs e
semble, in the London approximation, can then be written

H@u,A#5
1

2
J'E d3r F (

m5x,y,z
hm

22~¹mu2Am!2

1l'
2 u“3~A2Aext!u2G , ~1!

where

J'[f0
2/~16p3l'

2 ! ~2!

is the coupling within thexy plane (f05hc/2e is the flux
quantum!,

hx5hy[1, hz[h5lz /l' ~3!

define the anisotropy, and (f0/2p)A and (f0/2p)Aext are
the vector potentials for the internal and applied magn
fields,

“3A52pb, “3Aext52ph, ~4!

whereb5B/f0 andh5H/f0 are the densities of flux quant
of the magnetic fieldB(r ) inside the superconductor and th
externally applied fieldH(r ). In Eq. ~1!, u(r ) andA(r ) are
thermally fluctuating variables to be averaged over in a p
tition function sum, whileAext(r ) is a fixed~quenched! field.

It will be useful to introduce the induced magnetic vec
potential

A ind[A2Aext, “3A ind52p~b2h!52pbind, ~5!

in terms of which the Hamiltonian becomes

H@u,A#5
1

2
J'E d3r F(

m
hm

22~¹mu2Am
ext2Am

ind!2

1l'
2 u“3A indu2G , ~6!

and the partition function is to be viewed as a sum o
A ind.

The Hamiltonian of Eq.~6! can now be mapped onto
model of interacting vortex lines. If we define the superflu
velocity,

v5“u2Aext2A ind5“u2A, ~7!
e
-

-

s

ic

r-

r

r

then by Eq.~4! we have

“3v52p~n2h2bind!52p~n2b!, ~8!

wheren[(1/2p)“3“u is the vortex line density, consist
ing of singular lines of integer vorticity in the phase ang
u(r ).

Defining the Fourier transforms

vq5E d3reiq•rv~r !, v~r !5
1

V (
q

e2 iq•rvq ~9!

~where V is the system volume!, we can then write the
Hamiltonian~6! as

H5
J'

2V (
q,m

@hm
22vqmv2qm14p2l'

2bqm
indb2qm

ind #, ~10!

and solve Eq.~8! as

vq522p i Fqxq1
q3~nq2hq2bq

ind!

q2 G , ~11!

wherex(r ) is any smooth scalar function. Substituting E
~11! into Eq. ~10!, and completing the square inxq , results
in

H5
4p2J'

2V (
q

@@nq2hq2bq
ind#•Vq

0
•@n2q2h2q2b2q

ind #

1~q'
21h22qz

2!dxqdx2q1l'
2bq

ind
•b2q

ind #, ~12!

where

Vq
05

1

q2 F I2 lz
22l'

2

lz
2q'

21l'
2qz

2~ ẑ3q!~ ẑ3q!G ~13!

is the ‘‘bare’’ vortex line interaction tensor, before screeni
by magnetic field fluctuations, anddxq[xq2xq

0 is the fluc-
tuation ofxq away from the value

xq
05

~lz
22l'

2 !qz@q3~nq2hq2bq
ind!#z

q2~lz
2q21l'

2qz
2!

. ~14!

Substitutingxq
0 into Eq. ~11! gives the superfluid velocity

vq
0 that minimizes H for a given configuration of
nq2hq2bq

ind . dxq represents a smooth ‘‘spin-wave’’ fluc
tuation about thisvq

0 .
We can now complete the square inbq

ind in Eq. ~12!, sub-
ject to the constraint thatq•bq

ind50, to get,

H5
4p2J'

2V (
q

@@nq2hq#•Vq•@n2q2h2q#

1~q'
21h22qz

2!dxqdx2q1dbq•Uq•db2q#, ~15!

where the tensor
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Vq5Vq
02Vq

0
•Uq

21
•Vq

0

5l'
2Uq

21
•Vq

0

5
l'
2

11l'
2q2 F I2 lz

22l'
2

11lz
2q'

21l'
2qz

2 ~ ẑ3q!~ ẑ3q!G
~16!

is the uniaxial anisotropic generalization13 of the familiar
London vortex line interaction, and

Uq5l'
2 I1Vq

0 ~17!

is the interaction tensor for fluctuations of magnetic fie
dbq[bq

ind2bq
ind, 0, about the value

bq
ind, 05Uq

21
•Vq

0
•@nq2hq#5

1

l'
2 Vq•@nq2hq#, ~18!

which minimizesH for a given configurationnq2hq .
Equation ~15! represents the Ginzburg-Landau Ham

tonian written in terms of decoupled spin wave, magne
field, and vortex line fluctuations. The partition function is
be summed over all smoothdxq , all smoothdbq subject to
the constraintq•dbq50, and all singular vortex line distri
butionsnq with conserved vorticityq•nq50.

The interactionVq of Eq. ~16! is given as a tensor, with
nonvanishing off-diagonal components. However, as sho
by Carneiroet al.,18 one can exploit the conservation of vo
ticity to rewriteVq in a purely diagonal way. Using

nq•~ ẑ3q!~ ẑ3q!•n2q5q'
2nq'•n2q'2@q'•nq'#@q'•n2q'#

5q'
2nq'•n2q'2qz

2nqzn2qz , ~19!

wheren'[(nx ,ny) is the transverse part of the vorticity, an
a similar result forhq , we can rewrite the vortex line inter
action part of the Hamiltonian as

Hv5
4p2J'

2V (
q,m

Vqm@nqm2hqm#@n2qm2h2qm#, ~20!

whereVqx5Vqy[Vq' and

Vq'5
l'
2

11l'
2qz

21lz
2q'

2 ,

Vqz5
l'
2 ~11lz

2q2!

~11l'
2q2!~11l'

2qz
21lz

2q'
2 !
. ~21!

In most of this paper we will be considering behavior in t
presence of auniform applied magnetic field, for which
hqÞ050 and hencebqÞ0

ind 5bqÞ0.

III. HELICITY MODULUS, MAGNETIC SUSCEPTIBILITY,
AND 2D BOSONS

A. Definition of the helicity modulus

If we define the supercurrent as

j m5J'hm
22vm5J'hm

22~¹mu2Am
ext2Am

ind!, ~22!

then from Eqs.~10! and ~22! we see that
,

c

n

^ j qm&52VK ]H
]A2qm

ext L 52V
]F

]A2qm
ext , ~23!

whereF52TlnZ is the total free energy for the partitio
functionZ5*DuDA inde2H/T.

Consider now a small perturbation about a uniform a
plied magnetic fieldh0ẑ, with A

ext52ph0xŷ1dAext. We de-
fine the helicity modulusYmn(q) as the linear response co
efficient between the induced supercurrent and
perturbationdAext,

^ j qm&[2Ymn~q!dAqn
ext. ~24!

From Eqs.~23! and ~24! we then have

Ymn~q!52
]^ j qm&
]Aqn

ext u05V
]2F

]Aqn
ext]A2qm

ext u0

5VK ]2H
]Aqn

ext]A2qm
ext L

0

2
V
T H K ]H

]Aqn
ext

]H
]A2qm

ext L
0

2K ]H
]Aqn

extL
0

K ]H
]A2qm

ext L
0

J , ~25!

where the subscript ‘‘0’’ denotes the unperturbed syst
with dAq

ext50. For a uniform system, the third term on th
right-hand side of Eq. ~25! may be ignored as
^ j qm&052V^]H/]A2qm

ext &050 ~for the mixed state, we are
assuming thatq is smaller than any of the reciprocal lattic
vectors of the vortex lattice!.

Applying Eq. ~25! to the Hamiltonian~10!, and using the
definition of Eq.~22!, then results in

Ymn~q!5J'hm
22Fdmn2

J'hm

VThn
^vqmv2qn&0G , ~26!

The form of Eq.~26!, expressingYmn(q) in terms of a ve-
locity correlation, is familiar as defining the superfluid de
sity of a neutral superfluid or, equivalently, the helici
modulus of anXY model.8

Alternatively, we could apply the results of Eqs.~23! and
~25! to the form ofH in Eq. ~1! to get,

^ j qm&52J'l'
2 ^@q3~q3Aq

ind!#m&

522p iJ'l'
2 ^@q3bq

ind#m& ~27!

and

Ymn~q!5J'l'
2 Fq2dmn2qmqn2

4p2J'l'
2

VT

3^@q3bq#m@q3b2q#n&0G , ~28!

where we have usedbq5bq
ind for the unperturbed system an

^bq&050 for finite smallq. Equation~27! is just a statemen
of Ampère’s law, relating the induced magnetic field to th
flowing supercurrents. Equation~28! expressesYmn(q) in an
explicitly gauge-invariant form, in terms of correlations
the fluctuating internal magnetic fieldb.
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Finally, we can also expressYmn(q) in terms of vortex
line correlations. Using the form ofH in Eq. ~15!, substitut-
ing in 2phq52 iq3Aq

ext, and taking the appropriate deriva
tives as in Eq.~25! results in

Ymn~q!5J'F ~q3 n̂ !•Vq•~q3m̂ !

2
4p2J'

VT ~q3 n̂ !•Vq•^n2qnq&0•Vq•~q3m̂ !G ,
~29!

whereVq is the vortex line interaction tensor of either E
~16! or ~21!.

Note that the helicity modulus is Hermitian
Ymn(q)5Ynm* (q)5Ynm(2q). Also note that any longitudi-
nal component ofdAq

ext produces no response in^ jq&, since
Y(q)•q50. This is as expected since a longitudinal comp
nent ofdAq

ext produces no magnetic field, and can be elim
nated by a gauge transformation. Henceforth it will be si
plest to work in the London gauge in whichq•Aq

ext50.
The tensor products in Eq.~29! can be simplified greatly

if we restrict our interest to wave vectors lying along t
symmetry directions, i.e.,q5qx̂, qŷ, andqẑ. Changing no-
tation for the sake of clarity, fromnq to n(q), and using Eq.
~21! for Vq , we find for the diagonal elements

Ym~qn̂ ![Ymm~qn̂ !

5
J'l'

2q2

11lm
2q2F12

4p2J'l'
2

VT
^ns~qn̂ !ns~2qn̂ !&0

11lm
2q2 G ,

~30!

wherem, n, s are any cyclic permutation ofx, y, z, and
lm is eitherlz or l' depending on whetherm5z or m5x,
y. Note thatYm(qn̂);q2 asq→0.

The off-diagonal elements are

Ymn~qŝ !5
J'l'

2q2

11lm
2q2 F4p2J'l'

2

VT
^nn~qŝ !nm~2qŝ !&0

11ln
2q2 G .

~31!

However, for q5qŝ, q•nq50 implies that nm(qŝ) and
nn(qŝ) fluctuate without constraint, and since the free e
ergy of Eq.~20! is symmetric separately innm→2nm and in
nn→2nn , we expect that the off-diagonal terms will vanis

Henceforth we will restrict ourselves to the simple cas
given by Eq. ~30!. For a uniform applied magnetic fiel
along the ẑ direction, and taking here and hencefor
m,n,s to be a cyclic permutation ofx,y,z, we have the three
distinct cases~a! Yy(qẑ), ~b! Yx(qŷ), and ~c! Yz(qx̂). In
Fig. 1 we show a schematic of the magnetic field lines c
responding to these three different perturbations. As s
gested by these diagrams, we will refer to~a! as the tilt
perturbation,~b! as thecompressionperturbation, and~c! as
the shearperturbation. We will find that the first two case
are determined by the transverse and longitudinal magn
susceptibilities respectively. We will find that the presence
a perfect Meissner effect with respect to the shear pertu
tion is a convenient measure of superconducting cohere
-
-
-

-

s

r-
g-

tic
f
a-
ce

for the mixed state. Because the screening currents invo
in the shear perturbation run parallel to the applied magn
field, a perfect Meissner effect for the shear perturbation
also been termedlongitudinal superconductivity.9

B. Magnetic susceptibilities and renormalized
penetration lengths

As indicated above, the helicity modulusYmn(q) is
closely related to the magnetic susceptibility. Combini
Ampère’s law ~27! with the definition ofYmn(q) in Eq. ~24!,
we have

^dAq
ind&52

Y~q!

J'l'
2q2

•dAq
ext. ~32!

For the three cases of Eq.~30!, corresponding to perturba
tions dAm

ext(qn̂) where m,n,s is a cyclic permutation of
x,y,z, Y(q) is diagonal, and so we can substitute into t
above 2pdbs

ind(qn̂)52 iqdAm
ind(qn̂) and 2pdhs(qn̂)

52 iqdAm
ext(qn̂) to get

2
Ym~qn̂ !

J'l'
2q2

5
]^bs

ind~qn̂ !&

]hs~qn̂ !
U
0

[4pxs~qn̂ !, ~33!

wherebq
ind/4p is the induced magnetization, andxs(qn̂) is

the magnetic susceptibility at wave vectorqn̂ for a perturba-
tion in applied magnetic field in directionŝ.

To get a feel for the information contained in the helici
modulus, or equivalently the magnetic susceptibility, co
sider first the case of zero field, in the absence of vortex
fluctuations. When nq50, Eq. ~30! yields
Ym5J'l'

2q2/(11lm
2q2). Substituting into Eq.~33! gives

4pxs~qn̂ !5
21

11lm
2q2

. ~34!

This describes a perfect Meissner effect. Asq→0,

^dbs
ind(qn̂)&54pxs(qn̂)dhs(qn̂)52dhs(qn̂), and so the

total field inside the superconductor,^dbs&5dhs1^dbs
ind&,

vanishes. The perturbationdhs is completely expelled from
the system. The length scale on which this expulsion ta
place islm .

In the presence of vortex line fluctuations, we can write
phenomenological form for the helicity modulus at smallq,

FIG. 1. Schematic representation of three possible perturbat
of the external magnetic field:~a! the tilt perturbation,~b! the com-
pression perturbation, and~c! the shear perturbation.
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Ym~qn̂ !5gm

J'l'
2q2

11lmR
2 q2

. ~35!

