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Superconducting proximity effects in magnetic metals
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We explain the basic physics behind oscillatory effects in superconductor/metallic ferromataeséand-
wiches, and describe the important effects of the spin orbit scattering in these systems. We find that spin-orbit
scattering plays a major role in the physics of the superconducting proximity effect with a conducting ferro-
magnet. As examples, we present calculations ofTthef an S/F bilayer and the Josephson currénear
T.) of an S/F/S trilayer. [S0163-1827)06521-1

[. INTRODUCTION interaction. Imagine a Cooper pair being adiabatically trans-
ported across arsF interface with its electron momenta
What happens when a ferromagnetic layE) s placed aligned with the interface normal. Upon entering fhee-
in contact with a superconductoB)? The purpose of this gion, where the pair is not an eigenstate, it becomes an eva-
work is to consider the answer to this question for the spenescent state, decaying exponentially on the length scale
cific case in which the ferromagnet is a good conductor ando. the normal metal coherence length. In addition, the up
the superconductor is asrwave superconductor. We also Spin electron in the pair lowers its potential energyhpythe
restrict our consideration to the most relevant case when thexchange field energy in the ferromagnet, while the down
Curie temperature of the ferromagnet is much greater thaBpin electron raises its potential energy by the same amount.
the superconducting.. . In order for each electron to conserve its total energy, the up
This situation has been treated by several authors, mospin electron must increase its kinetic energy, while the
recently by Buzdiret al,1> who have observed that the ex- down spin electron must decrease its kinetic energy, to make
ponentially decaying Cooper pair density in the ferromagnetip for these additional potential energiesHn
also has an oscillatory character, indicating that the Cooper So for a pair, shown on top of Fig. 1, entering into a
pair acquires a spatially dependent phase in the ferromaderromagnetic region results in acquiring a center of mass
netic layer. This causes an exchange field dependent oscillaaomentum Q=2h/vg. The fermionic antisymmetry re-
tion in the critical current ofSFS sandwiches, and in the quires us to consider the pair described above together with
T. of SF bilayers and multilayers. When the Josephson couthe pair which has the down spin and up spin electrons in-
pling energy is negative, one has a so-callelinction, for
which the minimum energy configuration corresponds to a S F
phase shift ofrr in the macroscopic phase difference across
the junction. Despite several experimental stufligsere is
no definitive experimental evidence for these predictions.
The purpose of this paper is to review these earlier calcu-
lations, so as to reveal more clearly the underlying physics, ‘L '1\ ’:> ‘l/
and to extend them so as to include a more general treatment .
of the important effects of the spin-orbit scattering. As we X
shall see, spin-orbit scattering plays a major role in the phys- — ' H P« ; 0 }
ics of the proximity effect with a ferromagnét? we do not “Pr 0 Pr “Ps+tAP  Pr+AP
consider here a specific example of the experimental situa-
tion, which is unclear and controversial. We simply note that
spin-orbit scattering is relevant in conductors containing
largeZ elements. An assessment of the current experimental
situation in light of our results will be presented in a subse-
quent paper. I]\ : ‘l’ |:> ? ] "
Before turning to the detailed microscopic theory of these '

“-===--0
—

effects, it is well to review the basic physics behind them, 0 !
and to present simple physical arguments which justify them. t t t Px t +—t
The fundamental feature to be justified is the oscillating pair ~ ~Pr 0 Pr “Pem AP Pet AP
density.

For simplicity, we first consider the situation in which  FIG. 1. Coopper pair in superconductor and ferromaghet.
spin is a good quantum numbére., there is no spin-orbit =h/v.
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energetically a spherically symmetric distribution of the elec-
S F trons is less favorable than the distribution extended along
one of the directions perpendicular to the exchange field. So
Cooper pairs with shifted center of mass momenta appear,
and an inhomogeneous distribution function, similar to the
one we described earlier, develops.
We now want to understand the effect of elastic potential
\1, \l’ : (nonmagnetic and non-spin-orbiscattering. As usual we
— 40 only need to consider the processes in which the two elec-
-Px 0 Py =P, +AP, P+APy trons in a Cooper pair are scattered by the same impurity into
states with opposite momenta, since all the other scattering
events are incoherent in the pairing process. An interesting
question now is what happens to the center of mass momen-
‘1’ ‘L tum that the Cooper pairs acquire upon entering the ferro-

