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Superconducting proximity effects in magnetic metals
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We explain the basic physics behind oscillatory effects in superconductor/metallic ferromagnet (S/F) sand-
wiches, and describe the important effects of the spin orbit scattering in these systems. We find that spin-orbit
scattering plays a major role in the physics of the superconducting proximity effect with a conducting ferro-
magnet. As examples, we present calculations of theTc of an S/F bilayer and the Josephson current~near
Tc! of anS/F/S trilayer. @S0163-1829~97!06521-1#
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I. INTRODUCTION

What happens when a ferromagnetic layer (F) is placed
in contact with a superconductor (S)? The purpose of this
work is to consider the answer to this question for the s
cific case in which the ferromagnet is a good conductor
the superconductor is ans-wave superconductor. We als
restrict our consideration to the most relevant case when
Curie temperature of the ferromagnet is much greater t
the superconductingTc .

This situation has been treated by several authors, m
recently by Buzdinet al.,1–5 who have observed that the e
ponentially decaying Cooper pair density in the ferromag
also has an oscillatory character, indicating that the Coo
pair acquires a spatially dependent phase in the ferrom
netic layer. This causes an exchange field dependent os
tion in the critical current ofSFS sandwiches, and in the
Tc of SF bilayers and multilayers. When the Josephson c
pling energy is negative, one has a so-calledp junction, for
which the minimum energy configuration corresponds to
phase shift ofp in the macroscopic phase difference acro
the junction. Despite several experimental studies,6 there is
no definitive experimental evidence for these predictions

The purpose of this paper is to review these earlier ca
lations, so as to reveal more clearly the underlying phys
and to extend them so as to include a more general treatm
of the important effects of the spin-orbit scattering. As w
shall see, spin-orbit scattering plays a major role in the ph
ics of the proximity effect with a ferromagnet.7,12We do not
consider here a specific example of the experimental si
tion, which is unclear and controversial. We simply note t
spin-orbit scattering is relevant in conductors contain
largeZ elements. An assessment of the current experime
situation in light of our results will be presented in a sub
quent paper.

Before turning to the detailed microscopic theory of the
effects, it is well to review the basic physics behind the
and to present simple physical arguments which justify the
The fundamental feature to be justified is the oscillating p
density.

For simplicity, we first consider the situation in whic
spin is a good quantum number~i.e., there is no spin-orbi
550163-1829/97/55~22!/15174~9!/$10.00
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interaction!. Imagine a Cooper pair being adiabatically tran
ported across anSF interface with its electron moment
aligned with the interface normal. Upon entering theF re-
gion, where the pair is not an eigenstate, it becomes an
nescent state, decaying exponentially on the length s
j0 , the normal metal coherence length. In addition, the
spin electron in the pair lowers its potential energy byh, the
exchange field energy in the ferromagnet, while the do
spin electron raises its potential energy by the same amo
In order for each electron to conserve its total energy, the
spin electron must increase its kinetic energy, while
down spin electron must decrease its kinetic energy, to m
up for these additional potential energies inF.

So for a pair, shown on top of Fig. 1, entering into
ferromagnetic region results in acquiring a center of m
momentumQ52h/vF . The fermionic antisymmetry re
quires us to consider the pair described above together
the pair which has the down spin and up spin electrons

FIG. 1. Coopper pair in superconductor and ferromagnet.Dp
5h/vF .
15 174 © 1997 The American Physical Society
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55 15 175SUPERCONDUCTING PROXIMITY EFFECTS IN . . .
terchanged in momentum space~shown on the bottom o
Fig. 1!. The latter gains a center of mass momentum2Q
upon crossing theSF boundary. Combining the two pair
into a singlet combination we see that the overall effect
the exchange field in theF region on a singlet Cooper pair i
to give it a spatial modulation. Hence if the wave function
the pair in a superconductor isF(x12x2), where x1 and
x2 are the coordinates of the two electrons, in a ferromag
the wave function becomes cos@Q(x11x2)#F(x12x2).

In the more general case when the electrons in a pair h
their momenta at an angleu with respect to the interface
normal~see Fig. 2!, the additional momentum that each ele
tron gains after crossing theSF boundary is Dpx
5h/vF cosu andDpy5Dpz50. Here we used the fact tha
momentum is conserved in the direction parallel to the in
face to reason that the electrons may change their mom
in the x direction only. The modulation factor of the pa
shown in Fig. 2 in theF region is cos@h(x11x2)/vF cosu#.

