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Effective electron-electron interactions and the theory of superconductivity
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Electron pairing is examined from a viewpoint which treats electron-electron interactiongbbiktin a
single band and two-band contgaind only later adds in electron-phonon coupling. We report solutions to the
Eliashberg equation for the one- and two-band interacting electron gas, in the absence of phonons and then
with phonons included, using effective electron-electron interactions that are closely constrained by sum rules.
No s-wave pairing is found for the one-band case in the absence of phonons but higher angular momentum
pairing is possible. In some contrast, intrinsievave pairing is found for the two-band case, and again nonzero
angular momentum pairing may arise. With the subsequent inclusion of phonons, but treated on a completely
equal footing with electrons, transition temperatures of several simple metals are determined, and found to
agree to within 20% of measured values. For low density systems, significant deviations from the predictions
of the McMillan expression assuming* ~0.1 are found. An important example is Li where we obf&jn
~0.4 mK in sharp contrast with previous approximations which dgive-1 K, and are not supported by
experiment[S0163-18207)06821-3

[. INTRODUCTION physically motivated expression for the effective interaction,
and it is derived by considering the rearrangement of elec-

In the traditional approach to the theory of superconduc;[rons in the vicinity of a test charge with which other par-

tivity, the phonon mediated interaction is usually treated first,[icles interact both through a direct Coulomb term and an

and the_ direct Coulomb interaction is subsequently mt.ro'exchange and correlation term. The latter is taken to be pro-
duced in terms of the Morel-Anderson pseudopotential

* . o portional to the direct interaction contribution where the pro-
wn* . Most calculations of the transition temperature concenyqinnality term is expressed as a local field factor. In this
trate on treating the_ phonon medlat_ed mter_actl_on, some witl ay, the KO approximation leads to the inclusion of the
great accuracy, while the Coulomb interaction is often iNCOrmajor many-body effects through the introduction of local
porated in a fairly approximate way, for example, by simplyfie|d factors. In Takada’s work the expression for the effec-
assuming thap* ~0.1. However, from a consideration of tjve interaction actually uses Hubbard-like local field factors,
the energy scales in the initiating problefH=H.. and these show quite significant departures from those ex-
+He.pnt Hpn, He-e>He pr>Hyp), it might appear more rea- pected from a more complete descriptfohOne of the pur-
sonable to first take into account the large electron-electroposes of the present paper, therefore, is to show that the use
interaction and only then treat the smaller electron-phonomf more realistic local field factors leads to an absence of
interaction. In the following, we take this viewpoint and first intrinsic s-wave superconductivity in the three-dimensional
consider the problem of intrinsic superconductivity in theone-band case over a wide range of densitips;and
one- and two-band electron liquids. We then reconsider thd-wave pairing are not, however, ruled out.
problem when phonons are present, and addatwith due The two-band case is found to be strikingly different,
account taken of their frequency scalde the electronic when again quite realistic forms for the local field factors are
problem. As we will show, the phonon mediated interactionused. The possibility that intrinsic superconductivity might
and the Coulomb interaction can together be treated on accur in atwo-bandelectronic system was raised earlier by
completely equal footing. Geilikman® following on from a suggestion of Littl& More

In 1965 Kohn and Luttingérconsidered the possibility of recently, Vignale and Sing# and Chakraverty have dis-
superconductivity in the three-dimensional homogeneous ineussed in some detail the possibility of superconductivity in
teracting electron gas without phonons or other intermediarelectron-hole systems, and Ruvafdsas examined the pos-
ies. A direct consequence of Fermi-Dirac statistics togethesibility that acoustic plasmons in a two-band model could
with an approximate treatment of screening could lead, asxplain the substantial transition temperatures observed in
they noted, to regions where the effective electron-electrothe high-temperature superconductors. In these models, as
interactions were weakly attractive. Though pairing statediere, the residual interactions between the two bands lead to
with off-diagonal long-range order could then develop inphysically interesting forms for the effective attractions be-
principle, the corresponding critical temperatures were extween electrons. Once again if Hubbard-like forms for the
tremely low. Intrinsic superconductivity has since been coniocal field factors are used and the Kirzhnits, Maksimov, and
sidered by several authofs® the most comprehensive explo- Khomskii (KMK ) approximatiof® for the calculation of the
ration in the one-band case being the recent work of Takadasuperconducting transition temperatui®,, is also used,
where the effective interaction included vertex corrections tdVignale and Singwi have found that correlated charge fluc-
all orders made possible by the use of the Kukkonen antluations(as reflected again in the local-field factocsin me-
Overhauseér (KO) approximation. This approach leads to adiate a superconducting transition. However, the KMK ap-

0163-1829/97/582)/1513(016)/$10.00 55 15130 © 1997 The American Physical Society



55 EFFECTIVE ELECTRON-ELECTRON INTERACTION.. .. 15131

proximation might reasonably be expected to break down foanomalous self-energyp,(k,iw,), is evaluated on a finite
this system since the frequency scale for the attractive intemgrid in k and w, with a grid spacing chosen to be small
action is not at all small compared to the Fermi enérdy. compared to the scale on whieh(k,iw,) varies. For the
In the following we describe a method which attempts toevaluation of®,(k,iw,) at arbitraryk,w, we then linearly
overcome these difficulties; the key is a complete solution ofnterpolate between nearest grid points. When we examine
the frequency and momentum dependent Eliashberg equatiahe possibility of intrinsic superconductivity, we must select
using fully self-consistent Green’s functions, which incorpo-a grid spacing in frequency which is small compared to the
rate accurate local field factors that satisfy the known sunFermi energy at small frequencies and which then increases
rules. The principal aims are therefore first to examine thdor large frequencies until it is on the order of the Fermi
possibility of intrinsic superconductivity in one- and two- energy. Later, with phonons included, we must choose in-
band systems, and second to only then reexamine the probtead a grid spacing in frequency which is also small com-
lem when phonons are included but in a manner in whictpared to the Debye frequency for small frequencies and
electrons and phonons are both treated corapletely equal which again increases for larger frequendiestil it is again
footing In calculations of the superconducting transitionon the order of the Fermi energyWe find, as has Takada,
temperature in metals, it has become common practice tthat®,(k,iw,) possesses considerable structure at the Fermi
describe the role of the direct Coulomb interaction throughwave vector; a sharp dip appears in it for frequencies larger
the use of the parameter* (the Coulomb pseudopotential than the Fermi energy, and in order to accurately accommo-
introduced above which is usually obtained from tunneling date this structure in our calculations it is essential to use a
data, calculated from the static effective interaction in agrid spacing irk that is very small at the Fermi wave vector.
square-well approximation, or simply assumed to be aboufor typical transition temperature3.~10 ¢, this grid
0.1 (see Ref. 14 for a discussion of the physical origins ofspacing at the Fermi wave vector &k~0.00k;, but an
w*). We shall describe here a technique for calculating theeven smaller spacing is required for systems with smaller
transition temperature where the Coulomb interaction andransition temperatures. The spacing is also chosen in such a
the phonon mediated interaction are actually treated togethefjay that it increases dsis moved away fronk; ; that it is
a priori. A principal finding is that the role of the Coulomb actually fine enough is ensured by examining the resulting
repulsion in establishing the transition temperature canndiunction®,(k,iw,). If there are regions whem®, (K,i w,) is
always be treated using the standard approximations fafiot slowly varying over the grid, we simply repeat the cal-
w*. In particular, the rather common assumption tpdt  culation with additional grid points supplied and repeat this
~0.1 appears to significantly overestimate the superconducprocedure yet again until the determination of the transition
ing transition temperature in low density three-dimensionatemperature is converged.
one-band systems where the Coulomb repulsion is strong. A The method of evaluating(k,iw,) then converts Eq.
striking example of this may be found in the element lithium (1) into a matrix equation with the formal structure
(which, accounting for the band mass has effective
=5.7) where the assumption* =0.1 causes an overestima- M P =D, 3)
tion of the transition temperature by orders of magnitude. On . . : :
the other hand, for two-band systems, which we find can b@nd it can be str aightforwardly converted into an eigenvalue
superconducting even without phonons, it will be seen thePrOblem by writing
assumption that.* ~0.1 can significantly underestimate the _
su ducti " M@= yP,, 4
perconducting transition temperature.
showing that Eq(1) is recovered when one of the eigenval-
Il. ELIASHBERG EQUATION ues,y, is equal to unity. To calculate the transition tempera-
ture, we therefore solve E¢) for the largesteigenvalue as
a function of T. For high temperatures, this largest eigen-
value is always found to be less than unity; the transition
. temperature is then determined as that temperature for which
P, (K,iw,)= -T> dk' K, (K,i wn K iw, DK iwy), the Iargest eige'nvalue eventually equals unity. '
Wy J0 Since Eq/(1) involves a sum over Matsubara frequencies,
(1) and there are on the order &f/ T, such terms in this sum, it
would not be feasible to calculafg; for low temperature
systems if we were required to evaluate the integrand at each
and every such frequency. However, the integrand is a
smooth function ofw,,, and we can therefore easily evaluate

