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We develop the helicity modulus as a criterion for superconducting order in the mixed phase of a fluctuating
type-Il superconductor. We show that there is a duality relation between this helicity modulus and the super-
fluid density of a system of analog two-dimensiof@D) bosons. We show that the vortex line lattice exhibits
a perfect Meissner effect with respect to a shearing perturbation of the applied magnetic field, and this becomes
our criterion for “longitudinal superconductivity” parallel to the applied field. We present arguments based on
the 2D boson analogy, as well as the results of numerical simulations, that suggest that longitudinal supercon-
ductivity can persist into the vortex line liquid state for systems of finite thickness, comparable to those
commonly found in experiment§S0163-1827)01022-9

I. INTRODUCTION criterion for superconducting order within the mixed state.
We will then give a set of arguments, including the results of
The mixed state of a type-1l superconductor in an appliechumerical simulations, that suggest that for system sizes of
magnetic fieldH is characterized, imean-fieldtheory, by a experimental interest, longitudinal superconductivity can
spatially varying order parameter) whose amplitude van- persist above the vortex line lattice melting transition, into
ishes continuously a3 ,(H) is approached from beloW. the vortex line liquid state. Some of our results have been
While this description is adequate for traditional supercon-briefly presented earliér'® for the case of an isotropic sys-
ductors, the importance of thermal fluctuations in determintem. Here we provide much greater detail, and generalize our
ing the behavior of the high-temperature superconduttorsformalism to the uniaxial anisotropic case.
now requires one to find a reasonable criterion for supercon- The rest of this paper is organized as follows. In Sec. Il
ducting coherence in the mixed state that is defined in termae define our London model for a continuous anisotropic
of an average over all fluctuating configuratiopn&). One  superconductor, giving the mapping of the Hamiltonian from
possibility is the correlation functiof* (r)(0)). How- its representation in terms of the wave function phase angle,
ever, controversy has arisen over the proper gauge-invariat@ its representation in terms of interacting vortex lines. In
definition for this correlation functio;’ the most straight- Sec. Il we define the helicity modulug ,,(q), discuss its
forward definition leads in three dimensiof8D) to correla- relation to the magnetic susceptibility, and describe the im-
tions which decay exponentiaft} (albeit with a long decay portant physical parameters that may be extracted from it.
length even within the Abrikosov vortex line lattice state, We also discuss in some detail the mapping between the
once harmonic elastic fluctuations of the vortex lines are ininteracting vortex lines and an analog system of interacting
cluded. The flux flow resistance of an unpinned vortex latticewo dimensional2D) bosonst! We show that an interesting
in a completely clean material also is contrary to the convenduality exists between the helicity modulus of the 3D super-
tional idea of a superconductor as a state with zero resissonductor model and the helicity modulus of the 2D analog
tance. In this paper we propose using the helicity modulus asosons, for both the superconductor with a finite magnetic
a clear equilibrium quantity that can distinguish supercon-penetration lengtih (our main concern in this wojkand the
ducting from normal behavior in the mixed state. We will superconductor in th& —c approximation. In Sec. IV we
show that the helicity modulus, which forreeutral super-  analyze the helicity modulus within the elastic
fluid is proportional to the superfluid densftys in a super- approximatioﬁz'13 for a vortex line lattice, and demonstrate
conductor(or chargedsuperfluid related to the magnetic the existence of the shear Meissner effect. We calculate how
susceptibility of the system to a small perturbation in appliedhe penetration length for the shear perturbation increases
magnetic field, about the uniform appliétl Recall that itis  with temperature, due to second-order elastic fluctuations. In
the magnetic response, rather than electrical resistivity, theBec. V we consider the vortex line liquid, and show how the
gives the true defining equilibrium signature of the Meissnetydrodynamic approximatidfl yields the disappearance of
transition in either a type-l or type-Il superconductor. Herethe perfect shear Meissner effect. We discuss how the
we will show that for the mixed state of a type-1l supercon-Kosterlitz-Thouless transitidn of the analog 2D bosons can
ductor, the vortex line lattice display@n the absence of vyield a crossover from a normal vortex line liquid to a line
dislocation$ a perfect Meissner effect with respect to a cer-liquid with longitudinal superconductivity, and estimate this
tain type of shear perturbation of the applied field, for crossover temperature as a function of system thickness and
which the screening currents run paralleHo Such a shear applied magnetic field. In Sec. VI we discuss our numerical
Meissner effect, also referred to adongitudinal Monte Carlo(MC) simulations. We define the Hamiltonian
superconductivity we will take as the defining equilibrium and helicity modulus for a discretized lattice
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superconductqt®?’ discuss our MC algorithm, and present then by Eq.(4) we have
our numerical results for an isotropic model. We compute
the helicity modulus and other measures of vortex fluctua- Vxv=2m(n—h—b"=27(n—bh), (8)
tions, and find evidence for longitudinal superconductivity
within the vortex line liquid state. In Sec. VII we present our wheren=(1/27)V X V 6 is the vortex line density, consist-
conclusions and discussion. ing of singular lines of integer vorticity in the phase angle
o(r).
Il. LONDON SUPERCONDUCTOR MODEL Defining the Fourier transforms

We will model our uniaxial superconductor as a three-
dimensional continuum with the weak coupling direction Vq:f d3reldy(r), V(r)zl > ey, (9
parallel to thez axis. The bare magnetic penetration length Vi
along this weak direction ia,, while A\ | is the penetration
length within the more strongly couplexky planes.
n=M\,/\, is the anisotropy parameter.

The Ginzburg-Landau Hamiltonian for the Gibbs en-
semble, in the London approximation, can then be written as

(where V is the system volume we can then write the
Hamiltonian(6) as

J . .
H=5% 2 [7,%0qu0—qu+ 47202019 1, (10)
2V E,

1
H[a,A]=§JJ d’r| X 7, %V,0-A,)?

PETavE and solve Eq(8) as
+A2| VX (A—A®Y|?, 1 X (Ng—hg—bi")
LV ) @ Vg=— 27 qxq+q (% qzq o, (12)
where
where x(r) is any smooth scalar function. Substituting Eq.
J, = ¢5l(16m\T) (2)  (11) into Eq.(10), and completing the square jp,, results
is the coupling within thexy plane ($o=hc/2e is the flux n
quantuny, 423
_aTm _h _phindy /0 —h _pind
w=ny=1, 7 =n=N/N\, ) =%y % [[Nq=hg=bg"]-Vg-[N-q~h-q=b%]
define the anisotropy, andpg/2m)A and (<z>0/27-r.)Aext are +(af + 77 292) SxqOx —q+ AT DI b, 12
the vector potentials for the internal and applied magnetic
fields, where
VXA=27h, VXA™=27h, (4 L . o
whereb=B/ ¢, andh=H/ ¢, are the densities of flux quanta Vo=— — 75 (2Xq)(2X Q) 13
q )\qu—’_)\qu

of the magnetic field(r) inside the superconductor and the

externally applleq f'eld_l(.r)' In Eq. (1), 6(r) andA(r). ar€ s the “bare” vortex line interaction tensor, before screening

thermally fluctuating variables to be averaged over in a par; - : ~ 0

tition function sum, whileA®(r) is a fixed(quencheifield. by magnetic field fluctuations, angjq= x4~ xq Is the fluc-
It will be useful to introduce the induced magnetic vectortuatlon of xq away from the value

potential s o ind

A=A A ¥ A= 2 (b b= 2 ) XOZ()\Z RL)QZ[gX(an h2q bq )]z (14)
= s = 7T( )— n f q qz()\zq2+)\qu)

in terms of which the Hamiltonian becomes
Substitutingxg into Eq. (11) gives the superfluid velocity

V2 that minimizes H# for a given configuration of

1 .
HLO,Al= EJLJ d°r % 7,5V 60— AL A2 ng—hq—bi¢. dxq represents a smooth “spin-wave” fluc-
tuation about this/g.
2|V XAind|2}, ©) We can now complete the squaretifi’ in Eq. (12), sub-
ject to the constraint thay- bg‘d:O, to get,

and the partition function is to be viewed as a sum over

AT TR SRR h
The Hamiltonian of Eq(6) can now be mapped onto a 2V 4 [[nq=hq]-Vq-[n—q=h-q]
model of interacting vortex lines. If we define the superfluid 2 o
velocity, +(i+7 qz)anaqu_F 5bq' Uq' 5bfq]- (15

v=V - AN AN=yg—A, (7)  where the tensor
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Vq=Vo-V3-Ugt- Vg , IH IF
<J q,u> == 0”AeXt = LaAext ) (23
=\7U v —au —au
)\2 )\2 where 7= —TInZ is the total free energy for the partition
—(2Xq)(2x Q) function Z=DIDA™e 7T, _ _
T 12 1+)\qu+)\qu Consider now a small perturbation about a uniform ap-

(16)  plied magnetic fielthyz, with A= 27hoxy+ SA®. We de-
fine the helicity modulu&(,,(q) as the linear response co-
efficient between the induced supercurrent and the
perturbationsA®*,

<Jqp.>E - ,uv(q)éAeXt (24)
From Egs.(23) and(24) we then have

is the uniaxial anisotropic generalizatidrnof the familiar
London vortex line interaction, and

Ug=AZ1+Vg (17)

is the interaction tensor for fluctuations of magnetic field,
Sby=by’— by °, about the value

4.0 1o 1 Y ):_19<qu>| _ PF |
by %= U, 'Vq'[nq_hq]:)\_zvq'[nq_hq]y (18) wrid (9Ag>;t 0 Aext Agx;# 0
1
2
which minimizesH for a given configuratiom,—h . Sy I7H _ 14 dH IR
Equation (15) represents the Ginzburg-Landau Hamil- AeXtaASXéM T AeXI A‘Exfm .

tonian written in terms of decoupled spin wave, magnetic
field, and vortex line fluctuations. The partition function is to IH IH
be summed over all smoothy,, all smoothsb, subject to _<Wext> <&Aext > J
the constraing- b,=0, and all singular vortex line distri- av R
butionsn, with conserved vorticityg- ng=0.

The interactionV, of Eq. (16) is given as a tensor, with
nonvanishing off- dla onal components. However, as show}!
by Carnelroeqc al,1® or?e can exp?mt the conservation of vor- fight-hand side of Eq. (25 may be ignored as

ext _ H
ticity to rewrite V,, in a purely diagonal way. Using (Iquho=—WIHIIAZ,)0=0 (for the mixed state, we are
assuming that] is smaller than any of the reciprocal lattice

N (ZXA(ZXA) N =a2Nn. -Nn_ . —[d. -n n. vectors of the vortex lattige
@ (2XQ)(zxq) 0~ 9oL ar ~ [N, TG at Applying Eq. (25) to the Hamiltonian(10), and using the
=qfnqi.n,qi—q§nqzn,qz, (190  definition of Eq.(22), then results in

(25

where the subscript “0” denotes the unperturbed system
with 5A§"t 0. For a uniform system, the third term on the

wheren, =(n,,n,) is the transverse part of the vorticity, and J 7
a similar result forh,, we can rewrite the vortex line inter- Y, (Q)=J; 77;2 Opuv— VT E(vgv-gol,  (26)
action part of the Hamiltonian as v

5 The form of Eq.(26), expressingY ,,,(q) in terms of a ve-
_477 . _ locity correlation, is familiar as defining the superfluid den-
> Vaulngu—hglln g —h-q.], 20 © . . de
qu sity of a neutral superfluid or, equivalently, the helicity
modulus of anXY model®

whereVg.=Vqy=Vq, and Alternatively, we could apply the results of Eq423) and

)\2 (25) to the form of H in Eq. (1) to get,
LT3 12222122 . )
1+ dz+hzal (fquy == I N2 ([aX(aX AT ],)
v N (1+020°) o1 =—2miJ N2 {[gxbg],) 27)
(LN Q) (L N2 Q2+ N2 and

In most of this paper we will be considering behavior in the

2 2
presence of auniform applied magnetic field, for which Y (@)=3, 72| 25, — B 473 N
hy..o=0 and hencéd™ =b p ) =JIN 070, =AWl ™ —
q#0= g0~ Dg=0-
1. HELICITY MODULUS, MAGNETIC SUSCEPTIBILITY, (g% bglLaxb_q,)ol. 29
AND 2D BOSONS
A. Definition of the helicity modulus where we have usel,= by for the unperturbed system and

(bg)o=0 for finite smallq Equation(27) is just a statement
of Ampere’s law, relating the induced magnetic field to the
=3, nfz(vlug_Aext_ Aindy (22) flow[ng supercurrents. EquatlcﬁQS) expresse¥ ,,(q) |n an

# # # explicitly gauge-invariant form, in terms of correlations of
then from Eqgs(10) and(22) we see that the fluctuating internal magnetic fieldl

If we define the supercurrent as

Ju=d 77;20#
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Finally, we can also expressg,,,(q) in terms of vortex
line correlations. Using the form &f in Eq. (15), substitut-
ing in 27hy= —iquSX‘, and taking the appropriate deriva-
tives as in Eq(25) results in

Y, ()=3,] (qXv)- Vg (aX n)
2

Ji

VT

(X v)-Vq-(n_gngo- Vg (aX ) |,

(29)
whereV is the vortex line interaction tensor of either Eq.
(16) or (21).

Note that the helicity modulus is Hermitian,
YM,,(q):Yj#(q)=Y,,Mt(—q). Also note that any Iong'ltudl-
nal component oBAZ produces no response {iy,), since

TAO CHEN AND S. TEITEL

T a9

(b) compression perturbation: p=x, v=y, 6=z
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(c) shear perturbation: p=z, v=x, o=y
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FIG. 1. Schematic representation of three possible perturbations
of the external magnetic fielda) the tilt perturbation(b) the com-
pression perturbation, arld) the shear perturbation.

for the mixed state. Because the screening currents involved

Y(qg)-q=0. This is as expected since a longitudinal compo-in the shear perturbation run parallel to the applied magnetic

nent ofﬁAg"t produces no magnetic field, and can be elimi-

field, a perfect Meissner effect for the shear perturbation has

nated by a gauge transformation. Henceforth it will be sim-also been termetbngitudinal superconductivity

plest to work in the London gauge in which Ag“=0.
The tensor products in Eq29) can be simplified greatly

if we restrict our interest to wave vectors lying along the

symmetry directions, i.eq=qgx, qy, andgz. Changing no-
tation for the sake of clarity, from, to n(q), and using Eq.
(21) for V4, we find for the diagonal elements

Y, (qv)=Y,,(qv)

IRRNCH]
1+)\iq2L

4723 \? <na(q;)nu(—q;)>o}
2 )
VT 1+\59°
(30)

where u, v, o are any cyclic permutation of, y, z, and
A, is either\, or N\, depending on whethex=z or u=x,
y. Note thatY ,(qv)~g? asq—0.

The off-diagonal elements are

I NFQ? [ 4723 \F (ny(qo)n,(—qa))o
1+)\iq2 VT 1+\2g?