!

magnet [and ultimately the modulation factor dbs
> i> (ve cosh)(x;+Xy)] for singlet pairg. In a clean limit we
,r‘. found that this center of mass momentum was a function of
'F | ' the relative momentum of the two electrons and remained
: , ' 0 i constant throughout the whole trajectory of the pair in the
“Px 0 Py = P.~ AP: Px- APx F region. Now, as a result of the multiple scattering pro-
cesses, the center of mass momentum will vary along the
FIG. 2. Cooper pair in superconductor and ferromagnet for drajectory of the pair together with the relative momentum. It
general direction of the relative momentum of two electrakg, is important to realize, however, that the center of mass mo-
=hlvgcosh. menta that we need to consider are always indtlagection,
because the scattering events leading to the other directions
terchanged in momentum spa¢ghown on the bottom of are incoherent. And since scattering on impurities does not
Fig. 1). The latter gains a center of mass momentur@ change the energy of the electrons, we can again use the
upon crossing theSsF boundary. Combining the two pairs energy argument introduced above to deduce that in the dirty
into a singlet combination we see that the overall effect ofimit we have the same local relationship between the direc-
the exchange field in the region on a singlet Cooper pair is tion of the relative momentum of the electrons and the mag-
to give it a spatial modulation. Hence if the wave function of nitude of the center of mass moment@n-2h/v e cosh as
the pair in a superconductor iB(x;—X,), wherex; and inthe clean limit. This observation allows us to treat the case
X, are the coordinates of the two electrons, in a ferromagnetf isotropic and strong potential scatterifig the mean free
the wave function becomes ¢aXx;+X,) [P (X;—Xo). path due to scattering, is much smaller than any other length
In the more general case when the electrons in a pair havie the problem similarly to the clean case, only instead of
their momenta at an anglé with respect to the interface integrating over the angles of incidence of the pairs we inte-
normal(see Fig. 2, the additional momentum that each elec-grate over all possible intermediate orientations. The only
tron gains after crossing theSF boundary is Ap, thing that we will need to add for the case of impurities,
=h/vg cosy and Ap,=Ap,=0. Here we used the fact that present in a ferromagnet, is an extra decay of the Cooper
momentum is conserved in the direction parallel to the interpairs due to scattering. This decay has the important feature
face to reason that the electrons may change their momenthat it depends on the direction of the momenta of the elec-
in the x direction only. The modulation factor of the pair trons in the Cooper pair and, in the dirty limit, the net scat-
shown in Fig. 2 in theF region is cofh(x; +X,)/ve cos). tering rate for the pairs is proportional to @s yielding an
The overall Cooper pair distribution is then obtained byeffective mean free path for pairs bfcoss.!° The pair dis-
accounting for all possible angles of incidence for the pairfribution function, accounting for this scattering effect, is
so it is proportional to thus proportional to

1 e 2hx Sin(x/émo) Jld Cosae(xll)cosecos( 2hx
fo d(cosf)cox= JO d(cosﬁ)cos(chosg>~ XEm) 0 U ECOSH

@

(1) which integrates approximately, yielding a Cooper pair den-

[We assume, for simplicity, thate /(2h) = ¢0<&,, so that  SIY Proportional to
the overall exponential decay of the Cooper paifirover

&, may be neglectefiThus the Cooper pair distribution os-

cillates on the scale set by the length,. This establishes

simply the physical origin of the oscillations.