The overall Cooper pair distribution is then obtained
accounting for all possible angles of incidence for the p
so it is proportional to

E
0

1

d~cosu!cosx5E
0

1

d~cosu!cosS 2hx

vFcosu
D'

sin~x/jm0!

~x/jm0!
.

~1!

@We assume, for simplicity, thatvF /(2h)5jm0!j0 , so that
the overall exponential decay of the Cooper pair inF over
j0 may be neglected.# Thus the Cooper pair distribution os
cillates on the scale set by the lengthjm0 . This establishes
simply the physical origin of the oscillations.

The physical picture of the proximity effect in a clea
ferromagnetic conductor is therefore very similar to t
Fulde-Ferrel-Larkin-Ovchinikov~FFLO! effect.8,9 In the
FFLO state a superconducting order parameter is gener
in the presence of an exchange field, and it turns out

FIG. 2. Cooper pair in superconductor and ferromagnet fo
general direction of the relative momentum of two electrons.Dpx
5h/vFcosu.
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energetically a spherically symmetric distribution of the ele
trons is less favorable than the distribution extended al
one of the directions perpendicular to the exchange field.
Cooper pairs with shifted center of mass momenta app
and an inhomogeneous distribution function, similar to t
one we described earlier, develops.

We now want to understand the effect of elastic poten
~nonmagnetic and non-spin-orbit! scattering. As usual we
only need to consider the processes in which the two e
trons in a Cooper pair are scattered by the same impurity
states with opposite momenta, since all the other scatte
events are incoherent in the pairing process. An interes
question now is what happens to the center of mass mom
tum that the Cooper pairs acquire upon entering the fe
magnet @and ultimately the modulation factor cos@h/
(vF cosu)(x11x2)] for singlet pairs!. In a clean limit we
found that this center of mass momentum was a function
the relative momentum of the two electrons and remain
constant throughout the whole trajectory of the pair in t
F region. Now, as a result of the multiple scattering pr
cesses, the center of mass momentum will vary along
trajectory of the pair together with the relative momentum
is important to realize, however, that the center of mass m
menta that we need to consider are always in thex direction,
because the scattering events leading to the other direc
are incoherent. And since scattering on impurities does
change the energy of the electrons, we can again use
energy argument introduced above to deduce that in the d
limit we have the same local relationship between the dir
tion of the relative momentum of the electrons and the m
nitude of the center of mass momentumQ52h/vF cosu as
in the clean limit. This observation allows us to treat the ca
of isotropic and strong potential scattering~l , the mean free
path due to scattering, is much smaller than any other len
in the problem! similarly to the clean case, only instead
integrating over the angles of incidence of the pairs we in
grate over all possible intermediate orientations. The o
thing that we will need to add for the case of impuritie
present in a ferromagnet, is an extra decay of the Coo
pairs due to scattering. This decay has the important fea
that it depends on the direction of the momenta of the e
trons in the Cooper pair and, in the dirty limit, the net sc
tering rate for the pairs is proportional to cosu/t, yielding an
effective mean free path for pairs ofl /cosu.10 The pair dis-
tribution function, accounting for this scattering effect,
thus proportional to

E
0

1

d cosue2~x/ l !cosucosS 2hx

vFcosu
D ~2!

which integrates approximately, yielding a Cooper pair de
sity proportional to

ReS e2~12 i !x/jm13p i /8

Axjm / l
2 D ,

wherejm5Al jm0/2.
In the integral~1! the rapid oscillations of the integran

for small values of cosu ensure that the most important pa
trajectories contributing to this effect are those which a
nearly perpendicular to theSF interface. Formula~2! shows

a
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that if there is strong elastic scattering inF, however, the
values of cosu less than one can contribute as well, beca
of scattering into the lowu direction. The average cosu value
contributing dominantly then decreases. This lowers the
fective period of the oscillations, as well as introducing d
cay of the oscillations due to the fact that momentum para
to the interface is no longer conserved within theF layer.
The oscillations are now damped on the same length sca
which they oscillate. The effect of the scattering is to avera
over theeffective magnitudeof the exchange field from a
minimum value equal toh(cosu51), to a maximum which
approaches infinity (cosu50), resulting in a shorter oscilla
tion period.