Y,,(qo)=

(31

However, for g=qo, q-ny=0 implies thatn,(qo) and
n,(qo) fluctuate without constraint, and since the free en
ergy of Eq.(20) is symmetric separately im,— —n, and in
n,— —n,, we expect that the off-diagonal terms will vanish.
Henceforth we will restrict ourselves to the simple case
given by Eq.(30). For a uniform applied magnetic field

Sfluctuations.

B. Magnetic susceptibilities and renormalized
penetration lengths

As indicated above, the helicity modulu¥ ,,(q) is
closely related to the magnetic susceptibility. Combining
Ampere’s law (27) with the definition ofY ,,(q) in Eq. (24),
we have

Y(@)
I g
For the three cases of E€30), corresponding to perturba-

tions 5AZ’“(q;) where u,v,0 is a cyclic permutation of
x,¥,z, Y(q) is diagonal, and so we can substitute into the

above 2roblY(qv)=—iqoA]%qr) and 2msh,(qv)
—iqsAS(gv) to get

(8A7Y = - SAT. (32)

Yu(ar) _&b7(qw))
IN? T sh(qy)

=4mx,(qv), (39

0

wherebg /4 is the induced magnetization, and(qv) is
the magnetic susceptibility at wave vectpr for a perturba-
tion in applied magnetic field in directioa.

To get a feel for the information contained in the helicity
modulus, or equivalently the magnetic susceptibility, con-
sider first the case of zero field, in the absence of vortex line
When n,=0, Eq. (30) yields
Y, =3, M g?/(1+)%0?). Substituting into Eq(33) gives

along the z direction, and taking here and henceforth = *

m,v,0 to be a cyclic permutation of,y,z, we have the three
distinct casesa Y,(qz), (b) Y,(qy), and (c) Y,(gx). In

Fig. 1 we show a schematic of the magnetic field lines cor-
responding to these three different perturbations. As sug

gested by these diagrams, we will refer (@ as thetilt
perturbation(b) as thecompressiorperturbation, andc) as
the shearperturbation. We will find that the first two cases

4mx,(qv) T AZg? (34
Ap—0,
(8b;(qv))=4mx,(qv)sh,(qr) == 5h,(qr), and so the
total field inside the superconductdsb, )= sh,+(sb"%,

This describes a perfect Meissner effect.

(o8

vanishes. The perturbatiofh,, is completely expelled from

are determined by the transverse and longitudinal magnetithe system. The length scale on which this expulsion takes
susceptibilities respectively. We will find that the presence ofplace is\ , .

a perfect Meissner effect with respect to the shear perturba- In the presence of vortex line fluctuations, we can write a
tion is a convenient measure of superconducting coherengghenomenological form for the helicity modulus at snegll
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J \2q? tion of 2D quantum mechanics. Here we will show the
5. (35  explicit connection between the superfluid density of these
1+\ urU

analog 2D bosons and the helicity modulis(gx) giving
In this case, substituting into E(33), one gets the response to thehearperturbation of Fig. (c).
In this analogy, as introduced by Nelstrihe energy of
" Yu (36) vortex line fluctuations is modeled by two piec€d:a line
1+)\qu2' tension representing the vortex core energy and self-
interaction andii) a pairwise interaction between all vortex

Now only a fractiony, of the applied perturbation is ex- . R .
pelled from the system; this expulsion takes place on th(lame segments which lie in the samg plane at equal heights

length scalex ;. We thus see that v, gives the long- Z. This simplified vortex interaction is expected to be a rea-

wavelength magnetic susceptibility, while, is the mag- sonable approximation when the vortex lines remain, over

netic penetration length, as renormalized by vortex fluctua:[he length scala, approximately parallel to the applied field.

tions and \ - are the important ohvsical parameters toThis simplified vortex interaction is then mapped into a 2D
Y #R mp phy P boson mass and an instantaneous pairwise boson interaction.
be extracted from the helicity modulus.

Formally, we can defing, and\ , in terms of the small The mapping results in the following correspondencgsn-

expansion of the vortex line correlation that appears in E tities on the left refer to the 2D bosons; those on the right
?30) p|f we define PP Yefer to the 3D superconducjoimaginary time,r z, dis-

tance in direction of applied field; #%poson Thosorr— Lz,

Y, (qv)=17,

4y, (qv)=

- AN length of system parallel tb; #ipos0i— T, temperature of 3D
_ = + 2+ 4_|_ . boso b
(Ne(qV)NG(=qv))o=N 0+ N,10°+N,20 . (37 superconductor; boson mMassNpsoi— €1~ 7J,, Where
then we have €1=7"2€,, ande, is the single vortex line tension.
S In Appendix A, starting from the standard definition of
— _lim4my, (g =1— Am I N] n 38) the superfluid density as the long-wavelength limit of the
Y= X4 yroo Ko transverse momentum susceptibifi§?’ we derive an ex-
q—0 . . .
pression EQ.(A8) for the number density of superfluid
and bosons,ps poson fOr @ system of 2D interacting bosons, ex-
) - pressed in the form of a path integral over boson world lines.
AR — _lim 1 dx.(qv) In Egs.(A9) and(A10) we show thapyg ,,s0nis related to the
T{ 40 )‘inr(q;’) dqg? helicity modulus of the 2D bosons,Y posodd), by

2 2 5 IiquOYbosor(q) = (_hgosqubosor)l?s boson: We now I’ECE_B.SI the
A4m I NT (Nuo— Nyl ) results of Appendix A into the language of vortex lines.
VT Yo ' (39) For a magnetic-field-induced vortex lineparametrized
by its transverse deflection, (z) in the xy plane at height

z, the vortex line density is given by

Thus y,=1, or equivalentlyn, =0, signals a perfect

Meissner screening of the perturbatiéAZXt(q;). For zero

applied magnetic field, this has a simple physical interpreta-

tion: One is in the Meissner state if there are no infinitely n(r Z):z 82, —r1,,(2)

large vortex rings. t i oM
Although the helicity modulus should have the form of

Eq. (35 both below and above the superconducting transiyjsing the above correspondences between the analog bosons

tion, due to the presence of ordinary fluctuation diamagneznq the superconductor, we then have, for the term that ap-
tism above the transition, we expect that a phase transmoBears in the boson path integral of EA9)

will be indicated by singular behavior in the parametefs
and\ ,r. In particular, a transition from a state with a per-
fect Meissner screening of the perturbatid®(qv) will be f hb"s"””b“"“d S ﬁeiqxi: ny(R) (41)
. . . 4 y .
signaled by a singular decrease gf from unity, as well, T dr
presumably, by a divergence }{ﬁR. For such a case, it is
reasonable to interpret=m,c%/4me?\% as the density of Equation(A10) for the 2D boson helicity modulus can then
superconducting electrons. be written as
We stress at this point that, and\ ;g are describing the
response of the system to a small spatially varying perturba-

dri; (2)

7+
dz

(40

. . - A . Yiosodd) 1 . .

tion about a uniform applied field and not the response to this Zboson Y (@O N — ax 42

uniform field itself. Tooson L2 (@I 42
C. 2D boson analogy wherel , is the length of the system in they plane. The

Much work on vortex line fluctuations has been done uti-Vortex correlation that appears in E¢2) above is precisely
lizing an analogy between the magnetic-field-induced vortesthe same correlation that enters E80) for Y,(gx), which
lines in the mixed phase of a three-dimensional supercorgives the response to the shear perturbation of Kig). Tak-
ductor and the imaginary time world lines of two- ing the limitg—O0 in Eq.(42) and combining with Eq¥37),
dimensional bosons within a Feynman path integral descript38), and(A10) then gives
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3 4723, N[ Y posod 4—0) here we find that lig oY ,(q») is in general a finite num-
Y.=1- L,T Tboson ber. This differing dependence of the helicity modulus on
) g, in the smallg limit, is one of the characteristic differences
between a charged superfluigvith a finite A giving a
coupling to a fluctuating vector potentiadnd a neutral su-
perfluid (with A—o leading to a frozen vector poten-
This leads to the following identifications, originally tial). For the N—o case of a neutral superfluid,
pointed out by Feigelman and co-workétsThe 2D boson Y ,(0)=limy_Y,(q?) is just proportional to the number
superfluid phase witl poson>0 coOrresponds to a 3D vortex gensity of superfluid particles, as discussed in Appendix A
line normal diamagnetic phase wit,<<1; the 2D boson o the two-dimensional case, and used in the preceding sec-
normal fluid phase withbgyes07=0 corresponds to a 3D vor- o We therefore expect to find,(0)>0 for T<T. in an
tex line phase withy,=1, and hence with longitudinal su- orgered phase with longitudinal superconductivity, and
perconductivity characterized by a perfect Meissner effecyz(o):o for T>T, in the normal phase.
for shear perturbations. _ _ We now consider the 2D boson analogy for this>o
Having made the above observation, there now exists thﬁpproximation. Combining Ed42) for the helicity modulus

possibility, as suggested by Nelsbnthat a Kosterlitz- Y oeo(q) Of the analog bosons with E¢45), we see that
Thouless(KT) transition from superfluid to normal fluid in

the analog 2D boson_gystem could appear in the_ 3D super- Yiosof @) ~G2  for small q. (46)
conductor as a transition from a normal vortex line liquid

state to a vortex line liquid with longitudinal superconduc- Thus the analog 2D bosons have a helicity modulus charac-
tivity. Fisher and Leé? and more recently Tiber and teristic of a 2Dchargedsuperfluid. This is in agreement with
Nelson? have argued that if one relaxes the periodic boundthe results of Feigelman and co-workétsyho show that the

ary conditions a|oné that is assumed in the boson ana|ogy,5y3tem of vortex lines interacting with the true London in-
and uses instead the free boundary conditions which aréeraction of Eqs(20) and(21) (as opposed to the more sim-
more realistic for a bulk 3D superconductor, the sharp KTplified interaction of Nelson’s modelcan be viewed as a
transition no longer exists. Nevertheless, one might expecdiystem of analog 2D bosons whose interaction is mediated
that a clear crossover remnant of this KT transition shouldy a massive vector potential. As—, the mass associated

still be observable in the superconductor. We will return towith this vector potential vanishes, and one has a system of
discuss this KT crossover in Sec. VB. 2D charged bosons interacting with 2D electrodynamics.

We can develop the analogy further. Combining E¢g)
with (44) we have

2 222
473 AT | Friosols boson
I-zT L mbosor;r boson

(43

D. A—o approximation

Many numerical simulation&*° as well as other theo- A
retical approaches such as the “lowest-Landau-level” Yz(qx)zJZ[l
approximatiort have been based upon the approximation of
taking A, — ¢, while keepingJ, finite. This approximation QOne can then define the proportionality coefficiggtsonof
corresponds to taking a spatially uniform internal magnetiqzq. (46) by
field b which is equal to the applied field Such an approxi-
mation can be shown to be exact for modeling the analog L,Tq? 2o
system of a 3D neutrguncharged particlessuperfluid in a Y bosort ) = Ybosonl bosorir—27 = yboso{—z}qz, (48
rotating buckef:'° It is interesting to see how the helicity 4, 4,
modulus and the 2D boson analogy look within this:=  \yhere we have used the correspondences between supercon-
limit. ducting variables and analog boson variables to arrive at the

In this case, the interaction between vortex lines is givenast equality. Note that Whetyoso=1 We haveY,(0)=0,
by the “bare” interaction tensoh/g of Eq. (13). One can gp(g Whenyp.so<1 We haveY,(0)>0.

_ 4772‘-]2 Y boso )
Lqu2 Tboson

(47)

show that the correct helicity moduluéﬂ(q;) is obtained One can now show at least in the isotropic case, that the
by taking the limit\,—c in Eq. (30), keepingJ, and  term[#ijo4m2I]=1i50sodm\2/ $5] Which appears on the
A, I\, constant, right-hand side of Eq(48) is just twice the magnetic energy

coupling of the analog magnetic field of the 2D electrody-

- 4723, (N (qVIN,(—ar))o namics. We can rename this couplifdi 2],0sonin @analogy

Yu(@qr)=J,1 VT o> (49 \ith the magnetic energy coupling of our original 3D super-
) conductor of Eq(1). Equation(48) then becomes,
whereJ ,=J, (A, /)\M)2 is the coupling in directionu.
Noting that™, = (472J,/2V) S qn,- Vo-n_, must have a Y bosof ) = Ybosoh IN 2 Tbosodls (49

%

finite thermal average, and sinvg~ 1/g<, it must therefore

be true that ag— 0 in complete agreement with the smaqlllimit of the form of

the helicity modulus for a charged superfluid, given in Eg.
(N(qV)N,(—q¥))o~a2. (45) (35) (as derived for our original 3D superconductor at finite
N). — Yhoson IS therefore the magnetic susceptibility of the
Substituting Eq(45) into Eq.(44) we see that, in contrast to analog 2D charged bosons. To next ordegirwe expect, in
the finite A , case where we fountfﬂ(q?/)~q2 asg—0, analogy with Eq.(35), thatY yoso{q) has the form
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[IN?]posol? familiar Abrikosov vortex line lattice. In this case, we can
Yposof 4) = Ybosory 1y : (50 evaluate the vortex line correlations that appear in the ex-
R bosorf] pression for the helicity modulus by using the well-known
wherelg posonis the magnetic penetration length of the ana-elastic approximatiof?!® It is now convenient to work in
log 2D charged bosons. If we takek posori= 1/(4mNshoson s the Helmholtz ensemble, with a fixed uniform dendityof

with ngpeson the number density of superfluid charged magnetic field induced vortex lines,
bosons, then combining Eq&t7)—(50) one can recover all

the results found in Sec. V B 3 of Blattet al.® which are
therefore seen to apply in a strict sense only to Xhe by — (51)
approximation, rather than to the finitecase. \/b—o

We thus have the following amusing duality. For finite
A we have seen in the preceding section that the 3D supewherea, is the lattice spacing between lines in their ground
conductor, which is a charged superfluid problem, maps ontstate triangular lattice. We will denote thermal averages in
analog 2D bosons, which is a neutral superfluid problemthis ensemble by- - - ), dropping the subscript0’” that we
The 3D longitudinal superconductivity transition maps ontoused earlier.
the 2D superfluid transition. A perfect Meissner effect for In the elastic approximation, one assumes that vortex line
shear perturbations in the 3D superconductor, wgith 1, excitations consist only of fluctuations of the magnetic-field-
represents the normal fluid state of the 2D bosons withnduced vortex lines, transverse to the direction of the uni-
Y hosof@—0)=0; the loss of this perfect Meissner effect, form applied field. Such fluctuations are described by the
with y,<1, corresponds to the superfluid state of the 2Ddisplacement fieldi;(z), which gives the transverse displace-
bosons withY p,0{@—0)>0. For A\ —x, however, the 3D ment in thexy plane at height, of the vortex line away from
superconductor, which now behaves like a neutral superfluiits positionR; in the ground-state vortex lattice. The vortex
problem, maps onto 2D bosons interacting with 2D electrodine density is thus given by Eq40), making the substitu-
dynamics, which is a charged superfluid problem. The 3Qtion r;, (z) =R+ u;(2).
longitudinal superconductivity transition now maps onto a If we define the Fourier transforms
Meissner transition of a 2D superconductor. The normal state