The physical picture of the proximity effect in a clean where &= VI &no/2.
ferromagnetic conductor is therefore very similar to the In the integral(1) the rapid oscillations of the integrand
Fulde-Ferrel-Larkin-Ovchinikov(FFLO) effect®® In the  for small values of cagensure that the most important pair
FFLO state a superconducting order parameter is generaté@jectories contributing to this effect are those which are
in the presence of an exchange field, and it turns out thatearly perpendicular to th8F interface. Formuld2) shows

e (L-DX/ém+ 3m/8>

VXEm/I 2
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that if there is strong elastic scattering iy however, the [E—(2h+2i/749) 1T o+ 2i/ 7sof =0,
values of co8 less than one can contribute as well, because
of scattering into the lowd direction. The average césalue [E—(—2h+2i/759) ]f o+ 2il75fo=0.

contributing dominantly then decreases. This lowers the ef
fective period of the oscillations, as well as introducing de-
cay of the oscillations due to the fact that momentum paralle
to the interface is no longer conserved within thdayer.
The oscillations are now damped on the same length scale at E=2i/7e— \(2h) 2= (2/7s9)2=v¢/ {mo
which they oscillate. The effect of the scattering is to average

over theeffective magnitudef the exchange field from a and hence a complex momentum

(In the absence of the exchange fi¢ld one sees immedi-
iately thatf o=f_ and the spin orbit scattering has no effect
on the pairg. Solving for E yields a(complex pair energy

minimum vaI_ue_ equal tm(cosﬁzl),_ to a maximum Whi_ch Q=E/(vpcosd) = 1/(£oc0H).
approaches infinity (ca@s=0), resulting in a shorter oscilla- ] S
tion period. Accounting for both directions of momentum, we get a Coo-

In the presence of spin-orbit scattering, the spin singlePer pair density proportional to
Cooper pair wave function decayt® a spin triplet by spin- 1
flip scattering, and thet Q momentum pairs mix with the J d(cosd) Re( e/ (émocos?)y
—Q momentum(spin-exchangedpairs. The decay to a trip- 0
let is a pair br_eaking effect, giving the _pairs a finite Iifetime This integrates approximately to
because the intermediate state in spin-orbit scattering is a ,
triplet whose energy depends upon the exchange field. An- e/¥/¢mo
other effect of the spin orbit scattering is to mix the Copper iX/ {mo)
pair with its spin-exchanged counterpartner. This causes a i o )
pair to “see” an exchange field which changes sign at a ratéNe can see that the existence of oscillations requires
proportional to 1#,,, decreasing the averadpefield experi- > Urs,. . , , )
enced by the pair, hence increasing the period of the oscilla- If we include strong elastic scattering as before, then this

tions. becomes, approximately

For very strong spin-orbit scattering, the Cooper pair can o~ (1= )X/ +37i/8
no longer be regarded as a spin singlet for any reasonable R
length of time, in particular for the timAt=1/h, when 7, e( VXE /12 )

<1/h, so that the oscillation effect disappears. Put another T

way, the electrons which make up the pglior can no longer bgvheregm— | {mof2.

regarded as eig.enstates of spin in.this case. . Il. EILENBERGER EQUATIONS

f For pedagogical purposes, we ignore potent'lal scattering |\ THE PRESENCE OF THE EXCHANGE EIELD

or the moment, and c_on5|dgr the_effects o_f sp_ln-_orbﬁ scat- AND THE SPIN ORBIT SCATTERING

tering alone. In actuality, spin-orbit scattering is inevitably

accompanied by potential scattering. The additional influ- In this section we briefly review the derivation of the

ence of potential scattering in the dirty limit will be ac- Eilenberger equations and show how they can be generalized

counted for subsequently. to account for the presence of an exchange field and spin
The decay and mixing processes change the energy of thebit scattering.

pairs, and introduce a lifetime effect through equations for We perform all the calculations in the Matsubara imagi-

the forward ) and backward, spin-exchangefl ) por-  nary time formalism and our four-coordinate stands for

tions of the Cooper pair wave functigsee Sec. Ill of this  (rr). Following Maki'! we introduce a spinor representation

papey: of the fermion operators:
lﬂT(r!T)
g (r,7)
YO0={ ylrny |+ E00= @D D (7). €
yi(r,m