In this case, substituting into Eq.~33!, one gets

4pxs~qn̂ !5
2gm

11lmR
2 q2

. ~36!

Now only a fractiongm of the applied perturbation is ex
pelled from the system; this expulsion takes place on
length scalelmR . We thus see that2gm gives the long-
wavelength magnetic susceptibility, whilelmR is the mag-
netic penetration length, as renormalized by vortex fluct
tions. gm andlmR are the important physical parameters
be extracted from the helicity modulus.

Formally, we can definegm andlmR in terms of the small
q expansion of the vortex line correlation that appears in
~30!. If we define

^ns~qn̂ !ns~2qn̂ !&0[nm01nm1q
21nm2q

41•••, ~37!

then we have

gm[2 lim
q→0

4pxs~qn̂ !512
4p2J'l'

2

VT nm0 ~38!

and

lmR
2

lm
2 [2 lim

q→0
F 1

lm
2xs~qn̂ !

dxs~qn̂ !

dq2 G
512

4p2J'l'
2

VT
~nm02nm1lm

22!

gm
. ~39!

Thus gm51, or equivalently nm050, signals a perfec
Meissner screening of the perturbationdAm

ext(qn̂). For zero
applied magnetic field, this has a simple physical interpre
tion: One is in the Meissner state if there are no infinite
large vortex rings.

Although the helicity modulus should have the form
Eq. ~35! both below and above the superconducting tran
tion, due to the presence of ordinary fluctuation diamag
tism above the transition, we expect that a phase trans
will be indicated by singular behavior in the parametersgm
andlmR . In particular, a transition from a state with a pe
fect Meissner screening of the perturbationdAm

ext(qn̂) will be
signaled by a singular decrease ofgm from unity, as well,
presumably, by a divergence inlmR

2 . For such a case, it is
reasonable to interpretns[mmc

2/4pe2lmR
2 as the density of

superconducting electrons.
We stress at this point thatgm andlmR are describing the

response of the system to a small spatially varying pertu
tion about a uniform applied field and not the response to
uniform field itself.

C. 2D boson analogy

Much work on vortex line fluctuations has been done u
lizing an analogy between the magnetic-field-induced vor
lines in the mixed phase of a three-dimensional superc
ductor and the imaginary time world lines of two
dimensional bosons within a Feynman path integral desc
e

-

.

-

i-
-
n

a-
is

-
x
n-

p-

tion of 2D quantum mechanics. Here we will show th
explicit connection between the superfluid density of the
analog 2D bosons and the helicity modulusYz(qx̂) giving
the response to theshearperturbation of Fig. 1~c!.

In this analogy, as introduced by Nelson,11 the energy of
vortex line fluctuations is modeled by two pieces:~i! a line
tension representing the vortex core energy and s
interaction and~ii ! a pairwise interaction between all vorte
line segments which lie in the samexy plane at equal heights
z. This simplified vortex interaction is expected to be a re
sonable approximation when the vortex lines remain, o
the length scalel, approximately parallel to the applied field
This simplified vortex interaction is then mapped into a 2
boson mass and an instantaneous pairwise boson interac
The mapping results in the following correspondences~quan-
tities on the left refer to the 2D bosons; those on the ri
refer to the 3D superconductor!: imaginary time,t↔z, dis-
tance in direction of applied fieldh; \boson/Tboson↔Lz ,
length of system parallel toh; \boson↔T, temperature of 3D
superconductor; boson mass,mboson↔ ẽ1;pJz , where
ẽ15h22e1, ande1 is the single vortex line tension.
In Appendix A, starting from the standard definition o

the superfluid density as the long-wavelength limit of t
transverse momentum susceptibility,19,20 we derive an ex-
pression Eq.~A8! for the number density of superflui
bosons,rs boson, for a system of 2D interacting bosons, e
pressed in the form of a path integral over boson world lin
In Eqs.~A9! and~A10! we show thatrs bosonis related to the
helicity modulus of the 2D bosons,Yboson(q), by
limq→0Yboson(q)5(\boson

2 /mboson)rs boson. We now recast the
results of Appendix A into the language of vortex lines.

For a magnetic-field-induced vortex linei parametrized
by its transverse deflectionr i'(z) in the xy plane at height
z, the vortex line density is given by

n~r' ,z!5(
i

d~2!
„r'2r i'~z!…F ẑ1 dr i'~z!

dz G . ~40!

Using the above correspondences between the analog bo
and the superconductor, we then have, for the term that
pears in the boson path integral of Eq.~A9!,

E
0

\boson/Tboson
dt(

i

dr iy
dt

eiqxi5ny~qx̂!. ~41!

Equation~A10! for the 2D boson helicity modulus can the
be written as

Yboson~q!

Tboson
5

1

L'
2 ^ny~qx̂!ny~2qx̂!&0, ~42!

whereL' is the length of the system in thexy plane. The
vortex correlation that appears in Eq.~42! above is precisely
the same correlation that enters Eq.~30! for Yz(qx̂), which
gives the response to the shear perturbation of Fig. 1~c!. Tak-
ing the limitq→0 in Eq.~42! and combining with Eqs.~37!,
~38!, and~A10! then gives
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gz512
4p2J'l'

2

LzT
FYboson~q→0!

Tboson
G

512
4p2J'l'

2

LzT
F\boson

2 rs boson
mbosonTboson

G . ~43!

This leads to the following identifications, originall
pointed out by Feigelman and co-workers:21 The 2D boson
superfluid phase withrs boson.0 corresponds to a 3D vorte
line normal diamagnetic phase withgz,1; the 2D boson
normal fluid phase withrsboson50 corresponds to a 3D vor
tex line phase withgz51, and hence with longitudinal su
perconductivity characterized by a perfect Meissner eff
for shear perturbations.

Having made the above observation, there now exists
possibility, as suggested by Nelson,11 that a Kosterlitz-
Thouless~KT! transition from superfluid to normal fluid in
the analog 2D boson system could appear in the 3D su
conductor as a transition from a normal vortex line liqu
state to a vortex line liquid with longitudinal supercondu
tivity. Fisher and Lee,22 and more recently Ta¨uber and
Nelson,23 have argued that if one relaxes the periodic bou
ary conditions alongẑ that is assumed in the boson analog
and uses instead the free boundary conditions which
more realistic for a bulk 3D superconductor, the sharp
transition no longer exists. Nevertheless, one might exp
that a clear crossover remnant of this KT transition sho
still be observable in the superconductor. We will return
discuss this KT crossover in Sec. VB.

D. l˜` approximation

Many numerical simulations,24–30 as well as other theo
retical approaches such as the ‘‘lowest-Landau-lev
approximation,31 have been based upon the approximation
taking l'→`, while keepingJ' finite. This approximation
corresponds to taking a spatially uniform internal magne
field b which is equal to the applied fieldh. Such an approxi-
mation can be shown to be exact for modeling the ana
system of a 3D neutral~uncharged particles! superfluid in a
rotating bucket.4,19 It is interesting to see how the helicit
modulus and the 2D boson analogy look within thisl→`
limit.

In this case, the interaction between vortex lines is giv
by the ‘‘bare’’ interaction tensorVq

0 of Eq. ~13!. One can

show that the correct helicity modulusYm(qn̂) is obtained
by taking the limit lm→` in Eq. ~30!, keeping J' and
l' /lm constant,

Ym~qn̂ !5JmF12
4p2Jm

VT
^ns~qn̂ !ns~2qn̂ !&0

q2
G , ~44!

whereJm[J'(l' /lm)
2 is the coupling in directionm̂.

Noting thatHv5(4p2J'/2V)(qnq•Vq
0
•n2q must have a

finite thermal average, and sinceVq
0;1/q2, it must therefore

be true that asq→0,

^ns~qn̂ !ns~2qn̂ !&0;q2. ~45!

Substituting Eq.~45! into Eq.~44! we see that, in contrast t
the finite lm case where we foundYm(qn̂);q2 as q→0,
t
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,
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ct
d

’’
f
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n

here we find that limq→0Ym(qn̂) is in general a finite num-
ber. This differing dependence of the helicity modulus
q, in the small-q limit, is one of the characteristic difference
between a charged superfluid~with a finite l giving a
coupling to a fluctuating vector potential! and a neutral su-
perfluid ~with l→` leading to a frozen vector poten
tial!. For the l→` case of a neutral superfluid
Ym(0)[ limq→0Ym(qn̂) is just proportional to the numbe
density of superfluid particles, as discussed in Appendix
for the two-dimensional case, and used in the preceding
tion. We therefore expect to findYz(0).0 for T,Tc in an
ordered phase with longitudinal superconductivity, a
Yz(0)50 for T.Tc in the normal phase.

We now consider the 2D boson analogy for thisl→`
approximation. Combining Eq.~42! for the helicity modulus
Yboson(q) of the analog bosons with Eq.~45!, we see that

Yboson~q!;q2 for small q. ~46!

Thus the analog 2D bosons have a helicity modulus cha
teristic of a 2Dchargedsuperfluid. This is in agreement wit
the results of Feigelman and co-workers,21 who show that the
system of vortex lines interacting with the true London i
teraction of Eqs.~20! and~21! ~as opposed to the more sim
plified interaction of Nelson’s model! can be viewed as a
system of analog 2D bosons whose interaction is media
by a massive vector potential. Asl→`, the mass associate
with this vector potential vanishes, and one has a system
2D charged bosons interacting with 2D electrodynamics.

We can develop the analogy further. Combining Eqs.~42!
with ~44! we have

Yz~qx̂!5JzF12
4p2Jz
LzTq

2

Yboson~q!

Tboson
G . ~47!

One can then define the proportionality coefficientgbosonof
Eq. ~46! by

Yboson~q!5gbosonTboson
LzTq

2

4p2Jz
5gbosonF \boson

2

4p2Jz
Gq2, ~48!

where we have used the correspondences between supe
ducting variables and analog boson variables to arrive at
last equality. Note that whengboson51 we haveYz(0)50,
and whengboson,1 we haveYz(0).0.

One can now show,32 at least in the isotropic case, that th
term @\boson

2 /4p2J#5@\boson
2 4pl2/f0

2# which appears on the
right-hand side of Eq.~48! is just twice the magnetic energ
coupling of the analog magnetic field of the 2D electrod
namics. We can rename this coupling@Jl2#boson in analogy
with the magnetic energy coupling of our original 3D supe
conductor of Eq.~1!. Equation~48! then becomes,

Yboson~q!5gboson@Jl2#bosonq
2, ~49!

in complete agreement with the small-q limit of the form of
the helicity modulus for a charged superfluid, given in E
~35! ~as derived for our original 3D superconductor at fin
l). 2gboson is therefore the magnetic susceptibility of th
analog 2D charged bosons. To next order inq2 we expect, in
analogy with Eq.~35!, thatYboson(q) has the form
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Yboson~q!5gboson

@Jl2#bosonq
2

11lR boson
2 q2

, ~50!

wherelR bosonis the magnetic penetration length of the an
log 2D charged bosons. If we takelR boson

2 51/(4pns boson),
with ns boson the number density of superfluid charge
bosons, then combining Eqs.~47!–~50! one can recover al
the results found in Sec. V B 3 of Blatteret al.,33 which are
therefore seen to apply in a strict sense only to thel→`
approximation, rather than to the finite-l case.

We thus have the following amusing duality. For fini
l we have seen in the preceding section that the 3D su
conductor, which is a charged superfluid problem, maps o
analog 2D bosons, which is a neutral superfluid proble
The 3D longitudinal superconductivity transition maps on
the 2D superfluid transition. A perfect Meissner effect f
shear perturbations in the 3D superconductor, withgz51,
represents the normal fluid state of the 2D bosons w
Yboson(q→0)50; the loss of this perfect Meissner effec
with gz,1, corresponds to the superfluid state of the
bosons withYboson(q→0).0. Forl→`, however, the 3D
superconductor, which now behaves like a neutral superfl
problem, maps onto 2D bosons interacting with 2D elect
dynamics, which is a charged superfluid problem. The
longitudinal superconductivity transition now maps onto
Meissner transition of a 2D superconductor. The normal s
of the 3D superconductor, withYz(q→0)50, corresponds
to a perfect Meissner state of the charged 2D bosons,
gboson51; the 3D superconducting state, wi
Yz(q→0).0, corresponds to the loss of this perfect Meis
ner effect for the 2D charged bosons, withgboson,1.

Note that for the analog 2D charged bosons of
l→` approximation, vortices in the 2D condensate wa
function will interact with a potential that decays expone
tially on length scales greater thanlR boson, due to the
screening by the 2D analog magnetic field. A vorte
antivortex pair will therefore have a finite energy barrier f
unbinding, and so at any finiteTboson there must be free
vortices which will destroy the 2D Meissner state. Only
Tboson50 (Lz→`) does there remain the possibility of
sharp Meissner transition in this 2D analog boson system
\bosonvaries. Such a transition, if it exists, is driven by qua
tum and not thermal fluctuations and so it is not in t
Kosterlitz-Thouless universality class. We believe that it
this transition atTboson50, in thel→` model, that the work
of Feigelman and co-workers21 pertains to. Recently, Te
šanovićhas argued34 that such a transition must be driven b
the proliferation of closed vortex rings~boson-antiboson vir-
tual pairs!, which are left out of the naive 2D boson ma
ping, and that the transition will be in the universality cla
of the ordinary 3DXY model.

The above considerations suggest that taking thel→`
limit in our model is rather subtle and possibly leads to d
continuous changes in the phase diagram, although any
discontinuities will likely be obscured in a finite-size syste
by very strong crossover effects.