B
=—, a,=
¢o

4 1/4 1
g

of the 3D superconductor, with,(q—0)=0, corresponds 1 ‘
to a perfect Meissner state of the charged 2D bosons, with uq=b—J dzz '@zt ARy, (z),
Yoosoi=1l; the 3D  superconducting state, with 0 :
Y ,(g—0)>0, corresponds to the loss of this perfect Meiss-
ner effect for the 2D charged bosons, withyso<1. 1 —i(aqz+q, R
Note that for the analog 2D charged bosons of the Ui(Z)—]—)% e, (52

A —o approximation, vortices in the 2D condensate wave

function will interact with a potential that decays exponen-yhereq, =(q, ,0y) and the sum oveq, is restricted to the
tially on length scales greater thaXg poson, due to the first Brillouin zone of the Abrikosov lattice, then to lowest

screening by the 2D analog magnetic field. A vortex-grder inu the vortex line density at small finitg may be
antivortex pair will therefore have a finite energy barrier foryritten as

unbinding, and so at any finit&,,s,, there must be free

vortices which will destroy the 2D Meissner state. Only at . A
Thosor=0 (L,—) does there remain the possibility of a Ng=1ibo[q- UgZ—0,Uq].
sharp Meissner transition in this 2D analog boson system, ag
hposonVaries. Such a transition, if it exists, is driven by quan- . : ; :
tum and not thermal fluctuations and so it is not in the(20: Summing over rguprocal_latﬂce vectors, and k(_aeplng
Kosterlitz-Thouless universality class. We believe that it isONY terms up to ordeu, results in the free energy functional
this transition afl,ee= 0, in thex — s model, that the work ~ [OF elastic vortex line displacements,

of Feigelman and co-workérs pertains to. Recently, Te-

sanovichas arguet that such a transition must be driven by 1

the proliferation of closed vortex ringdoson-antiboson vir- Helul= 2y q;ﬁ Uga®op(QU_gg

tual pairg, which are left out of the naive 2D boson map-

(53

ubstituting the expansion fox, in terms of theu,, into Eq.

ping, and that the transition will be in the universality class 1 5 5
of the ordinary 3DXY model. =2v zq: {[Cal(@az+C12(A)QT JUqLU-qL
The above considerations suggest that takinghex
limit in our model is rather subtle and possibly leads to dis- +[Caa(A) Q2+ Coe(A) 02 JUgTU_o 7} (54)

continuous changes in the phase diagram, although any such
discontinuities will likely be obscured in a finite-size system Herequ=(i- U is the longitudinal part of the displacement,

by very strong crossover effects. and ug= |uq_aqu| is the transverse par€.,(q), Ces(d),
IV. VORTEX LINE LATTICE: ELASTIC and cll(q)_ are the_ Wave-vector-dep_endent tilt, shear, and
APPROXIMATION compression elastic moduli, respectively. We can now use
Egs.(53) and (54) to evaluate the vortex correlations of the
We consider now the mixed state of a type-Il supercon-helicity modulus of Eq.30), for the three simple cases of
ductor. At low temperatures, such a state is described by theig. 1.
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A. Tilt perturbation

We first consideh{y(qi) which gives the response to the
tilt perturbation of Fig. 18). Using Eg.(53), the relevant

vortex correlation, to lowest order i, is ,
Z - ~ - VT
(n(a2)n(—02)) =’b(ur(92)ur(—q2)) = 0( %)’

Ca4(Qz

(59

where we have useH,, of Eq. (54) to evaluate the displace-
ment correlation. Expanding ig? we have
b§VT

n ’
W)

b3VT dcg,

Ny1=— 5 —p 56

=0

Combining Egs.(2), (38), (39), and (51) with Eq. (56)
above then gives, for the helicity modulus parameters,

TAO CHEN AND S. TEITEL

and
BZ

\2q

y

1- 1+
41Ce4(0) vy

2\

1 dcaa
Ca(ONT dq?

. (58

q=0
Note that from general thermodynamic argum&htsie has
B2 dH,
47 dB,’
where thedH, /dB, is evaluated at the average magnetic

field Boi. Hencey, is determined by the transverse magnetic
susceptibility,

Cy4(0)= (59

dB,
dHL !
as expected from our discussion in Sec. Il B.

Yy= (60)

2
-1 B (57) Using our explicit results for,, from Appendix B, we
Yy 41c44(0) have
|
[ ¢ H ¢
0 2 c2 0
In——-1|+ <1 forlarge B, A\, >a,,
gmn2B| " ( B 4m\°B g LTS
8m\?B 1 _ .
=4 1— — ~1 for intermediateB, A, <a,<\,, (61
Y do 7m TIn(He/B)—1]+1
8m\’B 1
1o 2T — ~1 for small B, \,<a,.
| $o 7m [2In(nxk)—1]+1
For Ay, using Eq.(58) and our results foc,, from Appendix B, we have, for large magnetic fields>a, ,
L forst isot L s (HCZ)
—— for strong anisotropy, ———5= nl—|,
N2y | 227K 9 anisoiopY: o 7e” 7 M'B
Myr_ (62
M ! ‘zln(k) for weak anisotro ! < ‘2In(H—°2)
2227 "B Y zzee=7 MB )
For intermediate magnetic fields <a, <\, (where strong anisotropy is by definition impljede have
oR
L (63)
and for weak magnetic fields,<a, we have L
) 1—-2)\?k3 for strong anisotropy, 1> 5 Znyx,
YR_ 21,2
7 = A2k (64)
% _ o i 1 e 9n
L s ey for weak anisotropy, <7 7K,

wherek3=47B/ o~ 1/a%.

For strong magnetic fieldsh >a,, Eq. (62) gives
Ayr= llﬁkosav, independent of the barg, . Since our
definition of Ay in Eq. (35 was based on an expansion in
smallq, it is doubtful that we should take such a smajk

For weak magnetic fields, <a, , Eqs.(63) and(64) give
)\yR~ )\J_ .

B. Compression perturbation

too seriously as a screening length, without considering

higher terms in an expansion @ as well as considering the
responsdg ., to the perturbrcltiorAg"t (whereK is a recip-
rocal lattice vector of the vortex lattige

We next considel ,(qy) which gives the response to the
compression perturbation of Fig(k. Using Eq.(53), the
relevant vortex correlation, to lowest orderug, is
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i i i A b2yT B2 dH,
<nz(qy>nz(—qy)>=q2b3<uL(qy)uL(—qy)>=clf(q9) , c(0=7- 38, (€7
(65

Noting from Egs.(B16) and (B23) that, for largex , >a,,
where we have used E¢54) to evaluate the displacement cq4(0)<c,;, we havec;,(0)=c,(0), and so
correlation.

We therefore have dB,

B? ¥=1= dH,

= o) ©® : - . -
1 is determined by the longitudinal magnetic susceptibility.
The compression modulus in the vortex line lattice can béor A\, <a,, Egs.(B22) and (B23) give ¢;;=3c,, and so
written ascy;=¢_ +Cgg, Wherec, is the “bulk modulus”  y,=1—5(dB,/dH,).
for an isotropic compression. General thermodynamic argu- Using our explicit results foc,; from Appendix B, we

(68)

ments givé® find
— bo for large B, \,>a
167\2B ge s M=a,
= 69
x 16y27A2B [\, | %2 (69

e/ for small B, A, <a,.

9¢g

a

v

7«<0 implies that the magnetic field induced in the materialthis to vanish identically. This is merely an artifact of our
is larger than the applied perturbation, and so theradga-  Fourier transform of the displacement fieldwhich prohib-
tive screening. This may be understood from E68) by its vortex lines from having a net tilt away from tfzeaxis.
noting that in the mixed phase one always hasTo avoid this difficulty we can evaluate the correlation at

dB,/dH,>1. _ q=0q,x+0q,z, with finite q,, and then take the limit as
For the screening length, we find q,—0. From Eqs(53) and(54) we get
——— for large B, \, >a,,
N ke 9 ) lim (ny(q)ny(—a))= lim Ll T (71
FCa I (70 oo Y g,—0Cos( D)0+ Can( AT
——— for small B, \ <a,.
TN

) ; ; ) ) _ For the case of a vortex line lattice wittyg>0, taking
Sinceky=47B/ ¢o~1/a; , both cases giva,r~ia,. Itis  g,—0 results in a vanishing of the vortex correlation. From
tempting to interpret this imaginarkr as indicating the Egs. (38) and (39) we then have\,g=X\,, and y,=1. We
rearrangement of vortex lines on the length s@jedue to  will see in the next section that higher-order elastic correc-
the penetration of the applied field, with no “healing” length tions lead to a temperature-dependent increasein but do
at all at the surface of the sample. However, our cautionaryot changey,=1. The vortex line lattice thus exhibits lon-
remarks following Eq(64), concerning the applicability of gijtudinal superconductivity, with a perfect Meissner effect
our results on the length scadg, should again be noted.  for shear perturbations.

If one assumegg=0, as might describe the case of a
C. Shear perturbation vortex line liquid, Eg.(71) results in(n,(qx)n,(—gx))
The preceding two cases of the tilt and the compressior?b(z,VT/cM(q)A(). In this case we have y,=1—
perturbations gave information about the transverse and lorB%/4mrc,(0)=1—dB, /dH, <1, exactly as in the case of
gitudinal magnetic susceptibilities, vig, andy,. However, the tilt perturbation, Eq957) and (60). To summarize,
since for largeB Ayg, A\ygr~a, is independent of the bare
N\, , itis unclear whether they give any information about the
density of superconducting electrons, or whether they can be
expected to diverge at the superconducting to normal transi-

(ny(@x)ny(—gx))=0 and y,=1 if ce>0 (72

tion. A more interesting case is therefore given by the third A A 2yT dB,
possibility Y,(gx), which gives the response to the shear  (Ny(ax)ny(—gx))= — and y,=1— W<l
perturbation of Fig. (c). C44(0X 1

The relevant vortex correlation we need to compute is
(ny(ax)ny(—ax)), but to lowest order iniy, Eq.(53) shows if Cee=0.
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The above arguments suggest that a singular decrease t@fn as we have done in Appendix A, the connection of
v, from unity (or equivalently the singular increase 0f;  psposontO the shear, as opposed to the tilt, perturbation would
from zerg, marking the loss of longitudinal superconductiv- become ambiguous.
ity, serves as a convenient criterion for the superconducting The preceding discussion has been based upon elastic
to normal transition in the mixed state of a type-Il supercon{fluctuations about a perfect dislocation free vortex line
ductor. This is one of the main results of our paper. If thislattice. Recently, Freyet al®’ have argued that, at suf-
transition is second order, we expect thak will diverge at  ficiently high magnetic field in a layered superconductor,
the transition withng~ 1/A2; the density of superconducting the proliferation of dislocations can result in the loss of lon-
electrons. gitudinal superconductivity even in the vortex line lattice

In considering the vortex correlation @ q,x+q,z, itis ~ State.
the relative order in which one takeg andq, to zero that
distinguishes between the shear and the tilt perturbation. It is
the order corresponding to the shear perturbation that is re- Our analysis in the preceding sections is based on Eq.
lated to the superfluid density of the 2D analog bosons(53), which gives an expansion of the vortex line densityp
Psnoson- Note that if we had definedgyos0nin terms of the  linear order in the displacement field. In this section, we
g=0 winding number of Pollock and Ceperl&rather than consider the effect of higher orders, by continuing the expan-
in terms of theq— 0 transverse momentum correlation func- sion inu,

D. Second-order corrections

. Z bo 1 z ’
nq_lbO[Q' UgZ— QZuq]_ v 2 {zla- uq’][q' uq—q’]z_(QZ_ a.)la- uq’]uq—q’}
q/

ibo z ’ ”
- ﬁ q’Eq” {%[q uq'][q' uq”][Q' uqfq’7q"]z_(QZ_qZ_qZ)[Q' uq’][q' uq”]uqfq’fq”}"' Tt (73)

for small but finiteq. NN — ax)) = b2T2Va?l 75
To systematically evaluate vortex correlations using this {ny{@xny(=ax)) =boTVa, (79

higher-order expansion, one should also in principle extengvherel is the integral,

the elastic energy of Ed54) to higher order iru by taking 5 )

the expansion above, and substituting into the vortex-vortex 1 k3 1 ks

interaction Hamiltonian of Eq20). The resulting expression I T;Ek detb, V< (c44k§+ anf)(044k§+Ceekf) '

is rather complex. For simplicity, we will instead continue to (76)

use the quadratic elastic energy of E§4); however, we ) ) )

now view the elastic moduli as appropriately redefined?he correlation of Eq(75 vanishes agj for q—0. We

temperature-dependent parameters, in the spirit of a seltherefore continue to find, as in the.precedlng section, that

consistent phonon approximation. n,o=0 andy,=1, giving a perfect Meissner screening of the
We consider here only the caseY§(qx), corresponding shear perturbation. It is straightforward to see that this result

to the shear perturbation, for which we need the correlatioff €SISts 0 aII. orders in. . .
. ) ~ - However, in contrast to the preceding section, we now
Ilmqﬁo(ny(q)ny(—q», with q=qx+q,z. As we have al-

: _ : . find a finite renomalization of the penetration length. Com-
ready seen in the preceding section,dgg>0, the contribu-  paring the expansion of E¢37) with the result of Eq(75),

tion to O(u?) vanishes. By symmetry, the next leading termye getn,;=b3T?V1. Using this in Eq.(39) then gives
is O(u%. Using the expansion of E¢73), and factorizing

the average of the product of the fouis into all possible )\gR B2
i i — =1+ IT. 7
pairs, we find N2 a2 (77
(ny(a@)ny(—q)) Thus theo(u*) term generates a®(T) correction tox 2.
_ _ Continuing the elastic expansion in powersuofill generate
—h2T2 _n’\2 17 -
=boT 0.0y g’ {(070;)"® 1 5(q") Py (4=0") corrections to\ 2 in the form of a power series if.
L . To estimate the magnitude of the correction\tg, of Eq.
+(0;=09,)4, P,y (q")P gy (q—q') (77) we can evaluate the integrialising a crude approxima-
ox1 1, tion. The elastic moduli which appear Inare functions of
G2 Pyy (D Pg(a")} 74 wave vectork. However, the dominant contributions to the

where summation oves,3=x,y is implied, and® is the integral will come at wave vectork,=\(Cgs/Csg)k, and
elasticity tensor of Eq(54). Taking q,—0, keeping only k,=+/(C11/Cs4)k, , both givingk,= nk, . The dominank,
terms ofO(g?), and using the fact thab is symmetric in  will be k, =ko,=47B/ ¢, at the edge of the Brillouin

g as well as its indices, we get zone. We will therefore approximate the elastic moduli by
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their values at this dominant wave vector, denoting theseefer to this as a hydrodynamic approximatfihis yields
values atys, Cy1, andceg. Within this approximation one (ny(qi)ny(—Q>A<)>=TV/[47TZJLV¢(Q>A<)]- Substituting into
can explicitly calculate the integral to get Eq. (30), we find thatY,(qx) =0 for all values ofg, reflect-