In the presence of spin-orbit scattering, the spin sing
Cooper pair wave function decays~to a spin triplet! by spin-
flip scattering, and the1Q momentum pairs mix with the
2Q momentum~spin-exchanged! pairs. The decay to a trip
let is a pair breaking effect, giving the pairs a finite lifetim
because the intermediate state in spin-orbit scattering
triplet whose energy depends upon the exchange field.
other effect of the spin orbit scattering is to mix the Copp
pair with its spin-exchanged counterpartner. This cause
pair to ‘‘see’’ an exchange field which changes sign at a r
proportional to 1/tso, decreasing the averageh field experi-
enced by the pair, hence increasing the period of the osc
tions.

For very strong spin-orbit scattering, the Cooper pair c
no longer be regarded as a spin singlet for any reason
length of time, in particular for the timeDt51/h, whentso
,1/h, so that the oscillation effect disappears. Put anot
way, the electrons which make up the pair can no longer
regarded as eigenstates of spin in this case.

For pedagogical purposes, we ignore potential scatte
for the moment, and consider the effects of spin-orbit sc
tering alone. In actuality, spin-orbit scattering is inevitab
accompanied by potential scattering. The additional in
ence of potential scattering in the dirty limit will be ac
counted for subsequently.

The decay and mixing processes change the energy o
pairs, and introduce a lifetime effect through equations
the forward (f Q) and backward, spin-exchanged (f2Q) por-
tions of the Cooper pair wave function~see Sec. III of this
paper!:
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@E2~2h12i /tso!# f Q12i /tsof2Q50,

@E2~22h12i /tso!# f2Q12i /tsof Q50.

~In the absence of the exchange fieldh, one sees immedi-
ately thatf Q5 f2Q and the spin orbit scattering has no effe
on the pairs.! Solving forE yields a~complex! pair energy

E52i /tso2A~2h!22~2/tso!
25vF /zm0

and hence a complex momentum

Q5E/~vFcosu!51/~zm0cosu!.

Accounting for both directions of momentum, we get a Co
per pair density proportional to

E
0

1

d~cosu!Re~eix/~zm0cosu!!.

This integrates approximately to

ReS eix/zm0ix/zm0
D .

One can see that the existence of oscillations requireh
.1/tso.

If we include strong elastic scattering as before, then t
becomes, approximately

ReS e2~12 i !~x/zm!13p i /8

Axzm / l
2 D ,

wherezm5Al zm0/2.

II. EILENBERGER EQUATIONS
IN THE PRESENCE OF THE EXCHANGE FIELD

AND THE SPIN ORBIT SCATTERING

In this section we briefly review the derivation of th
Eilenberger equations and show how they can be genera
to account for the presence of an exchange field and
orbit scattering.

We perform all the calculations in the Matsubara ima
nary time formalism and our four-coordinatex stands for
~t,r !. Following Maki11 we introduce a spinor representatio
of the fermion operators:
C~x!5S c↑~r ,t!

c↓~r ,t!

c↑
†~r ,t!

c↓
†~r ,t!

D , C†~x!5„c↑
†~r ,t!c↓

†~r ,t!c↑~r ,t!c↓~r ,t!…. ~3!

In the absence of the impurities the Gor’kov equations for a 434 matrix Green’s function Ĝ(x1 ,x2)5
2^TtC(x1)C

†(x2)& can be written in two forms, corresponding to writing the equations of motion of the particles atx1 or
x2 ,

]Ĝ~x1 ,x2!

]t1
5H S \2

2m
¹1
21m D r̂31D̂~r 1!1h~r 1!r̂3ŝ3J Ĝ~x1 ,x2!21̂d3~r 12r 2!d~t12t2!,

2
]Ĝ~x1 ,x2!

]t2
5Ĝ~x1 ,x2!H S \2

2m
¹2
21m D r̂31D̂~r 2!1h~r 2!r̂3ŝ3J 21̂d3~r 12r 2!d~t12t2!, ~4!
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where

D̂~r !5 i r̂1ŝ2D~r !2 i r̂2ŝ2D* ~r !,

D~r !5l^c↓~r !c↑~r !&5
il

2
Tr@ r̂1ŝ2Ĝ~x,x!#. ~5!

r̂ and ŝ are the Pauli matrices in the particle-hole and spin spaces correspondingly andl is the BCS coupling constant.
The Gor’kov equations carry the information about both the macroscopic fields and the excitation spectrum. In pa

it is the the center of mass spatial dependence that gives the macroscopic fields and the relative coordinate depen
gives the excitation spectrum. Since we are not interested in the excitation spectrum but only in the macroscopic p
function, we integrate over the relative coordinates of two particles sacrificing our knowledge of the excitation spect
the sake of getting simpler equations.

