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We have investigated the dynamical states in annular Josephson tunnel junctions in the presence of an
externally applied uniform magnetic field parallel to the barrier plane. For electrically small and overdamped
junctions we show that the Kulik perturbative theory for the Fiske singularities can easily and successfully be
extended to the annular geometry even in the case of trapped fluxons. For electrically long annular junctions
we present the results of the numerical simulations. Further, we report on the magnetic-field dependence of the
amplitude of the so-called Fiske steps in specially designed high dissipation Nb/AHNIGb annular
junctions having different normalized circumferended0163-18207)04517-7

[. INTRODUCTION theoretical approach to the problem that can be solved by
extending the Kulik theor to annular junctions, in other
Annular, i.e., ring-shaped Josephson tunnel junctiongvords, by means of a perturbative analysis it is possible to
show a large variety of interesting physical phenomena dubinearize the system and to find the theoretical dependence of
to the fluxoid quantization in a superconducting ring and dudhe FS amplitude on the magnetic field for small and under-
to the absence of boundarishey are a topic of current damped junctions; further, for long junctions we show the
experimental interest. Recently, the static properties of annu€sults of numerical simulations. In Sec. Il we describe the
lar Josephson tunnel junctions in the presence of unifornparticular fabrication process that has been adopted to realize
magnetic field applied in the plane of the tunnel barrier havdigh-loss Nb/Al-AlO,-Al/Nb annular Josephson tunnel junc-
been extensively examined by Martucciello and Morfdco tions and we present the experimental results for the mag-
and by Verniket al* In Ref. 2, the dependence of the critical netic dependence of the FS amplitude. Some conclusions are
current on a uniform magnetic field for annular Josephsorirawn in Sec. IV. In the Appendices we present, in some
tunnel junctions having different geometrical configurationsdetail, the calculations for the perturbative theory.
was investigated both experimentally and numerically.
Among other things, it was found that when the normalized Il. THEORETICAL ANALYSIS
ring circumference is less than unity, i.e., the physical length
is less than the Josephson penetration dapththel; vs H
follows annth order Bessel function behavior, wherés the The description of an annular junction in the presence of a
number of fluxons trapped in the barrier. For longer junc-uniform externally applied magnetic field is done using cy-
tions numeric&t* and analyticé’l solutions of the appropriate lindrical coordinates, 6, andz, assuming that the junction
perturbed sine-Gordon equati0RSGH show that a barrier- Jies in thez=0 plane and its center of symmetry is located at
parallel magnetic field produces potential wells at diametriv+ =0, as shown in Fig. 1; the origin of the angular abscissa,
cally opposite points where static fluxons and antifluxons.e., =0 is set in the direction of the field. Further, let us
align with the external field. call r, andr; the outer- and inner-ring radius, respectively,
In this paper we shall extend our study to the dynamicand let us assume that the ring widMr=r,—r; is much
properties of both electrically small & <A\;) and long  smaller than both the mean radius0.5(r,+r;) and the
(27r>1\;) annular Josephson tunnel junctions in the presjosephson penetration length, so that we are dealing with
ence of an external magnetic field applied in the plane of the, one-dimensional junction. Using a Lagrangian formalism
barrier. So far the fluxon dynamics in annular junctions hassrgnbech-Jenseet al® have shown that the phase differ-
been studied in a number of papets'®but only in the case ence ¢ of the macroscopic superconducting quantum me-
of no externally applied field, i.e., only the so-called zero-chanical wave function measured across the barrier of an
field singularities(ZFS's) were considered in the rintV  annular Josephson tunnel junction in a uniform magnetic

characteristic(IVC). We provide, instead, a study of the field parallel to the barrier plane obeys the following per-
Fiske singularities(FS) in annular junctions, i.e., of those turbed sine-Gordon equatidPSGH:

steps that, as in the case of more conventional, linear junc-
tions with open boundary qonditions, appear on the ju_nction Gyx— Pr— Sinp=— y— pASinkx+ arpy— Bpyyi, (1)
IVC as a result of the application of an external field in the o
plane of the barriéf. in which the dimensionless angular coordinater 6/\; has
The paper is organized as follows. In Sec. Il we present &een introduced and the time has been normalized to the

A. Derivation of the model
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7 external fields. Experimental data on high-quality Nb/Al-
T AlO ,-Al/Nb junctions support the theoretical analysis pro-
vided current limiting static self-field effects are taken into
account in real devicesalso in the case when+0*