IV. VORTEX LINE LATTICE: ELASTIC
APPROXIMATION

We consider now the mixed state of a type-II superc
ductor. At low temperatures, such a state is described by
-
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familiar Abrikosov vortex line lattice. In this case, we ca
evaluate the vortex line correlations that appear in the
pression for the helicity modulus by using the well-know
elastic approximation.12,13 It is now convenient to work in
the Helmholtz ensemble, with a fixed uniform densityb0 of
magnetic field induced vortex lines,

b05
B

f0
, av5S 43D

1/4 1

Ab0
, ~51!

whereav is the lattice spacing between lines in their grou
state triangular lattice. We will denote thermal averages
this ensemble bŷ•••&, dropping the subscript‘ ‘0’’ that we
used earlier.

In the elastic approximation, one assumes that vortex
excitations consist only of fluctuations of the magnetic-fie
induced vortex lines, transverse to the direction of the u
form applied field. Such fluctuations are described by
displacement fieldui(z), which gives the transverse displac
ment in thexy plane at heightz, of the vortex line away from
its positionRi in the ground-state vortex lattice. The vorte
line density is thus given by Eq.~40!, making the substitu-
tion r i'(z)5Ri1ui(z).

If we define the Fourier transforms

uq5
1

b0
E dz(

i
ei ~qzz1q'•Ri !ui~z!,

ui~z!5
1

V (
q

e2 i ~qzz1q'•Ri !uq , ~52!

whereq'5(qx ,qy) and the sum overq' is restricted to the
first Brillouin zone of the Abrikosov lattice, then to lowes
order in u the vortex line density at small finiteq may be
written as

nq5 ib0@q•uqẑ2qzuq#. ~53!

Substituting the expansion fornq in terms of theuq into Eq.
~20!, summing over reciprocal lattice vectors, and keep
only terms up to orderuq

2 results in the free energy functiona
for elastic vortex line displacements,

Hel@u#5
1

2V (
qab

uqaFab~q!u2qb

5
1

2V (
q

$@c44~q!qz
21c11~q!q'

2 #uqLu2qL

1@c44~q!qz
21c66~q!q'

2 #uqTu2qT%. ~54!

HereuqL5q̂•uq is the longitudinal part of the displacemen
and uqT5uuq2q̂uqLu is the transverse part.c44(q), c66(q),
and c11(q) are the wave-vector-dependent tilt, shear, a
compression elastic moduli, respectively. We can now
Eqs.~53! and ~54! to evaluate the vortex correlations of th
helicity modulus of Eq.~30!, for the three simple cases o
Fig. 1.
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A. Tilt perturbation

We first considerYy(qẑ) which gives the response to th
tilt perturbation of Fig. 1~a!. Using Eq. ~53!, the relevant
vortex correlation, to lowest order inuq , is

^nx~qẑ!nx~2qẑ!&5q2b0
2^uT~qẑ!uT~2qẑ!&5

b0
2VT

c44~qẑ!
, ~55!

where we have usedHel of Eq. ~54! to evaluate the displace
ment correlation. Expanding inq2 we have

ny05
b0
2VT

c44~0!
, ny152

b0
2VT

c44
2 ~0!

dc44
dqz

2 U
q50

. ~56!

Combining Eqs.~2!, ~38!, ~39!, and ~51! with Eq. ~56!
above then gives, for the helicity modulus parameters,

gy512
B2

4pc44~0!
~57!
in

in
e

and

lyR
2

l'
2 512

B2

4pc44~0!gy
F11

1

c44~0!l'
2

dc44
dqz

2 U
q50

G . ~58!

Note that from general thermodynamic arguments35 one has

c44~0!5
B2

4p

dH'

dB'

, ~59!

where thedH' /dB' is evaluated at the average magne
field B0ẑ. Hencegy is determined by the transverse magne
susceptibility,

gy512
dB'

dH'

, ~60!

as expected from our discussion in Sec. III B.
Using our explicit results forc44 from Appendix B, we

have
gy.5
f0

8pl'
2B Fh22S lnHc2

B
21D 1

f0

4pl'
2BG !1 for large B, l'@av ,

12
8pl'

2B

f0

1

h22@ ln~Hc2 /B!21#11
'1 for intermediateB, l'!av!lz ,

12
8pl'

2B

f0

1

h22@2ln~hk!21#11
'1 for small B, lz!av .

~61!

For lyR , using Eq.~58! and our results forc44 from Appendix B, we have, for large magnetic fieldsl'@av ,

lyR
2

l'
2 .5

1

2l'
2k0

2 for strong anisotropy,
1

2l'
2k0

2 @h22lnSHc2

B D ,
1

2l'
2k0

2h22lnSHc2

B D for weak anisotropy,
1

2l'
2k0

2 !h22lnSHc2

B D . ~62!

For intermediate magnetic fieldsl'!av!lz ~where strong anisotropy is by definition implied! we have

lyR
2

l'
2 .12l'

2k0
2, ~63!

and for weak magnetic fieldslz!av we have

lyR
2

l'
2 .H 122l'

2k0
2 for strong anisotropy, 1

2@h22lnhk,

12
l'
2k0

2

h22lnhk
for weak anisotropy, 1

2!h22lnhk,
~64!
e

wherek0
254pB/f0;1/av

2 .
For strong magnetic fields,l'@av , Eq. ~62! gives

lyR.1/A2k0&av , independent of the barel' . Since our
definition of lyR in Eq. ~35! was based on an expansion
small q, it is doubtful that we should take such a smalllyR
too seriously as a screening length, without consider
higher terms in an expansion inq, as well as considering th
responsejq1K to the perturbationAq

ext ~whereK is a recip-
rocal lattice vector of the vortex lattice!.
g

For weak magnetic fieldsl'!av , Eqs.~63! and~64! give
lyR'l' .

B. Compression perturbation

We next considerYx(qŷ) which gives the response to th
compression perturbation of Fig. 1~b!. Using Eq.~53!, the
relevant vortex correlation, to lowest order inuq , is
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^nz~qŷ!nz~2qŷ!&5q2b0
2^uL~qŷ!uL~2qŷ!&5

b0
2VT

c11~qŷ!
,

~65!

where we have used Eq.~54! to evaluate the displacemen
correlation.

We therefore have

gx512
B2

4pc11~0!
. ~66!

The compression modulus in the vortex line lattice can
written asc115cL1c66, wherecL is the ‘‘bulk modulus’’
for an isotropic compression. General thermodynamic ar
ments give35
ia
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cL~0!5
B2

4p

dHz

dBz
. ~67!

Noting from Eqs.~B16! and ~B23! that, for largel'@av ,
c66(0)!c11, we havec11(0).cL(0), and so

gx.12
dBz
dHz

~68!

is determined by the longitudinal magnetic susceptibili
For l'!av , Eqs. ~B22! and ~B23! give c115

3
2cL , and so

gx512 2
3(dBz /dHz).

Using our explicit results forc11 from Appendix B, we
find
gx.5 2
f0

16pl'
2B

for large B, l'@av ,

2
16A2pl'

2B

9f0
S l'

av
D 3/2eav /l' for small B, l'!av .

~69!
ur

at

m

ec-

-
ct

a

f

gx,0 implies that the magnetic field induced in the mater
is larger than the applied perturbation, and so there isnega-
tive screening. This may be understood from Eq.~68! by
noting that in the mixed phase one always h
dBz /dHz.1.

For the screening length, we find

lxR
2

l'
2 .5

2
1

4l'
2k0

2 for large B, l'@av ,

2
5 av

2

72l'
2 for small B, l'!av .

~70!

Sincek0
254pB/f0;1/av

2 , both cases givelxR; iav . It is
tempting to interpret this imaginarylxR as indicating the
rearrangement of vortex lines on the length scaleav due to
the penetration of the applied field, with no ‘‘healing’’ leng
at all at the surface of the sample. However, our caution
remarks following Eq.~64!, concerning the applicability o
our results on the length scaleav , should again be noted.

C. Shear perturbation

The preceding two cases of the tilt and the compress
perturbations gave information about the transverse and
gitudinal magnetic susceptibilities, viagy andgx . However,
since for largeB lyR , lxR;av is independent of the bar
l' , it is unclear whether they give any information about t
density of superconducting electrons, or whether they can
expected to diverge at the superconducting to normal tra
tion. A more interesting case is therefore given by the th
possibility Yz(qx̂), which gives the response to the she
perturbation of Fig. 1~c!.

The relevant vortex correlation we need to compute

^ny(qx̂)ny(2qx̂)&, but to lowest order inuq , Eq.~53! shows
l

s

ry

n
n-

be
si-
d
r

s

this to vanish identically. This is merely an artifact of o
Fourier transform of the displacement fieldu, which prohib-
its vortex lines from having a net tilt away from theẑ axis.
To avoid this difficulty we can evaluate the correlation
q5qxx̂1qzẑ, with finite qz , and then take the limit as
qz→0. From Eqs.~53! and ~54! we get

lim
qz→0

^ny~q!ny~2q!&5 lim
qz→0

qz
2b0

2VT
c66~q!qx

21c44~q!qz
2 . ~71!

For the case of a vortex line lattice withc66.0, taking
qz→0 results in a vanishing of the vortex correlation. Fro
Eqs. ~38! and ~39! we then havelzR5lz , andgz51. We
will see in the next section that higher-order elastic corr
tions lead to a temperature-dependent increase inlzR, but do
not changegz51. The vortex line lattice thus exhibits lon
gitudinal superconductivity, with a perfect Meissner effe
for shear perturbations.

If one assumesc66[0, as might describe the case of
vortex line liquid, Eq. ~71! results in ^ny(qx̂)ny(2qx̂)&
5b0

2VT/c44(qx̂). In this case we have gz512
B2/4pc44(0)512dB' /dH',1, exactly as in the case o
the tilt perturbation, Eqs.~57! and ~60!. To summarize,

^ny~qx̂!ny~2qx̂!&50 and gz51 if c66.0 ~72!

^ny~qx̂!ny~2qx̂!&5
b0
2VT

c44~qx̂!
and gz512

dB'

dH'

,1

if c66[0.
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The above arguments suggest that a singular decrea
gz from unity ~or equivalently the singular increase ofnz0
from zero!, marking the loss of longitudinal superconducti
ity, serves as a convenient criterion for the superconduc
to normal transition in the mixed state of a type-II superco
ductor. This is one of the main results of our paper. If t
transition is second order, we expect thatlzRwill diverge at
the transition withns;1/lzR

2 the density of superconductin
electrons.

In considering the vortex correlation atq5qxx̂1qzẑ, it is
the relative order in which one takesqx andqz to zero that
distinguishes between the shear and the tilt perturbation.
the order corresponding to the shear perturbation that is
lated to the superfluid density of the 2D analog boso
rs boson. Note that if we had definedrs boson in terms of the
q50 winding number of Pollock and Ceperley,36 rather than
in terms of theq→0 transverse momentum correlation fun
hi
en

rte

to

ed
e

tio

rm
of

g
-

is
e-
s,

tion as we have done in Appendix A, the connection
rs bosonto the shear, as opposed to the tilt, perturbation wo
become ambiguous.

The preceding discussion has been based upon el
fluctuations about a perfect dislocation free vortex li
lattice. Recently, Freyet al.37 have argued that, at suf
ficiently high magnetic field in a layered superconduct
the proliferation of dislocations can result in the loss of lo
gitudinal superconductivity even in the vortex line lattic
state.

D. Second-order corrections

Our analysis in the preceding sections is based on
~53!, which gives an expansion of the vortex line densityn to
linear order in the displacement fieldu. In this section, we
consider the effect of higher orders, by continuing the exp
sion inu,
nq5 ib0@q•uqẑ2qzuq#2
b0
V (

q8
{ 1
2 @q•uq8#@q•uq2q8# ẑ2~qz2qz8!@q•uq8#uq2q8}

2
ib0
2V2 (

q8,q9
$ 1
3 @q•uq8#@q•uq9#@q•uq2q82q9# ẑ2~qz2qz82qz9!@q•uq8#@q•uq9#uq2q82q9%1•••, ~73!
that
e
sult

ow
m-

-

e

by
for small but finiteq.
To systematically evaluate vortex correlations using t

higher-order expansion, one should also in principle ext
the elastic energy of Eq.~54! to higher order inu by taking
the expansion above, and substituting into the vortex-vo
interaction Hamiltonian of Eq.~20!. The resulting expression
is rather complex. For simplicity, we will instead continue
use the quadratic elastic energy of Eq.~54!; however, we
now view the elastic moduli as appropriately redefin
temperature-dependent parameters, in the spirit of a s
consistent phonon approximation.

We consider here only the case ofYz(qx̂), corresponding
to the shear perturbation, for which we need the correla
limqz→0^ny(q)ny(2q)&, with q5qx̂1qzẑ. As we have al-

ready seen in the preceding section, forc66.0, the contribu-
tion toO(u2) vanishes. By symmetry, the next leading te
is O(u4). Using the expansion of Eq.~73!, and factorizing
the average of the product of the fouru’s into all possible
pairs, we find

^ny~q!ny~2q!&

5b0
2T2qaqb (

q8
$~qz2qz8!2Fab

21~q8!Fyy
21~q2q8!

1~qz2qz8!qz8Fay
21~q8!Fby

21~q2q8!

2qz
2Fyy

21~q!Fab
21~q8!%, ~74!

where summation overa,b5x,y is implied, andF is the
elasticity tensor of Eq.~54!. Taking qz→0, keeping only
terms ofO(q2), and using the fact thatF is symmetric in
q as well as its indices, we get
s
d

x

lf-

n

^ny~qx̂!ny~2qx̂!&5b0
2T2Vq2I , ~75!

whereI is the integral,

I[
1

V(k
kz
2

detFk
5
1

V(k
kz
2

~c44kz
21c11k'

2 !~c44kz
21c66k'

2 !
.