We want to separate the center of mass and relative motions inside the Green’s functions. So, fromr 1 and r 2 we go to
R5(r 11r 2)/2, the position of the center of mass, andr5r 22r 1 , the relative coordinate of the two particles. We also ma
a Fourier transform in the imaginary time domain using the fact that the time homogeneity is not broken and eve
depends ont22t1 only,

F \2

2m S 12 ]

]R
2

]

]r D
2

1m GĜvSR2
r

2
,R1

r

2D5H 2 ivr̂32 r̂3D̂SR2
r

2D2hSR2
r

2D ŝ3J ĜvSR2
r

2
,R1

r

2D1 r̂3d
3~r !,

F \2

2m S 12 ]

]R
1

]

]r D
2

1mGĜvSR2
r

2
,R1

r

2D5ĜvSR2
r

2
,R1

r

2D H 2 ivr̂32 r̂3D̂SR2
r

2D2hSR2
r

2D ŝ3J 1 r̂3d
3~r !. ~6!

We assume that the macroscopic fieldsh andD vary on the length scales bigger than the coherence length of ma
~S or F!, and so we can replace the actual argument of the two functionsR6r /2 by justR. Later we will be using the resulting
equations when this condition is not rigorously satisfied. However, one can convince oneself that this procedure is
classical approximation and only results in averaging over the fast oscillations on the length scale of 1/kF .

We subtract the first equation of~6! from the second and get

\2

m

]2

]R]r
ĜvSR2

r

2
,R1

r

2D5$ ivr̂31 r̂3D̂~R!1h~R!ŝ3%ĜvSR2
r

2
,R1

r

2D2ĜvSR2
r

2
,R1

r

2D
3$ ivr̂31 r̂3D̂~R!1h~R!ŝ3%. ~7!

We can integrate over the energies of the relative motion of the two particles using two simple transformations

ĜvSR2
r

2
,R1

r

2D5E d3p

~2p\!3
Ĝv~R,p!eipr /\,

Ĝv~R,n!5E djp
2p\

Ĝv~R,p!. ~8!

This gives

iv
]

]R
Ĝv~R,n!5$ ivr̂31 r̂3D̂~R!1h~R!ŝ3%Ĝv~R,n!2Ĝv~R,n!$ ivr̂31 r̂3D̂~R!1h~R!ŝ3%, ~9!

wheren is a unit vector that carries information about the direction of the relative motion of two particles andv5p/m
.vFn.

At this point it is straightforward to introduce the effect of the impurities. It is simply a matter of insertion of the self-e
in Born approximation into~9!,

iv
]

]R
Ĝv~R,n!5$ ivr̂31 r̂3D̂~R!1h~R!ŝ32 r̂3Sv~R,n!%Ĝv~R,n!2Ĝv~R,n!$ ivr̂31 r̂3D̂~R!1h~R!ŝ32Sv~R,n!r̂3%,

~10!

where

Sv~R,n!5n~R!E dn8

4p
Û~n2n8!Ĝv~R,n8!Û~n82n!,
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Û~n2n8!5U1r31Usoi @n3n8#a, ~11!

anda is an electronic spin operatora5@(11r3)/2#s1@(12r3)/2#s2ss2 .
Components of the matrixĜ are given by

Ĝv~R,n!5
mpF
2p2\2U2

i

2
g1 0 0

21

2
f1

0 2
i

2
g2

1

2
f2 0

0
1

2
f †

i

2
g2 0

2
1

2
f1
† 0 0

1

2
g1

U
~v,R,n!