K ing the fact that well above the superconducting transition,
| = —— 0 ) (789  an applied magnetic field will induce no supercurrents at all.
41rC44\Ca4(\C111+ \/Cep) For temperatures closer to, but still abovg, we expect

o o _ the system to show a finite fluctuation diamagnetism. A bet-
Within the same crude approximation we can estimate thegy approximation can be obtained by coarse graining the
vortex lattice melting temperatufig, . Using the Lindemann  Hamiltonian(20) over a length scale of order the intervortex
criterior”®% that melting occurs when(u®*)=cfa?  spacinga,, and then applying the hydrodynamic approxima-
(c.~0.15 is the Lindemann parameteand keeping only tion to average over the resulting coarse-grained vortex den-
the transverse fluctuations as the dominant soft mode, weity. This coarse-grained free energy has been given by

get, Marchettt* as
4mcial\Coias
To=—— (79 L
H[n]: m 2 {CL(Q) 5nq15n7qz+ C44(q)nqi : nfqi},
Combining Eqs(77), (78), and(79), and using the esti- or d 83
mate thaic,,~Cgs at the Brillouin zone boundary, we find
2
Ee:lJr Ecz a,)? Bj T (80)  Wherean,=n,—by, c_ is the bulk modulus, andy, s a tilt
A2 2°HN,) 4mCu T modulus of the same form as for the vortex lattice. Using this
) . form we find
Using the result of Fish&t for c,, at the zone boundary, for
large magnetic fielda | >a,,
b2
~ 0B Heo o= im(ny(@n,(—gx))= ——>0  (84)
~ y y
Cas 3272\2 1+In B(1+75 D[’ (82) 40 C44(0)
we get,
and, from Eqgs(38) and (59),
Ag Amc?\4al3 -
N M T AL /B 7 DT 82
B? dB,
Taking, for exampleB=0.2H, and  ?<1, we estimate a Y.=1- A7Cp0) 1- A, 1. (85

12% increase in\2; over \Z near melting, due to lowest-

order elastic fluctuations. Since the elastic mody)j(k) are

in general larger than the valueg, , this is an overestimate. Thus, within this hydrodynamic approximation, the longitu-
The above estimate does not of course include the effects @final superconductivity found in the vortex line lattice is lost
critical fluctuations near a phase transition, which for afor the vortex line liquid. Note that since E(85) gives v,
second-order transition should result in a divergenc® @f strictly less than unity in the vortex line liquid, while

atT.. v,=1 in the vortex line lattice;y, presumably takes a dis-
continuous jump at the transition where longitudinal super-
V. VORTEX LINE LIQUID conductivity is lost.

] ) ) ] A more detailed calculation of vortex correlations, aver-

In the preceding section we considered the vortex lingging over unbounded dislocation loops within a continuum
lattice atT<T,,. In particular we showgd how the responseg|astic model, has been carried out by Marchetti and
to the shear perturbation, given B¥,(qx), gives a useful Nelsorf* as a model for a hexatic vortex line liquid. In the
criterion  for  superconducting phase  coherencejimit q—O0, the result of Eq(84) is again obtained.
fyZE|imqﬁ0[Yz(q)’Z)/Ji)\iq2]=]_, or equivalently n,q Equgtions(84) and (85) are iqlentical to_the result we
Elimqﬂo(ny(qi)ny(—q;(»:O indicates the presence of found in Eq.(72) by simply tgkmg 05650 in _the ela_stlc
longitudinal superconductivity. In this section we consider@PProximation for the vortex line lattice. It is interesting to
behavior in the vortex line liquid &>T,,. As a measure of speculate about the behavior of a “soft” vortex line lattice in

superconductivity we focus on the behaviorrgj. which  the Iong-_vvavel_ength. §hear moo_lulus vanishes,
Cee(d=0)=0, but in which a finite shear stiffness remains

on shorter length scalesgg(q, ,q,=0)>0 for g, >0. In
this case, taking the limig—0 as in Eq.(71), we find that

The simplest approximation one can make at Higis to  n,,=0 and longitudinal superconductivity remaffsAs
take the Hamiltoniaif20) and regard the Fourier components Marchetti and Nelsott show, however, it is not possible to
of the vortex line densityn, as continuous, independently describe an entangled vortex line liquid with such a simple
fluctuating variables, subject to the constrainh,=0. We  elastic descriptiof®

A. Hydrodynamic approximation
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B. Kosterliz-Thouless transition This is much thicker than typical experimental samples,

In Sec. IIIC we discussed how the KT superfluid transi-Which are generally of the order 5am. As B decreases,

tion of the analog 2D bosons could appear in the 3D super-z max ONly getslarger. _ . _

conductor as a strong crossover to a vortex line liquid state | "€ above results may be compared with the original cri-

with longitudinal superconductivity. In his original model, t€ron f“or 2D boson SupefﬂU'(}!'W given by Nelsdrin terms

Nelsort! interpreted this KT transition in terms of a transi- ©f the “entanglement length,

tion from an “entangled” to a “disentangled” vortex line -

liquid, for sufficiently thin samples. In this section, we esti- £ :fl_d’o 93)

mate the temperaturg, for this KT transition as a function Z 2TB’

of sample thicknest , and magnetic field, and compare

this estimate with Nelson’s entang'ement criterion. éZ iS the |ength required fOI’ a vortex ”ne to haVe a transverse
The 2D KT superfluid transition is characterizedly the deflection equal to the average spacing between vortex lines,

fact that, exactly at the transition, the boson helicity modulug?, - Only when §,<L, can the vortex lines have enough

Y posof—0) takes a discontinuous jump to zero from thetransverse wandering so that they may become geometrically

universal finite vValueY posord Toosor™ 2/7- Y bosoniS diven by entangled. The crossovés, between a disentangled and an

the vortex correlation of Eq(42), which for a vortex line ~€ntangled vortex line liquid is thus given by

liquid can be related to the tilt modulusy, by Eqg. (84).

Using Eq.(59) for c44 and applying the universal jump cri-

terion then gives for the KT transition,

_2cu0)  ¢5 dH,
¢ m bjL, 2m’L,dB,’

_EGdo_ d5 don *Ink
2BL, 2#°L, 16\°B '

Ty (99

where we have used;=e;7 2 with e;=(p5/4m\,)?Ink

!

for small B. One will haveT.>T,, only for L,<L, j.x

: . where
Thus as the thickneds, increasesT . decreases. In order to

observe a vortex line liquid with longitudinal superconduc-

(86)

= -2
tivity we need the system to be thin enough tiigt-T,,. If ! :i T A= $o7 In(K)A 95
. zmax 2 . ( )
we define the length 7| $oB 16\7B
3 Except for some numerical f_actoﬁs,’max agrees w_ith_zmax
A= 22T (87)  of Egs.(91) and(92), decreasing as B/ for increasing mag-

m netic field. In the large field limit however, our result in Eq.

(90) saturates to the finite valu& instead of continuing to
decrease. The difference between the results of ®@sand
(95) arises because the latter is based on the the line tension
‘e, for the energy of a single-vortex-line tilting, while the
former is based on the tilt modulus,(0) for the collective
tilting of all lines. This points out an important distinction:
Geometric vortex line entanglement, i.e., the local wrapping
(89) of lines around each other, is not necessarily equivalent to
the global vortex line winding that characterizes the analog
2D boson superfluid phasé Nelson’s entanglement length
Assuming that,,(0) in the line liquid is not too different of Eq. (95) nevertheless remains the important length scale
from c,4(0) in the line lattice, we can use our results from for local geometric entanglement, which still can have a sig-
Appendix B to evaluate the length, ... For large applied nificant effect on the dynamic behavior of the vortex line
magnetic fields, such that,<\, or equivalentlyH:;<B, liquid if the barriers for vortex line cutting are higf.
we havedH, /dB, =1 and so, to leading order, The above discussion has been based on the familiar KT
transition of an ordinary 2D superfluid, and predicts that as
L,—o at fixedT>T, (Tposor— 0 at fixed?i yoson Tc— 0 and
so one is always in the boson superfluid state, corresponding
to a normal vortex line liquid. Feigelm&hand co-worker$!

then we can rewrite Eq86) as

T, dH, A

I-Z max

T. dB, L, L,

(88)

We thus will haveT.>T,, provided

dHJ_ (47TC44(0))A

LZ<L A_ BZ

zmax:dBL =

Ly ma— A (90)

For small magnetic fields, such thej<a, , we have

bo however, have argued that far—o, the long-range nature

L, max:m{n_z[zm( 77K)_1]+1}A- (92

of the effective 2D boson interaction can lead to a normal
boson fluid, and hence to a vortex line liquid with longitudi-

For an anisotropic material in intermediate magnetic fieldsn@l Superconductivity, even in the,—% (Tpesor—0) limit

such that\ | <a,<\,, we have, to leading order,

__ %o -2 _
Lzmax_m{n [In(H¢2/B) 1]+1}A- (92

Note that for a melting temperature df,~90 K, as in

Y-Ba-Cu-O, one has, for larg8, L, pa—= A=1400 um.

for T<T,, whereT; (i.e., the criticalfipyson in the boson
variablesg gives the 2D Meissner transition of the analog 2D
chargedbosons of thes—c approximation, as discussed in
Sec. llID. Such an—oe transition would probably lead to
strong crossover effects in the finite case, which would
obscure the KT transition whdn, <L, ,.x, Where theT . of
Eq. (86) can be very much larger thary, .
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Searching for longitudinal superconductivity within the ,

vortex line liquid will be one of the main objectives of our
numerical investigations, to be discussed in the following
section.
b d‘ual.
x site ¢
VI. NUMERICAL SIMULATIONS 1 ‘““®"‘>"}’?
In this section we report the results of numerical Monte Aiz § bfyﬁ’ :
Carlo simulations we have carried out in order to study the el b. A
behavior of the system of fluctuating vortex lines. Ay ’Z?
A. Lattice superconductor site i Ay :

To carry out numerical simulations, our first step will be
to discretize the continuum to a cubic gridf=N?N, sites FIG. 2. Labeling conventions for the lattice superconductor.
; ; RSN PR A; , are directedoutwardsfrom sitei on the bonds of the direct
| The grid spacing in directiop. is taken to be IatltLice.bm are directednwardstowards the dual siteon the bonds
a =&, p=XY, of the dual lattice, piercing the plaquettes of the direct lattice as
a,= (96)  shown.
a,=d, M=Z.

The grid spacing, in thexy plane is meant to approximate

the core radius of a vortex, while the spacidcalong z is J =J,d,  p=XxY,
. . - aua(r
meant to simulate the spacing between CuO planes of a lay- J,=J, - & (102)
ered highT, superconductor. If one wants to model an an- . a, 3, ~=J, = 3 =
isotropic continuum superconductor, such as in Sec. Il, one
should taked=¢,, where the anisotropic Ginzburg-Landau The couplings of the magnetic energy piece are
free energy functional givést,= » ¢, . Discretization of )
Eq. (1) then leads to théattice superconductomodef®!’ _
c =J, , M=XY,
Cman2 2 é
HL O ALl= E (U0 = 0—AL) - La vao —(N,\? _
=0 g_ y M=Z
1
+27%C (b, —hi )%, (97) (102
where 6; is the phase angle on grid site To express the Hamiltonian in terms of vortex line vari-
o ables, we first perform a standard duality transformé&fiof
N N the kinetic energy piece, and then, following Carnifdn
A, A-d/ (99
[ complete analogy with Eq$15—(21)], complete the square
b'nd bg.— hq, subject to the constraint thbg‘ is diver-

is the integral of the total magnetlc vector potential acrossgenceless Our Iatt|ce Fourier transforms are defined by

the bond at site in direction u, and if u,v,o is a cyclic

ermutation ofx,y,z, then .
P ’ bqu eib,, b= N 2 e '4iby,, (103
27Tbi;L:Ai+;,0'_Ai0' A|+0' V+A (99)

is the sum of theA;, going counterclockwise around the and the constraint thaI'”d is divergenceless can be written
v ~ * |ind_

plaquette at sité in direction u and gives 2r times the flux as,Q*-b"=0, where

of total magnetic field through the plaquetee Fig. 2, a Q,=1- e (104)

similar relation defines; , in terms ofA“‘j,ft The kinetic en- # '

ergy piece is expressed in terms of the Villain functfon ~ The vortex part of the resulting Hamiltonian is

w . 47723
e—uu(</>)/T=m:2_ ) e I, o= 22T 100 H,= S q}) Vaal Nge—Ngal[N_qa—h_qal, (105
with couplings whereVg,=Vq,=V,, and
|
vV, = (O, /0)° (106)
WL (N 1A)ZQP+ (N, /E)?QL P
v (AL TEDTL+ (N ID)?Q%+ (N, 1€)%Q. %] (107

9214 (0L 02 Q 7+ (N €0 AQUIPITL+ (N ) QP+ (A, /€D QAT
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Ng. is the Fourier transform of the vorticity;,, piercing
plagquettei u. Equations(105—(107) are the lattice equiva-
lents of the continuum Eq$20) and (21).

Note that?,/T depends orfour dimensionless param-
eters, which may be taken to bé, /T, n=N,/\,
k=N, /¢ , and{=¢, /d. The ratio of the couplings that
appear in the Villain kinetic energy terms of EG00 is
then J, 213, =(\ & INd)%2=(Z/5)? If one wants to
model an anisotropic continuum, with=¢,= 7" ¢, , then
one has/= » and there are onlthreedimensionless param-
etersJ, /T, 5, andk, with J,»2/J, =1. Both cases are in
general different from an earlier derivation of the London
lattice vortex line interactiod which assumed equal grid
spacings in all directionsa,=a, for all x, and so with

TAO CHEN AND S. TEITEL

J_,u()\i /av)2|Qv|2

R e W [o ) L
where, analogous to Eq&38) and (39),
4723, (N, la,)?
Yu=lm T Mo (112
and
A -2
2 27 2 | Nuo= N1 -
( ) . 4AmI, (N /) #\ a, (113
Ay NT Yu

¢=1 involves only the three dimensionless parameters Noting thatQ,=—iq,a, for small g, thatN= V/(gld)

J, /T, 5, and\, /ag, but withJ, 5~ 2/J, = 2. Keeping the
distinction a,#a, (i.e., d#¢&)) is essent|al to correctly

model the effects of the anisotropic vortex core energy im
either a continuum or a layered anisotropic superconductorpletely W|th their continuum counterparts,

We can now define the helicity modulus for the lattice

and that there is a slight d|st|nct|on between Fourier compo-
nents defined on the lattice versus in the continuum,
oiee=g_ Inconinuum gl the above expressions agree com-

in the limit
g—0.

superconductor in complete correspondence with the con-

tinuum, Egs.(22)—(25). The only change needed is to re-
place the system volum® with the number of grid sites
N, due to the slightly differing definitions of the Fourier
transform in the contlnuum Eq9), and on the lattice, Eq.