~76!

The correlation of Eq.~75! vanishes asq2 for q→0. We
therefore continue to find, as in the preceding section,
nz050 andgz51, giving a perfect Meissner screening of th
shear perturbation. It is straightforward to see that this re
persists to all orders inu.

However, in contrast to the preceding section, we n
find a finite renomalization of the penetration length. Co
paring the expansion of Eq.~37! with the result of Eq.~75!,
we getnz15b0

2T2VI . Using this in Eq.~39! then gives

lzR
2

lz
2 511

B2

4plz
2 IT. ~77!

Thus theo(u4) term generates anO(T) correction tolzR
2 .

Continuing the elastic expansion in powers ofu will generate
corrections tolzR

2 in the form of a power series inT.
To estimate the magnitude of the correction tolzR of Eq.

~77! we can evaluate the integralI using a crude approxima
tion. The elastic moduli which appear inI are functions of
wave vectork. However, the dominant contributions to th
integral will come at wave vectorskz.A(c66/c44)k' and
kz.A(c11/c44)k' , both givingkz.hk' . The dominantk'

will be k'.k05A4pB/f0, at the edge of the Brillouin
zone. We will therefore approximate the elastic moduli
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their values at this dominant wave vector, denoting th
values asc̃44, c̃11, and c̃66. Within this approximation one
can explicitly calculate the integral to get

I5
k0

4p c̃44Ac̃44~Ac̃111Ac̃66!
. ~78!

Within the same crude approximation we can estimate
vortex lattice melting temperatureTm . Using the Lindemann
criterion2,6,38 that melting occurs when ^u2&.cL

2av
2

(cL;0.15 is the Lindemann parameter!, and keeping only
the transverse fluctuations as the dominant soft mode,
get,

Tm5
4pcL

2av
2Ac̃66c̃44
k0

. ~79!

Combining Eqs.~77!, ~78!, and ~79!, and using the esti-
mate thatc̃11; c̃66 at the Brillouin zone boundary, we find

lzR
2

lz
2 .11

1

2
cL
2S avlz

D 2 B2

4p c̃44

T

Tm
. ~80!

Using the result of Fisher39 for c44 at the zone boundary, fo
large magnetic fieldsl'@av ,

c̃44.
f0B

32p2lz
2 H 11 lnF Hc2

B~11h22!G J , ~81!

we get,

lzR
2

lz
2 .11

4pcL
2A4/3

11 ln@Hc2 /B~11h22!#
. ~82!

Taking, for example,B50.2Hc2 andh22!1, we estimate a
12% increase inlzR

2 over lz
2 near melting, due to lowest

order elastic fluctuations. Since the elastic modulicaa(k) are
in general larger than the valuesc̃aa , this is an overestimate
The above estimate does not of course include the effec
critical fluctuations near a phase transition, which for
second-order transition should result in a divergence oflzR
at Tc .

V. VORTEX LINE LIQUID

In the preceding section we considered the vortex l
lattice atT,Tm . In particular we showed how the respon
to the shear perturbation, given byYz(qx̂), gives a useful
criterion for superconducting phase coheren
gz[ limq→0@Yz(qx̂)/J'l'

2q2#51, or equivalently nz0
[limq→0^ny(qx̂)ny(2qx̂)&50 indicates the presence o
longitudinal superconductivity. In this section we consid
behavior in the vortex line liquid atT.Tm . As a measure of
superconductivity we focus on the behavior ofnz0.

A. Hydrodynamic approximation

The simplest approximation one can make at highT is to
take the Hamiltonian~20! and regard the Fourier componen
of the vortex line densitynq as continuous, independent
fluctuating variables, subject to the constraintq•nq50. We
e

e

e

of

e

,

r

refer to this as a hydrodynamic approximation.40 This yields

^ny(qx̂)ny(2qx̂)&5TV/@4p2J'V'(qx̂)#. Substituting into

Eq. ~30!, we find thatYz(qx̂)50 for all values ofq, reflect-
ing the fact that well above the superconducting transiti
an applied magnetic field will induce no supercurrents at

For temperatures closer to, but still aboveTm , we expect
the system to show a finite fluctuation diamagnetism. A b
ter approximation can be obtained by coarse graining
Hamiltonian~20! over a length scale of order the intervorte
spacingav , and then applying the hydrodynamic approxim
tion to average over the resulting coarse-grained vortex d
sity. This coarse-grained free energy has been given
Marchetti14 as

H@n#5
1

2b0
2V (

q
$cL~q!dnqzdn2qz1c44~q!nq'•n2q'%,

~83!

wherednz5nz2b0, cL is the bulk modulus, andc44 is a tilt
modulus of the same form as for the vortex lattice. Using t
form we find

nz05 lim
q→0

^ny~qx̂!ny~2qx̂!&5
b0
2VT

c44~0!
.0 ~84!

and, from Eqs.~38! and ~59!,

gz512
B2

4pc44~0!
512

dB'

dH'

,1. ~85!

Thus, within this hydrodynamic approximation, the longit
dinal superconductivity found in the vortex line lattice is lo
for the vortex line liquid. Note that since Eq.~85! givesgz
strictly less than unity in the vortex line liquid, while
gz51 in the vortex line lattice,gz presumably takes a dis
continuous jump at the transition where longitudinal sup
conductivity is lost.

A more detailed calculation of vortex correlations, ave
aging over unbounded dislocation loops within a continu
elastic model, has been carried out by Marchetti a
Nelson41 as a model for a hexatic vortex line liquid. In th
limit q→0, the result of Eq.~84! is again obtained.

Equations~84! and ~85! are identical to the result we
found in Eq. ~72! by simply taking c66[0 in the elastic
approximation for the vortex line lattice. It is interesting
speculate about the behavior of a ‘‘soft’’ vortex line lattice
which the long-wavelength shear modulus vanish
c66(q50)50, but in which a finite shear stiffness remain
on shorter length scales,c66(q' ,qz50).0 for q'.0. In
this case, taking the limitq→0 as in Eq.~71!, we find that
nz050 and longitudinal superconductivity remains.42 As
Marchetti and Nelson41 show, however, it is not possible t
describe an entangled vortex line liquid with such a sim
elastic description.43



si
e
ta
l,
i-

ti-

lu
he

i-

o
c

m

ds

es,

cri-

rse
nes,
h
ally
n

q.

sion
e

:
ing
t to
log
h
ale
ig-
e

KT
as

ding

al
i-

D
n

15 208 55TAO CHEN AND S. TEITEL
B. Kosterliz-Thouless transition

In Sec. IIIC we discussed how the KT superfluid tran
tion of the analog 2D bosons could appear in the 3D sup
conductor as a strong crossover to a vortex line liquid s
with longitudinal superconductivity. In his original mode
Nelson11 interpreted this KT transition in terms of a trans
tion from an ‘‘entangled’’ to a ‘‘disentangled’’ vortex line
liquid, for sufficiently thin samples. In this section, we es
mate the temperatureTc for this KT transition as a function
of sample thicknessLz and magnetic fieldB, and compare
this estimate with Nelson’s entanglement criterion.

The 2D KT superfluid transition is characterized15 by the
fact that, exactly at the transition, the boson helicity modu
Yboson(q→0) takes a discontinuous jump to zero from t
universal finite valueYboson/Tboson52/p. Yboson is given by
the vortex correlation of Eq.~42!, which for a vortex line
liquid can be related to the tilt modulusc44 by Eq. ~84!.
Using Eq.~59! for c44 and applying the universal jump cr
terion then gives for the KT transition,

Tc5
2

p

c44~0!

b0
2Lz

5
f0
2

2p2Lz

dH'

dB'

. ~86!

Thus as the thicknessLz increases,Tc decreases. In order t
observe a vortex line liquid with longitudinal supercondu
tivity we need the system to be thin enough thatTc.Tm . If
we define the length

L[
f0
2

2p2Tm
, ~87!

then we can rewrite Eq.~86! as

Tc
Tm

5
dH'

dB'

L

Lz
[
Lz max

Lz
. ~88!

We thus will haveTc.Tm provided

Lz,Lzmax5
dH'

dB'

L5S 4pc44~0!

B2 DL. ~89!

Assuming thatc44(0) in the line liquid is not too different
from c44(0) in the line lattice, we can use our results fro
Appendix B to evaluate the lengthLzmax. For large applied
magnetic fields, such thatav!l' or equivalentlyHc1!B,
we havedH' /dB'.1 and so, to leading order,

Lzmax5L. ~90!

For small magnetic fields, such thatlz!av , we have

Lz max5
f0

8pl'
2B

$h22@2ln~hk!21#11%L. ~91!

For an anisotropic material in intermediate magnetic fiel
such thatl'!av!lz , we have, to leading order,

Lzmax5
f0

8pl'
2B

$h22@ ln~Hc2 /B!21#11%L. ~92!

Note that for a melting temperature ofTm;90 K, as in
Y-Ba-Cu-O, one has, for largeB, Lz max5L.1400 mm.
-
r-
te

s

-

,

This is much thicker than typical experimental sampl
which are generally of the order 50mm. As B decreases,
Lz max only getslarger.

The above results may be compared with the original
terion for 2D boson superfluidity given by Nelson11 in terms
of the ‘‘entanglement length,’’

jz5
ẽ1f0

2TB
. ~93!

jz is the length required for a vortex line to have a transve
deflection equal to the average spacing between vortex li
av . Only when jz,Lz can the vortex lines have enoug
transverse wandering so that they may become geometric
entangled. The crossoverT3 between a disentangled and a
entangled vortex line liquid is thus given by

T35
ẽ1f0

2BLz
5

f0
2

2p2Lz

f0h
22lnk

16l'
2B

, ~94!

where we have usedẽ15e1h
22 with e15(f0

2/4pl')
2lnk

for small B. One will haveT3.Tm only for Lz,Lz max8 ,
where

Lzmax8 5
4

p Fp2ẽ1
f0B

GL5
f0h

22ln~k!

16l'
2B

L. ~95!

Except for some numerical factors,Lzmax8 agrees withLzmax
of Eqs.~91! and~92!, decreasing as 1/B, for increasing mag-
netic field. In the large field limit however, our result in E
~90! saturates to the finite valueL instead of continuing to
decrease. The difference between the results of Eqs.~90! and
~95! arises because the latter is based on the the line ten
ẽ1 for the energy of a single-vortex-line tilting, while th
former is based on the tilt modulusc44(0) for the collective
tilting of all lines. This points out an important distinction
Geometric vortex line entanglement, i.e., the local wrapp
of lines around each other, is not necessarily equivalen
the global vortex line winding that characterizes the ana
2D boson superfluid phase.36 Nelson’s entanglement lengt
of Eq. ~95! nevertheless remains the important length sc
for local geometric entanglement, which still can have a s
nificant effect on the dynamic behavior of the vortex lin
liquid if the barriers for vortex line cutting are high.44

The above discussion has been based on the familiar
transition of an ordinary 2D superfluid, and predicts that
Lz→` at fixedT.Tm (Tboson→0 at fixed\boson) Tc→0 and
so one is always in the boson superfluid state, correspon
to a normal vortex line liquid. Feigelman45 and co-workers,21

however, have argued that forl→`, the long-range nature
of the effective 2D boson interaction can lead to a norm
boson fluid, and hence to a vortex line liquid with longitud
nal superconductivity, even in theLz→` (Tboson→0) limit
for T,Tc

` , whereTc
` ~i.e., the critical\boson in the boson

variables! gives the 2D Meissner transition of the analog 2
chargedbosons of thel→` approximation, as discussed i
Sec. IIID. Such al→` transition would probably lead to
strong crossover effects in the finitel case, which would
obscure the KT transition whenLz!Lz max, where theTc of
Eq. ~86! can be very much larger thanTc

` .
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Searching for longitudinal superconductivity within th
vortex line liquid will be one of the main objectives of ou
numerical investigations, to be discussed in the follow
section.

VI. NUMERICAL SIMULATIONS

In this section we report the results of numerical Mon
Carlo simulations we have carried out in order to study
behavior of the system of fluctuating vortex lines.

A. Lattice superconductor

To carry out numerical simulations, our first step will b
to discretize the continuum to a cubic grid ofN5N'

2Nz sites

i . The grid spacing in directionm̂ is taken to be

am5H a'5j' , m5x,y,

az5d, m5z.
~96!

The grid spacingj' in thexy plane is meant to approximat
the core radius of a vortex, while the spacingd along ẑ is
meant to simulate the spacing between CuO planes of a
ered high-Tc superconductor. If one wants to model an a
isotropic continuum superconductor, such as in Sec. II,
should taked[jz , where the anisotropic Ginzburg-Landa
free energy functional gives2 jz5h21j' . Discretization of
Eq. ~1! then leads to thelattice superconductormodel16,17

H@u i ,Aim#5 (
i ,m

@Um~u i1m̂2u i2Aim!

12p2Cm~bim2him!2#, ~97!

whereu i is the phase angle on grid sitei ,

Aim5E
i

i1m̂
A•dl ~98!

is the integral of the total magnetic vector potential acr
the bond at sitei in direction m̂, and if m,n,s is a cyclic
permutation ofx,y,z, then

2pbim5Ai1 n̂,s2Ais2Ai1ŝ,n1Ain ~99!

is the sum of theAjn going counterclockwise around th
plaquette at sitei in directionm̂ and gives 2p times the flux
of total magnetic field through the plaquette~see Fig. 2!; a
similar relation defineshim in terms ofAim

ext. The kinetic en-
ergy piece is expressed in terms of the Villain function46

e2Um~f!/T5 (
m52`

`

e2 J̄mhm
22

~f22pm!2/2T, ~100!

with couplings
g

e

y-
-
e

s

J̄m5J'

anas

am
5H J̄'5J'd, m5x,y,

J̄z5J'

j'
2

d
, m5z.