B. Perturbative analysis
The study of the statiéS suggests as a zero order ap-
. . O B - . .
e — proximationg¢® for the solution of Eq(1) which satisfies the
L gyl

ij ‘ [ boundary condition Eq(2):

#°=nkx+ psinkx+ wt, 4

‘\‘C;’;\ ‘/ where the first term represents the linear phase twist due to
e ——— the presence afi fluxons trapped in the barrier, the second
term takes into account the potential created by the external
FIG. 1. Schematic drawing of an annular junction. The origin of magnetic field, andwt is a uniform rotating term, with
the angular abscissa, i.8+=0, is set in the direction of the external w=(¢,;) being the normalized junction voltage)(means
field H. the average with respect to both space and)tiBace we
are interested in the stationary solutions of E, we have
inverse of the junction plasma frequenayis the distributed  neglected in Eq(4) the presence of a constant term in the
bias current normalized tb,o=2mJ.rAr (whereJ. is the  expression forp®. We expand the exact solution of Ed)
uniform maximum Josephson current density is the field  around the rotating solution E) as ¢= ¢0+ ¢t, with the
amplitude normalized t@o/2muord, A is the coupling be-  assumption that¢?|<1 so that si=sin¢’+ ¢'cosp’ and
tween the external field and the flux density in the junction,gptain the following linear PDEpartial derivative equation
andk=2m/l is a dimensionless wave numbér C/\; be-  for ¢

ing the normalized ring circumference.and 8 are the loss
coefficients due to the tunneling current and to the surface @r,— dn—Sing®— plcosp®= — y+ aw+ adi— By,

impedance, respectively. In Ref. 2, E@) was obtained im- (5)
posing the continuity of the induction field on the junction

with the following periodic boundary conditions:
boundary, througtf*’ ap y

M (x+1)=p(x). (6)
2mdug
Vig+Be)=—g —HXu, Further,(¢?)=0. The spatial Fourier expansion of the peri-
0 odic function¢? is
(u, is a unit vector in the direction and it was found that
A is a geometrical factor that depends on the particular junc- 1 - .
tion configuration and is inversely proportional k& The ¢ :mE:l [Fm(t)cosmkx+t Sy(t)sinmkx] @)
boundary conditions for Eq(1) are periodi¢ and derive
from fluxoid quantizatiorf: with  Fp(t) =Ancoswt+Bysinwt  and  Sy(t) =Cpcoswt
+ Dsinwt. Expanding sig® in a Fourier-Bessel series and
d(X+1)=$(x) +2n, (20 using the orthogonality of trigopnometric functions, it is pos-

. . . sible to find the expression for the coefficiets,, B,
wheren is an integer corresponding to the number of fluxons _ andD,, (see Appendix A It is easy to show that both

trapped in the junction barrier at the normal-superconductingﬁ: . .

S . . F.l and|S,| are inversely proportional td,, and that the
ransition;n i logical m constant, that i nly! m ; . m
transition; n is a topological system constant, that is, o yénth term in the sum Eq(7) is

fluxon-antifluxon pairs can be created or annihilated as lon

as the junction remains in the superconducting stafethia 1_A-1ry coq ot — mkxt
static PSGE, that is, bm=Am [Im+n(7)COL 0 m)
+Jm_n(7)coq wt+mkx+ 5 1, (8
dyx— SiNp=y— pAsirkx, 3 m=n m

whereJ, (#n) are the Bessel functions of integer oraeand
was solved numericallwith A=k?) for different values of argument 7. Further, Arznz(m2k2_(1)2)2+w4/Q§1 and
the normalized circumferendeand, in particular, the mag- tans,=Q,[1— (mk w)?2]; we have introduced the very im-
netic patternsyc(») were found foll = 6, 12, and 24. When portant dimensionless quality factor®,,'=Q,*+Q,*
static solutions were computed numerically, we found that— (. + sm?k?)/w, which give a measure of the junction
for a given field, different phase profiles are possible dependysses and depends on the junction voltage. Equé8poan

ing on the number of fluxon-antifluxon pairs nucleated at twope interpreted physically as the superposition of two small
diametrically opposed points in the barrier where the effecyiitude waves traveling with equal but opposite speeds.
of the field is largest. In Ref3 a perturbative analysis of Eq. pe requirement thai® be small implies that the present
(3), with n set equal to 0, has been carried out based on thﬁpproach is valid whenever, for all integers A, >1, i.e.
ansatz¢= ¢°+ ¢, where ¢® is known andg' is small in  \yhen ’ me
comparison to¢’; the analytical results fit the numerical

results well in cases of small normalized ring lengths or large Qm<w?. 9
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Recalling the Bessel function asymptotic expansion for larget high voltages or at low temperatureshen in the last
arguments J( ) = y2/(7n)cos(y—mm/2— w/4), we note expression the coefficient in front of the squared Bessel func-
that the ¢>. are always small in the large field limig=>1. tion decreases as the third power of the step amjen other