The Eliashberg equatidn for the pairing function,
d,(k,iw,), of -wave superconductivity can be written as

where

K (K,i g ;K i wnr)

k’ _ 5 [k the sum using a technique similar to Romberg integratfon;
=12 |G(K',iwp)] Jlk—k’dq P solutions to Eq.(1) for temperatures at least as low &g

~10 ¢ can thereby be obtained. Ultimately, the lowest
k?+k'2—q? _ _ temperature that can be reached is limited by the sharp struc-
X W)qveﬁ(qv'wn_'wn')’ (2 ture discussed above in the pairing functioh,(k,iw),
namely the dip that occurs nelk; for large frequencies.
andV4(g,iw) is the irreducible electron-electron interaction. Its origin is traced to the long ranged part of the Coulomb
Equation(1) can be solved by using a technique similar tointeraction and as noted it was first discovered by Takada
that of Rietschel and Sha&mand Takad4. To do so the his comprehensive electron gas calculations. For low transi-
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tion temperature systems, we must use a high density of grid In what follows, we derive the KO expression fonaulti-
points neark=k; to resolve this important feature since band electron liquid using the Kukkonen-Overhauser ap-
it grows with decreasing temperature. To see this, weroach. To correctly include self-energy effects we find that
may evaluate Eq.(1) for large frequency by treating the Lindhard function appearing in the effective interaction
d,(k',iwy) inside the integral as a constant and simply re-will have to be modified. This, as we will see, leads to the
placing the momentum integral by an integral over the denintroduction of a third local field factoiG, . We will show

sity of states, which we also treat as a constant. Ignoringpelow that an approximate phonon mediated interaction can
factors and also ignoring terms that do not contribute toalso be included, exactly within the same framework.

the long-wavelength singularity inP,[(k?+k'2—q?)/ The Hamiltonian that defines the multiband jellium prob-
2kk'1Vex(g,ic0), we find lem is
Oy (Ky i Fdl Sl in(el e @ (Ky i 5 <€
(K¢, io0)~ o eztan 2_-|-C n(eler)P(Ks,iwo), (5) H=% 2me CkaCka
which in turn implies that 1

+—2 2 2 Ua'BCl aCT/7 Ck/ Ckal (7)
@ (ky i0)~ ~IN(Te/e) Py (ks i wo), () 2V 1@ o dro ¢ AR
in the limit thatT.<e; . This structure will be evident in all wherem{ are the band masse¥, is the volume, and &?
of the pairing functions®,(k,i ), that we calculate in the =4me%ef/e,q? is the bare Coulomb interaction reduced by
following, and as noted it will also be evident that its scalethe background dielectric constast,. The indicesa andg,

grows with decreasing transition temperature. indicate both band and spin. We permit the sign of the
charge to depend on band index since we wish to consider
Ill. EFFECTIVE INTERACTIONS both electron-electron systems and electron-hole systems. In

o ) ) ) writing Eq. (7), the assumption at this point is that the ions

The essential input into the Eliashberg equatibnis the  4re static and that the electron-ion interaction corresponds to
effective interaction e, which can be defined as the part of 4 periodic situation. In a one electron description it is this
the scattering amplitude that is irreducible in the part'de'periodicity that gives rise to the band structure that is here
particle channel. For the electron gas, the simplest reasofispresented by separate bands within an effective mass
able approximation to the effective interaction is the ra”donhpproximation. It leads to a view that there are no further
phase approximatiofRPA); it includes screening effects but effects of the electron-ion interaction that are not subsumed
ignores exchange and correlation _corr_ectlb7n§|nce the in the uniform background approximation of the jellium
RPA leads to the form screenede, it might seem that it o4el. Note that the Hamiltoniaf¥) doesnot lead to inter-
could be improved by simply using a more accurate dielechang transitions; this has been shown to be a reasonable ap-
tric function, e. This is not the case: exchange and Co”e""“proximation if the bands have a small overlap integral such
tion effects enter into vertex corrections and electron-holg;ss andd band<2®

ladder diagrams, as well as in the dielectric fl_mction itself. | the KO formulation, the effective electron-electron in-
Kukkonen and Wilkin§® therefore attempted to improve the teraction is determined by examining the interactions be-
RPA by writing the effective interaction asA?/e, where  tween a pair of electrons and their accompanying screening
A is the proper vertex correction evaluated in the local apclouds. Following this approach, we consider an electron
proximation; this means that is taken to depend only on from bandi with sping; it can induce a changén**'?, in

the momentum and frequency transfer. This local approxithe number of electrons in the surrounding electron (.
mation allowsA to be evaluated in terms of the local field hotational simplicity we need not explicitly indicate the mo-
factor, Gg, which is then used to describe the charge reJmentum and frequency dependence, but it should be remem-
sponse function. However, the Kukkonen-Wilkins interac-bered that the quantitiesn'?, the local field factors, and
tion is still not sufficient for our purposes since it ignores thethe effective interaction all depend both on momentum and
electron-hole ladder diagrams. To address this particulaifequency transfer.An electron from band with spin o
Omission, Kukkonen and Overhau%derived an expression W|” interact W|th both the e|eCtI’0n from ban'd and W|th

for the effective interaction that consistently includes ex-An“'”; the effectiveinteraction is therefore given by the
change and correlation effects to all orders leading to a resulfteraction between the two electrons augmented by the in-
which includes the Kukkonen-Wilkins term and the sameteraction that the electron from barjdfeels due to the
local approximation to the electron-hole ladder diagramsscreening cloud around the electron from bandhe com-
The essential inputs into the Kukkonen-Overhaudé®) plete effective interaction can therefore be decomposed into
approximation are (i) the identical local field factorG,, @ direct part

used in the dielectric and the Kukkonen-Wilkins approxima-

tion, but additionally(ii) the local field factorG,, used to Tioio_ i ik A pkviio

describe the spin ?/esponse function. Kukkonen and Over- Veirect =V +% veAn ®
hauser derive their result by considering the exchange- )

correlation hole around an electron and they calculate th@"d an exchange-correlation part

interaction of a second electron with this screening cloud.