B. Monte Carlo method and parameters

To carry out Monte Carlo simulations of the lattice super-
conductor model we start With a fixed densliiy— gf B/ ¢q

speC|aI perturbations of Fig. AZXl(qv), whereu,v,o are a

cyclic permutation ok,y,z. Taking the Fourier transform of
Eq. (99), we get, 27h,(qv)=Q}A%(qv). Substituting for

h, in terms ofAeXtm H, of Eq. (105) and then applying the
definition of heI|C|ty modulus in Eq(25), we get, for the

diagonal part of the helicity modulus tensor,

3,00 1a)4Q,2 [ 4ni1,(\, /a,)?
1+(\,/a,)%Q,[?

TN
(N (ar)n,(—qv))o
1+(\,/a,)%Q,[?

Y, (qv)=

(108)

and, for the off-diagonal part,

_( )\L /a(r)2|Q(r|2
1+(N,/a,)%Q,l?

w(00) =

47TZ‘JV()\L /aa')z <nll(q&)n,u,(_qa-)>o
NT 1+(N,/a,)%Q,l?

(109

Equations(108) and (109 are the lattice equivalents of the
continuum Eqgs(30) and (31). The primary difference be-

tween continuum and lattice expressnons is the substitutiog/here An;,

qﬂ—>|Q la,|*=(2—2cog),a )/a
Expandmg the vortex correlatlon, at small

<n(r(q;)n(r(_q;j)>0:n,u0+n;.Ll|QV|2+np.2|Qv|4+ ’
(110

we can again write the diagonal part as

Z axis. Followmg Carneiro, Cavalcanti, and Gar?t%we up-
date the system, heating from the ground state, by adding
elementary closed vortex rings that surround only a single
bond of the discretizing gridi.e., rings of area® in the
xy plane, or ared&, d in thexz or yz planes. The rings are
added one at a time, at random positions with random orien-
tations, and then accepted or rejected according to the stan-
dard Metropolis algorithm. When a side of such a ring coin-
cides with, and is oppositely oriented to, a segment of one of
the initial magnetic-field-induced vortex lines, these two seg-
ments will cancel out resulting in a net fluctuation of the
vortex line. This procedure provides for a complete sampling
of phase space for the vortex variabigg which are subject
to the constraints that vorticity is locally conserved,
2, [ni,—ni-; .]1=0, and that the average internal magnetic
field is kept constant, (W) 3;n;=boz (i.e., we are using the
Helmholtz ensemble

Our simulation uses periodic boundary conditions in all

directions. The periodicity alongmakes our simulation map
exactly onto the 2D boson problem. In order to compute
energy changes for the Metropolis acceptance test, it is con-
venient to us®

AE=2723, 3, Fi,An,,, (114
T

is the change in vorticity due to the vortex ring

excitation, and

(115

n;

52 V,(r—

represents the “potential” field of all other vortices.
V,(ri)=(1IN)Z,e '%"V,, is the Fourier transform of the

Jm
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FIG. 3. Ground state for vortex line denshiy=1/15 on a cubic o 0l 1
grid. Solid circles indicate the locations of the straight vortex lines 6\2 ’
as they pierce they plane. S 100 —
?é 200 * T=0.70 o T=1.40
vortex line interaction of Eqs(106) and (107), where the U . E%:gg * T=Le0]
sum is over allg satisfying periodic bounda(y conditions, 300 Lo e
q.,=2n/,IN,a,, 7,=01,... N,—1. In this way, the 0.0 0.5 LOlQ |21-5 2.5
computation ofAE is alocal computation, involving only y
the sites of the elementary vortex ring excitation. Only when 140 —— e o e e :
an excitation is accepted is it necessary to update the poten- 20 f & T=L00 4 T=2.10 /T 1
tialsF;, , a calculation of ordeN. Since acceptance rates are fg 100 |
generally low below the transition, this method is signifi- ;ﬁ 1
cantly faster than a direct computation involving the long- -~ ]
range vortex interactions. 3
For simplicity, we have only simulated the completely S R
isotropic_case withh=\, =\,, ag=¢&, =d, and hence ~s
- - . . (c) shear
Jo=J, =J,. Henceforth all lengths will be measured in
units of the grid spacingo=1 and temperatures in units of 50 25

Jo. Our simulations are for the fixed vortex density

bo=1/15 whose ground state, shown in Fig. 3, is a close
approximation to a perfect triangular lattice with sides of FIG. 4. Helicity modulus plotted a§x2|QV|2/Y#(qL) Vs
length \/18% /17X \/17. We choosex= May=5, compa- |Q,|? for various values of . The straight lines are fits to E€L11),
rable to the vortex line spacing, /a,=1/\/b,=3.87. We  and determine the parameteys and (\ ,z/\)? for () the tilt, (b)
study system sizeN, =30 in thexy plane andN,=15 and  the compression, an@) the shear perturbations of Fig. 1.

30 parallel to the applied magnetic field.

Our simulations are carried out heating from the groundsing the smallest eight values@# 0. In virtually all cases,
state. At each temperature we use typically 5000 sweeps ¢ fit is quite reasonable. In Figs(&5-5(c) and 8a)—6(c)

equilibrate, followed by another 8—16 0020 sweeps t0 COMya show the values of,, and O\,uR/)\)Z obtained from these
pute averages. Each “sweep” refersNe=N7N, attempts t0  fits |n each case we show the result of fits to the smallest
add an elementary vortex ring. Statistical errors are estimategignt, seven, six, and five values gf~0. As is seen, our

using the standard block averaging method. results are virtually insensitive to the number of values of
g used, except for the case of the compression perturba-
C. Results: Helicity modulus tion in the vicinity_ o_f T,=1.2, where our data are rather
_ ) scattered and statistical errors are lafgee data fol =1.2
In an earlier repotf we presented an analysis of our dataj Fig. 4(b) and the corresponding dashed line]. fitve
based on Eqg110—(113), fitting our computed correlations pave also obtained values of, and (\,x/\)? by fitting

(no(av)n,(—qv))o to an expansion ifQ,|?. Here we take  30\2Q, 2/Y ,(q7) to a second-order polynomial IfQ,|2.
a different approach. Plottinglo)\2|QV|2/YM(qv) versus  We have found the results from such quadratic fits to be
|Q,I%, Eg. (111 shows that at smaly we should find a essentially unchanged from the values obtained from the lin-
straight line with intercepty,* and slopey, '\ %. ear fits.

In Figs. 4a)—4(c) we show such plots for the three types  In Figs. 1@ and 7b) we showy, and ()\MR/)\)Z, respec-
of perturbations shown in Fig. 1, fdd,=30 and selected tively, for all three types of perturbations, comparing the
values of temperaturgx =Yy, X, andz correspond to the tilt, finite size effects foN,=30 andN,=15. The results shown
compression, and shear perturbations, respectively. Thare for fits to the smallest eight values @f except for the
straight lines through the data result from least-squares fitsase of the tilt perturbation fdd,= 15 where we have used
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FIG. 5. Plots ofy, vs T as obtained from the straight line fits of  FIG. 6. Plots of §,z/\)? vs T as obtained from the straight
Fig. 4, fitting to the eight, seven, six, and five smallest values ofine fits of Fig. 4, fitting to the eight, seven, six, and five smallest
g, for (a) the tilt, (b) the compression, an@) the shear perturba- Vvalues ofq, for (a) the tilt, (b) the compression, an@) the shear

tions of Fig. 1. Little sensitivity is seen to the number of values of Perturbations of Fig. 1. Little sensitivity is seen to the number of
g used in the fit. values ofq used in the fit.

tive elastic moduli, greatly reducing the susceptibilities

only the smallest four values of (since the allowed values dB,/dH, from their continuum values, and resulting in the
of q, are spaced twice as far apart féy=15 as compared to observedy,,y,=1 at low T. Indeed the periodic pinning
N,=30). We see that finite-size effects are in general smallpotential of the discretizing grid acts in many ways like the
except for the case of the shear perturbationz. columnar pins of the “Bose glass” modélof a disordered

We now discuss our results for, . From Fig. Ta) we see  superconductor, and,,=1 is similar to the “transverse
that all threey,=1 at low temperatures. Foy,, this is in  Meissner” effect for tilting the applied magnetic field that is
agreement with our expectation that there is a total Meissneibund in that problem. One can wonder whether the decrease
effect for shear perturbations in the vortex line lattice phaseof vy, from unity which begins aT=0.6 is a smooth cross-
However, the elastic theory results given by the first lines ofover due to finite energy barriers for discretized vortex fluc-
Egs. (61) and (69) would lead one to expecj/y,|yx|<1. tuations or is rather a sharp transition, being the periodic
This is because for the relatively lardg® simulated here, pinning analog of the Bose glass transition.
B=H and the susceptibilitiesB,/dH,, that entery, and At higher temperaturesy, andy, decrease towards zero
vy in EQs.(60) and(68) are both close to unity. That we find at T,,=1.2. We will soon see that thi$,, is the melting
Yy, ¥x=1 atlowT is, we believe, an artifact of our discretiz- temperature of the vortex line lattice. It is only when the
ing grid which acts like a periodic pinning potential for vor- vortex lattice melts that the vortex lines also depin from the
tex lines. At lowT, the vortex lines are locked into a lattice the periodic potential of the grid. Assuming that the effective
structure commensurate with this pinning potential. Indeedtilt and compression moduli of the unpinned vortex line lig-
the fact that the ground state of Fig. 3 is not a perfect equiuid are not greatly different from those of the continuum
lateral triangular lattice is due to this effect. This periodicvortex line lattice, one expects, from Eq61), 0<y,
pinning potential leads to an enhanced stiffness of the effec~=1/(8m\%by) =0.024<1 and, from Eq. (69), 7y~
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2.0 : : o that\ g shows no increase ds, is approached from below,
- (a) i as is usually associated with a decay length near a transition.
150 T, ] Turning to the compression perturbation we see from Fig.
comp.. l 6(b) that, in contrast to\ g, (\«r/\)? does increase from
L 1ol ,g...;;.,w.,@w ,,,,,,,,,,,,,,,,, unity as T, is approached from below. This increase is
&= I B, T, . ° clearly noticeable at temperatures sufficiently beldy so
05 L ol * shear ] that our data still have good statistical accuracy. This is in
: tilt 4%%‘ . °0 contrast to a similar increase i, in Fig. 5b) just below
0.0 Lo Shavigagatil 5w s ] Tm, Which we do not believe is statistically meaningful, but
TR ® ¢ Wos 88 o T . . . .
w L L TG P I is rather just a reflection of the scatter in our data. Thus, as
00 05 10 15,20 25 30 33 the lattice starts to depin from the discretizing grid, a fluc-
tuation in vortex line density decays over an increasing
40 w . length scale\,g. AboveT,,, our numerical values are con-
(b) ' sistent with {r/\)?~ 7, as expected from Eq$69) and
3¢ comp.= (70) for the casex>a, . That\2; is indeed negative here,
?5 ol - T, ] and so\,g is imaginary, can be seen in Fig(bd by noting
% ..  shear that the slopes of the fitted lines are equahtp™\ 25, and
< 1| a8 Brrmmmoronsc 00047 S0 DIV - that forT>T,,, 7,<0.
ﬂtmﬁ‘p . 5y . ° Finally, we turn to the shear perturbation. Since this per-
L &*“%“‘é‘é‘“‘“ Ty turbation experiences a total Meissner screening in the super-
| ‘ ‘ TTm‘ ‘ Lo conducting state, we may expect, in analogy with the Meiss-

00 05 1.0 15 20 25 30 35 ner effect atH=0, that\,Z~ng wherens is the density of
T superconducting electror{got to be confused withy gyos0m,
the superfluid density of the analog 2D bosorsSince ng
decreases a$ increases, vanishing at the superconducting
transition, we expect that2; should increase with increasing
T, reaching a maximum &t (diverging in the case of a
second order transitignPrecisely such behavior is seen in
Fig. 6(c). Above T, )\iR decreases to roughly the same
small values a& g, as is expected from Eq5) and(84).
Comparing results foN,= 15 with N,= 30 we see that, simi-
lar to the behavior ofy,, the transition width sharpens and
the temperature of the peak)’uﬁR slightly decreases d¥, is

FIG. 7. Finite size comparison of the paramet@sy, and(b)
()\#R/)\)Z, for the tilt (A), the compression®), and the shear
(©) perturbation. Open symbols are data k=15, while solid
symbols are data fax,= 30.

—1/(16m\?by) =—0.012<0. Looking at Figs. &) and 3b)
we see thaty, is indeed small and positive f@r>T,, while
vy is small and negative. That, is indeed negative and not
zero forT>T,, is more clearly seen in Fig.(d) by noting
that the intercepts of the fitted lines are qu;tl. The nu- | o , h hat th : ¢
merical values we find fory, and y, in this region are in |n2<:reas§d. It is interesting to note, however, that the value o
roughly the same ratio as the above estimates, but approxizr &t its peak has also very slightly decreasedNgsin-
mately 2—3 times larger in magnitude. This rough agreemerftréased.

of 7, and y, with elastic theory gives us confidence that, The possibility that longitudinal superconductivity
aboveT,,, the artificial pinning introduced by our discretiz- C&n Persist into the vortex line liquid has been suggested

ing grid is no longer playing a significant role in the vortex PY theé 2D boson analogy. We can therefore compare the
line fluctuations. T. found here with the predictions of Sec. VB. Rewrit-

Returning to Fig. 7a) we see that, in contrast tg, and ing Eq: (86) iln terms of the dimgnsionless paramgters of our
Y, ¥, femains equal to unity well into the vortex line liquid numerical simulation, and takingH, /dB, ~1, gives T,
phaseT>T, . y, only decreases from unity towards the =8mJox*/N,. Usingx=5 andN,=30 givesT/Jo=21, 10
small value expected from E(B5) for the vortex line liquid, ~ times larger than the value 1.8 found numerically. We can
y,=1—dB, /dH, =y, at T;=1.8. Thus longitudinal su- also estimate the entanglement crossover of Nelson. Equa-
perconductivity, indicated by the shear Meissner effect withtion (94) gives T, = mJglnk/2bgN,, and usingby= 1/15,
v,=1, persists well abovd@,, into the vortex line liquid. «=5, andN,=30 givesTy=1.26=T,. This is somewhat
This one of the main observations of our simulations. Comiower than the observed.. Moreover, both the boson su-
paring results foN,=15 with N,= 30, we see that the width perfluid transition temperature and the entanglement tem-
of this transition clearly sharpens & increases; however, peratureT, should scale with system thickness abl 1/ In
the temperaturd ., wherevy, starts to fall below unity, de- contrast, comparingN,=15 with N,=30, we see no such
creases only slightly. dramatic shift in the numerically observéd=1.8.