The -V curve comes from the dc part of E() as words, the FS amplitude decreases very fast as we move to
large step orders. In the large field limit, EQ.5) can be
y=aw+{p cosp?). (10)  written in terms of damped trigonometric functions:

The first term in Eq.(10) represents the ohmic part of the Q. 2 mw
I-V characteristic, while the second term corresponds to the imol7)= o —co§< - —) . (16)
dc normalized Josephson currént(sing). Inserting the ex- mk® my 2 4
pression forg® and ¢* and carrying out the calculations, we As a further example of the usefulness of EtR), we con-

end up with(see Appendix B sider the case of a single trapped fluxam=1) traveling
" ) ) around the ring; the magnetic-field dependence of the maxi-
. - [Inn(m) +In-n(7)] mum amplitude of the step associated with this dynamical
(o, m)= 2, 202 state is given by
Qn' na Q1 J5(m) +35(m)
X[(mk/w)z—l]z-l—Q;]Z' (11) Il,lYﬂ)_ICOFf' (17)

The Josephson current is given by an infinite series of equiFor =0, Eq. (17) gives the zero-field amplitude of the
distant resonances at=mk=27m/|, whose maximum am- single fluxon step and E@l4) states that the corresponding

plitudes are: dynamical state is simply a wave travelling around the ring.
Equation(12) and Eq.(14) give similar results when applied
. Qn 2 n(m)+I2 (7)) to the general casa=n.
Imn(7)=1co m2k2 > : (12

. . . L . C. Numerical simulations
With w=mk the inequality Eq(9) implies that the limit of

validity of this perturbative approach is set by In an effort to obtain further insight into the dynamics of
this system we have carried out detailed numerical simula-

27N\ tions of Eq.(1), using a fourth-order Runge-Kutta algorithm
Q< c (13)  on a spatially discretized counterpart, for different values of

the normalized ring circumferende The loss parameters
that is, either when the junction is electrically short or whena and 8 were set equal to 0.1 and 0.01 respectively. We
the losses are large. However, for long and/or underdampeghiculated a number of IVC’s of annular junctions with no
junctions the theory should apply only for those Fiske stepsrapped fluxons, that is, with=0 in the boundary condition
whose ordem is so large thamk(a+ Bm?k?)>1. Further, Eqg. (2). We found that field induced current singularities,
for the mth FS, the main contribution tg! in the sum Eq. that is, Fiske steps indeed occurred at normalized voltages
(7) is given by EQq.(8) with w=mk wn=27m/l indicating that, on the averagean fluxons
and/or antifluxons travel around the ring when the junction is
biased on thanth order step; it should be recalled in this
regard, that, although the Lorentz force due to the bias cur-
rent acts in opposite directions for fluxons and antifluxons,
*Jm-n(7)cosmk(t—x)]. (14 the voltage drops due to traveling fluxons and antifluxons

This is a standing wave obtained from the superpositioave the same sign and add up. In Figs)2(d) we show

of two traveling waves having opposite speeds: thdhe n_umerlcally Cqmputed magnetic-field dependence of the
standing wave ratio [0 n(7)|+ | Imon(7))/ (| Imsnl7)] amplltl_Jde of the first three FS fd>requ§1I to 1, 3,6, and 12.
—13m-n(7)]) strongly depends on the field amplitude. It is In all figures the data relative to the first, second, and third
clear that, in the range of validity of the perturbative analy-FS @re shown by open circles, closed circles, and stars, re-
sis, a wavelike description of the fluxon dynamics is moreSPectively. These data are compared with the perturbative
appropriate than a particlelike description, since in a smalfnalysis expression E15), although, for the giveny, B,

junction a fluxon can be seen as a distributed, rather thand!, theQ;/k? ratios are equal to 0.36, 3.4, 9.1, and 20 for
localized, phase twist of 2. | equal to 1,3,6, and 12, respectively, so that a good fit