This expression has also been derived by Vignale and Singwi vieio_ __ji~jo’io_ ikajo! kvp nkvio

(VS) using a diagrammatic approatht® Vere veG % veG Antre. O
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G(0Q). SinceFTo is difficult to evaluate, it is convenient to
express it in terms of the Lindhard function by defining the
additional local field factorG,, referred to above and in

: h that
r A n(q,lcoq) such a way tha

M
110G,

By substituting Eq(11) into Egs.(8) and (9) we then find
that
FIG. 1. Feynman diagram for the change in the number of elec-
trons in a screening cloud induced by a charge fluctuation. ~oic 1 i o Ko RS kvio i o i
Vi -5 kZ v (1-GI7 IV T =0l (1- G,
The quantitiest"/’“’ are here defined as proportionality 14
terms in the definition of the exchange-correlation interac-and we can simplify this equation by defining the spin-
tion, but as we shall see they are simply related to the stan- mmetric interac?ion q y 9 P
dard local field factors used in theories of the electron quuidSy
and they can also be obtained from the response functions.

~ 1 ~. . o~
For a static lattice the complete effective interaction is then VY =5 (VEAT+ Vi (15

= (13

veio—\Krlo kel and the effective interaction defined

in this way includes interactions that are not included in theand the spin-antisymmetric interaction
irreducible electron-electron interaction since it includes the
effects of exchange and correlation between the interacting
particles in the first term in Ed9). To obtain the irreducible

effective interaction we subtract this term, i.e.,

~ 1 ~ . o~
Vi=5 (Ve "= Vi), (16)

Equation(14), which can be expressed as aX2n matrix
ng’,ia:'\v/je%’,io_'_vi:ing’,ig‘ (10) gquation(n is the r_1umber _of bandiscan then_be separated
into two nX n matrix equations, and we obtain
The induced changey\n*"?, in the number of electrons o
in ba_ndk surr_ounding an electro_n from_ba_lhds related to a VE — 2 Uick(l— GLk)HSV§j=uLj(1—GQ) (17)
density-density response function Ifthis is the local ap-

proximation to diagram )1 and

) 1 —— .
kvio_ — rky\/kv,ioc ~. . . L
Ano=25 oVeir ™, (11) Vi+ 3 o eIV = —v{cl, (18)

T i T
yvhere the factor O.ﬁ IS mclud'ed n Eq.(l'l) becauseH'O where the spin-symmetric and spin-antisymmetric local field
includes a summation over spin. This relation can be directly | ... S0 giil= YGT+GTY)  and Gl=YGiH!
s 2 a_ 2

dgnved fquth_ei dlfigram of Fig. 1 where thg sgatterlng am_GiT,ii)' By defining the matrices {Qi=Vi (Wi
plitude, I'(k,k’,q), is replaced by the effective interaction, i(1-G1). (L) —TTs q s
VKYo(@). Here, we are using a four-vector notatian =vc(1=Gs), (o) =M,d;, an

=(iwq,q) andq=|q|. Kukkonen and Overhauser originally
took the response functio],, to be simply the Lindhard
function. All interaction effectsiotincluded in the Lindhard the solution to Eq(17) can be compactly given as

function are therefore taken to be included in the effective -

interaction through the introduction of local field factors. V=IIy ll'[s\lls. (20
However, we adopt a somewhat different physical approach,

namely, that the local field factors should describe interac- From a consideration of the interaction between test
tions betweerdressecelectrons, not between bare electrons.charges it can easily be seen thdl is the density-density
This viewpoint is quite consistent with the suggestion byresponse matriX} and it can also be seen th@&{=G;
Niklassorf! that self-energy effects should be included in a+ G, is the local field factor normally used to describe the
modified version of the Lindhard function. Accordingly we charge-charge response function. Using Eff) and the
shall we takd1, to be a modified Lindhard function given by definition of I, we find

the definition

I, =11, -, (19

_ Ep [ dos v'Sl:ug+%1 PikTkmgp M (22)
HO(Q):—ZJ L J - GE+AGH), (12 o

Similarly, from the definitior¥} = —v¢ G, 6; and a consid-
which is similar to the standard Lindhard function excepteration of the effective potential felt by an electron due to an
that the noninteracting Green’s functioG,(q), has now applied magnetic field, the spin-spin response function can
been replaced by the fully interacting Green's function,be also showhto be given by
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L 15.0 : : :
I} == §jj. (22
1-v, 11, —— modified KO
------------ renormalized KO
The spin-spin response function is diagonal in the band index ---- KO
because as noted above we are working within an approxi- 10.0 | T (’;‘_PIA y ]
mation that neglects interband transitions. The quar@t&, . electric
=G, + G, is the local field factor normally used to describe N%
the spin-spin response function. For the spin-antisymmetric ;
interaction, we find ‘>'=
Vi = (V)16 - (23
Expressing these results in a spin-invariant form, we fi-
1 0.0 1 1 L
nally arrive at 0.0 0.5 1.0 15 2.0

a/(2k)
Vi(;'j(;’:l)ij"‘z ‘Pikam‘ij'f'(;‘(;,(‘Pi )ZHi S (24) . . . . )
c & Tsils s a/ Hadij o FIG. 2. Effective interaction between electrons in the singlet

state in the one-band electron liquidrat 2. The renormalized KO

a result that now has a very compelling physical interpreta@Pproximation is the KO effectiviezinteractilon multiplied by the qua-
tion: the first term is the bare interaction, the second is th&iparticle renormalization factorkf . The dielectric approximation
interaction mediated by charge fluctuations, and the third i given byv/e.

the interaction mediated by spin fluctuations. The interaction . .
mediated by charge fluctuations is attractive for both the sin- vé(l— G2, U(Z](Ga)ZHO
glet and triplet states, but the interaction mediated by spin Ve=vq+ ——a —.
fluctuations is only attractive in the triplet stafieis repul- 1=0q(1=Gyllo 1+04Gallo
sive in the singlet staje Except for the treatment of self- Here vy is the bare Coulomb interaction ar‘ﬁo is the
energy effects, Eq(24) has also been derived using a dia- | indhard approximation to the density-density response
grammatic approach by Vignale and Sind¥Dur treatment nction (but modified to include self-energy effefsand

of self-energy effects can be included within the VS formal- ,—3 or —1 for singlet or triplet pairing, respectively. The
ism by using the modified Lindhard function instead of thegecond term in Eq27) is the interaction mediated by charge
usual Lindhard function. The result of this procedrs  fiyctuations, and in the VS formalism it arises from the
then precisely Eq24). Since the original KO approximation gcreening of the Coulomb interaction, from vertex correc-
includes a factor ofz; in the definition of the effective tions, and from particle-hole ladder diagrafisThe third
interaction® it should be remembered that the appropriateterm is the interaction mediated by spin fluctuations and in
Green's function to use in calculations involving the originalthe VS formalism it also arises from particle-hole ladder

(27)

KO approximation is then diagramst® In Fig. 2, we plot the effective interaction deter-
mined by Eq.(27) along with the results from several other
- . q? -1 approximations.
G(giow)=|iw— (W_’“) (25) For a two-band system, the effective interaction between

electrons in bandl) is given from Eq.(24) as®°
andnot the full quasiparticle Green’s function, — _
va(1-GH2Iy) va(GHGY

+ —«a —
1-vg(1-GHIMYY — 1+v G

-1 Veff= v q
(26)

iw—

q2
om* M

G(g,iw) =z,
+o2 122, (28)

This point has often been overlooKeid calculations of
the superconducting transition temperature where the fully
interacting _Gregn's function has beer_1 used wit.h thg original 012:(1—6;2)%/[1—%(1—Ggl)rTg“]. (29)
KO approximation; its consequence is averestimatiorof
the transition temperature. To acknowledge this importantereI1(?2 is the density-density response function for car-
difference, we have modified the approach by simply avoid+iers in band(2). The additional term in the effective inter-
ing the quasiparticle approximation for the Green’s func-action, which is traced to correlated char@eoustic plas-
tions. The result is that the effective interaction now dependsnonlike) fluctuations between the two bands, is crucially
on the modified Lindhard function as previously discusseddifferent. It is attractive and, as we have found, in some
In calculating properties such as the superconducting transgircumstances it can overcome the direct Coulomb repulsion.
tion temperature with this modified KO approximation, it is When the lotal field factors are constrained to satisfy the
then the fully interacting Green’s function that should becompressibility sum rule and the Ward identities, this attrac-
invoked. tive term isexactin the static, long-wavelength limit for
For the case of a single band, Eg4) simplifies to"1° electrons on the Fermi surface. Note the close and important
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I - this difference is important since we would be unable to
B satisfy the Ward identities without it. In contrast to other
e . approximations forVg{q,iw), such as the Ng-Singwi