We now consider our results foMLR/)\)Z. For the tilt
perturbation, comparison of Figs(& and Ga) shows that to
a very good approximation;/y~(>\yR/)\)2 for the entire
range ofT. Such a result follows from Eq$57) and (58) if
one makes the simple assumption that,(q)

D. Results: Vortex line fluctuations

To elucidate the nature of the transitions in our model, we
have measured other properties to characterize the vortex
z(le4w)\f)Vql+bo'El whereVy,, is the vortex line inter- line fluctuations in the system. In Fig. 8 we show snapshot
action of Eq.(21), ande;= 7" 2¢; wheree; is the effective  views of the vortex line configurations fdt,= 15, at various
g, independent single-vortex-line tension. It is interestingtemperaturestT<T,,, T,,<T<T., and T.<T. We show
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a)T=1.0<T,, D T<T=1.6<T, ¢ T.<T=22 1.2 - ‘
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FIG. 9. Plot of structure function peak heightsS(K4)/S,, vs
T for N,=15 and 30.

FIG. 8. Snapshots of vortex line configurations ky= 15, for

(@ T=1.0<T,, (b)) T,<T=16<T, and(c) T,<T=2.2. The _ _ .
bottom row is the view looking down along the applied magneticthese lines are fluctuating as in a random walk, then the total

field. transverse deflection of a line in traveling down the entire
length of the systemN, is u=N,A/, . Entanglement
both a side perspective and a view looking down along theshould occur wheru=a, or when A/, =a,/\N,. From
applied field. We see clearly that fo< T ,, there is a vortex  Fig. 10, and usingivzll\/b—o=3.87, we would estimate the
line lattice. ForT,,<T<T, the lattice is disordered but the entanglement temperatures ds,=2.1 for N,=15 and
vortex lines remain for the most part disentangled. Forr ~1.9 for N,=30. These are both consistent with thig
T.<T the lines are highly entangled. seen in Fig. 7. However, if the transition &t is indeed
Fpr a quantitative determination of the vortex line '?tﬁcecaused by the onset of entanglement due to transverse wan-
melting temperature, we compute the structure function 0f:iering of magnetic-field-induced vortex lines, it is necessary
vortices within the samey plane, to explain how just abov&., wherey,=0, one can have a
1 Y posor! Thosor=NzT/(472J9x?)~0.06 [see EQq. (43)] so
s(qL)zL—Z ed-Ui=r(n,n;,)8, ,. (116  much smaller than the lower boundm2/given by the
z 1 Y Kosterlitz-Thouless theofy of the analog boson superfluid

Below T,, we expect to see Bragg peaks at the reciproca}ransmon' We further note that in previous simulatigifé

lattice vectorsK of the vortex line lattice, while abové,, with X —oo, where samples up t0 thickness =200 were

we expect to see approximately circular rings characteristiStudied, the above criterion givesTa, which is well below

of a liquid. Let us denote byK,} the six smallest nonzero the observed. _
reciprocal lattice vectors, and K ;} the six vectors ob- Returning now to Fig. 10, we see that the above assump-

tained by reflecting théK,} through thex axis. Then, since gage dO];in;;”CVt\%”etr?;;;:r:z;eﬂ:g;l;att;]oensme%ﬁgtwherf('aeld
the ground-state vortex lattice of Fig. 3 breaks this reflection '

symmetry, while the vortex line liquid restores it, the quan—A/Z/A/l:0'035’ is not at all reasonablfz nely, whereA
tity AS=S(K,)—S(K}), averaged over the sbK,}, serves /A7 =0.41. The excess vorticity alorgycan only come
as a convenient order parameter for the melting transitionffom either field-induced lines which wander back-
We plotAS, normalized byS,=S(K=0), in Fig. 9. We see
that AS vanishes aff,=1.2. In an earlier work we have
shown intensity plots o5(q,) in the entireq, plane. The
circular rings seen abovg,, verify thatT,, is indeed a melt-

10T ey X

ing to a liquid, and not a depinning to a floating vortex lat- 100¢-- E
tice, or some other vortex lattice structural transition. 2

As another measure of vortex line fluctuations, we have J101 4
computed the fluctuation length of the vortex lines in the
directions transverse and parallel to the applied magnetic 102

field. The total length of vortex lines in the ground state is
Lo=boN,N? . If, in any configuration£,, is the total length 10 s
of all vortex lines in directionu (we count length here as an 0.0 0.5
absolute quantity; oppositely oriented segments do not can-
cel each .other out then we deflne the normalized excess FIG. 10. Average normalized fluctuation length of vortex lines
vortex line lengths as A/, =(Ly+Ly)/(2Lo) and A, and A/, , parallel and transverse to the applied magnetic
A7 7=(L;~ L)l Lo. We plotA/, andA/ in Fig. 10. Ifwe  field, vsT. We see thah/,<A/, for T<T,,, indicating that there
assume that all vortex fluctuations consist of purely transare only transverse fluctuations of the magnetic-field-induced vor-
verse motion of the magnetic-field-induced lines, thefi,  tex lines. This is no longer true nedi,. Open symbols are for

is the average transverse distance traveled by a vortex ling,=15, solid symbols are fdi,= 30, and the solid lines are guides
between two adjacenty planes. If we further assume that to the eye.
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FIG. 11. Average normalized length of all vortex line fluctua-  FiG. 12. Semilogarithmic plot afi(p), the distribution of closed
tions A/, and average length in closed vortex ring excitationsyortex rings of perimetep, vs 17T, for several values gb. Straight
AZting, Vs T. Open symbols are fd¥,= 15, and solid symbols are jines at lowT indicate thermal activatiorg(p) saturates at a tem-
for N,=30. perature abovd .. Open symbols are faN,=15, and solid sym-

bols are forN,=30.
wards or from closed vortex ring excitations. Both these
types of excitations are absent from the usual 2D boson anathus classify each magnetic-field-induced line as belonging
ogy. to a given braid of ordem, according to the number of lines

Using an algorithm we have described elsewtf@ree  m that are mutually entangled in the preceding sense. We
trace out the vortex line paths in our configurations to com-compute the distribution(m) giving the average number of
pute the distributior(p) of the number of closed rings of lines in a braid of ordem, whereX ,n(m)=hyN? is just the
perimeter p, normalized by the ground-state vortex line total number of field-induced lines.
length £o=boN,N? . In Fig. 11 we compare the total length  In the 2D boson analogy, such entangled vortex lines
of all vortex line fluctuations A/ ,=2A/7, +A/,, with  represent particle exchanges. A superfluid state of these
the total length of all vortex ring excitations)/,, 2D bosons is expected when there are many such exchanges,
=3,pq(p). We see that\ /jn,g<A /' through the melting and in particular when there is a finite probability to form
Tm; however, atT,=1.8, A/ i,y has increased to 27% of large exchanges involving a macroscopic fraction of the
A/ . In Fig. 12 we show a semilogarithmic plot gfp) vs  particles®® which wrap entirely around the system in the
1/T. The straight lines found at loW indicate thermal acti- transverse direction and thus contribute to,=
vation with a constant energy barrier that increases with rinmmqﬂ(,(ny(q)”()ny(—q)”()). v, is a direct measure of,, [see
size. At highT~2.8 theq(p) curves saturate. Note that the Eg. (38)], and hence a measure of the presence of such large
thermal activation for rings persists up to temperatures abovexchanges. In Fig. 14 we plot VB the fraction of lines
T.. This suggests that, although the number of rings is beR=n(1)/b0Nf which are not involved irany particle ex-
coming sizable neaf,, the transition afl is not directly  changes, i.e., the fraction of unentangled vortex lines for
associated with any critical behavior of the rings. This be-which r, ;(N,)=r,;(0). We seethatR=1 and all lines re-
havior is the same that we saw in simulations of a 8D main unentang|ed up tﬂj:Tc, at which po|ntR decreases
model, corresponding ta—c, when we tookanisotropic  towards zero. The width of the decreaseRiis roughly the
couplings?® for isotropic coupling®’ in the XY model, the  same as the width of the decreaseyin for bothN,= 15 and
saturation of they(p) curves coincided witfT.. In Fig. 13 30,
we plot the specific heaf vs T, for N,=30. We see that In Fig. 15 we plot the entanglement distributinfm) vs
C rises smoothly througfi;. The peak occurs ned~3.0  m, for several values off near and abovel,=1.8, for
(we only have enough data at high to locate it very N,=30. We see that the distribution broadenddacreases,

crudely, where theq(p) curves saturate. The peak @is  indicating larger particle exchanges; however, no sharp fea-
thus associated with the proliferation of the closed vortex

rings, which we believe to be a nonsingular crossover phe-
nomenon associated with the transition of the zero field 20F
bo=0 model, which occur at T, 4~3. The peak inC is

also probably associat®dvith the onset of a strong diamag-
netic response in the system, which occurs at the so-called
“mean-fieldH,(T)"” line.

Finally, we consider the entanglement of the magnetic-
field-induced vortex lines. Due to the periodic boundary con- .
ditions alongz, the set of pointgr, ;(N,)} where the field- Tm @%@@@Sfc ]
induced vortex lines pierce they plane atz=N, must be 0.0 b B ! bt
some permutation of the set of poinis,;(0)} where the 00 05 1.0 15320 25 30 35
lines pierce thexy plane at z=0. Lines for which
rii(Ny)=r.;(0), with i#j, form part of an entangled braid FIG. 13. Specific heat vs T for N,=30. The peak irC occurs
when viewed in the periodically repeated system. We camboveT,.

N, =30 .
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~ FIG. 14. Fraction of unentangled magnetic field induced vortex  FIG. 15. Distribution of entanglement of the magnetic field in-
linesR vs T, for N,=15 and 30. Lines start to entangleTat. duced vortex linesn(m) is the number of lines that participate in
entanglement braids of orden. Data are shown for several tem-
ture is obvious a3 increases through. . This is in contrast peratures neaf.=1.8, for N,=30.
to what we observed in simulatiois® of the A—« 3D
XY model, wheren(m) got dramatically flat and equal to . L . .
. . : . superconducting to normal vortex line liquid transition, with
unity over a wide range of intermediate as T reached

T.; theseXY simulations, however, used much larger sys—a Te _V_Vh'Chf rema||ns f|n|teda$2—>ocl.( We be:!eve tha} th'sh
tem thicknessed\l, = 100200, and this is one possible req. ransition of Feigelman and co-workers applies strictly to the

son for the difference in behavior from the present case. —* model, and representsTaqso=0 Meissner transition,
asfiyesonvVaries, for the analog 2D charged bosons.

Returning to our present simulations, we believe that our
results represent a finite crossover from the above— «

The main conclusion of our numerical work is that longi- transition afT; . Although we believe that the—c limit is
tudinal superconductivity vanishes atTa which lies well  extremely subtle, one may imagine the following scenario.
within the vortex line liquid, at least for the system sizes wewhen\ is large, although the analog 2D bosons behave like
have been able to investigate. We note that our system sizes neutral superfluid on sufficiently long transverse length
N, =30 andN,=15, 30 are large compared to the micro- scales, on small length scales they will have the ~ be-
scopic length scales of our modelN/¢, =5 and havior of chargedbosons. We would then expect the 2D
a,/£,=15. We have discussed a mechanism for this pheposon helicity modulus to have, at finite transverse wave
nomenon in terms of the KT superfl'wd transition of'the anayector g, a piece that looks like that of E450). We thus
log 2D bosons._However, thE, predicted by E_q(86) isan  expect a form like
order of magnitude larger than the numerically observed
value. The entanglement temperatiire of Nelson is of the
correct order of magnitude as the observed Figur_es 8 and [IN2]pocod?

14 also suggest a connection betwe_en geometrical entangle- Y bosok @) =Y bosorl 0) + R a——t (117
ment andT .. However, upon compariny,= 15 and 30, we R boso
failed to see any sign of the dramatic size dependence

o .
ggndle!r':lé; T:l taﬁoe)égggﬁgtjr%rpfgi‘pr' Fﬁ;&g:ga %Ifz (?Bgf As q—0,itis Yblosor(O) that determines if the 2D boson; are

In earlier simulatior®-2%0f a 3DXY model, correspond- N & superfluid [Ypes{0)>0] or a normal fluid
ing to thex — o approximation of Sec. Il1D, we have stud- L Ybosof0)=0] state, but at sufficiently large it will be the
ied much thicker systems than reported on here, Wigras second term that dominates, giving the appearance of a
large as 200. We again found longitudinal superconductivitycharged boson system. For< T, with T the 2D neutral
to vanish at & within the vortex line liquid, with virtually ~Poson superfluid ~ transition of Eq.(86), one has
no finite-size effects in the apparent valueTif asN, was Y bosof0)=0 and only the second term is present. As
varied. An analys®-28of geometrical entanglement, as done d— 0. this term vanishes, and E@3) then givesy,=1; i.e.,
here in connection with Fig. 10, givesTa, well below the ~ We have the perfect shear Meissner effect that we expect for
observedT?, for the thicker systems, and the dependence ofh€ 2D boson normal fluid phase, as discussed in Sec. II1C.
T on the system anisotropy was fodfido be T 1/, ~ However, if L, is thin enough thaff(<T., with T the
rather than theT,x1/7? predicted by Eq.(94). New Meissner transition of tha —c 2D charged boson model,
simulations® have further shown that there is no apparenithen as one cools down td@_, one expectsAg poson
change in the largd\, limiting value of T, when the peri- will become large, and possibly of order the finite trans-

odic boundary conditions along the directipof the applied ~ Verse sizeL, of the system. In this case, for all available
magnetic field are replaced with the more realistic freeWave vectorsg>2/L, yields N posofl*>1, and the sec-
boundary conditions. We believe that theses» simula- ©ond term becomes approximately the constant,
tions are therefore in good agreement with the work ofYbosokJM?JbosofA&nosor ~ EQUAtion (43) then  gives
Feigelman and co-workef$:*® who argued for just such a szl—[%osor?\f/)\ébosor]- It thus appears as if the perfect

VII. CONCLUSIONS AND DISCUSSION
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shear Meissner effect has been lost at the lower temperatutke result may be very sensitive to tlge~ extrapolation
~T{ . We note that for this scenario to agree with the smallimplied by fitting to the expansion of E110), with differ-
values ofy, that we find at temperatures above our numeri-ent results obtained when truncating at different orders of the
cally observed value oT, it would be necessary to have expansion, or when using a different numbegafata points