In the absence of the impurities the Gorkov equations for &44 matrix Green's function é(xl,x2)=
—(T, ¥ (x,)¥T(x,)) can be written in two forms, corresponding to writing the equations of motion of the particigsoat
X2,

9G(X1,%;) h? 2
T |\zm ViTH

pa+ A(r1)+h(r1)f)3(}3] é(XLXz)— 153“1_ ry)o(11—73),

9G(X1,%) n
— 5~ 0w | 5 Vit a

53+A<r2>+h<r2>53&3j ~18%(r 1) 8(11— 72), (4)
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where

A(N)=ip, G201 —ip_0A% (1),
AT =N () gy ( r>>— M p 5260001, (5)

p and o are the Pauli matrices in the particle-hole and spin spaces correspondinglyistide BCS coupling constant.

The Gor’kov equations carry the information about both the macroscopic fields and the excitation spectrum. In particular,
it is the the center of mass spatial dependence that gives the macroscopic fields and the relative coordinate dependence tha
gives the excitation spectrum. Since we are not interested in the excitation spectrum but only in the macroscopic pair wave
function, we integrate over the relative coordinates of two particles sacrificing our knowledge of the excitation spectrum for
the sake of getting simpler equations.

We want to separate the center of mass and relative motions inside the Green'’s functions. 3q, dran, we go to
R=(r,+r,)/2, the position of the center of mass, andr,—r 4, the relative coordinate of the two particles. We also make
a Fourier transform in the imaginary time domain using the fact that the time homogeneity is not broken and everything
depends onr,— 71 only,

G A G R- SR+ | =! —iwps—pahl R— =|—h| R= | 53! 6| R= = R+ = | +pas®
am 2R ar| TH[CRT R |7 TepaTpal [R5 TN RT3 ] 05 [ G RT3 RE 5T pad D),
L0 e Re bR =8y R LR L) Ciwpapsd| Re ) < h R o]+ o 6
am 2R o] T#|Cu|RT 2R TCL[RT G RG] Tleramral{ RT3 2)o3[ tPat - ©

We assume that the macroscopic fieldand A vary on the length scales bigger than the coherence length of material
(SorF), and so we can replace the actual argument of the two fund®dng2 by justR. Later we will be using the resulting
equations when this condition is not rigorously satisfied. However, one can convince oneself that this procedure is a quasi-
classical approximation and only results in averaging over the fast oscillations on the length schle. of 1/

We subtract the first equation ¢5) from the second and get

k2 3 s [r rR rR+r
m JRdr ¢ 2’ 2’ 2

~ PN a2 r r
+2 ={ia)p3+p3A(R)+h(R)U3}Gw( R_E'R+ E)_G“’(R_

X{iwps+pzA(R)+h(R) o3} )
We can integrate over the energies of the relative motion of the two particles using two simple transformations

G R—L R+L_f ﬁé (R,p)ePr'
AR T @any? e PET

G,(R,n)= J i) = Gu(Rp). ®

This gives

v%éwmn ={iops+pzA(R) +h(R) 73} G, (R,N) — Gy (R,M{i wps+ psA(R) +h(R) o3}, 9)

wheren is a unit vector that carries information about the direction of the relative motion of two particles=aptn
=pen.

At this point it is straightforward to introduce the effect of the impurities. It is simply a matter of insertion of the self-energy
in Born approximation intd9),

Jd - PN “~ A ~ ~ oA an ~ “
IV == Go(Rim={iwpz+ p3A(R) +h(R) 53— paZ o(RN)}G,(R,N) ~ Gy (R N{iwps+ psA(R) +h(R) o3 =2, (R.N)p3},
(10)

where

dn’ - ~ ~
Ew(R,n)zn(R)f EU(n—n’)Gw(R,n’)U(n’—n),
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U(n—n")=Usps+Ugd[nxn’]a, (11)

and« is an electronic spin operatar=[(1+p3)/2]o+[(1—p3)/2]o,00,.