In the case of no trapped fluxons<£0), we end up with Petween the theory and the simulation can be expected only

the following field dependence for the maximum normalizedin Fig. 2@ for I =1. Further, both the horizontal and vertical
amplitude of themth FS, that is very similar to that found for Scalé ranges change from figure to figure in order to better

br(X,t)= %[ﬂmm( n)cosnk(t—x)

rectangular junctiort& present the data. In Fig.(@ the data(both numerical and
theoretical relative to the height of second and third FS have
_ M%) Qm ) been scaled by a factor 10 and 30, respectively. As expected,
imo(7) = T: 22 Im(7)- (15  for =1, we get an excellent fit between the numerical data

and the theoretical expression for=1, 2, and 3, since the
From the expression of the quality factdds,, we note that Q,/k? ratio is smaller than unity; further, we observe an
if the surface loss dominates the tunneling Ifss example, increasing departure of the theory from simulation as we
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FIG. 2. Magnetic pattern of the FS amplitudes for annular junc-
tions in a barrier-parallel magnetic field for different normalized
ring circumferenced. The data are obtained from the numerical
integration of Eq.(1) with «=0.1, 3=0.01 andn=0; the data
relative to FS1, FS2, and FS3 are shown with open circles, closed
circles, and stars, respectively. The lines are the theoretical curves
for different values of the step order according to Eq(15).

move to largeQ, /k? ratios, although the fit is still reason-
ably good for second and third steps in the case of
=3 and for the third step in the caselof 6. There are at
least two other features that should be noted in the numerical
data shown in Fig. 2(i) as we move to largé, the field
values which yield the minimé&he zeroesand the maxima

in the FS magnetic patterns do not change, however, the step
amplitudes increase and the increment is more pronounced
for the higher order stepsii) for | =6 data are missing in
the small field region, the situation is even worse Iferl2.

The lack of FS for small field has been observed experimen-
tally on long linear junctions'?° and, as we will see in the
next section, is typical of long annular junctions too. In order
to test the perturbative theory also in the case of trapped
fluxons, we have integrated Ed1) with n=1, =3,
a=0.1, andB=0.01 and we have monitored the amplitude
of the FS associated with the single fluxon motion as a func-
tion of the applied field. This dependence is reported in Fig.
3, where the points correspond to the numerical data and the
full line to Eq. (17) with Q;/k?=3.4; although we are out of

is at least a good qualitative agreement.

o6 ¢

0.4

02}

—— Theory
¢  Simulations

0.0
0

FIG. 3. Magnetic pattern of the single-fluxon FS amplitude for

annular junctions in a barrier-parallel magnetic field. The data are
obtained from the numerical integration of E{) with «=0.1,
B=0.01,1=3, andn=1. The full line is the theoretical curve ac-
cording to Eq.(17).

evolution of the phase with the junction biased on the first
and second FS. In a stationary state the phase time evolution
is periodic with a periodT=I/m. Since both the three-
dimensional plot ofé(x,t) and the snapshots ap(x) at
different time intervals are not easy to understand, we have
decided to make use of the simple, qualitative drawings

(a) t=T/4

D

t=T/2

(b) t="T/4

t=3T/4

I
'

@

t=T/2

> U . ) FIG. 4. Sketch of the dynamical states observed on annular
the validity range of the perturbative thed@y /k“>1, there junctions biased on the firs) and secondb) Fiske step. Fluxons

(antifluxong are drawn outsidéinside the ring. The point where

In order to shed some light on the mechanism responsiblghe fluxon-antifluxon pairs are creatddnnihilated is indicated
for the appearance of the FS’s, we have observed the timeith C (A).
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shown in Fig. 4a) and Fig. 4b) for the dynamical states
observed in the case of the first and second Fiske step,
spectively. In the case of the first Fiske step the dynamic:
can be described as follows. &t 0, a fluxon-antifluxon pair

is created atV=— 7/2; under the influence of the Lorentz
forces due to the bias current and the external magnetic fielc
the fluxon and the antifluxon start to move in opposite direc-
tions and annihilate af= + 7/2 after about a half period;