; T approximatiof® or the usual GW approximatior?* Eq. (33)
+ : is alsoexactin the static, long-wavelength limit for electrons
on the Fermi surface. Again, this is a direct consequence of
FIG. 3. An exact representation of the self-energy. the requirement that the Ward identities and the compress-

ibility sum rule are satisfied. For the one-band case this limit
formal similarity of thestructureof this term(the square of s simply given by

an electron-hole matrix element times a “plasmon propaga-

tor”) to that of the conventional phonon-mediated attraction i . i 1 w2

in metals. lim lim V¢{k;,0;q,iw)=
The function,G(k,i w,), appearing in Eq(2), is the fully 4-0 o=0

interacting Green’s function whose corresponding self-

energy is given by

z.m*/m k;m’ (35
f

At this point we may finally introduce phonons into the
picture. The procedure is completely straightforward and the

d3q physical consequences of electron-phonon coupling can be
S(Kiwg)=—T, 27 VedQ,ivy;q—K,ivy—iw,) illustrated with sufficient accuracy by adding
2

. . , Vorl@10) == T2k 07+ o
An approximation for Vi, can be derived from the d
Kukkonen-Overhauser formalism as the direct interactiorto the effective interaction. Here the phonon frequencies,
and the interaction with the screening cloud producedvg, are given by
through exchange and correlation effects, and it is given by

wi= B (1+y0?). (37)

V=0, +2 vAniio’, (31)  We determine the parameterby requiring that the correct
le electron-phonon coupling parametaey;, is reproduced; the
No term for the exchange an correlation interaction of theParameteis is determined from the Debye temperature, and
electron with its screening cloud is included here since they iS determined from the measured valueg @, (Ref. 26

exchange-correlation effect is already includecaini=ic’,  ©F from the calculated value @f).2” Although this is a very

This embodies the same physics that leads to a single verte%&mp"ﬁed model of the phonon-mediated interaction, it cor-

correction in the exact expression for the self-enérgj.an recily incorporates the major physical features, a}nd so long
additional exchange-correlation interaction were to(ipe @S the known\ and(w);, (or {w)) are reproduced it should
correctly included, the result would then constitute the Ng- r(_esult In an accurate _value 8% . It is important to empha-
Singwi approximatioff which has been shown to overcount size that from this point onwards electrons _and phonons are
diagrams’2>[Another way to see that EG31) is correct is treated throughout on mpletely equal foptlngy a proce-
to compare Fig. 3, which is an exact representation of thgdure which acknowledges their very different frequency
self-energy, to Fig. 1.If we now substitute from Eq(11),  Scales.
we find
IV. LOCAL FIELD FACTORS: SUM RULES
Vise:Uici‘f'z vicjng) \I’isj+2 ‘I’Lkﬂls(m‘l’;"j 32) AND CONSTRAINTS
j km Exact results for the small and largelimits of the local
and by using the definition Of’isj andHiSj [Eq.(19)], this can field factors. are known from the_ g:ompressibility sum rule,
be reexpressed as the susceptibility sum rule, the virial theorem, and the con-
ditions derived by Niklassoft, by Zhu and Overhauséf,
and by Vignalé®® These sum rules for the multiband case are

Vise:ii > ol (33  the natural generalization of the well-known equivalents for
o ] the one-band caé First, the Ward identities can be written
Because Eq(33) is the GW" approximation modified to as
include self-energy effects we will simply refer to this result _ _ 2 e |1
as the modified GW approximation. In the one-band case, |im lim A‘Sj(ki ,Oik):(ZL mi*/mi)—l(_ﬁ) (_l_l,>
Eq. (32) then becomes k=0 wp—0 f kim'/\ on'on
(38)
Vse:_v—cy (34) _~ . o~ ) 2 9%e\ 71
1-vcllp(1-Gy) lim lim AJ(k;,0:k) = 8;(z mr/mi)—l(—ﬁ)(—Q) ,
. L K—0 wy—0 f kim'/\ ¢
which is similar to the usual GW approximation except (39)

that, once again, the Lindhard function has been modified to _ _ _
include self-energy effects. It is worth repeating again thawheree is the energy density' is n'' —n'!, and also
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lim limAl(KELOK) = lim  limAl(KE,0k) = (2, ) 718, -
w—0 k—0 w—0 k—0 f

(40)

Here, Al (ki,0k) and Al (ki,0;k) are spin-symmetric and
spin-antisymmetric proper vertex functions, respectively.

Next, the compressibility sum rule is given by

o 52e \ 1
lim lim H”(k)z—(——) . (41
k—0 wk—0 s an‘on’
Finally, the susceptibility sum rule is
o 52e\ 1
k—0 w,—0 6’5'

In Egs. (41) and (42), I1U(k) and 11! (k) are the proper

charge-charge and spin-spin response functions, respective

To derive conditions for the largg limits, we approxi-
mate the modified Lindhard function by

i
Ng=Ngg

— d3k
1 (] —
HO(q)_ZJ (277)3 iwq_€L+q+€L, (43)

where e, =k?/2m, a form that results in the correct large-
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In a similar way we find for the spin-antisymmetric local
field factor

491(0)— 1

_ ADy ; 1n,
lim G{™(q,iw)= 3 +§n—l[1—912(0)], (48)

gq—

and again an analogous result BF?(q,i ).

At this point we are in a position to construct approximate
parametrizations of the local field factors that incorporate
these limits. For the one-band case we may use the param-
etrization of the Monte-Carlo results of Ref. 7 to obt&g
and we obtainG, as a Padepproximate. In the two-band
case Monte Carlo results are not available so we must pa-
rametrizeboth G'Sr andG, as Padepproximates. The corre-
lation energy which is needed in the compressibility sum rule
is obtained in the one-band case from the parametriz&tion
QI Monte Carlo results and in the two-band case we use a

elf-consistency condition derived from the fluctuation-
dissipation theorem in evaluating the correlation energy.

A. The one-band electron liquid

Moroni et al.” have obtainecGl(q,O) from Monte Carlo
simulations, and they find that the form

wave vector behavior of the effective interaction. It clearly  GT(q,0)={[(A—C) "+ ((q/k)¥B)"]” "+ C}(qlk;)?

neglects the renormalization of the effective mass bdbés

include the more important effect of particle number renor-

malization. The local field factors obtained using E43)
give an effective interaction with the correct largelimit;
this follows because the divergent part@i is contained in
G, and this divergence does not affect the laggenit of the
effective interaction. If we had used Eq.2) for ITy(q) both
G, andG, would diverge for largey and the effective inter-

(49

provides a good representation of their Monte Carlo results
with n=8 for r¢=2 or rg=5, andn=4 for rg=10. The
coefficientA is fixed by the compressibility sum rule, Eq.
(41), along with Voskoet al’s® parametrization of the cor-
relation energy as determined from Monte Carlo simulations.
An expression foC can now be derived from E@43) (Ref.