. ~12!
d

in
pi

in er
orbit
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When writing~12! we assumed purely singlet pairing, an
we used the integral of the equation~10!

v
]

]R
@Tr Ĝv~R,n!#50 ~13!

together with the asymptotic form of the Green’s functions
the bulk of the superconductor to get the equality of the s
reversed Green’s functions~so, that we have only twog’s
instead of four!. And we also introduced numerical factors
order to have a simple assymptotic form of thef and g
functions in the bulk of the superconductor:f6

5D/Av21D2 and g65v/Av21D2 ~for the case whenh
50!. Using the functions introduced in~12!, Eqs.~10! and
~11! become

S ṽ6~r ,v !6 ih~r !2
1

2
v

]

]r D f6~v,r ,v !

5D̃6~v,r ,v !g6~v,r ,v !,

S ṽ6~r ,v !6 ih~r !1
1

2
v

]

]r D f6
† ~v,r ,v !

5D̃6* ~v,r ,v !g6~v,r ,v !,

f6
† f61g6

2 51,

ṽ6~r ,v !5v1
1

2t1
E dV8

4p
g6~r ,v !

1
3

2tso
E dV8

4p
g7~r ,v8!sin2~u2u8!,

D̃6~v,r ,v !5D1
1

2t1
E dV8

4p
f6~r ,v !

1
3

2tso
E dV8

4p
f7~r ,v8!sin2~u2u8!,

~14!

where
n

t1
215nN~0!uU1u2,

tso
215

2

3
nN~0!uUsou2,

D5
l

2 (
v

E dV

4p
@ f1~v,r ,v !1 f2~v,r ,v !#.

Equations~14! are the generalization of the Eilenberg
equations for the case when an exchange field and spin-
scattering are present. A heuristic way to obtain these eq
tions would be to generalize the results from Maki11 and
Likharev.13

One can see from~14! that in the absence of the spin-orb
scattering the plus and minus components do not mix w
each other. It is onlytso that mixes the time reversed state

III. USADEL EQUATIONS CLOSE TO Tc

The Eilenberger equations can be considerably simpli
when the mean free path for potential scatteringl5vFt1 is
much shorter than the superconducting coherence len
This simplification appears because all the Green’s functi
corresponding to the different directions of the relative m
tion of the electron~different n’s! get smeared out on th
distances of the order ofl , and since the characteristic sca
of the Green’s functions variations isj we obtain that the
spherical harmonics expansion is rapidly converging so
we can restrict ourselves to only the first two harmonics.

We will not derive the general case of the Usadel eq
tions in the presence of the spin-orbit scattering but will on
restrict ourselves to the temperatures very close toTc . This
case is much simpler for investigation and contains all
new physics of introduction of the spin orbit scattering. F
temperatures sufficiently close toTc we can takeg6[1 and
~10! becomes

S ṽ66 ih2
1

2
v

]

]RD f6~v,r ,v !5D̃6~v,r ,v !, ~15!

S ṽ66 ih1
1

2
v

]

]RD f6
† ~v,r ,v !5D̃6* ~v,r ,v !, ~16!
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ṽ6~v,r ,v !5v1
1

2t1
1

1

tso
,

D̃6~v,r ,v !5D1
1

2t1
E dV8

4p
f6~v,r ,v8!

1
3

2tso
E d

V8

4p
f7~v,r ,v8!sin2~u2u8!.

~17!

We solve Eqs.~15!–~17! for the case when the paramete
vary only as a function ofx. This corresponds to the ‘‘sand
wich’’ geometry of interest here.

Let u be the angle betweenn and x axis. From the
full Legendre polynomial expansion of f6(v,t,v)
5( l50

` f l(v,x)Pl(cosu) by the reasons described earlier w
take only the first two terms

f6~v,x,v !5 f6
0 ~v,x!1 f6

1 ~v,x!cosu. ~18!

We integrate Eq.~15! over allu’s directly and after being
multiplied by cosu to arrive at the following equations:

S v6 ih1
1

2t1
1

1

tso
D f6

0 ~v,x!2
vF
6

]

]x
f6
1 ~v,x!

5D1
1

2t1
f6
0 ~v,x!1

1

tso
f6
0 ~v,x!, ~19!

S v6 ih1
1

2t1
1

1

tso
D f6

1 ~v,x!2
vF
2

]

]x
f6
0 ~v,x!50.

~20!

We are in the limit of a very dirty superconductor, whe
1/t1@Tc , h, 1/tso, so Eq.~20! simplifies to

f6
1 ~v,x!5t1vF

]

]x
f6
0 ~v,x!. ~21!