Components of the matri§ are given by

i
§g+
0
- M pPe
ColRN)= 52y
0
_Z f'L

When writing(12) we assumed purely singlet pairing, and

we used the integral of the equati@i0)

J ~
Vo= [Tr Gy (Rn)]=0 (13)

together with the asymptotic form of the Green’s functions in
the bulk of the superconductor to get the equality of the spin

reversed Green’s functionso, that we have only twg'’s

instead of fouy. And we also introduced numerical factors in

order to have a simple assymptotic form of theand g
functions in the bulk of the superconductorf.

=A/Jw?+A? and g. = w/ Jw?+ A? (for the case whem
=0). Using the functions introduced if12), Egs.(10) and

(11) become

1 9
(a)+(l’ v)+|h(r)—§v& )f (w,r,v)

zzi(w,r,v)gi(w,r,v),
1 0
(Z)i(r,v)iih(r)Jr > vﬁ)f;(a).r,v)
=A% (0,1,0)9+(0,1,0),

f;fi—f—g?_":li

w.(r,v)= w—l— f —g (r,v)
Zisoj der g-(r,v’')sirf(6—9"),
(w,r,v) A+—f f +(r,v)

dQ’
3 f —— f(r,v")sif(6—6"),

27 4
(14

where

1
0 0 7f+
! L 0
39 -
1 i (12)
Set L 0
ot 29-
1
0 0 §g+

(w,R,n)

71 '=nN(0)|U,4|?,

2
7o =3 NN(0)[Usd?,

A dQ
A= % f 2 [fe(@ro)+f(oro)].

Equations(14) are the generalization of the Eilenberger
equations for the case when an exchange field and spin-orbit
scattering are present. A heuristic way to obtain these equa-
tions would be to generalize the results from Makand
Likharev?!®

One can see frortilL4) that in the absence of the spin-orbit
scattering the plus and minus components do not mix with
each other. It is onlyrg, that mixes the time reversed states.

Ill. USADEL EQUATIONS CLOSE TO T,

The Eilenberger equations can be considerably simplified
when the mean free path for potential scattefirg 7, is
much shorter than the superconducting coherence length.
This simplification appears because all the Green'’s functions
corresponding to the different directions of the relative mo-
tion of the electron(different n's) get smeared out on the
distances of the order &f and since the characteristic scale
of the Green’s functions variations &we obtain that the
spherical harmonics expansion is rapidly converging so that
we can restrict ourselves to only the first two harmonics.

We will not derive the general case of the Usadel equa-
tions in the presence of the spin-orbit scattering but will only
restrict ourselves to the temperatures very clos&. toThis
case is much simpler for investigation and contains all the
new physics of introduction of the spin orbit scattering. For
temperatures sufficiently close 1o we can takegy..=1 and
(10) becomes

>f+(a),r,v)=z+(w,r,v), (15)

)f*(w,r,v) A (w,rv), (16)

;U|Q‘
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0. (w,rv)=0+-—+—,
=( ) 271 T

X . fdQ'f ,
(ow,rv)= +2—Tl an +(w,r,v")

3 Q'

+ Jdﬂfi(w,r,v’)sinz(a—a’).

27¢
(17

We solve Eqs(15)—(17) for the case when the parameters
vary only as a function ok. This corresponds to the “sand- 1IV. BOUNDARY CONDITIONS FOR THE EILENBERGER
wich” geometry of interest here. AND USADEL EQUATIONS

Let 6 be the angle between and x axis. From the
full Legendre polynomial expansion off.(w,7,v)
=37 ,f'(w,x)P,(coss) by the reasons described earlier we
take only the first two terms

FIG. 3. Superconducting order parameter on the SF interface.