Substrate

during the second half of the period no traveling fluxon q‘ "
antifluxon are observed until a new fluxon-antifluxon pair is Ll Photoresist
created att=T and so on. According to this picture, the ' E b, 0;
average number of traveling fluxons is one, so that the volt (d) W ALAIOx-Al

age expected for this dynamical step is the same as that for

the single fluxon step. As far as the second Fiske step is FIG. 5. Low-Q ProcesSLQP) used to fabricate high loss Nb/
concerned, the dynamics is a little bit more complicdtse  Al-AIO ,-Al/Nb junctions.(a) Nb base electrode deposition and pat-
Fig. 4(b)]: att=0 while a fluxon-antifluxon pair is created in terning; (b) and (c) definition of the junction area by Nb liquid
at f=—m/2 a second pair is annihilated #t=m/2; the anodizationy(d) deposition of the Al-AIQ-Al/Nb bilayer.

fluxon and the antifluxon move toward the annihilation point .
and reach it att=T/2 while a new pair is created at COMe the problems related to the low barrier losses and to the

9= — m/2; the dynamics in the second half of the period isSmall Josephson penetration depths, we developed a new
exactly equal to that in the first half period. According to this fabrication process not based on the trilayer deposition that
picture, the average number of traveling fluxons is two, sdVill be referred to as the low@ processLQP) and is illus-
that, the voltage expected for this dynamical step is twicdrated in Fig. 5. Initially, a Nb film is deposited on the whole
that of the first Fiske step. We would like to observe thatWafer and patterned with the geometry of the junction base
other mechanisms exist that would give the voltage of thélectrode by means of Gfreactive ion etchingFig. S@].
second Fiske singularity, but we only observed the one deffterward, the junction area is defined by a resist stencil
scribed above. When the field is larger than the critical valuelFid- 5(b)] which protects the base electrode against the nio-
as we know from the study of the static properfiestatic ium liquid an_odlzat|orﬁF|g. 5c)]. Finally, after a soft argon
fluxons and antifluxons sit in the potential wells@t 0 and ~ SPulter cleaning of the base electrode surface, a ALAIO
9=, respectively; the number of fluxons goes as the lob/NDb bilayer is deposited and patterned W|th th'e geometry
order in the magnetic pattern. We want to stress that, alof the counter electrode by means of Cfeactive ion etch-
though in Figs. ) and 4b) we have depicted the fluxons as N9 or lift-off technique[Fig. 5(d)]. The details of the film
particles, a description in terms of waves is more realisticd®POsition and etching and of the niobium anodization can
also in the case of very long junctions for which the Fiskeb® found elsewher€.A typical -V curve of a small Joseph-

steps are observed for field values so large to penetrate in tRON tunnel junction fabricated with the SNAP process and
barrier and to produce a phase twist. the LQP process are shown in Figapand Fig. §b), respec-
tively. We observe that the LQP process yields junctions

with larger subgap currentgquality factor V,,=10 mV)
when compared to typical junctions fabricated with SNAP
technology; furthermore, the.R,, product and the gap volt-
age are lower, i.e., 0.4 and 2.4 mV, respectively. The junc-
tion quality has been found to be strictly related to the Nb

Ill. EXPERIMENTS
A. The samples

Two processes have been used to fabricate Nb/AlAIO
Al/Nb junctions. The first one is the well known selective

niobium anodization procesSNAP)?! that, as all the other
processes based on the Nb/AI-Al@I/Nb trilayer deposi-
tion, provides high-quality junctions, i.e., having extremely
low lossesQ,>1;?? further, with this technology it is diffi-
cult to get Josephson current densities lower than 10
Alcm? 2 i.e., Josephson penetration depths larger than 10
um. In other words, in order to satisfy the condition EB),
annular junctions with very small physical circumference ar
required, but then the condition of unidimensionalty<r
cannot be satisfied with a standarg«in-resolution photoli-
tographic process. Furthermore, because of the low barri
loss, thel -V characteristic of high-quality junctions shows a
wide region of instability nea¥ =0 that often prevents bi-

asing the junction onto the low-order current singularities, in

particular for low values of the applied field. This region of
instability that was theoretically investigated by Costabile
et al?* for long linear overlap-type junction@vith no mag-

netic field and was experimentally found to be more pro-

sputter etching parameters, although a systematic work to
establish the exact correspondence has still to be done.
We believe that we are dealing with superconductor—
normal-metal—insulator—superconductor junctions where the
rmal layer is mainly provided by the disordered Nb sur-

o}
gace after the sputter cleaning of the base electrode. This

implies that the junction magnetic penetration is larger and,
as we will see in the next paragraph, the Swihart velocity is

eIower. Further, the magnetic pattern of the maximum critical

current of small square test junctions was Fraunhofer-like
with equally spaced and well-pronounced minima indicating

%hat Nb-insulator barrier is uniform and pinhole-free. The

LQP process is easy and very reliable; a deeper understand-
ing of the properties of the junctions fabricated with the LQP
will be the subject of a future work.