Inserting into~19! we get

1

4
D

]2

]x2
f6
0 ~v,x!2~v6 ih ! f6

0 1D

5
1

tso
@ f6

0 ~v,x!2 f7
0 ~v,x!#,

D~x!5
l

2 (
v

@ f1
0 ~v,x!1 f2

0 ~v,x!#, ~22!

whereD5 2
3t1vF

2. In the absence of the spin orbit scatteri
we recover the equations of Ref. 3.

We now want to check the self-consistency of our a
proximation, namely that the higher harmonics in the Le
endre polynomial expansion are small. From Eq.~21! we see
that f 1 / f 0} l /L whereL is the characteristic scale on whic
f6 changes. Analogously, we can get thatf (n11)/ f (n)
} l /L by multiplying Eq.~15! by cosnu and integrating over
all angles. In the superconductorL}j0 and in the ferromag-
net L}AD/h and in both casesl /L!1, so that our approxi-
mation is valid.
-
-

IV. BOUNDARY CONDITIONS FOR THE EILENBERGER
AND USADEL EQUATIONS

The boundary conditions for the Eilenberger equatio
follow from the continuity conditions for the normal an
anomalous Greens functions. Ivanovet al. showed14 that at
the sharp planar interface the Eilenberger functions are c
tinuous along the flight trajectories on which the electro
can pass from one metal to the other

f ~x502,n!5 f ~x501,n! ~23!

and are equal on trajectories corresponding to the incid
and reflected waves

f ~x50,n1!5 f ~x50,n2!. ~24!

In Eq. ~23! we assumed thatx50 is the boundary betwee
two metals and in Eq.~24! x50 is a perfectly reflecting
boundary.

The Usadel functions are the isotropic part of the Eile
berger functions and obviously they should also satisfy
continuity condition on any boundary. Another condition o
these functions comes from the requirement of the contin
of the current and reduces to the conservation of the quan
DN¹F whereN is the density of states andD is the diffu-
sion coefficient.

Interfacial scattering breaks the validity of the semiclas
cal approximation. Several authors have found effect
boundary conditions that include the effect ofd-function
scattering.15,16However, those do not appear to be applica
for our particular case. In Sec. VII we will describe qualit
tively the effect of the interfacial scattering on the Joseph
current in the SFS system.

In the sections to follow we assume for simplicity that t
Fermi velocities in the two materials are the same. Whate
difference there may be in these velocities will lead to refl
tions at the interface, and can also be modeled by
d-function potential, as we will do in the subsequent artic
For now we will justify our assumption by noticing that the
is little difference between the Fermi velocities of most co
ducting ferromagnets and superconductors, leading to a
ligible reflection at the interface.

V. PROXIMITY EFFECT IN A FERROMAGNET

As described in the introduction an exchange field in
ferromagnet leads to the oscillations of the induced sup
conducting order parameter~see Fig. 3!. In this section we
show that the presence of spin-orbit scattering not o
modifies the oscillation length but also leads to an extra

FIG. 3. Superconducting order parameter on the SF interfa
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cay of the order parameter and, that a critical strength of
spin orbit scattering completely suppresses the oscillatio
Clearly the role of the spin-orbit scattering needs to be
dressed in interpreting the experimental results on the S
Josephson junctions and S-F bilayers.

We restrict ourselves to the case of dirty superconduc
at temperatures close toTc , when Eqs.~22! are valid. In our
model the superconductor is characterized byD which we
take constant everywhere in the superconductor, which
no exchange field and no spin orbit scattering. In the fer
magnet, the BCS coupling is identically zero, so thatDF
50. However, the induced order parameter^c↓(x)c↑(x)& is
finite.

The Usadel equations in the superconductor are given

1

4
D

]2

]x2
f6~v,x!2v f61D50 ~25!

and in the ferromagnet

1

4
D

]2

]x2
f6~v,x!2~v6 ih ! f65

1

tso
@ f6~v,x!2 f7~v,x!#.

~26!

We need to solve these equations with the boundary co
tions

f6
~F !ux5015 f6

~S!ux502 ,

sn

]

]x
f6

~F !ux5015ss

]

]x
f6

~S!ux502 , ~27!

which correspond to continuity of the order parameter a
the current. Another obvious condition is that atx52`, in
the bulk of the superconductor, thef6 functions approach
their equilibrium values ofD/v.