~101!

The couplings of the magnetic energy piece are

Cm5J'l'
2 am

anas
5H C'5 J̄zS l'

j'
D 2, m5x,y,

Cz5 J̄'S l'

j'
D 2, m5z.

~102!

To express the Hamiltonian in terms of vortex line va
ables, we first perform a standard duality transformation47 of
the kinetic energy piece, and then, following Carneiro17 @in
complete analogy with Eqs.~15!–~21!#, complete the square
in bqm

ind5bqm2hqm subject to the constraint thatbq
ind is diver-

genceless. Our lattice Fourier transforms are defined by

bqm5(
i
eiq•r ibim , bim5

1

N (
q

e2 iq•r ibqm , ~103!

and the constraint thatbim
ind is divergenceless can be writte

as,Q* •bi
ind50, where

Qm[12eiqmam. ~104!

The vortex part of the resulting Hamiltonian is

Hv5
4p2J̄'

2N (
q,a

Vqa@nqa2hqa#@n2qa2h2qa#, ~105!

whereVqx5Vqy[Vq' and

FIG. 2. Labeling conventions for the lattice superconduct
Aim are directedoutwards from site i on the bonds of the direc
lattice.bim are directedinwardstowards the dual sitei on the bonds
of the dual lattice, piercing the plaquettes of the direct lattice
shown.
Vq'5
~l' /d!2

11~l' /d!2uQzu21~lz /j'!2uQ'u2
, ~106!

Vqz5
~l' /j'!2@11~lz /d!2uQzu21~lz /j'!2uQ'u2#

@11~l' /d!2uQzu21~l' /j'!2uQ'u2#@11~l' /d!2uQzu21~lz /j'!2uQ'u2#
. ~107!
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15 210 55TAO CHEN AND S. TEITEL
nqm is the Fourier transform of the vorticitynim piercing
plaquetteim. Equations~105!–~107! are the lattice equiva
lents of the continuum Eqs.~20! and ~21!.

Note thatHv /T depends onfour dimensionless param
eters, which may be taken to beJ̄' /T, h5lz /l' ,
k5l' /j' , and z5j' /d. The ratio of the couplings tha
appear in the Villain kinetic energy terms of Eq.~100! is
then J̄zh

22/J'5(l'j' /lzd)
25(z/h)2. If one wants to

model an anisotropic continuum, withd5jz5h21j' , then
one hasz5h and there are onlythreedimensionless param
etersJ̄' /T, h, andk, with J̄zh

22/ J̄'51. Both cases are in
general different from an earlier derivation of the Lond
lattice vortex line interaction17 which assumed equal gri
spacings in all directions,am5a0 for all m, and so with
z51 involves only the three dimensionless paramet
J̄' /T, h, andl' /a0, but with J̄zh

22/ J̄'5h22. Keeping the
distinction azÞa' ~i.e., dÞj') is essential to correctly
model the effects of the anisotropic vortex core energy
either a continuum or a layered anisotropic superconduc

We can now define the helicity modulus for the latti
superconductor in complete correspondence with the c
tinuum, Eqs.~22!–~25!. The only change needed is to r
place the system volumeV with the number of grid sites
N, due to the slightly differing definitions of the Fourie
transform in the continuum, Eq.~9!, and on the lattice, Eq
~103!. As in the continuum we restrict ourselves to the thr
special perturbations of Fig. 1,Am

ext(qn̂), wherem,n,s are a
cyclic permutation ofx,y,z. Taking the Fourier transform o
Eq. ~99!, we get, 2phs(qn̂)5Qn*Am

ext(qn̂). Substituting for
hs in terms ofAm

ext in Hv of Eq. ~105!, and then applying the
definition of helicity modulus in Eq.~25!, we get, for the
diagonal part of the helicity modulus tensor,

Ym~qn̂ !5
J̄m~l' /an!2uQnu2

11~lm /an!2uQnu2 F12
4p2J̄m~l' /an!2

TN

3
^ns~qn̂ !ns~2qn̂ !&0
11~lm /an!2uQnu2 G ~108!

and, for the off-diagonal part,

Ymn~qŝ !5
J̄m~l' /as!2uQsu2

11~lm /as!2uQsu2

3F4p2J̄n~l' /as!2

NT

^nn~qŝ !nm~2qŝ !&0
11~ln /as!2uQsu2 G .

~109!

Equations~108! and ~109! are the lattice equivalents of th
continuum Eqs.~30! and ~31!. The primary difference be
tween continuum and lattice expressions is the substitu
qm
2→uQm /amu25(222cosqmam)/am

2 .
Expanding the vortex correlation, at smallq,

^ns~qn̂ !ns~2qn̂ !&05nm01nm1uQnu21nm2uQnu41•••,
~110!

we can again write the diagonal part as
s

n
r.

n-

e

n

Ym~qn̂ !5gm

J̄m~l' /an!2uQnu2

11~lmR /an!2uQnu2
, ~111!

where, analogous to Eqs.~38! and ~39!,

gm512
4p2J̄m~l' /an!2

NT
nm0 ~112!

and

S lmR

lm
D 2512

4p2J̄m~l' /an!2

NT

Fnm02nm1S lm

an
D 22G

gm
. ~113!

Noting thatQn.2 iqnan for small q, thatN5V/(j'
2d),

and that there is a slight distinction between Fourier com
nents defined on the lattice versus in the continuu
nqm
lattice5am

21nqm
continuum, all the above expressions agree co

pletely with their continuum counterparts, in the lim
q→0.

B. Monte Carlo method and parameters

To carry out Monte Carlo simulations of the lattice supe
conductor model, we start with a fixed densityb05j'

2B/f0

of magnetic-field-induced straight vortex lines, parallel to t
ẑ axis. Following Carneiro, Cavalcanti, and Garter,30 we up-
date the system, heating from the ground state, by add
elementary closed vortex rings that surround only a sin
bond of the discretizing grid~i.e., rings of areaj'

2 in the
xy plane, or areaj'd in the xz or yz planes!. The rings are
added one at a time, at random positions with random or
tations, and then accepted or rejected according to the s
dard Metropolis algorithm. When a side of such a ring co
cides with, and is oppositely oriented to, a segment of one
the initial magnetic-field-induced vortex lines, these two se
ments will cancel out resulting in a net fluctuation of th
vortex line. This procedure provides for a complete sampl
of phase space for the vortex variablesnim which are subject
to the constraints that vorticity is locally conserve
(m@nim2ni2m̂,m#50, and that the average internal magne
field is kept constant, (1/N)( ini5b0ẑ ~i.e., we are using the
Helmholtz ensemble!.

Our simulation uses periodic boundary conditions in
directions. The periodicity alongẑmakes our simulation map
exactly onto the 2D boson problem. In order to compu
energy changes for the Metropolis acceptance test, it is c
venient to use48

DE52p2J̄' (
im

FimDnim , ~114!

whereDnim is the change in vorticity due to the vortex rin
excitation, and

Fim[(
j
Vm~r j2r i !njm ~115!

represents the ‘‘potential’’ field of all other vortices
Vm(r i)5(1/N)(qe

2 iq•r iVqm is the Fourier transform of the
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vortex line interaction of Eqs.~106! and ~107!, where the
sum is over allq satisfying periodic boundary conditions
qm52pl m /Nmam , l m50,1, . . . ,Nm21. In this way, the
computation ofDE is a local computation, involving only
the sites of the elementary vortex ring excitation. Only wh
an excitation is accepted is it necessary to update the po
tialsFim , a calculation of orderN. Since acceptance rates a
generally low below the transition, this method is signi
cantly faster than a direct computation involving the lon
range vortex interactions.

For simplicity, we have only simulated the complete
isotropic case withl[l'5lz , a0[j'5d, and hence
J̄0[ J̄'5 J̄z . Henceforth all lengths will be measured
units of the grid spacinga0[1 and temperatures in units o
J̄0. Our simulations are for the fixed vortex densi
b051/15 whose ground state, shown in Fig. 3, is a clo
approximation to a perfect triangular lattice with sides
length A183A173A17. We choosek5l/a055, compa-
rable to the vortex line spacingav /a0.1/Ab053.87. We
study system sizesN'530 in thexy plane andNz515 and
30 parallel to the applied magnetic field.

Our simulations are carried out heating from the grou
state. At each temperature we use typically 5000 sweep
equilibrate, followed by another 8–16 000 sweeps to co
pute averages. Each ‘‘sweep’’ refers toN5N'

2Nz attempts to
add an elementary vortex ring. Statistical errors are estim
using the standard block averaging method.

C. Results: Helicity modulus

In an earlier report10 we presented an analysis of our da
based on Eqs.~110!–~113!, fitting our computed correlation

^ns(qn̂)ns(2qn̂)&0 to an expansion inuQnu2. Here we take
a different approach. PlottingJ̄0l

2uQnu2/Ym(qn̂) versus
uQnu2, Eq. ~111! shows that at smallq we should find a
straight line with interceptgm

21 and slopegm
21lmR

2 .
In Figs. 4~a!–4~c! we show such plots for the three type

of perturbations shown in Fig. 1, forNz530 and selected
values of temperature.m5y, x, andz correspond to the tilt,
compression, and shear perturbations, respectively.
straight lines through the data result from least-squares

FIG. 3. Ground state for vortex line densityb051/15 on a cubic
grid. Solid circles indicate the locations of the straight vortex lin
as they pierce thexy plane.
n
n-

-

e
f

d
to
-

ed

he
ts,

using the smallest eight values ofq.0. In virtually all cases,
the fit is quite reasonable. In Figs. 5~a!–5~c! and 6~a!–6~c!
we show the values ofgm and (lmR /l)

2 obtained from these
fits. In each case we show the result of fits to the smal
eight, seven, six, and five values ofq.0. As is seen, our
results are virtually insensitive to the number of values
q used, except for the case of the compression pertu
tion in the vicinity of Tm.1.2, where our data are rathe
scattered and statistical errors are large@see data forT51.2
in Fig. 4~b! and the corresponding dashed line fit#. We
have also obtained values ofgm and (lmR /l)

2 by fitting
J̄0l

2uQnu2/Ym(qn̂) to a second-order polynomial inuQnu2.
We have found the results from such quadratic fits to
essentially unchanged from the values obtained from the
ear fits.

In Figs. 7~a! and 7~b! we showgm and (lmR /l)
2, respec-

tively, for all three types of perturbations, comparing t
finite size effects forNz530 andNz515. The results shown
are for fits to the smallest eight values ofq, except for the
case of the tilt perturbation forNz515 where we have use

s

FIG. 4. Helicity modulus plotted asJ̄0l
2uQnu2/Ym(qn̂) vs

uQnu2 for various values ofT. The straight lines are fits to Eq.~111!,
and determine the parametersgm and (lmR /l)

2 for ~a! the tilt, ~b!
the compression, and~c! the shear perturbations of Fig. 1.
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only the smallest four values ofq ~since the allowed value
of qz are spaced twice as far apart forNz515 as compared to
Nz530). We see that finite-size effects are in general sm
except for the case of the shear perturbationm5z.

We now discuss our results forgm . From Fig. 7~a! we see
that all threegm.1 at low temperatures. Forgz , this is in
agreement with our expectation that there is a total Meiss
effect for shear perturbations in the vortex line lattice pha
However, the elastic theory results given by the first lines
Eqs. ~61! and ~69! would lead one to expectgy ,ugxu!1.
This is because for the relatively largeB simulated here,
B.H and the susceptibilitiesdBs /dHs that entergy and
gx in Eqs.~60! and~68! are both close to unity. That we fin
gy ,gx.1 at lowT is, we believe, an artifact of our discretiz
ing grid which acts like a periodic pinning potential for vo
tex lines. At lowT, the vortex lines are locked into a lattic
structure commensurate with this pinning potential. Inde
the fact that the ground state of Fig. 3 is not a perfect eq
lateral triangular lattice is due to this effect. This period
pinning potential leads to an enhanced stiffness of the ef

FIG. 5. Plots ofgm vsT as obtained from the straight line fits o
Fig. 4, fitting to the eight, seven, six, and five smallest values
q, for ~a! the tilt, ~b! the compression, and~c! the shear perturba
tions of Fig. 1. Little sensitivity is seen to the number of values
q used in the fit.
ll,

er
e.
f

,
i-

c-

tive elastic moduli, greatly reducing the susceptibiliti
dBs /dHs from their continuum values, and resulting in th
observedgy ,gx.1 at low T. Indeed the periodic pinning
potential of the discretizing grid acts in many ways like t
columnar pins of the ‘‘Bose glass’’ model49 of a disordered
superconductor, andgy51 is similar to the ‘‘transverse
Meissner’’ effect for tilting the applied magnetic field that
found in that problem. One can wonder whether the decre
of gy from unity which begins atT.0.6 is a smooth cross
over due to finite energy barriers for discretized vortex flu
tuations or is rather a sharp transition, being the perio
pinning analog of the Bose glass transition.

At higher temperatures,gx andgy decrease towards zer
at Tm.1.2. We will soon see that thisTm is the melting
temperature of the vortex line lattice. It is only when th
vortex lattice melts that the vortex lines also depin from t
the periodic potential of the grid. Assuming that the effecti
tilt and compression moduli of the unpinned vortex line li
uid are not greatly different from those of the continuu
vortex line lattice, one expects, from Eq.~61!, 0,gy
'1/(8pl2b0)50.024!1 and, from Eq. ~69!, gx'

f

f

FIG. 6. Plots of (lmR /l)
2 vs T as obtained from the straigh

line fits of Fig. 4, fitting to the eight, seven, six, and five smalle
values ofq, for ~a! the tilt, ~b! the compression, and~c! the shear
perturbations of Fig. 1. Little sensitivity is seen to the number
values ofq used in the fit.
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21/(16pl2b0)520.012,0. Looking at Figs. 5~a! and 5~b!
we see thatgy is indeed small and positive forT.Tm , while
gx is small and negative. Thatgx is indeed negative and no
zero forT.Tm is more clearly seen in Fig. 4~b! by noting
that the intercepts of the fitted lines are justgx

21 . The nu-
merical values we find forgx and gy in this region are in
roughly the same ratio as the above estimates, but app
mately 2–3 times larger in magnitude. This rough agreem
of gx and gy with elastic theory gives us confidence tha
aboveTm , the artificial pinning introduced by our discretiz
ing grid is no longer playing a significant role in the vorte
line fluctuations.