B. Experimental results

In this section, we present the results obtained for short

nounced in long junctions having annular geometry. To overannular junctions fabricated with the lo@-process and hav-
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FIG. 7. Experimental patterns of the FS amplitudes for annular
junctions fabricated with the LQP in a barrier-parallel magnetic
field for different normalized ring circumferencésThe lines are
the theoretical curves for different values of the step ordesc-
cording to Eq.(15).

(b) underdamped, but not enough to satisfy the criterion of ap-
plication of the Kulik theory. For slightly longed £8) and
FIG. 6. Typicall-V characteristics of junctions fabricated with very long (=30) annular junctiongfabricated with SNAP
(a) selective niobium anodization process diwl low-Q process. or LQP) we found a situation very similar to the numerical
Horizontal scales: 1 mV/div. one: for low field values the Fiske singularities were absent
or very tiny and suddenly increased for a given field value
ing a mean circumferenc€=500 um and ring width that depends on the step order and on the junction length; the
Ar=30 um. Critical current densities as low as 5 A/ém longer the junction, the larger this threshold value. We be-
were obtained corresponding to Josephson penetratidieve that this threshold field is approximatively equal to the
depths as large as 2%Gm. Upon application of a magnetic junction critical field which was found to depend quadrati-
field in the plane of the barrier, almost equally spaced Fiskeally on the normalized ring circumference both from the
resonances appeared on th¥ curve, as expected, at quan- numerical simulatiorfsand from theoretical consideratiofs.
tized asymptotic voltageg,=nd,c/C. We found that these For field values larger than this threshold the dependence is
voltages are independent of the field orientation provided ifégular and Bessel-like. We would like to point out that these
the plane of the barrier. In Fig. 7 we present the magneti@bservations have been made by other authors on rectangular
field dependence of the maximum amplitude of the first foujunctions too:**° Finally, for very large field values, we
Fiske singularities for two junctions having different normal- have observed the alternation of even and odd steps as fore-
ized ring circumferences, vid=2 andl=4 in Fig. 7a) and  seen by Eq(16).
Fig. 7(b), respectively. The experimental points for different
step orders are represented with different symbols, as shown
in the legend. Further, in order to evidence ﬂﬁedepen-
dence, we show with lines the theoretical fit according to Eq.  We have demonstrated that the Kulik thedhythat de-
(15) with arbitrarily chosen prefactoi®,,/m?k?. In fact, as  scribes the phase dynamics in electrically short, rectangular
in the case of rectangular junctioff&Q,,, must be considered Josephson tunnel junctions in the presence of an external
as some phenomenological parameter to be found expenmagnetic field, can be successfully extended to underdamped
mentally, for example, from the width of the resonanceannular junctions; an extension of the Kulik theory to high-
maxima; once th&),, are known for differentm, an estima- Q annular junctions will be attempted in the future. The main
tion of the loss coefficients and 8 can be attempted. We results of this perturbative approach afi¢:the dynamics of
plan to find these coefficients for LQP samples in a futurea annular junction can be described by the superposition of
work and to relate them to the different conditions of fabri-two small amplitude waves traveling in opposite directions;
cation. As far as these data are concerned the factors whidhi) the maximum amplitude of the Fiske step follows a
give the best fit for the first Fiske step@, /k?®=1 for both  Bessel function dependence on the external field. We believe
the samples, meaning that the junctions are quite small antthat Eq.(12) is particularly useful in the context of particle