Sinceh@Tc in most cases of interest, in Eq.~26! we can
omit thev term. As it turns out this way we are only losin
the usual decay of the induced order parameter in the no
metal at the distancesjn5AD/D, because we are intereste
in the effects of the exchange field, not in the conventio
proximity decays. We look for the solution of Eq.~26! in the
form

S f1~x!

f2~x! D5SC1

C2
Dekx ~28!

and after substitution into~26!, we get the eigenvalue equa
tion for k

S 14 Dk22
1

tso
D 21h22

1

tso
2 50. ~29!

This equation has four solutions6kM and 6kM* , where

kM
2 51 i

4

D
Ah221/tso

2 1
4

Dtso
, ~30!

kM*
252 i

4

D
Ah221/tSO

2 1
4

DtSO
.

The imaginary part ofkM defines the oscillations. We ca
see from~30! that spin orbit scattering modifies the chara
e
s.
-
-S

rs

as
-

y

i-

d

al

l

-

teristic length of the oscillations and completely destro
them for 1/tso.h. The analogous expression for the case
strong spin orbit scattering has been obtained by Ref. 17

For future reference we find a complete solution of t
Usadel equations in the ferromagnet and the supercondu
which means that we need to find the eigenvectors co
sponding to each eigenvalue.

For the ferromagnet

6k5kM5S 4

Dtso
1
4i

D
Ah221/tso

2 D 1/2,
C1

C2
5

i /tso

Ah221/tso
2 2h

, ~31!

6k5kM* 5S 4

Dtso
2
4i

D
Ah221/tso

2 D 1/2,
C1

C2
52

Ah221/tso
2 2h

i /tso
. ~32!

So, the general form of the solution in the ferromagne

S f1~v,x!

f2~v,x! D5C1S ia1 DekMx1C2S ia1 De2kMx1C3S 1
2 ia DekM* x

1C4S 1
2 ia De2kM* x, ~33!

where

a5
1/tso

Ah221/tso
2 2h

. ~34!

And for the superconductor

6k5kS5A4v/D ~35!

and the solution is

S f1~v,x!

f2~v,x! D5SC1

C2
DekSx1SC3

C4
De2kSx. ~36!

VI. Tc FOR AN S-F BILAYER

In this section we apply the general equations develo
above to determine the superconducting transition temp
ture of the superconductor-ferromagnet bilayer~see Fig. 4
for geometry!. The difference between our consideration a
that by Ref. 2 is the inclusion of the spin-orbit scattering.

For this problem it is more convenient to work with

F1~v,x!5
1

2
@ f1~v,x!1 f2~v,x!#,

FIG. 4. Geometry of an SF bilayer.
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F2~v,x!5 f1~v,x!2 f2~v,x!, ~37!

rather than withf6 . We have the following equations fo
F ’s.
In the superconductor,x,0:

D
]2

]x2
F1~v,x!2uvuF1~v,x!1D50,

D
]2

]x2
F2~v,x!2uvuF2~v,x!50, ~38!

and we have a self-consistency equationD(x)
5l(vF1(v,x).

In the ferromagnet,x.0:

D
]2

]x2
F1~v,x!2

ih

2
F2~v,x!50,

D
]2

]x2
F2~v,x!2

ih

2
F1~v,x!5

2

tso
F2~v,x!. ~39!

And in the last two equations we also neglectedv in com-
parison withh which means that the thickness of the ferr
magnetic layer should be smaller thanAD/D.

Let us take solutions ofF1 in the superconductor of th
form

F1~v,x!5C1~v!cos@ks~x1ds!#. ~40!

This will satisfy Eq.~38! if we take

C1~v!5
D

Dks
21uvu

. ~41!

For F2 we take

F2~v,x!5C2~v!cos@Auvu/D~x1ds!#. ~42!

Both ~40! and ~42! satisfy the conditionF68 (x52ds)50
~no current! on the left boundary of the superconductor.

The self-consistency equation in the superconducto
now given by

l(
v

1

Dks
21uvu

51. ~43!

After finding ks from the boundary conditions, equation~43!
gives the transition temperature.

In the ferromagnet, the solution of~39! that satisfies the
boundary condition atx5dm is

SF1~v,x!

F2~v,x! D5C1FS ih

2DkM
2

1
D cosh@kM~x2dM !#

1C2FS ih

2DkM*
2

1
D cosh@kM* ~x2dM !#.

~44!