The boundary conditions for the Eilenberger equations
follow from the continuity conditions for the normal and
anomalous Greens functions. Ivaneval. showed* that at
the sharp planar interface the Eilenberger functions are con-

fo(@,%0)=F"(w,x)+fL(w,x)cosh. (18) tinuous along the flight trajectories on which the electrons
- - can pass from one metal to the other
We integrate Eq(15) over all #'s directly and after being

multiplied by co# to arrive at the following equations: f(x=0—,n)=f(x=0+,n) (23
1 1 and are equal on trajectories corresponding to the incident
(w+|h+ —+— (o, x)— o f L (w,%) and reflected waves
271 Te 6 ax
1 1 f(x=0,n,)=f(x=0,n_). (29
0 0
=A+ 27, = f(w,x)+ T_sof (%), (19 In Eqg. (23) we assumed that=0 is the boundary between
two metals and in Eq(24) x=0 is a perfectly reflecting
1 ve d boundary.
w*ih+ 2_1+ ; f2(wx) - > ox [2(@X)=0. The Usadel functions are the isotropic part of the Eilen-

(20) berger functions and obviously they should also satisfy the
continuity condition on any boundary. Another condition on
We are in the limit of a very dirty superconductor, when these functions comes from the requirement of the continuity
1/m>T., h, 1/74,, so Eq.(20) simplifies to of the current and reduces to the conservation of the quantity
DNVF whereN is the density of states arid is the diffu-
21) sion coeffipient. _ . _ .
Interfacial scattering breaks the validity of the semiclassi-
cal approximation. Several authors have found effective
boundary conditions that include the effect éffunction
1 2 scattering>'®However, those do not appear to be applicable
7 D 5 2 +(w,X)— (wiih)f‘i+A for our particular case. In Sec. VIl we will describe qualita-
tively the effect of the interfacial scattering on the Josephson
1 current in the SFS system.
=—[f%w,x)— % (w,x)], In the sections to follow we assume for simplicity that the
T - Fermi velocities in the two materials are the same. Whatever
\ difference there may be in these velocities will lead to reflec-
_ 0 0 tions at the interface, and can also be modeled by a
AX=7 2 [ (002 (@], (22 Ssfunction potential, as we will do in the subsequent article.
For now we will justify our assumption by noticing that there
whereD = 3710, In the absence of the spin orbit scatteringjs |itle difference between the Fermi velocities of most con-

we recover the equations of Ref. 3. ducting ferromagnets and superconductors, leading to a neg-
We now want to check the self-consistency of our ap-gible reflection at the interface.

proximation, namely that the higher harmonics in the Leg-
endre polynomial expansion are small. From E{) we see
that f, /fyocl/L wherelL is the characteristic scale on which
f. changes. Analogously, we can get thgn+1)/f(n) As described in the introduction an exchange field in the
«|/L by multiplying Eg.(15) by cod'¢ and integrating over ferromagnet leads to the oscillations of the induced super-
all angles. In the superconductor &, and in the ferromag- conducting order parametésee Fig. 3. In this section we
netLo+/D/h and in both caselL<1, so that our approxi- show that the presence of spin-orbit scattering not only
mation is valid. modifies the oscillation length but also leads to an extra de-

L (w,x)=7w if"(wx).
+ ’ 1F(9X + ’

Inserting into(19) we get

V. PROXIMITY EFFECT IN A FERROMAGNET
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cay of the order parameter and, that a critical strength of the
spin orbit scattering completely suppresses the oscillations.
Clearly the role of the spin-orbit scattering needs to be ad-
dressed in interpreting the experimental results on the S-F-S
Josephson junctions and S-F bilayers.

We restrict ourselves to the case of dirty superconductors
at temperatures close 1q, when Eqs(22) are valid. In our
model the superconductor is characterizedXoyhich we
take constant everywhere in the superconductor, which has FIG. 4. Geometry of an SF bilayer.

no exchange field and no spin orbit scattering. In the ferro- | o
magnet, the BCS coupling is identically zero, so that teristic length of the oscillations and completely destroys

_ ; : them for 1k,.>h. The analogous expression for the case of
=0. However, the induced order paramefer (X X)) is -so” " . ;
finite. P 81 () 1 (x)) strong spin orbit scattering has been obtained by Ref. 17.