Yoosoh 2 /N& bosor=1; it is not a priori obvious why this in the fit. However, our fits of Figs. 5 and 6 show essentially
would be so. no sensitivity to the number af data points used or when

Thus for a finitex simulation to see other than the above cOmparing a linear versus a quadratic order fit to the data of

\—c crossover behavior, it would be necessary to do one ofid: 4 Carneiro has also carried out simulatitifsin a

the following. One could increase the transverse $ize ( ibbs ensemble, in which the total transverse magnetic field
) . L -y is allowed to fluctuate. Here he concludes~T,,, even for

keeping L, constant, until one is in the limit where g "0 cikec comparable to our own. However, we

MaX{\g posod <L, (although in theA—c model \g poson ' '

bt T inafinitex model hdi believe® that in this case, hig=0 calculation of the fluc-
might diverge atl; , In a TiniteA Model any Such dIVErgence y,a4on in the transverse magnetic field cannot distinguish
would be rounded out to a finite maximum valuén this

imit. th q . 1 Id be ob diob between the shear perturbation of Figc)l which is related
'm'& the second term in E_c( 7) would be observed to be to the 2D analog boson superfluid density, and the tilt per-
~q“, and so one would find/,=1. One thus expects the

X - . turbation of Fig. 1a), which is not. We believe that his re-
apparentT, to Increase abov@; asL, increases above g5 are reflecting the softening of,, that occurs at the
MaX\rposod- ONE might never actually reach the true 2D gepninning-melting transitiofas is observed in our Fig(®],
boson neutral superfluid transitioh, of Eq. (43), since as  rather than reflecting the loss of longitudinal superconductiv-
temperature increases, thermally excited closed vortex fiNggy Recently, in new simulations, Hagenaasal * have
will start to prc_)liferate, and vortex Ii_nes can make long trans-gxplicitly compared our method against Carneiro’s, and find
verse wanderings between two adjaceyiplanes; both such — 3greement with our conclusions, although they offer a differ-
effects are left out of the naive mapping to 2D boson statisgnt explanation for the disagreement between the two ap-
tical mechanics. Alternatively, one could kekp constant, proaches.

but increasd.,, so that theT of Eq. (43 falls belowT¢ . Simulations at finitex have also been carried out by
For our parameters, E¢43) suggests that this would require Nguyenet al,>” who extend our work to consider behavior
a system of thicknesN,= ¢3/2m°T% =8mJok?/ Tg =320. as the anisotropy, is varied. For an isotropic system, they

Several other groups have done simulations similar tdind T, well aboveT,,, in good agreement with our results.
ours. Most of thes@*° have been in tha — limit, but at  However, asy increases, they find the very intriguing result
much higher vortex line densities such las=1/6. In these that T, decreases, and eventually fallelow T,. Such a
cases it was found that,~T,,, and so no longitudinal su- possibility (not observed in similax — simulation$® has
perconductivity was observed in the vortex line liquid. We been suggested by Frest al®” as a result of dislocations
believe that this is a consequence of the high densiijes proliferating in the vortex line lattice. Glazman and
which have been used. Recently, we have stifig phase  Koshele have made similar predictions, based on the effect
diagram in such\— XY models, as a function of the sys- that vortex lattice elastic fluctuations have in reducing the
tem anisotropyy. Increasings at fixedby can be argued to interplanar Josephson coupling. However, Ngugeal. sug-
play a role similar to increasinig, at fixed ». We found that  gest that their result is due to the proliferation of vortex rings
as n increasedT. and T, came closer together, and even- between adjacenty planes, and they find at high anisotropy
tually became indistinguishable from each other. Similar rethatT.~ 52, rather than th& .~ » ! predicted by Ref. 6 or
sults have recently been reported in simulations bytheT.~1/Iny predicted by Ref. 37. It should be noted, how-
Kog,helev*?2 ever, that Nguyert al. base their criterion for superconduc-

Sasik and Stroud have done simulatidfigor the \—o tivity on computing the helicity modulus at the single small-
limit using the lowest-Landau-level approximation, which est nonzero value af allowed by their finite-size system.
treats thexy planes as a continuum and so avoids the artifi-We have argued above that a more careful analysis should be
cial pinning of our discretized London model. For all valuesbased on parameters extracted from dhgéependence of the
of anisotropy studied they findT,~T,,. However helicity modulus, agy—0. Conclusions based on calcula-
Tesnovic* has argued that the lowest-Landau-level ap-tions at specific values of finitg can more easily be led
proximation fails as the magnetic field decreases, and so aistray by subtle crossover effects such as we have discussed
such low magnetic fields, the London and the lowest-above. Clearly more systematic studies, using qus0
Landau-level approaches need not be in agreement. Usingamalysis, and making a more extensive study of finite-size
mean-field analysis, Tasovic* has argued that longitudinal dependences, need to be done for both the isotropic and an-
superconductivity can persist into the vortex line liquid in isotropic cases.
this low field limit. Our result of Eq.(89) suggests that one should find

Finite-\ simulations have been carried out, for the sameT .>T,, and, hence, longitudinal superconductivity within a
discretized London model as considered here, byegion of the vortex line liquid, whenever a sample is thinner
Carneiro®®* For large line densities, he findg~T,,, con-  thanL, e~ 1400 xm, for aT,,~90 K. Virtually all experi-
sistent with the abov& — o results. For line densities com- mental single-crystal samples fall below this critical thick-
parable to our own, he findg, noticeably abovd,,, when ness. One can therefore ask whether any experimental evi-
following our analysis based on thee dependence of the dence favors our conclusions. Naively, one would expect a
helicity modulus within the Helmholtz ensemble of fixed in- vortex line liquid with longitudinal superconductivity to
ternal magnetic field,. He has suggestéd however , that show a finite linear resistivity transverse to the applied mag-
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netic field, but zero linear resistivity parallel to the appliedto the cosine of the phase angle difference across adjacent
field. However, in MC simulations of a— XY model?®  planes. The nonquadratic nature of such a cosine interaction
we found that in the intermediate pha®g<T<T, vortex leads to a coupling between spin wave and vortex fluctua-
density correlations decayed anomalously slowly with timetions that is absent in both our continuum model and our
This suggests that vortex lines may be moving more slowlydiscretized model of Eq(97) using the Villain interaction.
than diffusion, and if so, it is not obvious what to expect forAS €ither magnetic field, temperature, or anisotropy in-

the transverse resistivity. Experimentally, it is very difficult Créases, large interplanar phase differences can be induced

to obtain accurate measurements of the longitudinal resistiY €lastic vortex line fluctuations, leading to a large decrease
ity, due to the slab geometry of single-crystal samples and! the effective interplanar energy coupling constant. Such a

the nonuniformity of current distributions. Transverse resis- decoupling” crossover, agj discussed by Glazman and
[,°>" might obscure any true criti-

tivity measurements are intimately related to the vortex pin-KOSheIe\? _and Daer_neret al._
ning impurities in the sample, and so are also not unambigug'.a! behavior at a highef, . Finally, the free boundary con-

. ' ditions of a real superconductor, as opposed to the periodic
ously characterized.

. . . boundary conditions of the 2D boson mapping and of our
Nevertheless, the following suggestive observations havgimulations might lead to a more effective washing out of
been made. Experiments by Steelal®® on artificially pre- ;

the 2D boson superfluid transititfthan we have imagined,
pared MoGe/Ge-layered superconductors, found that the dg, samples of experimental thickness.

resistivity parallel to the applied field decreased sharply, and

showed an onset of strong nonlinear behayier, at a tempera- ACKNOWLEDGMENTS
ture above that where the transverse resistivity vanished. Ex-
periments by Kwolet al®® on YBCO, studying the pinning In the course of this work we have benefited greatly from

of vortex lines to twin grain boundaries in a system with adiscussions with C. Ciordas-Ciurdariu, M. Feigelman, A. E.
well-controlled small number of twin planes, found evidenceKoshelev, M. C. Marchetti, P. Muzikar, D. R. Nelson, Z.
for a sharp lock-in pinning transition at a temperature above esanovig and A. P. Young. This work has been supported
vortex lattice meltingwhere the melting transition was de- by U.S. Department of Energy Grant No. DE-FGO02-
termined by the observation of a sharp drop in transvers§9ER14017.

resistivity). Such a lock-in transition within the vortex line

liquid may suggest a transition in the nature of vortex line APPENDIX A: SUPERFLUID DENSITY OF 2D BOSONS
fluctuations, as at oul.. Samoilovet al.®® studying the IN THE PATH INTEGRAL FORMULATION

Bose glass transition temperatufgg(H) in YBCO in the
presence of columnar pins, found that whilgg(H) in-
creased abovel,(H) as the density of pins increased,
Tege(H) eventually saturated to a well-defined maximum
valueTEE(H), which was still well belowT, . They inter-
preted their results in terms of an analog 2D boson superflui
transition within the vortex line liquid, identifying ga* with

T.. Early experiments by Safaat al.®! using a flux trans-
former geometry, similarly showed evidence for the onset o
coherence parallel to the applied field.at_ Ta_iﬂ;” abeve the (Pa)o=Xun(AV gy - (A1)
temperature where the transverse resistivity vanished. How-

ever, more recent flux transformer experiments bpéoet ~ For an isotropic 2D system, the momentum density suscep-
a|_62 showed that these two temperatures merged when tH‘é)lllty C.an be written in terms of its IOngitudinaI and trans-
sample was made purer, with all twin grain boundaries elimi-VE€rse pieces

nated. Moor® has recently proposed an interpretation which N .

argues that the single transition observed in these newer XD =0d,d,x(A)+[6,,— 0,0, ]xr(q).  (A2)

Fransformer experiments is the result of some very rap!dlyl-he number density of superfluid bosgnsis then given in
increasing longitudinal length scale, rather than being a firstrarms of the transverse susceptibility*B¢?
order vortex lattice melting transition, as is the usual inter-

pretation. If correct, such a rapidly increasing longitudinal mps=mp— lim x1(q), (A3)
length scale might be associated with duyr. q—0

The experimental evidence cited above remains, at best,
inconclusive. There are several possible reasons why obserbb <on densit
ing aT.>T,, might be experimentally difficult. First, as in E ty fint ina b in th f
our simulations, the relevant temperature is likely to be the or a system ol intéracting bosons n the presence of a

o o . moving heat bath, the Hamiltonian in the reference frame of

A—o transitionT, , rather than the much highdr, of Eq. the heat bath is given by
(86). In recent simulatiorf§ of the A—o XY model we
found thatT; andT,, merged as the anisotropyincreased. 1
How far apart the correspondirif and T, for any particu- H=2 SmlPi—™ mv(r)1?+V{ri—r}),  (Ad)
lar real material are likely to be remains unknown. Second, '
real layered high-temperature superconductors are likely tavhere the interactioW depends only on the bosons’ relative
have an interplanar Josephson coupling that is proportionadositions.

The superfluid density of a systemMfinteracting bosons
can be defined in terms of the response of the system to the
presence of a heat bath moving with veloarty) (“moving
walls”). In the following, all position, velocity, and wave
gectors are two-dimensional vectors in thg plane.

The average momentum density,,,), that results in lin-
ear response to the heat bath velocity g,
f=(1/L2)fd2rvﬂ(r)e"q‘r is given by

herem is the boson particle mass, apek N/L? is the total
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The partition function isZ=Tr e #"], and the free ﬁz ,
energy isF=—TInZ, with T=1/8. Consider now thaw MY posod @) = —ps=T(W5)o, (A10)

. . ~ . . . T —0
oints only in they direction and varies only in the direc- a . .
fi)on (so ythe vey is purely transverge )|lf we write where Wy, is the y component of the “winding number

H[V]="H[0]+ SH[V], then since in tha—0 limit that v mtroduced by Pollock and Ceperf8yin their path integral

: approach to the superfluid transition in boson systems.
becomes a uniform constapt and 7{[0] commute, one Our derivation above can be modified in a straightforward

has , way to deal with a boson interaction mediated by a gauge
. 2 F field, as is the case for the more realistic London interaction
limL = = —mp—llmXT(q X)=Mmps. betw tex lined One iust | h . tential
g0 dvy(qX)dvy(—ax) | _ 40 etween vortex lines. One just replaces the pair potentia

V({r;—r;}) with the necessary coupling to the gauge field
(A5) 17, .
and free field energy terms. However, the coupling of the
To evaluatep, in terms of the path integral formalisfd, bosons to an external vector potential remains unchanged.
one now writes the Lagrangian associated with the Hamil-Thus the expression for the 2D boson helicity modulus in
tonian of Eq.(A4), and transforms from real timteto imagi-  terms of boson world lines remains unchanged from Eq.

nary timer=it. One gets (A9).
m/dr;\? :
E(T):_Z E(d_;) —v({r;— ]})+|m E ( ) r). APPENDIX B: ELASTIC MODULI
' (A6) In this appendix we summarize some results concerning
- o _ the elastic moduli which appear in E4). Although calcu-
The partition function is then given by lations of these moduli have appeared elsewhetg° our

- explicit computation of the ordeg? dependence at smail
Z:f D[{ri(r)}]ex;{ﬁ‘lf drﬁ(r)), (A7)  We believe is new. . _

0 As shown by Sudboand Brandt?® the elastic tensor
SCDaB(CI) can be expressed in terms of the vortex line interac-

where the sum is over all possible boson world lines,.
tion tensorvaﬁ(q) as

{ri(7)} subject to permuted periodic boundary conditions,
i.e., {ri(0)}="P{ri(B)}, whereP is any permutation of the

N bosons. D ,500)= )\2 E {A2Vop(K—a) +(K—0q),
Applying Eq.(A5) to the above form foZ then results in

2 X(K=0) gV AK=0) =K KgV,(K)},
et T [ S

40 (B1)

q where {K} are the reciprocal lattice vectors of the vortex

hB ri i

j d+’ 2 - —y e_.qx) ’ (A8) lattice. X . . . .
0 0 For B=Bz the elastic moduli we are interested in can be

] . expressed in terms @b ,4(q) as
where(- - - ) denotes an average over world lines weighted

by the Lagrangian factor as in E¢A7), only now taking 1 ~ 1 -
v=0in L. CGG(QY) 2<I>xx(qy) C11(gx)= ?Cbxx(qx),

Note that the heat bath velociwy(r) enters the Hamil-
tonian(A4) and the LagrangiatA6) with precisely the same 1 ~
form as would a 2D external magnetic vector potential given C44(02) = — Py,(q2). (B2
by v=(#/m)A® [where, as in Sec. Il, the units & are q

such thatV x A= (21/ ¢po)Hz, with HZ the 2D magnetic For the London interaction, the sum ovérin Eq. (B1) is
field]. In analogy with Eq(25) we can thus define the helic- divergent, and some method must be employed to make it