6) and the result is

action would then fail to approach the bare interaction in this
limit. The fact that Eq.(12) does not result in the correct
large wave-vector limit of the effective interaction is simply
a reflection of the fact that the local approximation is not
expected to be accurate when the interacting electrons akéheree. is the correlation energy per electron. The param-
taken to have energies far from the Fermi energy. No diffi-eter,B, is given by Moroniet al.” as

culties are encountered so long as we ensure that the diver-

_ m J(rs€c)

gent part ofGl is entirely contained ir5, .
The largeqg conditions for the one-band case are

2
lim Gs(q,iw)zg[l—g(O)] (44)

q—>

and

4g9(0)—1

lim G,(q,iw)= 3

gq—>

(49)

For the two-band case the equivalent is

) R 2 1n,
im GY(q,iw) = 5 [1-0:(0)]+ 5 -2 [1-92(0)],
g— 1

(46)
with an analogous result fa8{*?(q,i »); we also obtain

lim G (q,iw) = % [1-9140)].

q—»oo

(47

a+bx+cx®

B= d+ex+fx3’ (51)

wherex=r?: specific values for the coefficients aae-1,
b=2.15,¢c=0.435,d=3, e=1.57, andf=0.409.

To obtain the local field factoGl(q,O), we notice that
the polarization diagrams contributing to the difference
G1(9,0)—G.(q,0) are exclusively of the fluctuation type.
Since the result of perturbation theBiynplies that the con-
tribution of this type of diagram can be reasonably expressed
in the Hubbard form, we can therefore use the approximation

2
a,q

Ga(a.0)=G(a.0+ 7=

1+b,q (52

Here, a, is determined by the susceptibility sum rule, Eq.
(42, and b, is determined from Eq.(45, where
Yasuhara'$! result for the radial distribution function at zero
separationg(0), isused. Although there have been attempts
to extract the susceptibility from Monte Carlo simulations,
large error bars are generally associated with the results.
Takada has calculated the susceptibility and compressibility
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using the effective potential expansidiEPX) method®?  of the self-energy; this is affected by phonon interactions.
Since his results for the compressibility agree very well withThe coefficientay, is determined from the Ward identity

the Monte Carlo results and since there are no large statisiEq. (40)], andby, is determined by assuming that the con-
cal errors in his calculated susceptibility, we will use thesetribution to G,, from phonons varies on the scale of a char-

results to determiné;l(q,O). acteristic phonon frequencyyy,, i.e., bph=w,;h4. In our
The final local field factor we require 5,(q,0), and this treatment of the phonon mediated interaction, we assume
is also determined as a Padpproximant, i.e., that the phonon frequency approaches a constant for large

5 4 6 q, i.e.,q>2k; [see Eq(37)], and we W'i|| takewp, to pe this

G.(q.0) = a,q°+b,gq"+c.q (53) constant. Because the second term in &&) only gives a

r 1+d,q* significant contribution to the effective interaction when

<wpnh andg/ki<wpn/ €5, it contributes very little to the de-
termination of the superconducting transition temperature.
But since it is quite simple to incorporatand it is certainly
resent in principle we nevertheless include it in what fol-
S.

The coefficienta, is fixed by the Ward identity in Eq.38),

¢, /d,=C, b,/d, is obtained from Eq(44), andd, is ob-
tained by requiring that the dip i6,(q,0) occur atq= 2k;
(we note that the presence of such structure is guarante
sincea, <0 andc,>0).

In the foregoing, all of the local field factors have been
treated in the static limit since it is usually argued that they
vary slowly on the scale of the Fermi frequefitimplying For the two-band case the local field factors will continue
therefore that their frequency dependences can be neglected.be given by Padapproximates, and we therefore adopt a
However, if the frequency dependence Gf is neglected form
entirely, then it is certainly not possible to satisfy the Ward
identity [Eq. (40)]. Accordingly we assume th&@. and G}
are independent of frequency but incorporate the frequency
dependence i, , hamely

B. The two-band electron liquid

a,0” + by + cq®
1+dg*

G{"(q,0= (59
whereais_ is fixed by the compressibility sum rule, E@t1),

(54 andcy/d is given by the large sum rule, Eq(50). We also
takeds= (2k;) ~* since this ensures that the transition region

from small g to large q behavior occurs around=2k; .

Finally, b, is given by the condition G]"(2k;,0)

aw2

Guli)= 77 oa-

Within this approximation, we then write the local field fac-

tors as .
=0.8a's(2kf)2 which is found to give reasonable agreement
G4(0,iw)=G4(q,00—G,(iw), (55  with the Monte Carlo results for small to intermediaie
when Eq.(59) is applied to the one-band cadhe coefficient
Ga(0,iw)=G4(q,00— G (iw), (56) of 0.8 is very close to what is expected from the results of
q perturbation theory Motivated by our results from perturba-
an tion theory, we write the spin-antisymmetric local field factor
G((0,iw)=G(a,0)+G,(iw). 67 9
Note that the assumption th&, approaches zero for large (i) AT aiaqz
w, is in complete conformity with Eqi43). The coefficient, Ga"(a.0=G"(q.0+ 1+d,g*’ (60

a,, is determined from the Ward identifiq. (40)] and the _
parameteb,, is fixed by making the reasonable assumptionand we de_terminta'a from the susceptibility sum rulgEq.
that the characteristic frequency scale for the electronic con42)] and dj, from Eq. (48). The same perturbation theory
tribution to G, is the plasma frequencywy, i.e., b, leads to a similar assumption for the form of the off-diagonal
= “’r:IA' local field factor, namely
To this point in the discussion of local field factors, the
effective interaction has been considered in a complete ab-
sence of phonons. When these are included, Migdal's theo-
rem implies that their effect on vertex corrections can be
neg|ected_ However, the theorem does not a’ﬁpig the Once again the CoefﬁCiemlz fixed by the CompreSSibi”ty

limit gk;/wm—0, and to treat the non-Migdal correction in Sum rule and;, is determined from the largg condition
this limit, we also take [Eq. (47)]. As in the one-band case, we must separate the

parts of the local field factors that arise from self-energy
a,w? apnw? effects and we do this by writinG,' in the form of Eq.(53)
1+b,w* + 1+ bt (58 and by determining the coefficients as in the one-band case.
P Note the absence oB'?; this is because no part aBl?

r

A simple way to see that phonons enter i@g but notinto  arises purely from self-energy effects.

Gr(0,0) is to note that the smad limit of G,(q,0) is related To implement this method of determining the local field
to (z,m*/m)~" which depends only on the momentum de- factors, we need a procedure for calculating the correlation
rivative of the self-energy, while the smadl limit of G, is  energy since in turn this is required for the evaluation of the
related to ekf)*l which depends on the frequency derivative sum rules. Now, the correlation energy can be calculated in

2
aq

G:4q,0= T b,

(61)

G, (iw)=
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terms of response functions through use of the fluctuationto, for example, the Wigner crystal state at much higher val-
dissipation theorem. This is accomplished by first writing theues ofr. Therefore s-wave pairing in the very low density
Hamiltonian as electron liquid may remain a possibility. Solutions for both
p- and d-wave pairing are, however, found, but results for
H=Hy+HtHyp, (62 nonzero angular momentum pairing deperly sensitively
where Hy; and Hy, are the parts of the Hamiltonian that on_the ags_u'med form c_Jf the local field factors so that at this
depend only on electrons from band® and (2), respec- point deflnltlve_gonclu_smns cannot yet be drawn. Ou_r res_ults
tively, andH, is the part of the Hamiltonian that describes for s-wave pairing differ from those of Takada primarily
the interaction between electrons from different bands. wdecause the local field factors we use are quite effectively
introduce a coupling constatinto the latter, and provided Constrained by additional sum rules and are therefore likely
no ordering ensues as proceeds through its values, the to be more accurate. Takada's effective interaction actually

Hellmann-Feynman theorem can be used to express tipes not satisfy the Ward identities since the quasiparticle
ground state energy per unit volume as renormalization factorzk’fz, has been omitted. Because of
this, the static Coulomb repulsion is significantly underesti-
mated; a further difficulty is that the Hubbard-like local field
factors approach an incorrect limit for large[they should

diverge asg? (Refs. 6 and Y]. For this reason, they also

whereE, andE, are the ground state energies of electrons ing;pstantially underestimate the local field correction at inter-
bands(1) and(2), respectively, when there is no interaction ymediate to large momentum transférand this leads to a

between electrons from different bands; each can be detegyrresponding additional underestimation of the static Cou-
mined from Monte Carlo simulatiori. The interaction en- |omp repulsion.