The Usadel equations in the superconductor are given bYJ For future _refer_ence we find a complete solution of the
sadel equations in the ferromagnet and the superconductor,
92 which means that we need to find the eigenvectors corre-
2D 5z fe(eX)—of.+A=0 (25  sponding to each eigenvalue.
For the ferromagnet

and in the ferromagnet

4 4 V2
1 92 1 ik:kM:(W—‘rB \/hz—llTso) ,
—Dmfi(w,x)—(a)iih)fiZ [fe(w,X)—f-(w,X)]. S0
)

Ts

4
(26 C, i/ 7so (31
We need to solve these equations with the boundary condi- C- \/hz—llrszo—h'
tions
SO e N . 7=
f P c0e =F & co- Tk=ku=|p"p V"V
d ] h2—1/2 —
T a1 TR @7 Co W -lr—h (32
2 2 C_ i/7so

which correspond to continuity of the order parameter and So, the general form of the solution in the ferromagnet is
the current. Another obvious condition is thatat — oo, in

the bulk of the superconductor, ttfe functions approach [f,(w,X)| _ [ia) , ia) o
their equilibrium values of\/w. f_(w,x)) 711 e+ Cy 1)€ Wi+ Ca —ia/® W
Sinceh>T, in most cases of interest, in E6) we can
omit the w term. As it turns out this way we are only losing e ( e Kux (33
. . 4\ _ y
the usual decay of the induced order parameter in the normal la
metal at the distance®,= \D/A, because we are interested \ynere
in the effects of the exchange field, not in the conventional
proximity decays. We look for the solution of E@6) in the 17g, 34
= T .
form Jn2—1/7Z—h
f4(x) _(C+ ekx (28) And for the superconductor
f_(x) C_
o ) +k=kg=4w/D (35
and after substitution int@6), we get the eigenvalue equa- o
tion for k and the solution is
fi(w,X) C C
1 12 1 @XM kx| 73] o kex
(—Dkz—— +h2— 5 =0. 29 (f(w,x) (cz)es+(04 e (36
4 Tso Tso
This equation has four solutionsky, and +k¥,, where VI. T FOR AN S-F BILAYER
4 4 In this section we apply the general equations developed
k2 =+i = Vh?—1/72+ , (30  above to determine the superconducting transition tempera-
D D7so ture of the superconductor-ferromagnet bilaysee Fig. 4
4 4 for geometry. The difference between our consideration and
*2_ 37 2172 4 _ that by R_ef. 21is the_mclusmn of the s_pln—orb|t scattering.
ki 'D h"=1/7s0 D For this problem it is more convenient to work with

The imaginary part oky, defines the oscillations. We can

1
see from(30) that spin orbit scattering modifies the charac- Filox)= 2 [f+ (0 x)+1_(0x)],
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F_(w,X)=f (0,X)—f_(®,X), (37) ks (since the equations are linear it is sufficient to require the

) ] ] continuity of oF’-F at the interface
rather than withf. . We have the following equations for

F’s. osV|w|/D tan V| w|/Ddg]

In the superconductox<<0:

*x\2
(92 . _M * o *
D 0.'_XZ F+(O),X)_|(D|F+((D,X)+A:O, kMSInf’(kMdM)-i-K kM) kMSInl’(kMdM)
=~ 0Op *\ 2 )
2 costikydy) + « k—“") ki coshk’,dy)
DWF,(w,X)—|w|F,(w,X)=O, (39 M
. . *
and we have a self-consistency equation (x) o ktankd,) = o Kusinftkmdu) + iy sinh(ky dw) _
=\, F ., (w,X). ss s7s " coshikydy)+ xkicoshiky,dy)
In the ferromagnetx>0: (45
92 ih In order for our assumption of the separationeofind x
D 2 F+(0X)— 5 F_(0.x)=0, dependences iR . to be valid we must havkg and corre-
spondinglyx independent ofv. As can be easily seen from
2 ih 2 (45) this is only true wherrk > ok or oks<opky . We
D-—F_(0,X)—=% Fi(0,X)=—F_(w,x). (39  will consider the first case, and the second one can be done
X 2 Tso in a similar fashion.
And in the last two equations we also neglectedh com- So, forosks>oeky ,
parison withh which means that the thickness of the ferro- )
magnetic layer should be smaller tha®/A. = _(k_M cosftkydw) (46)
Let us take solutions of , in the superconductor of the ki) coshkydy)
form
' and forkgs we have
F.(0,X)=C,(w)cogky(x+dJ)]. (40)
) Leosieherdy)] oy Kiytar(kydy) — kytar(kidy)
This will satisfy Eq.(38) if we take ks tan(k,dg) = . T
S M M
A kw ki
C+(w):Dk2+|w|- (41) M M
S . On _| ImkM SInI’(Z Rd(MdM)
For F_ we take oy ﬁ_ K cost{kydy)costiky,dy)
F_(0,X)=C_(w)co§ [o|[D(x+d9]. (42 Ku K
Both (40) and (42) satisfy the conditionF’,(x=—dg)=0 1 Reky sinh(2 Imky,dy) 47
(no current on the left boundary of the superconductor. Imky, sinh(2 Reky,dy) |
The self-consistency equation in the superconductor i? .
now given by f we introduce¥,
L tang— LYo (48)
= an2y= —————,
A% Dks+|w| L “3) Urso