X

ity modulus of the 2D bosons as converge. As shown by Brantft,this can be achieved for
, PF Cee(qy) andcy4(qx) by subtracting off the self-energy of a
Ybosod @) =L = = line interacting with itself. This then gives

dA(gx) dA(—agx)

~ B2 o d%k
2ﬁ_22 A(?z]-‘ _ Ces(QY):Am)\i[; F64K,q]—§0f(27)zpee[k,q]],
m avy(qx)ﬁvy(—qx) ©3)

T i
:F<U TE q') Cu(@= 5 w2 [E FulK,ql- d"’f G )2F11[k q]]

X

A d 1Y A—igx (84)
jo dr ; Fe J) . (A9) where we find, after expanding,, to O(g*), averaging
0 over the orientation of the vortex lattice in tRg plane, and
with substituting in forV,, from Eq.(16),
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d 11,4y 11,4 11,6v\7 2

Feelk,0]= 5217k VadK) +[5KV2AK) + 2:K°V,AK) 107} (BS)
e ot f 0t 8 2 o (B6)

TN KD (LK) [ (TAZKDR T (12D (1+a2k2)s M

and
d 2 31,4 2\ 94 51,6\7 2

Fualk,q]= 2tk VoK) + 7KV LK) + KV K) + 5KVAK) + 23K°V,AK) 107} (B7)
12 1 S B AR N B8
TN @R (2R (KR (IR (1aZkds ) B8

whereV, ,=dV,,/dKk?,

To treat the tilt modulus,4(qz), self-interactions of the vortex lines are important. One therefore handles the convergence
of the sum in Eq. (B1) by introducing a convergence factor into the London interaction of EB1),
Vaas— Vap=0(£ 07+ £02)Vaus . Hereg(x)—1 for x<1, g(x)—0 for x>1, and one uses an anisotropic cutoff to model
the vortex core¢, /&, =N\, /IN,=1/5n. Averaging over the orientation of the vortex lattice in theplane and substituting in
forv,, from Eq.(16) we find

. B?
Cal02)= 7—=7 2 FalK.al, (89)
A K
where
Fad Q] ={V5y(K) + 3k2VELK) +[ Vi (k) + £K2VE(K) a2} (B10)
1] Mg Mg . g
=5 22t 722 9~ )2
2| T3 T (14A2KD) 1+\%k
g g g g s g -
TI@EGZ TR 1NAE (k)2 2 2(1enad M) (611

whereV$, =dV¢ /dgZ andg=dg/d?.
We consider first the limit of large magnetic fields,>a, (a, is the spacing between vortex linet this case one can
approximate the sum ovét by

S E[K,q]=F[0 2m fwdkk K B12
> [K,q]=F[ ﬂ]"‘w . Hk,ql, (B12)

where AK)?=47?B/ o= wkg is the area per reciprocal lattice vector, dgd-1/a, is the edge of an approximate circular
Brillouin zone. Carrying out the integrations, we get

. B? \2Kk3 A2Kk3 2
C66(qy)_E 4(1+)\12_kg)2_ 4(1+)\J2_k(2))4 )\Lq ’ (813)
. 2 1 3 1 5
Ci(gX)=—{1— T T ooz |1t 723 il SC RS (B14)
4 4(1+nTkg)  4(1+NTkG) 4(1+N7kg) 4(1+NTkp)

2

- 1+ k%9?
Ca4(q2) = yp=

1+12K35

1
_|_
2M2K5(1+N\%K5

7 “In 1

b -2
1N k2 7

qu2},
(B15)

1+ -—— +
2222 ) ANTKG(L+ATKD)?
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where forc,, we have taken the cutoff, —0 in all nondi-
vergent terms, and=\, /¢, .

Expanding for large | kg, we get to the lowest nontrivial
order

B2 1 [1 2 N\
47 ANZK3| T AIkE NPKG

Cee(AY) = ] . (B16)

“—821 N PR R
T o R e
(B17)
”—21+ o B Y
c44(qz)—ﬂ N 7 .n B N
— 1+L+—6—6‘ 7\2q2 (518)
20 kg ANk )

whereH = ¢oldmé? .

Next we consider the case of small magnetic fields,

N\, <<a,. Here it is convenient to use

> FIK.a]= % > FIRa]
K R

where

_ d’k
F[r,q]sze_'k'rF[k,q] (B19)

and{R} are the direct Bravais lattice vectors of the vortex

lattice.

For the shear and compression moduyy and ¢q4, the
subtraction terms in Eq$B3) and(B4) cause thd(R=0 term
of the sum in Eq.B19) to vanish. Since the range of the
interactionV,, is \ | <|R|, it will be a good approximation in
the sum ovemR to keep only the six smallest vectors with
|R|=4a,. The Fourier transforms of Eqé36) and (B8) can
now be obtained with the help of

J

d%k e ikr B 1 /r)n—l (r)
2m? TR 2 m(n—D2 k) <rnlx )
(B20)

HELICITY MODULUS AND FLUCTUATING TYPE-II ...
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whereK , is the modified Bessel function of the second kind
of orderv, whose asymptotic form at largeis

aw
K,,(x)~\/§efx.

(B21)
Keeping only the leading terms &, /X, , we find
. 3Bdgyg (av>3’2
Cee(02) = ———=—e M| 2| [1-4a%g?],
66(q ) 64\/?)\5 )\L [ 24 Uq ]
(B22)

( A) bo —a,/\ (av)SIZ[l 5.2 2]
C1(gX)= ———=—e M| — —aqc].
YN N TR

(B23)

For the tilt modulusc,, there are two cases to consider,
depending on the strength of the anisotropy. For very small
magnetic fields such that,<a, , all terms in Eq(B11) may
be treated according to the approximation implied by Eq.
(B19). Here theR=0 term dominates all others, and we find

2

“ 1
C44(q2)= yp W( 7 ?[2In(nx)—1]
170
1
+1-| 5472 )\fqz]. (B24)

For the intermediate case, <a,<<\,, we must combine
approximations, using EqB12) for terms involving)\gk2
and Eq.(B19) for terms involving\2k?. We find

1)

In(%) -1
(B25)

. B? 1
C44<q2>=m(z+m{”‘2
L

1 1],
PN

IM. Tinkham, Introduction to SuperconductivityR.E. Krieger
Co., Malabar, FL, 1980

2D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Revu®
130(199)).

3R. lkeda, T. Ohmi, and T. Tsuneto, J. Phys. Soc. Kin.254
(1992.

4M. A. Moore, Phys. Rev. BI5, 7336(1992.

5A. Houghton, R. A. Pelcovits, and A. Sudbg, Phys. Rew¥B
906 (1990.

SL. 1. Glazman and A. E. Koshelev, Phys. Rev4B 2835(1991).

"T. Chen and S. Teitel, Phys. Rev. Le12, 2085(1994).

8M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Re, A111
(1973; T. Ohta and D. Jasnow, Phys. Rev2B, 139(1979; P.
Minnhagen and G. G. Warreihid. 24, 2526(1981).

G. Carneiro, Phys. Rev. Leff5, 521(1995.

107, Chen and S. Teitel, Phys. Rev. Letd, 2792(1995.

11D, R. Nelson, Phys. Rev. Le#0, 1973(1988; J. Stat. Phys57,
511 (1989; D. R. Nelson and H. S. Seung, Phys. Rev3®
9153(1989.

12E H. Brandt, J. Low Temp. Phy&6, 735(1977; A. Sudbg and
E. H. Brandt, Phys. Rev. Let66, 1781(199J.

13A. Sudbg and E. H. Brandt, Phys. Rev4B, 10 482(1991).

14M. C. Marchetti, Phys. Rev. B3, 8012(1991).

15D, R. Nelson and J. M. Kosterlitz, Phys. Rev. Le39, 1201
(1977).

16C. Dasgupta and B. I. Halperin, Phys. Rev. Ldf 1556(1981);
S. E. Korshunov, Europhys. Lett, 757 (1990.

17G. Carneiro, Phys. Rev. B5, 2391(1992.

18G. Ccarneiro, M. M. Doria, and S. C. B. de Andrade, Physica C
203 167(1992.



15 222

19G. Baym, inMathematical Methods in Solid State and Superfluid
Theory edited by R. C. Clark and D. H. DerrictOliver and
Boyd, Edinburgh, 1969 p. 121.

20D, Forster,Hydrodynamic Fluctuations Broken Symmetry, and
Correlation Functions(W. A. Benjamin Inc., Reading, MA,
1975.

ZIM. V. Feigel'man, V. B. Geshkenbein, and V. M. Vinokur,
Pis’'ma Zh. Kksp. Teor. Fiz52, 1141(1990 [JETP Lett52, 546
(1990]; M. V. Feigel'man, V. B. Geshkenbein, L. B. loffe, and
A. I. Larkin, Phys. Rev. B48, 16 641(1993.

22M. P. A. Fisher and D. H. Lee, Phys. Rev.3, 2756(1989.

23U. C. Tauber and D. R. Nelson, Phys. Refo be publisheyi

24Y -H. Li and S. Teitel, Phys. Rev. Let66, 3301(1991).

25y -H. Li and S. Teitel, Phys. Rev. B5, 5718(1992.

26Y -H. Li and S. Teitel, Phys. Rev. B7, 359(1993.

27y -H. Li and S. Teitel, Phys. Rev. B9, 4136(1994).

28T, Chen and S. Teitel, Phys. Rev.35, 11766(1997.

2°R. E. Hetzel, A. Sudbg, and D. A. Huse, Phys. Rev. [691518
(1992; D. Dominguez, N. Gfobech-Jensen, and A. Bishop,
ibid. 75, 4670(1999; E. A. Jagla and C. A. Balseirabid. 77,
1588(1996.

30R. Cavalcanti, G. Carneiro, and A. Gartner, Europhys. LER.
449 (1992; G. Carneiro, R. Cavalcanti, and A. Gartner, Phys.
Rev. B47, 5263(1993.

317, Tesnovig L. Xing, L. Bulaevskii, Q. Li, and M. Suenaga,
Phys. Rev. Lett69, 3563(1992; Z. Tesanovig Physica C220,
303(1994; I. F. Herbut and Z. Tamovig Phys. Rev. Lett73,
484 (1994).

32C. Ciordas-Ciurdariu and S. Teit@inpublishedl

33G. Blatter, M. V. Feige'man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Rev. Mod. Phys6, 1125(1994).

347. Tesnovig Phys. Rev. B51, 16 204(1995.

35A. M. Campbell and J. E. Evetts, Adv. Phy&l, 199 (1972.

36E. L. Pollock and D. M. Ceperley, Phys. Rev.3B, 8343(1987).

S7E. Frey, D. R. Nelson, and D. S. Fisher, Phys. Revi39723
(1994.

38A. Houghton, R. A. Pelcovits, and A. Sudbg, Phys. Rev®
6763(1989; E. H. Brandt, Phys. Rev. Let63, 1106(1989.

39D, S. Fisher, inPhenomenology and Applications of High Tem-
perature Superconductaredited by K. Bedelkt al. (Addison-
Wesley, Reading, MA, 1992p. 287.

40D, R. Nelson and P. LeDoussal, Phys. ReviB 10 113(1990.

4IM. C. Marchetti and D. R. Nelson, Phys. Rev4®, 1910(1990.

TAO CHEN AND S. TEITEL

thank M. C. Marchetti for clarifying this point for us.

44M. C. Marchetti and D. R. Nelson, Phys. Rev4B, 9938(1990);
Physica C174, 40 (199)); S. P. Obukhov and M. Rubinstein,
Phys. Rev. Lett65, 1279(1990; 66, 2279(199J).

4SM. V. Feigel'man, Physica AL68 319(1990.

46]. Villain, J. Phys(Pari9 36, 581 (1975.

47E. Fradkin, B. Huberman, and S. Shenker, Phys. Rel8B1789
(1978.

48G. S. Grest, Phys. Rev. B9, 9267(1989.

49D, R. Nelson and V. M. Vinokur, Phys. Rev.48, 13 060(1993.

%0For the casép,=0 andA=3, P. Olsson and S. Teit¢linpub-
lished find T, ,=2.9. Forby=0 and\=x, T =3.03, see H.
Kleinert, Gauge Fields in Condensed Matt@Norld Scientific,
Singapore, 1989 Vol. 1, p. 520.

51C. Ciordas-Ciurdariu and S. Teit@inpublishedl

52A. E. Koshelev, inProceedings of the 9th International Sympo-
sium on Superconductivity (ISS’96), Sapporo, Hokkaido, Japan,
Oct. 21-24, 1996(Springer-Verlag, Tokyo, to be published

53R. sk and D. Stroud, Phys. Rev. Leff2, 2462(1994); Phys.
Rev. B52, 3696(1995.

54G. Carneiro, Phys. Rev. B3, 11 837(1996.

55See Comment and Reply pair, T. Chen and S. Teitel, Phys. Rev.
Lett. 76, 714 (1996; G. Carneiro,bid. 76, 715(1996.

8T, J. Hagenaars, E. H. Brandt, R. E. Hetzel, W. Hanke, M.
Leghissa, and G. Saemann-Ischenko, Phys. Re85B11706
(1997.

57A. K. Nguyen, A. Sudbg, and R. E. Hetzel, Phys. Rev. Lgt.
1592(1996.

8D, G. Steel, W. R. White, and J. M. Graybeal, Phys. Rev. Lett.
71, 161(1993.

59W. K. Kwok, J. Fendrich, U. Welp, S. Fleshler, J. Downey, and
G. W. Crabtree, Phys. Rev. Left2, 1088(1994.

80A. V. Samoilov, M. V. Feige'man, M. Konczykowski, and F.
Holtzberg, Phys. Rev. Letf6, 2798(1996.

1Y, Safar, P. L. Gammel, D. A. Huse, S. N. Majumdar, L. F.
Schneemeyer, D. J. Bishop, D. pez, G. Nieva, and F. de la
Cruz, Phys. Rev. Letfr2, 1272(1994); see also F. de la Cruz,
D. Lopez, and G. Nieva, Philos. Mag. B0, 773 (1994; D.
Lopez, G. Nieva, and F. de la Cruz, Phys. Rev5@ 7219
(19949.

2D, Lopez, E. F. Righi, G. Nieva, and F. de la Cruz, Phys. Rev.
Lett. 76, 4034(1996.

42The importance of nonzero shear for suppressing flux flow in®*M. A. Moore, Phys. Rev. Bto be publishel

currents parallel toH has earlier been pointed out in E. H.
Brandt, J. Low Temp. Phygi4, 33 (1981).

64L. L. Daemen, L. N. Bulaevskii, M. P. Maley, and J. Y. Coulter,
Phys. Rev. Lett70, 1167(1993.

“30ur earlier claim in Ref. 7, that the hexatic liquid could be de- ®*For a simple introduction see A. DaSield Theory, a Path Inte-

scribed by an elastic model Wittge(qL)quf , is incorrect. We

gral Approach(World Scientific, Singapore, 1993