Returning to Fig. 7~a! we see that, in contrast togy and
gx , gz remains equal to unity well into the vortex line liqui
phaseT.Tm . gz only decreases from unity towards th
small value expected from Eq.~85! for the vortex line liquid,
gz512dB' /dH'5gy , at Tc.1.8. Thus longitudinal su-
perconductivity, indicated by the shear Meissner effect w
gz51, persists well aboveTm into the vortex line liquid.
This one of the main observations of our simulations. Co
paring results forNz515 withNz530, we see that the width
of this transition clearly sharpens asNz increases; however
the temperatureTc , wheregz starts to fall below unity, de-
creases only slightly.

We now consider our results for (lmR /l)
2. For the tilt

perturbation, comparison of Figs. 5~a! and 6~a! shows that to
a very good approximation,gy'(lyR /l)

2 for the entire
range ofT. Such a result follows from Eqs.~57! and ~58! if
one makes the simple assumption thatc44(q)
.(B2/4pl'

2 )Vq'1b0ẽ1 whereVq' is the vortex line inter-
action of Eq.~21!, and ẽ15h22e1 wheree1 is the effective
qz independent single-vortex-line tension. It is interesti

FIG. 7. Finite size comparison of the parameters~a! gm and~b!
(lmR /l)

2, for the tilt (n), the compression (s), and the shear
(L) perturbation. Open symbols are data forNz515, while solid
symbols are data forNz530.
xi-
nt
,

h

-

thatlyR shows no increase asTm is approached from below
as is usually associated with a decay length near a transi

Turning to the compression perturbation we see from F
6~b! that, in contrast tolyR , (lxR /l)

2 does increase from
unity as Tm is approached from below. This increase
clearly noticeable at temperatures sufficiently belowTm so
that our data still have good statistical accuracy. This is
contrast to a similar increase ingx in Fig. 5~b! just below
Tm , which we do not believe is statistically meaningful, b
is rather just a reflection of the scatter in our data. Thus
the lattice starts to depin from the discretizing grid, a flu
tuation in vortex line density decays over an increas
length scalelxR . AboveTm , our numerical values are con
sistent with (lxR /l)

2'gx , as expected from Eqs.~69! and
~70! for the casel.av . That lxR

2 is indeed negative here
and solxR is imaginary, can be seen in Fig. 4~b! by noting
that the slopes of the fitted lines are equal togx

21lxR
2 , and

that forT.Tm , gx,0.
Finally, we turn to the shear perturbation. Since this p

turbation experiences a total Meissner screening in the su
conducting state, we may expect, in analogy with the Me
ner effect atH50, thatlzR

22;ns wherens is the density of
superconducting electrons~not to be confused withrsboson,
the superfluid density of the analog 2D bosons!. Sincens
decreases asT increases, vanishing at the superconduct
transition, we expect thatlzR

2 should increase with increasin
T, reaching a maximum atTc ~diverging in the case of a
second order transition!. Precisely such behavior is seen
Fig. 6~c!. Above Tc , lzR

2 decreases to roughly the sam
small values aslyR , as is expected from Eqs.~55! and~84!.
Comparing results forNz515 withNz530 we see that, simi-
lar to the behavior ofgz , the transition width sharpens an
the temperature of the peak inlzR

2 slightly decreases asNz is
increased. It is interesting to note, however, that the value
lzR
2 at its peak has also very slightly decreased asNz in-

creased.
The possibility that longitudinal superconductivit

can persist into the vortex line liquid has been sugges
by the 2D boson analogy. We can therefore compare
Tc found here with the predictions of Sec. VB. Rewr
ing Eq. ~86! in terms of the dimensionless parameters of o
numerical simulation, and takingdH' /dB''1, gives Tc
58p J̄0k

2/Nz . Usingk55 andNz530 givesTc / J̄0.21, 10
times larger than the value 1.8 found numerically. We c
also estimate the entanglement crossover of Nelson. E
tion ~94! gives T35p J̄0lnk/2b0Nz , and usingb051/15,
k55, andNz530 givesT351.26'Tm . This is somewhat
lower than the observedTc . Moreover, both the boson su
perfluid transition temperature and the entanglement t
peratureT3 should scale with system thickness as 1/Nz . In
contrast, comparingNz515 with Nz530, we see no such
dramatic shift in the numerically observedTc.1.8.

D. Results: Vortex line fluctuations

To elucidate the nature of the transitions in our model,
have measured other properties to characterize the vo
line fluctuations in the system. In Fig. 8 we show snaps
views of the vortex line configurations forNz515, at various
temperaturesT,Tm , Tm,T,Tc , and Tc,T. We show
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15 214 55TAO CHEN AND S. TEITEL
both a side perspective and a view looking down along
applied field. We see clearly that forT,Tm there is a vortex
line lattice. ForTm,T,Tc the lattice is disordered but th
vortex lines remain for the most part disentangled. F
Tc,T the lines are highly entangled.

For a quantitative determination of the vortex line latti
melting temperature, we compute the structure function
vortices within the samexy plane,

S~q'!5
1

Lz
(
i , j

eiq'•~r i2r j !^niznjz&dzi ,zj . ~116!

Below Tm we expect to see Bragg peaks at the recipro
lattice vectorsK of the vortex line lattice, while aboveTm
we expect to see approximately circular rings characteri
of a liquid. Let us denote by$K1% the six smallest nonzero
reciprocal lattice vectors, and by$K18% the six vectors ob-

tained by reflecting the$K1% through thex̂ axis. Then, since
the ground-state vortex lattice of Fig. 3 breaks this reflect
symmetry, while the vortex line liquid restores it, the qua
tity DS[S(K1)2S(K18), averaged over the six$K1%, serves
as a convenient order parameter for the melting transit
We plotDS, normalized byS0[S(K50), in Fig. 9. We see
that DS vanishes atTm.1.2. In an earlier work10 we have
shown intensity plots ofS(q') in the entireq' plane. The
circular rings seen aboveTm verify thatTm is indeed a melt-
ing to a liquid, and not a depinning to a floating vortex la
tice, or some other vortex lattice structural transition.

As another measure of vortex line fluctuations, we ha
computed the fluctuation length of the vortex lines in t
directions transverse and parallel to the applied magn
field. The total length of vortex lines in the ground state
L05b0NzN'

2 . If, in any configuration,Lm is the total length
of all vortex lines in directionm ~we count length here as a
absolute quantity; oppositely oriented segments do not c
cel each other out!, then we define the normalized exce
vortex line lengths as Dl '5(Lx1Ly)/(2L0) and
Dl z5(Lz2L0)/L0. We plotDl ' andDl z in Fig. 10. If we
assume that all vortex fluctuations consist of purely tra
verse motion of the magnetic-field-induced lines, thenDl '

is the average transverse distance traveled by a vortex
between two adjacentxy planes. If we further assume tha

FIG. 8. Snapshots of vortex line configurations forNz515, for
~a! T51.0,Tm , ~b! Tm,T51.6,Tc , and ~c! Tc,T52.2. The
bottom row is the view looking down along the applied magne
field.
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these lines are fluctuating as in a random walk, then the t
transverse deflection of a line in traveling down the ent
length of the systemNz is u5ANzDl ' . Entanglement
should occur whenu.av or when Dl '.av /ANz. From
Fig. 10, and usingav.1/Ab053.87, we would estimate the
entanglement temperatures asT3.2.1 for Nz515 and
T3.1.9 for Nz530. These are both consistent with theTc
seen in Fig. 7. However, if the transition atTc is indeed
caused by the onset of entanglement due to transverse
dering of magnetic-field-induced vortex lines, it is necess
to explain how just aboveTc , wheregz.0, one can have a
Yboson/Tboson.NzT/(4p2J̄0k

2)'0.06 @see Eq. ~43!# so
much smaller than the lower bound 2/p given by the
Kosterlitz-Thouless theory15 of the analog boson superflui
transition. We further note that in previous simulations27,28

with l→`, where samples up to thicknessNz5200 were
studied, the above criterion gives aT3 which is well below
the observedTc .

Returning now to Fig. 10, we see that the above assu
tion of strictly transverse fluctuations of the fie
duced lines, while reasonable near the meltingTm where
Dl z /Dl '.0.035, is not at all reasonable nearTc , whereD

l z/Dl '.0.41. The excess vorticity alongẑ can only come
from either field-induced lines which wander bac

FIG. 9. Plot of structure function peak heights,DS(K1)/S0, vs
T for Nz515 and 30.

FIG. 10. Average normalized fluctuation length of vortex lin
Dl z and Dl ' , parallel and transverse to the applied magne
field, vsT. We see thatDl z!Dl ' for T,Tm , indicating that there
are only transverse fluctuations of the magnetic-field-induced v
tex lines. This is no longer true nearTc . Open symbols are for
Nz515, solid symbols are forNz530, and the solid lines are guide
to the eye.
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55 15 215HELICITY MODULUS AND FLUCTUATING TYPE-II . . .
wards or from closed vortex ring excitations. Both the
types of excitations are absent from the usual 2D boson a
ogy.

Using an algorithm we have described elsewhere,28 we
trace out the vortex line paths in our configurations to co
pute the distributionq(p) of the number of closed rings o
perimeter p, normalized by the ground-state vortex lin
lengthL05b0NzN'

2 . In Fig. 11 we compare the total lengt
of all vortex line fluctuations,Dl tot[2Dl '1Dl z , with
the total length of all vortex ring excitations,Dl ring
[(ppq(p). We see thatDl ring!Dl tot through the melting
Tm ; however, atTc51.8, Dl ring has increased to 27% o
Dl tot . In Fig. 12 we show a semilogarithmic plot ofq(p) vs
1/T. The straight lines found at lowT indicate thermal acti-
vation with a constant energy barrier that increases with r
size. At highT;2.8 theq(p) curves saturate. Note that th
thermal activation for rings persists up to temperatures ab
Tc . This suggests that, although the number of rings is
coming sizable nearTc , the transition atTc is not directly
associated with any critical behavior of the rings. This b
havior is the same that we saw in simulations of a 3DXY
model, corresponding tol→`, when we tookanisotropic
couplings;28 for isotropic couplings27 in the XY model, the
saturation of theq(p) curves coincided withTc . In Fig. 13
we plot the specific heatC vs T, for Nz530. We see that
C rises smoothly throughTc . The peak occurs nearT;3.0
~we only have enough data at highT to locate it very
crudely!, where theq(p) curves saturate. The peak inC is
thus associated with the proliferation of the closed vor
rings, which we believe to be a nonsingular crossover p
nomenon associated with the transition of the zero fi
b050 model, which occurs50 at Tc 0'3. The peak inC is
also probably associated28 with the onset of a strong diamag
netic response in the system, which occurs at the so-ca
‘‘mean-fieldHc2(T)’’ line.

Finally, we consider the entanglement of the magne
field-induced vortex lines. Due to the periodic boundary co
ditions alongẑ, the set of points$r' i(Nz)% where the field-
induced vortex lines pierce thexy plane atz5Nz must be
some permutation of the set of points$r' i(0)% where the
lines pierce the xy plane at z50. Lines for which
r' i(Nz)5r' j (0), with iÞ j , form part of an entangled brai
when viewed in the periodically repeated system. We

FIG. 11. Average normalized length of all vortex line fluctu
tions Dl tot , and average length in closed vortex ring excitatio
Dl ring , vsT. Open symbols are forNz515, and solid symbols are
for Nz530.
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thus classify each magnetic-field-induced line as belong
to a given braid of orderm, according to the number of line
m that are mutually entangled in the preceding sense.
compute the distributionn(m) giving the average number o
lines in a braid of orderm, where(mn(m)5b0N'

2 is just the
total number of field-induced lines.

In the 2D boson analogy, such entangled vortex lin
represent particle exchanges. A superfluid state of th
2D bosons is expected when there are many such exchan
and in particular when there is a finite probability to for
large exchanges involving a macroscopic fraction of
particles,36 which wrap entirely around the system in th
transverse direction and thus contribute tonz0[
limq→0^ny(qx̂)ny(2qx̂)&. gz is a direct measure ofnz0 @see
Eq. ~38!#, and hence a measure of the presence of such l
exchanges. In Fig. 14 we plot vsT the fraction of lines
R5n(1)/b0N'

2 which are not involved inany particle ex-
changes, i.e., the fraction of unentangled vortex lines
which r' i(Nz)5r' i(0). We seethatR51 and all lines re-
main unentangled up toT.Tc , at which pointR decreases
towards zero. The width of the decrease inR is roughly the
same as the width of the decrease ingz , for bothNz515 and
30.

In Fig. 15 we plot the entanglement distributionn(m) vs
m, for several values ofT near and aboveTc51.8, for
Nz530. We see that the distribution broadens asT increases,
indicating larger particle exchanges; however, no sharp

FIG. 12. Semilogarithmic plot ofq(p), the distribution of closed
vortex rings of perimeterp, vs 1/T, for several values ofp. Straight
lines at lowT indicate thermal activation.q(p) saturates at a tem
perature aboveTc . Open symbols are forNz515, and solid sym-
bols are forNz530.