ergy per unit volume{H,,), , can be expressed in terms of
the density-density response function as

1
E:E1+ E2+J d}\<H12>)\, (63)
0

B. The two-band case

dw d3q 1212 With respect to intrinsic pairing, we find the two-band
(Hih= _f on f (2m)3 Ve II(q.iwN), (64 case to behave in a remarkably different way. As noted al-
ready the additional term in the effective interaction in two-

wherell{%(q,iw;\) is the density-density response function pand systeméas mediated by correlated charge fluctuations

defined in Eq(19) but with the interaction iz scaled bya. is attractive and it can be written as
Because, as stated, the correlation energy depends on the . 5 22
local field factors through the response functions, we now Vel Qi w) =017 (q,iw), (65

arrive at a self-consistent and relatively straightforward pro
cedure for determining the local field factors. Accordingly
this now completes our discussion of the determination o
effective interactions in the one- and two-band cases, WithOL{
and with phonons.

‘Wwherev 1, is an effective coupling between electrons in band
1) and electrons in ban@) as given in Eq.(29). Here

%1(2'2) is the density-density response function between elec-
ons in band(2), and V., is the effective interaction be-

tween electrons in banfl) arising from correlated charge

fluctuations between the two bands. Equatiéd represents

V. INTRINSIC PAIRING diagrams that are of the form of a screened interaction which

With the total effective interaction finally established, we includes at least one bubble diagram from béidand also
turn to the identification of a possible superconducting traniNCOrPorates the appropriate vertex corrections. Our approxi-
sition. Intrinsic superconductivity in both the one- and two- Mation to this interaction is therefore exact in the static long-
band cases is considered first; we then treat the standalyfvelength limit for electrons on the Fermi surface provided

physical case of phonon mediated superconductiitityt in only that the Ward ident_iti(_es an_d also the comp_ressibility
the presence of electron-electron interactjons sum rule are together satisfied. Since these local field factors

are themselves determined in a self-consistent manner that
precisely incorporates the Ward identities and the compress-
ibility sum rule, we expect our results to be accurate in the
Proceeding with the method of solution as laid out in Secstatic long-wavelength limit. And since it is this limit that
II, we first consider the case where Hubbard-like local fieldsets the scale of the effective interactisee Fig. 4, we
factors are assumed. The findings of Takada, namely that trexpect the results for the transition temperature to be corre-
three-dimensional single-band electron gas can be supercogpondingly accurate. In what follows we will be primarily
ducting at low densities(Takada found solutions for considerings-wave pairing which as noted is far less sensi-
s-wave pairing forr >5.3), are confirmed. However, if our tive to the shape of the local field factors than is the case for
sum-rule constrained local field factors are used instead thieigher angular momentum pairing. As in the one-band case,
situation changes considerably; no solutions to &j).for  results for higher angular momentum pairing are expected to
s-wave superconductivity are found, and from this we con-be sensitive to the shape of the local field factors and again a
clude that within the present approximations there is nanore accurate treatment will be required to determine
s-wave superconductivity in the homogeneous one-banavhether higher angular momentum pairing can eventually
electron gas, at least fog<<10. However, the KO approxi- occur.
mation is essentially a mean-field theory and is therefore not Because of the presence of correlated charge fluctuations
expected to be accurate in the vicinity of a phase transitioin the two bands? the effective interaction as outlined above

A. The one-band case
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TABLE I. Transition temperatures in the electron-hole liquid.

rs n,/ng m, /m; T. (K)

2.0 0.5 2.0 ~0

25 0.5 2.0 1.66
o 3.0 0.5 2.0 124
= 2.0 0.5 3.0 10.1
= 2.0 05 4.0 165
=l 2.0 2.0 2.0 0.0066
> 25 2.0 2.0 23.1

3.0 2.0 2.0 312

-2.0 . ; ' there may yet be another phase transition at a lower tempera-
0.0 0.5 1.0 1.5 20

(2K) ture were electrons in the second band also to pais. a
convention we always label the band with the larger transi-
FIG. 4. Effective interaction between electrons from b&dn  tion temperature as pand)lNote that in this .Calculat.ion
the singlet state in the electron-hole liquid with/n;=2 and  there are no intermediarié€e.g., phonons an obligatory in-
m,/m;=2. clusion for realistic systems. This is the case we turn to next.

is actually negative at small to intermediate momenta in the
region where ling_qv 4/ €(q,0) is itself small or negative. In V1. PAIRING WITH ELECTRONS AND PHONONS

this region, a structural phase transition associated with pho- ag stated earlier, the formal inclusion of phonons in this

non softening can also be expected and this will certainlyyeneralized procedure is not difficult, and we have also
place an upper limit on the maximum attainable transitiontherefore solved the Eliashberg equation for the one- and
temperature achievable in practice with this mechanism.  +vo-band electron gas along with a model phonon disper-
In Fig. 4 we have shown the static effective interaction ingjon 7o accommodate the very disparate frequency scales,
the modified KO approximation. As, is increased it be- \ye follow the prescription described above and choose a grid
comes progressively more attractive and in consequence th&acing in frequency which is small compared to the Debye
superconducting transition temperature is expected 10 bgrequency for small frequencies, and which then increases

come correspondingly larger. In Fig. 5, it is seen that in-for |arger frequencies until it is on the order of the Fermi
crease of the ratim,/m; of effective masses also makes the energy.

interaction more attractive and therefore also increases the
transition temperature. Typical results for the transition tem-
perature are presented in Table | and corresponding results A. Superconducting simple metals

for the pairing function® (ki w) are givenin Figs. 6 and 7. g5y 5 complete solution of the Eliashberg equation in-
At the transition temperature, pairing occurs in the band withy,4ing  hoth electron-electron interactions and electron-

the most attractive effective interactidiout not in the other phonon interactiongsee Sec. )i we have calculated the

If the effective interaction is attractive in the second band ;nsition temperature for the five simple polyvalent metals
indium, B-gallium, amorphous gallium, thallium, and lead

4.0 : . ‘ (for these metals tunneling data are avail&bleising the
interaction parameters in E36) extracted from measure-
ment. The resulting transition temperatures are presented in
Table Il and are seen to agree with the experimental values
to within 20%. This level of agreement is quite satisfactory
for an ab initio treatment of the Coulomb interaction and is
actually comparable to the level of agreement obtained using
the empirically determined values @f* in the McMillan
formula® It is important to note that these are all relatively
high density metals.

In Figs. 8 and 9, are shown the pairing function,
d(k,iw), atT=T, for B-gallium and lead, respectively. As
discussed above, the sharp structur=atk; for large fre-
guencies arises from the singular nature of the long-range

-8-00_0 015 1io 115 20 Coulomb_ interaction Which_ is ir_mor_npletely screened at finite
a/(2k) frequencies. In the following it will become apparent that
this structure can be far more pronounced in the case of

FIG. 5. Effective interactions between electrons in bahdin ~ monovalent metal, for example, lithium, a metal of much
the singlet state in the electron-hole liquid witt=2 andn,/n,  lower effective densitywhereT./e; is also much smaller
=0.5. than in the metals considered above. The case of metallic

20 LeTTTTTIN B

v,"(a) k/(ne®)
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~1.5
FIG. 6. Pairing function,®(k,iw), in the

electron-hole liquid atrs=2, n,/n;=0.5, and
m,/m;=3. Note again the digsee text at k
:kf .