After finding k from the boundary conditions, equatio#s) ~ We can write ky=|ky|€'’. And if now we assume

gives the transition temperature. |[km|dycos#=1 and take into accountk > opky expres-
In the ferromagnet, the solution ¢89) that satisfies the sion (47) simplifies to

boundary condition ax=d,, is

ZZE |kM| _ 9a—2|ky|cosdy i ;
- in kg o 2d.co% [1-2e sin(2|ky|sing)].
(F(w,x) =Cyr| 2DKkiy | cosliky(x—dy)] (49)
1 The transition temperature for the bilayer may be found
ih from
+Cor| 2DK}? | costik,(x—dy)]. 2
L DKks
pC_Z’TI'TC’
(44)
Introducing k=C,/C, the boundary condition at the In Ezdf “ip _w(f) (50)
S-F interfacex=0 becomes a set of two equations oand T, 2 'c 2)
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a FIG. 6. Geometry of the SFS trilayer junction.
0.88 that we have derived in Sec. V. In the bulk of the supercon-
ductor
0.86 < . .
(f+) A(l 1+ia A . 1-ia A . -
L L L L L . = — = — —+ —_
5 6 7 8 9 10 [ I P i e S R e Sl I

ky d ~ ~
M™ and now we can solve far; ande, components separately.

FIG. 5. Transition temperature of an SF bilayer as a function ONatching the values of the fur)ctions and th? derivatives on
the magnetic layer thickness for different values of the spin orbitthe boundaries we get after simple calculations that the Jo-
scattering. Curve is for 1/r,,=0, curveb for 1/7,,=0.5 h, and sephson current nedr, is given by

curve c for 1/7,,=0.9 h. Other parameters were taken to satisfy A2 Ky kKA
7D o, |ky|/4dsosTo=0.1. 1.=27N(0)DT — = + =
nlKul/4dssTeo s=27N(0) Czu): w? | sinh(kyL) ~ sinh(k¥L)
In Fig. 5 we show how the oscillations @f are modified . *
. . . 2ia kM kM
by the presence of the spin orbit scattering. + 5 | = — - _ (53)
We can see that the oscillations Bf as a function of the 1—a“ |sinf(kyLl) sinh(kyL)

ferromagnetic layer thickness found by Ref. 2 are consideryye can again see that the spin orbit scattering considerably
ably modified by the presence of the spin orbit scattering. yqgifies the answer.
Interfacial scattering at the two interfaces modifies this
VII. JOSEPHSON EFFECT IN THE SFS SANDWICH result. Using Bogolyubov—de Gennes equations as in Ref. 18
ne can show that in the lowest order in transmission coef-
icients the right-hand side of E@53) is multiplied by the
roduct of the transmission coefficients, which is an intu-
iively clear result. We plan to present the details of these
calculations elsewhere.

We assume that the phase of the left superconductor |
— ¢/2 and the phase of the right onedg2. Fermi velocity,
electron masses, and all other parameters are taken equal
both superconductors and the ferromag(este Fig. 6 for
geometry.
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