FIG. 13. Specific heatC vsT for Nz530. The peak inC occurs
aboveTc .
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15 216 55TAO CHEN AND S. TEITEL
ture is obvious asT increases throughTc . This is in contrast
to what we observed in simulations27,28 of the l→` 3D
XY model, wheren(m) got dramatically flat and equal t
unity over a wide range of intermediatem as T reached
Tc ; theseXY simulations, however, used much larger sy
tem thicknesses,Nz.100–200, and this is one possible re
son for the difference in behavior from the present case.

VII. CONCLUSIONS AND DISCUSSION

The main conclusion of our numerical work is that long
tudinal superconductivity vanishes at aTc which lies well
within the vortex line liquid, at least for the system sizes
have been able to investigate. We note that our system s
N'530 andNz515, 30 are large compared to the micr
scopic length scales of our model,l/j'55 and
av /j'.A15. We have discussed a mechanism for this p
nomenon in terms of the KT superfluid transition of the an
log 2D bosons. However, theTc predicted by Eq.~86! is an
order of magnitude larger than the numerically observ
value. The entanglement temperatureT3 of Nelson is of the
correct order of magnitude as the observedTc . Figures 8 and
14 also suggest a connection between geometrical enta
ment andTc . However, upon comparingNz515 and 30, we
failed to see any sign of the dramatic size depende
T3}1/Nz that is expected from Eq.~94!. A similar size de-
pendence is also expected for the KT prediction of Eq.~86!.

In earlier simulations26–28of a 3DXYmodel, correspond-
ing to thel→` approximation of Sec. IIID, we have stud
ied much thicker systems than reported on here, withNz as
large as 200. We again found longitudinal superconductiv
to vanish at aTc

` within the vortex line liquid, with virtually
no finite-size effects in the apparent value ofTc

` asNz was
varied. An analysis27,28of geometrical entanglement, as do
here in connection with Fig. 10, gives aT3 well below the
observedTc

` for the thicker systems, and the dependence
Tc

` on the system anisotropy was found28 to be Tc
`}1/h,

rather than theT3}1/h2 predicted by Eq. ~94!. New
simulations51 have further shown that there is no appare
change in the largeNz limiting value of Tc

` when the peri-

odic boundary conditions along the directionẑ of the applied
magnetic field are replaced with the more realistic fr
boundary conditions. We believe that thesel→` simula-
tions are therefore in good agreement with the work
Feigelman and co-workers,21,45 who argued for just such a

FIG. 14. Fraction of unentangled magnetic field induced vor
linesR vs T, for Nz515 and 30. Lines start to entangle atTc .
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superconducting to normal vortex line liquid transition, wi
a Tc

` which remains finite asLz→`. We believe that this
transition of Feigelman and co-workers applies strictly to
l→` model, and represents aTboson50 Meissner transition,
as\bosonvaries, for the analog 2D charged bosons.

Returning to our present simulations, we believe that
results represent a finitel crossover from the abovel→`
transition atTc

` . Although we believe that thel→` limit is
extremely subtle, one may imagine the following scena
Whenl is large, although the analog 2D bosons behave
a neutral superfluid on sufficiently long transverse len
scales, on small length scales they will have thel→` be-
havior of chargedbosons. We would then expect the 2
boson helicity modulus to have, at finite transverse wa
vector q, a piece that looks like that of Eq.~50!. We thus
expect a form like

Yboson~q!5Yboson~0!1gboson

@Jl2#bosonq
2

11lR boson
2 q2

. ~117!

As q→0, it isYboson(0) that determines if the 2D bosons a
in a superfluid @Yboson(0).0# or a normal fluid
@Yboson(0)50# state, but at sufficiently largeq it will be the
second term that dominates, giving the appearance o
charged boson system. ForT,Tc , with Tc the 2D neutral
boson superfluid transition of Eq.~86!, one has
Yboson(0)50 and only the second term is present. A
q→0, this term vanishes, and Eq.~43! then givesgz51; i.e.,
we have the perfect shear Meissner effect that we expec
the 2D boson normal fluid phase, as discussed in Sec. I
However, if Lz is thin enough thatTc

`!Tc , with Tc
` the

Meissner transition of thel→` 2D charged boson mode
then as one cools down toTc

` , one expectslR boson

will become large, and possibly of order the finite tran
verse sizeL' of the system. In this case, for all availab
wave vectors,q.2p/L' yields lR boson

2 q2@1, and the sec-
ond term becomes approximately the consta
gboson@Jl2#boson/lR boson

2 . Equation ~43! then gives
gz512@gbosonl'

2 /lRboson
2 #. It thus appears as if the perfec

x FIG. 15. Distribution of entanglement of the magnetic field i
duced vortex lines.n(m) is the number of lines that participate i
entanglement braids of orderm. Data are shown for several tem
peratures nearTc51.8, forNz530.
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55 15 217HELICITY MODULUS AND FLUCTUATING TYPE-II . . .
shear Meissner effect has been lost at the lower tempera
;Tc

` . We note that for this scenario to agree with the sm
values ofgz that we find at temperatures above our nume
cally observed value ofTc , it would be necessary to hav
gbosonl'

2 /lR boson
2 '1; it is not a priori obvious why this

would be so.
Thus for a finitel simulation to see other than the abo

l→` crossover behavior, it would be necessary to do on
the following. One could increase the transverse sizeL' ,
keeping Lz constant, until one is in the limit wher
max@lR boson#!L' ~although in thel→` model lR boson

might diverge atTc
` , in a finitel model any such divergenc

would be rounded out to a finite maximum value!. In this
limit, the second term in Eq.~117! would be observed to be
;q2, and so one would findgz51. One thus expects th
apparentTc to increase aboveTc

` as L' increases above
max@lRboson#. One might never actually reach the true 2
boson neutral superfluid transitionTc of Eq. ~43!, since as
temperature increases, thermally excited closed vortex r
will start to proliferate, and vortex lines can make long tran
verse wanderings between two adjacentxy planes; both such
effects are left out of the naive mapping to 2D boson sta
tical mechanics. Alternatively, one could keepL' constant,
but increaseLz , so that theTc of Eq. ~43! falls belowTc

` .
For our parameters, Eq.~43! suggests that this would requir
a system of thicknessNz5f0

2/2p2Tc
`58p J̄0k

2/Tc
`.320.

Several other groups have done simulations similar
ours. Most of these29,30 have been in thel→` limit, but at
much higher vortex line densities such asb051/6. In these
cases it was found thatTc'Tm , and so no longitudinal su
perconductivity was observed in the vortex line liquid. W
believe that this is a consequence of the high densitiesb0
which have been used. Recently, we have studied28 the phase
diagram in suchl→` XY models, as a function of the sys
tem anisotropyh. Increasingh at fixedb0 can be argued to
play a role similar to increasingb0 at fixedh. We found that
ash increased,Tc andTm came closer together, and eve
tually became indistinguishable from each other. Similar
sults have recently been reported in simulations
Koshelev.52

Šášik and Stroud have done simulations53 for the l→`
limit using the lowest-Landau-level approximation, whic
treats thexy planes as a continuum and so avoids the ar
cial pinning of our discretized London model. For all valu
of anisotropy studied they findTc'Tm . However
Tešanović34 has argued that the lowest-Landau-level a
proximation fails as the magnetic field decreases, and s
such low magnetic fields, the London and the lowe
Landau-level approaches need not be in agreement. Usi
mean-field analysis, Tesˇanović34 has argued that longitudina
superconductivity can persist into the vortex line liquid
this low field limit.

Finite-l simulations have been carried out, for the sa
discretized London model as considered here,
Carneiro.9,54 For large line densities, he findsTc'Tm , con-
sistent with the abovel→` results. For line densities com
parable to our own, he findsTc noticeably aboveTm , when
following our analysis based on theq dependence of the
helicity modulus within the Helmholtz ensemble of fixed i
ternal magnetic fieldb0. He has suggested,54 however , that
re
ll
-

of

gs
-

-

o

-
y

-

-
at
-
a

e
y

the result may be very sensitive to theq→ extrapolation
implied by fitting to the expansion of Eq.~110!, with differ-
ent results obtained when truncating at different orders of
expansion, or when using a different number ofq data points
in the fit. However, our fits of Figs. 5 and 6 show essentia
no sensitivity to the number ofq data points used or whe
comparing a linear versus a quadratic order fit to the data
Fig. 4. Carneiro has also carried out simulations9,54 in a
Gibbs ensemble, in which the total transverse magnetic fi
is allowed to fluctuate. Here he concludesTc'Tm , even for
dilute densities comparable to our own. However,
believe55 that in this case, hisq50 calculation of the fluc-
tuation in the transverse magnetic field cannot distingu
between the shear perturbation of Fig. 1~c!, which is related
to the 2D analog boson superfluid density, and the tilt p
turbation of Fig. 1~a!, which is not. We believe that his re
sults are reflecting the softening ofc44 that occurs at the
depinning-melting transition@as is observed in our Fig. 5~a!#,
rather than reflecting the loss of longitudinal superconduc
ity. Recently, in new simulations, Hagenaarset al.56 have
explicitly compared our method against Carneiro’s, and fi
agreement with our conclusions, although they offer a diff
ent explanation for the disagreement between the two
proaches.

Simulations at finitel have also been carried out b
Nguyenet al.,57 who extend our work to consider behavio
as the anisotropyh is varied. For an isotropic system, the
find Tc well aboveTm , in good agreement with our result
However, ash increases, they find the very intriguing resu
that Tc decreases, and eventually fallsbelow Tm . Such a
possibility ~not observed in similarl→` simulations28! has
been suggested by Freyet al.37 as a result of dislocations
proliferating in the vortex line lattice. Glazman an
Koshelev6 have made similar predictions, based on the eff
that vortex lattice elastic fluctuations have in reducing
interplanar Josephson coupling. However, Nguyenet al. sug-
gest that their result is due to the proliferation of vortex rin
between adjacentxy planes, and they find at high anisotrop
thatTc;h22, rather than theTc;h21 predicted by Ref. 6 or
theTc;1/lnh predicted by Ref. 37. It should be noted, how
ever, that Nguyenet al.base their criterion for superconduc
tivity on computing the helicity modulus at the single sma
est nonzero value ofq allowed by their finite-size system
We have argued above that a more careful analysis shoul
based on parameters extracted from theq dependence of the
helicity modulus, asq→0. Conclusions based on calcula
tions at specific values of finiteq can more easily be led
astray by subtle crossover effects such as we have discu
above. Clearly more systematic studies, using ourq→0
analysis, and making a more extensive study of finite-s
dependences, need to be done for both the isotropic and
isotropic cases.

Our result of Eq. ~89! suggests that one should fin
Tc.Tm and, hence, longitudinal superconductivity within
region of the vortex line liquid, whenever a sample is thinn
thanLz max'1400 mm, for aTm'90 K. Virtually all experi-
mental single-crystal samples fall below this critical thic
ness. One can therefore ask whether any experimental
dence favors our conclusions. Naively, one would expec
vortex line liquid with longitudinal superconductivity to
show a finite linear resistivity transverse to the applied m
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netic field, but zero linear resistivity parallel to the appli
field. However, in MC simulations of al→` XY model,26

we found that in the intermediate phaseTm,T,Tc vortex
density correlations decayed anomalously slowly with tim
This suggests that vortex lines may be moving more slo
than diffusion, and if so, it is not obvious what to expect f
the transverse resistivity. Experimentally, it is very difficu
to obtain accurate measurements of the longitudinal resis
ity, due to the slab geometry of single-crystal samples
the nonuniformity of current distributions. Transverse res
tivity measurements are intimately related to the vortex p
ning impurities in the sample, and so are also not unamb
ously characterized.

Nevertheless, the following suggestive observations h
been made. Experiments by Steelet al.58 on artificially pre-
pared MoGe/Ge-layered superconductors, found that th
resistivity parallel to the applied field decreased sharply,
showed an onset of strong nonlinear behavior, at a temp
ture above that where the transverse resistivity vanished.
periments by Kwoket al.59 on YBCO, studying the pinning
of vortex lines to twin grain boundaries in a system with
well-controlled small number of twin planes, found eviden
for a sharp lock-in pinning transition at a temperature ab
vortex lattice melting~where the melting transition was de
termined by the observation of a sharp drop in transve
resistivity!. Such a lock-in transition within the vortex lin
liquid may suggest a transition in the nature of vortex li
fluctuations, as at ourTc . Samoilov et al.,

60 studying the
Bose glass transition temperatureTBG(H) in YBCO in the
presence of columnar pins, found that whileTBG(H) in-
creased aboveTm(H) as the density of pins increase
TBG(H) eventually saturated to a well-defined maximu
valueTBG

max(H), which was still well belowTc2 . They inter-
preted their results in terms of an analog 2D boson superfl
transition within the vortex line liquid, identifyingTBG

max with
Tc . Early experiments by Safaret al.,61 using a flux trans-
former geometry, similarly showed evidence for the onse
coherence parallel to the applied field at a ‘‘Tth’’ above the
temperature where the transverse resistivity vanished. H
ever, more recent flux transformer experiments by Lo´pezet
al.62 showed that these two temperatures merged when
sample was made purer, with all twin grain boundaries eli
nated. Moore63 has recently proposed an interpretation wh
argues that the single transition observed in these ne
transformer experiments is the result of some very rap
increasing longitudinal length scale, rather than being a fi
order vortex lattice melting transition, as is the usual int
pretation. If correct, such a rapidly increasing longitudin
length scale might be associated with ourTc .