~3

hydrogen is even more interesting, especially the protonby the fact that the Fermi energy enters into the crude

paired metallic state, and is discussed elsewffere. square-well approximation for the pseudopotential, i.e.,
Although the results for the simple metals are quite accu-

rate for anab initio treatment of the Coulomb interaction, it . “

is important to discuss possible sources of error that may ro= m

arise in more complex metallic systems. To begin with, as

stated earlier the electron liquid model does not include bandnd we therefore expect an associated error in our calculated

structure effects beyond those incorporated in the band masgansition temperatures; but it is small. Another potential

my . This means that the electron liquid model may correctlysource of error can also be seen from E&p), in this case

give the density of states at the Fermi surface but it will notoriginating with the phonon frequency,;,. A very simplis-

in general give the correct Fermi ener@ncek?/2m, is the tic form for the phonon dispersion relation has been assumed

Fermi energy in the electron liquid model and this usuallythat gives the correctw),, but not in general the other av-

does not agree with the Fermi energy from band structurerage phonon frequencies; for this reason we may not neces-

calculations’). The likely importance of this can be gauged sarily obtain the correct value @, Based on the success

(66)
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FIG. 7. Pairing function,®(k,iw), in the
electron-hole liquid atrg=2, n,/n;=0.5, and
m2/m1:4.

-15

DN gl 8o




55 EFFECTIVE ELECTRON-ELECTRON INTERACTION.. .. 15141

TABLE II. Transition temperatures of the simple metals. The % error is defined &5 T&P)/ T

xX100%.

Metal by (@) (K) TEPY(K) TEC (K) % error
Indium 0.805 68 3.40 2.98 —-12.4
B-gallium 0.97 87 5.90 5.68 —-3.7
a-gallium 1.62 55 8.56 7.71 -9.9
Thallium 0.795 52 2.36 2.83 19.9
Lead 1.55 56 7.20 7.69 6.8

we have in calculating the transition temperatures for thdor the quasiparticle renormalization parameters. We find, in
metals considered so far, it seems that these effects are acfaet, that our estimate of the produzﬁ,fmé/mb, is in good
ally not very important in the simple metals; but they shouldagreement with Takadet al’s results but that we underes-
certainly be considered in calculating the transition temperagmate m?*/m, and overestimateﬁf. Here,m* , is the elec-

ture in materials with more complicated band structures anﬂOn mass renormalized by the Coulomb i;t,eractionmmtt
phonon dispersions.

: . he phonon medi interaction, and similajyis th -
Further, some inaccuracies must also result from our apt- e phonon mediated interaction, and s auﬁy s the qua

proximate treatment of the effective interaction in the elecSiParticle renormalization factor arising from the Coulomb

tron liquid itself. Though these can be associated with th nteraction. In adqition to err ors_in the I_ocal approximation,
assumed forms of the local field factors, we repeat that the rther uncertainties can arise in principle from the use of

are very effectively constrained by the sum rules and fromOCaI field factors tfat do nqt contain the full frequency de-
the results of Monte Carlo simulatiohdVe have not inves- pendence so that; /m, (which depends on the frequency

tigated nonlocal corrections to the pairing interaction since derivative of the effective interactipmay not be obtained

. * H
there is at present no reliable technique for calculating themgccurately, neverthelesaifmc/mb, which depends only on

But because the integrand in the expression for the normdhe momentum derivativés accurately calculated. For the
state self-energy is not as sharply peaked at the Fermi surfagimple metals considered herag/m,~0.87-0.91 a range
as the integrand in the Eliashberg equation, nonlocal correc¥hich is reasonably close to the corresponding values from
tions to the self-energy are expected to be more importarihe EPX calculatioff of m§/m,~0.93-0.95. Accordingly
than nonlocal corrections to the pairing interactiorSome  We do not expect significant error from the local approxima-
indication of the error made in our approximation to thetion to the self-energy. As we will see below, this source of
self-energy can readily be gained by comparing with the qua€rmor may be more significant in a lower densflgrgerr)
siparticle parameters taken from Takaxtal’s effective po- ~ Metal, such as lithium.

tential expansio?? (EPX) calculation. The EPX expansion o

has been shown to give a correlation energy in very good B. Lithium

agreement with Monte Carlo simulations and it is therefore Calculations of the superconducting transition tempera-
reasonable to assume that the EPX also gives good resulisre in the monovalent and fairly low density metal lithium

—
P

1]

|
|

/

FIG. 8. Pairing function, ®(k,iw), for
: B-gallium. Note the sharp digsee text at k
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1.25 7

625

0 % FIG. 9. Pairing function®(k,iw), for lead.
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(accounting for the band mass, thffective ¢ is 5.7 based electron-phonon interactions,  respectivély. Since
on ab initio electronic structure calculations and the Mc- 2. ,(k,w) is but a weak function ok, we may neglect the
Millan expression have previously predicted that lithiumterm g% ,/d€,;** it then follows that

should be superconducting ne@g~1 K. Experimentally,

however, there is no sign of superconductivity down to at Mg=mg (L+N). (68)
least 6 mK. Subsequently it has been suggéStéuht the

electron-phonon coupling parameter, might be lowered Here, as in the McMillan formula) includes the Coulomb
because of a reduction in the density of states at the Fernnenormalization factor z(ﬁf)z(m:/mb) and if we useA\
surface in the & phase of lithium, the known low tempera- — g 41 with the band ma&5m,=1.75 and the effective mass
ture phase. However, band structure calculaﬁbmzdlpate ratio, m*/m,, (attributable to Coulomb interactiongaken
that while IS _somewha_t §maller in theFdphase ‘haf‘.'” the  fom the EPX calculation of Takadet al. (m¥/m,=0.90),
bcc phase, it is still sufficiently large that the transition tem-
perature should remain in the vicinifi,~1 K. It has also
been suggestédthat spin fluctuations could be responsible
for suppressind ., but the corresponding calculations indi-

cate an effective mass inconsistently large compared wit e EPX calculation of Takadet al. includes the effects of

specific heat measuremeffsThey also assume, however, spin fluctuations, and for this reason the argurifethiat spin

that spin fluctuations contribute to the self-energy in thefluctuations would cause the thermal mass to be too large if

same way that they contribute to the effective pairing inter- —0.41 is not sustained. The Coulomb-renormalized mass

action; thls is also not .the case. Spin fluctqgtlons do indee btained using the modifieWI' approximation gives
play an important role in reducing the transition temperaturem*/m ~0.7" this considerably underestimates the effective
but we find that it is necessary to include the full frequency ¢’ ® """ y

dependent effective interaction in the calculationTgf to mas§. By these ?rgumeﬂts’ we expect. tha_t using quada
obtain its correct order of magnitude. et al’s values forz, andm;/m, in a quasiparticle approxi-

The electron-phonon coupling parameterand the aver- mation for the part of the self-energy arising from the Cou-
age phonon frequencyw), have been calculatédfor the lomb interaction will give a more accurate treatment of the
9R phase, the values being=0.41 and{w)=200 K. An self-energy than will the modifie@WI" approximation.
experimental constraint o is given by the effective mass ~ While the thermal mass provides a useful test of the band-
determined from specific heat measurements. The therm&tass corrected jellium model, yet a further test is the spin
mass, which is the effective electron mass, including renorsusceptibility. Experimentallyy/x=0.40 (Ref. 4 for Li

malizations from electron-electron interactions and electronat room temperature. To include the band-mass correction,
phonon interactions, is given #y we use Takada's expressfofor the susceptibility in the

electron gas withr ;=3.25xX 1.63[the band mass is 1.63 in
67) the room temperature phase of (Ref. 27] and then divide

the result by 1.63 to convep; to the free-electron suscep-

tibility as appropriate to electrons with the bare mass. This
whereZ(k,0) andX(k,») are the contributions to the leads toy;/x=0.38 which is also in very good agreement
self-energy from electron-electron interactions and fromwith the experimental value. For the sake of comparison,

we then find a thermal massy,=2.2, which is in rather
good agreement with the experimental valug,=2.23