IV. DISCUSSION AND CONCLUSION
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detectors in which the Josephson current and the resonant An=Jm-n(7)+Imen(7), (A4)
steps in the low voltage range have to be depressed by means

of large external field that may deteriorate the superconduciyhereJ, () are the Bessel functions of integer ordeand

ing properties of the electrodes. Since the winding numbegrguments. We would like to observe that also giican be
(i.e., the difference between the number of fluxons and thgeen as a superposition of waves traveling with opposite

number of antifluxonswhich is proportional to the trapped speeds; in fact, EqA1) can be written as
magnetic flux is a topological constant, Ef2) states that if

an annular junction has trappedfluxons at the time of the o
transition to the superconducting state, then the firstl sing®= >, [Jinn(7)cOS 0t —mkx)
steps will be vanishingly small without the need to apply an m=0

external field; further, the zero-voltage critical current will be
vanishingly small as well, as already demonstrated
theoretically and experimentall§. o ) ) , ) _

The numerical integration of the perturbed sine-GordorConsidering thaf = — »“F, and S,= — ©“Sy, substitut-
equation has shown that the magnetic-field dependence #19 Eq.(7), Eq.(Al), Eq.(A3), and Eq.(A4) in Eq. (5) and
the field induced current steps is Bessel-like also for electriusing the orthogonality of trigonometric functions, we obtain
cally long junctions. Further, the dynamics can be described

+Jm_n(m)cog wt+mkx)].

in terms of nucleation and destruction of fluxon-antifluxon (M?k®— w?)F i+ (a+ BMPk?)F = —dysinwt, (A5)
pairs.

In order to obtain an experimental confirmation of the oo o o o
Kulik theory we have developed a new fabrication process (M= @) Sy +(a+ BMK) S, = —ccoswt.  (A6)

that produces underdamped junctions; it is generally found

that the main losses are related to the surface impedance bfom Ed.(A5), we have

the superconducting films and to the quasiparticle tunneling

current. Losses in the dielectric layer due to radiation from (M?k?— 0?)B— w(a+ Bm?k?)Ap=—dn,,
the junction can be shown to be negligible; also geometric
contributions to the quality factor due to the edge defects of
the junction are not relevant for samples of rather large size
and ‘.N'th. annular geometry. For hlgh-qua_lllty dewce_s, theBy solving the system, we obtain the following expression
contribution to the losses due to quasiparticle tunnel is ne or the coefficientsA.. andB... -

ligible in the frequency range and at the temperature consid- m m
ered, however, we believe that this is no longer true for LQP 1
junctions. In a future work, by carefully recording the step :dm‘”Qm
profiles, it will be possible to determine the contributions to m Azm
total losses coming from the the surface impedance of the

superconducting films and from the quasiparticle tunnelingand

current.

w(a+ Bm?k?) B+ (m?k?>— w?)A,=0.

dy(M2k2— 2)
APPENDIX A: CALCULATION OF ¢! Bn=——""(37 (A7)
m

We start from Eq(1) with the boundary conditions given ] o
by Eg. (20 and we assume thagp=¢%+ ¢!, where Analogously, from Eq.(A6), we can find the coefficients

O— nkx+ 7sinkx+wt. Inserting the last two expressions in Cm @ndDp,, which are
Eq. (1), we end up with a linear PDE E¢p) for ¢! that we

assume to be of the form given in E(7). By means of (M- 0?)
algebraic calculations it is possible to find the Fourier expan- Cm=- A2
. . m
sions of sip® and cog’:
" and
sing®= >, (d,coamkssinwt + c,sinmkxcoswt), o-1
m=1 Chw
(A1) Din=——"7 . (A8)
m
cosp?= >, (dmcognkxcoswt — cpsinmkisinet), Whe{/eQszl:(an,Bmzkz)/w and A7 =(m’k*— w?)?
m=0 +w .
(A2) "
with APPENDIX B: CALCULATION OF (sing)
cn=Jm_n(7) = Imin(7) (A3) In order to calculate the Josephson current, we have to

calculate the time and space average ofsioy making use
and of Eq. (7) and Eq.(A2):
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i =(sing)=(p*cosp?) Finally, introducing theQ factors, we can write the normal-
. ized Josephson current carried on the Fiske steps as an ex-
__ [Tdt (12 dx 1 licit function of the step voltage and of the external field:
= lim f —f —plcosp®=— >, (Ardm—DmCrm) P P g
T—oo
o 2 2
_ E E wdm(a+,8m2k2) ow(a-i-,Bmzkz) (w,m)= E [J2 man( 77)+J _n(m)]
4 & AZ AZ P 202
1< ( ( )]w(a+,8m2k2) Q!
= _ —_—. X —.
2m:1 m+n n)+ m n\ 77 Aﬁq [(mk/w)2—1]2+Qm2
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