The experimental evidence cited above remains, at b
inconclusive. There are several possible reasons why obs
ing a Tc.Tm might be experimentally difficult. First, as i
our simulations, the relevant temperature is likely to be
l→` transitionTc

` , rather than the much higherTc of Eq.
~86!. In recent simulations28 of the l→` XY model we
found thatTc

` andTm merged as the anisotropyh increased.
How far apart the correspondingTc

` andTm for any particu-
lar real material are likely to be remains unknown. Seco
real layered high-temperature superconductors are likel
have an interplanar Josephson coupling that is proportio
.
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to the cosine of the phase angle difference across adja
planes. The nonquadratic nature of such a cosine interac
leads to a coupling between spin wave and vortex fluct
tions that is absent in both our continuum model and
discretized model of Eq.~97! using the Villain interaction.
As either magnetic field, temperature, or anisotropy
creases, large interplanar phase differences can be ind
by elastic vortex line fluctuations, leading to a large decre
in the effective interplanar energy coupling constant. Suc
‘‘decoupling’’ crossover, as discussed by Glazman a
Koshelev6 and Daemenet al.,64 might obscure any true criti-
cal behavior at a higherTc . Finally, the free boundary con
ditions of a real superconductor, as opposed to the perio
boundary conditions of the 2D boson mapping and of o
simulations, might lead to a more effective washing out
the 2D boson superfluid transition22 than we have imagined
for samples of experimental thickness.
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Tešanović, and A. P. Young. This work has been support
by U.S. Department of Energy Grant No. DE-FG0
89ER14017.

APPENDIX A: SUPERFLUID DENSITY OF 2D BOSONS
IN THE PATH INTEGRAL FORMULATION

The superfluid density of a system ofN interacting bosons
can be defined in terms of the response of the system to
presence of a heat bath moving with velocityv(r ) ~‘‘moving
walls’’ !. In the following, all position, velocity, and wave
vectors are two-dimensional vectors in thexy plane.

The average momentum density^pqm&v that results in lin-
ear response to the heat bath velocityv2qn

5(1/L2)*d2rvm(r )e
2 iq•r is given by

^pqm&v5xmn~q!v2qn . ~A1!

For an isotropic 2D system, the momentum density susc
tibility can be written in terms of its longitudinal and tran
verse pieces

xmn~q!5q̂mq̂nxL~q!1@dmn2q̂mq̂n#xT~q!. ~A2!

The number density of superfluid bosonsrs is then given in
terms of the transverse susceptibility by19,20

mrs5mr2 lim
q→0

xT~q!, ~A3!

wherem is the boson particle mass, andr5N/L2 is the total
boson density.

For a system of interacting bosons in the presence o
moving heat bath, the Hamiltonian in the reference frame
the heat bath is given by

H5(
i

1

2m
@pi2mv~r i !#

21V~$r i2r j%!, ~A4!

where the interactionV depends only on the bosons’ relativ
positions.
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The partition function isZ5Tr@e2bH#, and the free
energy isF52TlnZ, with T51/b. Consider now thatv
points only in theŷ direction and varies only in thex̂ direc-
tion ~so the v is purely transverse!. If we write
H@v#5H@0#1dH@v#, then since in theq→0 limit that v
becomes a uniform constantdH andH@0# commute, one
has

lim
q→0

L2
]2F

]vy~qx̂!]vy~2qx̂!
U
v50

5mr2 lim
q→0

xT~qx̂!5mrs.

~A5!

To evaluaters in terms of the path integral formalism,65

one now writes the Lagrangian associated with the Ham
tonian of Eq.~A4!, and transforms from real timet to imagi-
nary timet5 i t . One gets

L~t!52(
i

m

2 S dr idt D 22V~$r i2r j%!1 im (
i

S dr idt D •v~r i !.
~A6!

The partition function is then given by

Z5E D@$r i~t!%#expS \21E
0

\b

dtL~t! D , ~A7!

where the sum is over all possible boson world lin
$r i(t)% subject to permuted periodic boundary condition
i.e., $r i(0)%5P$r i(b)%, whereP is any permutation of the
N bosons.

Applying Eq.~A5! to the above form forZ then results in

mrs5 lim
q→0

Tm2

L2\2 K S E
0

\b

dt(
i

dr iy
dt

eiqxi D
3S E

0

\b

dt8(
j

dr jy
dt8

e2 iqxj D L
0

, ~A8!

where^•••&0 denotes an average over world lines weigh
by the Lagrangian factor as in Eq.~A7!, only now taking
v50 in L.

Note that the heat bath velocityv(r ) enters the Hamil-
tonian~A4! and the Lagrangian~A6! with precisely the same
form as would a 2D external magnetic vector potential giv
by v5(\/m)Aext @where, as in Sec. II, the units ofAext are
such that“3Aext5(2p/f0)H ẑ, with H ẑ the 2D magnetic
field#. In analogy with Eq.~25! we can thus define the helic
ity modulus of the 2D bosons as

Yboson~q!5L2
]2F

]Ay~qx̂!]Ay~2qx̂!

5L2
\2

m2

]2F
]vy~qx̂!]vy~2qx̂!

5
T

L2K S E
0

\b

dt(
i

dr iy
dt

eiqxi D
3S E

0

\b

dt8(
j

dr jy
dt8

e2 iqxj D L
0

, ~A9!

with
l-

s
,

d

n

lim
q→0

Yboson~q!5
\2

m
rs5T^Wy

2&0 , ~A10!

whereWy is the y component of the ‘‘winding number’’
introduced by Pollock and Ceperley36 in their path integral
approach to the superfluid transition in boson systems.

Our derivation above can be modified in a straightforwa
way to deal with a boson interaction mediated by a gau
field, as is the case for the more realistic London interact
between vortex lines.21 One just replaces the pair potenti
V($r i2r j%) with the necessary coupling to the gauge fie
and free field energy terms. However, the coupling of
bosons to an external vector potential remains unchan
Thus the expression for the 2D boson helicity modulus
terms of boson world lines remains unchanged from E
~A9!.

APPENDIX B: ELASTIC MODULI

In this appendix we summarize some results concern
the elastic moduli which appear in Eq.~54!. Although calcu-
lations of these moduli have appeared elsewhere,12,13,39our
explicit computation of the orderq2 dependence at smallq
we believe is new.

As shown by Sudbo” and Brandt,13 the elastic tensor
Fab(q) can be expressed in terms of the vortex line inter
tion tensorVab(q) as

Fab~q!5
B2

4pl'
2 (

K
$qz

2Vab~K2q!1~K2q!a

3~K2q!bVzz~K2q!2KaKbVzz~K !%,

~B1!

where $K% are the reciprocal lattice vectors of the vorte
lattice.

For B5Bẑ the elastic moduli we are interested in can
expressed in terms ofFab(q) as

c66~qŷ!5
1

q2
Fxx~qŷ!, c11~qx̂!5

1

q2
Fxx~qx̂!,

c44~qẑ!5
1

q2
Fxx~qẑ!. ~B2!

For the London interaction, the sum overK in Eq. ~B1! is
divergent, and some method must be employed to mak
converge. As shown by Brandt,12 this can be achieved fo
c66(qŷ) andc11(qx̂) by subtracting off the self-energy of
line interacting with itself. This then gives

c66~qŷ!5
B2

4pl'
2 H(

K
F66@K ,q#2

f0

B E d2k

~2p!2
F66@k,q#J ,

~B3!

c11~qx̂!5
B2

4pl'
2 H(

K
F11@K ,q#2

f0

B E d2k

~2p!2
F11@k,q#J ,

~B4!

where we find, after expandingFxx to O(q4), averaging
over the orientation of the vortex lattice in thexy plane, and
substituting in forVzz from Eq. ~16!,
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F66@k,q#5
d

dk2
$ 1
4k

4V̇zz~k!1@ 1
8k

4V̈zz~k!1 1
24k

6V̂zz~k!#q2% ~B5!

52 1
2l'

2 H 1

~11l'
2k2!2

2
1

~11l'
2k2!3

1F 1

~11l'
2k2!3

2
3

~11l'
2k2!4

1
2

~11l'
2k2!5Gl'

2q2J ~B6!

and

F11@k,q#5
d

dk2
$k2Vzz~k!1 3

4k
4V̇zz~k!1@k2V̇zz~k!1 9

8k
4V̈zz~k!1 5

24k
6V̂zz~k!#q2% ~B7!

52 1
2l'

2 H 1

~11l'
2k2!2

2
3

~11l'
2k2!3

1F 1

~11l'
2k2!3

2
9

~11l'
2k2!4

1
10

~11l'
2k2!5Gl'

2q2J , ~B8!

whereV̇zz[dVzz/dk
2.

To treat the tilt modulusc44(qẑ), self-interactions of the vortex lines are important. One therefore handles the conver
of the sum in Eq. ~B1! by introducing a convergence factor into the London interaction of Eq.~B1!,
Vqab→Vqab

c [g(j'
2q'

21jz
2qz

2)Vqab . Hereg(x)→1 for x,1, g(x)→0 for x.1, and one uses an anisotropic cutoff to mod
the vortex core,jz /j'5l' /lz51/h. Averaging over the orientation of the vortex lattice in thexy plane and substituting in
for Vmm from Eq. ~16! we find

c44~qẑ!5
B2

4pl'
2 (

K
F44@K ,q#, ~B9!

where

F44@k,q#5$Vxx
c ~k!1 1

2k
2V̇zz

c ~k!1@V̇xx
c ~k!1 1

4k
2V̈zz

c ~k!#q2% ~B10!

5
1

2 H l'
2g

11lz
2k2

1
l'
2g

~11l'
2k2!2

1ġ2
ġ

11l'
2k2

2F l'
2g

~11lz
2k2!2

1
l'
2g

~11l'
2k2!3

2
ġ

11lz
2k2

2
ġ

~11l'
2k2!2

2
g̈

2
1

g̈

2~11l'
2k2!

Gl'
2q2J , ~B11!

whereV̇mm
c [dVmm

c /dqz
2 and ġ[dg/dqz

2 .
We consider first the limit of large magnetic fields,l'@av (av is the spacing between vortex lines!. In this case one can

approximate the sum overK by

(
K

F@K ,q#5F@0,q#1
2p

~DK !2
E
k0

`

dkkF@k,q#, ~B12!

where (DK)254p2B/f0[pk0
2 is the area per reciprocal lattice vector, andk0;1/av is the edge of an approximate circula

Brillouin zone. Carrying out the integrations, we get

c66~qŷ!5
B2

4p H l'
2k0

2

4~11l'
2k0

2!2
2F l'

2k0
2

4~11l'
2k0

2!4Gl'
2q2J , ~B13!

c11~qx̂!5
B2

4p H 12
1

4~11l'
2k0

2!
2

3

4~11l'
2k0

2!2
2F11

1

4~11l'
2k0

2!3
2

5

4~11l'
2k0

2!4Gl'
2q2J , ~B14!

c44~qẑ!5
B2

4p H 11
1

2l'
2k0

2 Fh22lnS 11k2h2

11lz
2k0

2 D 1
1

11l'
2k0

2 2h22G2F11
1

2lz
2k0

2~11lz
2k0

2!
1

1

4l'
2k0

2~11l'
2k0

2!2Gl'
2q2J ,

~B15!
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where forc44 we have taken the cutoffj'→0 in all nondi-
vergent terms, andk[l' /j' .

Expanding for largel'k0, we get to the lowest nontrivia
order

c66~qŷ!5
B2

4p

1

4l'
2k0

2H 12
2

l'
2k0

2 2
l'
2q2

l'
4k0

4 J , ~B16!

c11~qx̂!5
B2

4p H 12
1

4l'
2k0

22F11
1

4l'
6k0

6Gl'
2q2J ,

~B17!

c44~qẑ!5
B2

4p S 11
1

2l'
2k0

2 H h22F lnSHc2

B D 21G1
1

l'
2k0

2J
2F11

1

2lz
4k0

4 1
1

4l'
6k0

6Gl'
2q2D , ~B18!

whereHc2[f0/4pj'
2 .

Next we consider the case of small magnetic fiel
l'!av . Here it is convenient to use

(
K

F@K ,q#5
f0

B (
R

F̃@R,q#

where

F̃@r ,q#[E d2k

~2p!2
e2 ik•rF@k,q# ~B19!

and $R% are the direct Bravais lattice vectors of the vort
lattice.

For the shear and compression modulic66 and c11, the
subtraction terms in Eqs.~B3! and~B4! cause theR50 term
of the sum in Eq.~B19! to vanish. Since the range of th
interactionVzz is l'!uRu, it will be a good approximation in
the sum overR to keep only the six smallest vectors wi
uRu5av . The Fourier transforms of Eqs.~B6! and ~B8! can
now be obtained with the help of

E d2k

~2p!2
e2 ik•r

~11l2k2!n
5

1

2np~n21!!l2S rl D n21

K12nS rl D ,
~B20!
,

whereKn is the modified Bessel function of the second ki
of ordern, whose asymptotic form at largex is

Kn~x!;Ap

2x
e2x. ~B21!

Keeping only the leading terms inav /l' , we find

c66~qẑ!5
3Bf0

64A2p3l'
2
e2av /l'S avl'

D 3/2@12 1
24av

2q2#,

~B22!

c11~qx̂!5
9Bf0

64A2p3l'
2
e2av /l'S avl'

D 3/2@12 5
72av

2q2#.

~B23!

For the tilt modulusc44 there are two cases to conside
depending on the strength of the anisotropy. For very sm
magnetic fields such thatlz!av , all terms in Eq.~B11! may
be treated according to the approximation implied by E
~B19!. Here theR50 term dominates all others, and we fin

c44~qẑ!5
B2

4p

1

2l'
2k0

2H h22@2ln~hk!21#

112F121h22Gl'
2q2J . ~B24!

For the intermediate casel'!av!lz , we must combine
approximations, using Eq.~B12! for terms involvinglz

2k2

and Eq.~B19! for terms involvingl'
2k2. We find

c44~qẑ!5
B2

4p S 121
1

2l'
2k0

2 H h22F lnSHc2

B D 21G11J
2F121

1

4l'
2k0

2Gl'
2q2D . ~B25!
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