Introducing k5C2F /C1F , the boundary condition at th
S-F interfacex50 becomes a set of two equations onk and
is

ks ~since the equations are linear it is sufficient to require
continuity ofsF8-F at the interface!

ssAuvu/D tanh@Auvu/Dds#

52sn

kMsinh~kMdM !1kS kM*kM D 2kM* sinh~kM* dM !

cosh~kMdM !1kS kM*kM D 2kM* cosh~kM* dM !

,

sskstan~ksds!5sn

kMsinh~kMdM !1kkM* sinh~kM* dM !

cosh~kMdM !1kkM* cosh~kM* dM !
.

~45!

In order for our assumption of the separation ofv andx
dependences inF1 to be valid we must haveks and corre-
spondinglyk independent ofv. As can be easily seen from
~45! this is only true whenssks@sFkM or ssks!sFkM . We
will consider the first case, and the second one can be d
in a similar fashion.

So, forssks@sFkM ,

k52S kMkM* D 2 cosh~kMdM !

cosh~kM* dM !
~46!

and forks we have

ks tan~ksds!5
sn

ss

kM* tan~kMdM !2kMtan~kM* dM !

kM*

kM
2
kM
kM*

5
sn

ss

2 i ImkM
kM*

kM
2
kM
kM*

sinh~2 RekMdM !

cosh~kMdM !cosh~kM* dM !

3F12
RekM
ImkM

sinh~2 ImkMdM !

sinh~2 RekMdM !G . ~47!

If we introduceu,

tan2u5
Ah221/tso

2

1/tso
, ~48!

we can write kM5ukMueiu. And if now we assume
ukMudMcosu>1 and take into accountssks@sFkM expres-
sion ~47! simplifies to

ks
25

sn

ss

ukMu
2dscosu

@122e22ukM ucosudMsin~2ukMusinu!#.

~49!

The transition temperature for the bilayer may be fou
from

rc5
Dks

2

2pTC
,

ln
Tc0
Tc

5cS 121rcD2cS 12D . ~50!
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In Fig. 5 we show how the oscillations ofTc are modified
by the presence of the spin orbit scattering.

We can see that the oscillations ofTc as a function of the
ferromagnetic layer thickness found by Ref. 2 are consid
ably modified by the presence of the spin orbit scattering

VII. JOSEPHSON EFFECT IN THE SFS SANDWICH

We assume that the phase of the left superconducto
2f/2 and the phase of the right one isf/2. Fermi velocity,
electron masses, and all other parameters are taken equ
both superconductors and the ferromagnet~see Fig. 6 for
geometry!.

As we have shown earlier, in the presence of the sp
orbit scatteringf1 and f2 are not eigenfunctions of the Us
adel equations. It is more convenient therefore to use
basis

ê15S ia1 D , ê25S 1
2 ia D ~51!

FIG. 5. Transition temperature of an SF bilayer as a function
the magnetic layer thickness for different values of the spin o
scattering. Curvea is for 1/tso50, curveb for 1/tso50.5 h, and
curve c for 1/tso50.9 h. Other parameters were taken to sati
pDsnukMu/4dsssTc050.1.
t

r-

is

l for

n-

he

that we have derived in Sec. V. In the bulk of the superc
ductor

S f1

f2
D5

D

v
S 11D5

11 ia

12a2

D

v
ê11

12 ia

12a2

D

v
ê2 ~52!

and now we can solve forê1 and ê2 components separately
Matching the values of the functions and the derivatives
the boundaries we get after simple calculations that the
sephson current nearTc is given by

I s52pN~0!DTc(
v

D2

v2 H kM
sinh~kML !

1
kM*

sinh~kM* L !

1
2ia

12a2 F kM
sinh~kML !

2
kM*

sinh~kM* L !G J . ~53!

We can again see that the spin orbit scattering consider
modifies the answer.

Interfacial scattering at the two interfaces modifies t
result. Using Bogolyubov–de Gennes equations as in Ref
one can show that in the lowest order in transmission co
ficients the right-hand side of Eq.~53! is multiplied by the
product of the transmission coefficients, which is an in
itively clear result. We plan to present the details of the
calculations elsewhere.
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FIG. 6. Geometry of the SFS trilayer junction.
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