+0.0527 This indicates that the valua,=0.41, is a quite
atisfactory estimate for lithium in theROphase. Note that

My | 1- 2 el dw— 02 gpl dw
My |1+ 03 eel de+ 03 opl ey

)
w=0k=k;
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FIG. 10. Pairing function,®(k,iw), for
lithium. The dip atk=k; (see textis very large
here because of the small transition temperature.

note that if we had ignored the band-mass correction, we.* from the standard square-well approximation, Ef),
would have obtaineg/x=0.70; it follows from this that a where we useawp,=200 K; the result isu* =0.174 which
value obtained using the correct band mass is far more secutigen gives a transition temperature f=0.08; this is also
than one which ignores the band-mass correction. As eXnconsistent with the experimental limit. The implication is
pected the band-mass correction is necessary to ensure thgt for this low density system the approximate formula, Eq.
the model has the correct density of states at the Fermi engg), s too crude and that it is therefore necessary to solve
ergy, N(0). Since the transition temperature depends sensine full momentum and frequency dependent Eliashberg if
tively on N(Q), it is alsc_) necessary to include the appropriatei,q experimental resulf<6 mK is to be explained. By ig-
band mass in calculations at . _ noring the term in the effective interaction arising from spin

With the modified KO effective interaction and a quasi- : : * . .
X S fluctuations, Eq(66) givesu™ =0.108 leading to a transition
particle approximation to the Coulomb part of the self- uetuat q(66) givesu "9 "

. : : (}emperature off.=0.8 K. The fact that this is an order of
energy both in hand, we again follow the procedure outline : . ; : :
in Sec. Il, the transition temperature we obtain is now 0.4dnagn|tude greater than the estimate including spin fluctua-

mK. Though it is clear that the transition temperature arriveutIOnS CO”f"”?S that spin _fluctuatlons can indeed play an im-
at with this approacimustbe low, the calculated value can portant ro!e_ In supp.ressmg.the tran§|t!on tgmperature. ,
still only be considered an order of magnitude estimate sim-_1he Pairing function® (ki) for lithium is presented in
ply because the net Coulomb repulsion is so closely balancedd- 10- As can be seen, the structurekatk; is far more
with the phonon-mediated attraction. Small errors in the nefiramatic in this case than in the previous calculations since
Coulomb repulsion can still yield very large changes in thethe transition temperature is very smaiq. (6) shows
transition temperature. To see this note that the McMillarclearly that the size of the dip grows with decreasing tem-
formula with T,=0.40 mK implies thatu* =0.237. If the  peraturd. Although our main result for lithium, T,
correctu* is just 10% larger than our calculated value, the~0.4 mK, also cannot be considered a reliatpentitative
transition temperature would be 4uK, a reduction inT, by  estimate of the transition temperatufieecause of the ex-
a further two orders of magnitude. But in the same way, iftreme sensitivity ofT, to u*) it is nevertheless appears to
our calculation should overestimate® by 10%, the transi- possess sufficient accuracy to resolve the conflict between
tion temperature would be 4.8 mK, which is certainly anthe standard approximations and the experimental result that
order of magnitude larger than the present estimate but stillthium is not superconducting down to at least 6 mK. The
completely consistent with the experimental limi. reason that the standard approximatig,~0.1, fails for
<6 mK. The Eliashberg equation has also been solved usingis metal is that the effective electron-electron coupling pa-
the modifiedGWI" approximation for the self-energy; and in rameter,r=5.7, is unusually large compared to the super-
this case we find;~0.2 uK, again smaller than the result congycting polyvalent simple metals and the ratjdaw,, is
from the quasiparticle approximation primarily because thg,nysyally small(other metals may share these characteris-
quasiparticle parameters, and mg/m are not accurately tics). The static Coulomb repulsion grows with increasing
obtained in the modified WI" approximation for low den- rg, so lithium has a largg. and sincew,/€; is unusually
sity systems. Because of the errors in the quasiparticle pamall x* is also unusually large. Although this qualitative
rameters in the GWI" approximation, we regardT, explanation relies on the crude approximation given in Eq.
~0.4 mK as the more accurate estimate. (66), for a more quantitative calculation of the role of the
For the purpose of further comparison, we can also findCoulomb repulsion in setting the transition temperature, it is
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TABLE llIl. Transition temperatures of the electron-hole- by the sum rules and the Ward identities. For the two-band
phonon model. system, the compressibility sum rule and the Ward identities
together guarantee that the attractive term in the effective
interaction is exact in the static, long-wavelength limit for
A (n*=0) (K) (u*=—10.650) (K) T (K) electrons on the Fermi surface. Using our best estimate for
these effective interactions, the present approximations indi-

T(l;/Ichllan T(I;/IchIIan

0.0 10.1 10.1 cate that no intrinsis-wave superconductivity occurs in the
0.4 131 15.0 16.8 one-band electron gas at least fgr 10; we cannot rule out
0.8 4.82 17.4 222 the possibility of higher angular momentum pairing. In the
15 8.83 195 313 two-band electron-hole gas, however, superconductivity can

arise if the system is near the region whegge is small or
negative. When phonons are included with electrons from
necessary to solve the frequency and momentum dependethie beginning, the transition temperature in high-density one-
Eliashberg equation. Finally, since lithium is reasonablyband systems is adequately described by the McMillan ex-
compressible this picture offers a possible test via high presgression withu* ~0.1, but for lower density systems, which
sure studies. may include many systems of current interest, the role of the
Coulomb repulsion is significantly underestimated by assum-
ing u*~0.1. For the group of superconducting simple met-
als that we have considered, the transition temperature is
Now that it appears established that the modified KO ap€orrectly predicted to within 20% by a relatively straightfor-
proximation can give a reasonable description of the effecward procedure. Also calculated is the superconducting tran-
tive Coulomb interaction in a set of simple metals, we examsition temperature in lithium and we find that~0.4 mK
ine the role of the Coulomb interaction in a selected class ofhereby resolving a longstanding discrepancy between previ-
two-band metals. In particular, we take the electron-holedus approximations for the transition temperature and the
models considered above augmented by phonons accordiffPerimental result thatf ;<6 mK. If a two-band system
to Eq.(36). We chooséw),,=60 K as a representative value happens to be close to the region where,linu,/€(q,0) is
and calculate the transition temperature for an electron-holgmall or negative, large transition temperatures appear pos-
system withrs=2, n,/n;=0.5, m,/m, =3 and with various SiPleé (>100K). However, a charge density wave or struc-
values of\. The results following from the procedure of Sec. tu_ral phase transition shoulld.also be antlplpated an_d these
Il are summarized in Table Ill where the valy& = —0.650 will clearly place an upper limit on the maximum obtainable

. - . transition temperature.
'Sf cr;]osen to Eprfdu;etrt]he'\;eﬂj.ﬁ_ 1?'1 Klm the ipserglce Finally we note that our technique can in principle be
of phonons. ~or larg e McMillan formula significantly.  eyianged to  treat anisotropic metals by expanding
underestimates the transition temperature, something th (Kiioy), G(K,iwg), and Ve(k,iw,:k iw,) in Fermi

) nl y ’ e ’ ns ’ n’

e * 26 H
also occurs for positive.”,” although this break-down oc- g ,rface harmonic¥ This will lead to a two-dimensional in-

curs for smallein when u* is negative. In cases where the (gqra| equation, but there are significant practical consider-
transition temperature is already greater than the phonon fregions which might make the solution quite difficult. For ex-
quencies, even withh=0, the McMillan formula breaks ample, in the isotropic calculation, most of the computational
down entirely. _ _effort is spent in evaluating the matrik], since each matrix
The discussion has been confined so far to systems witgjlement requires a numerical evaluation of a two-
moderate transition temperatures. As seen in Table I, howgimensional integral. For the anisotropic case, however, we
ever, there can be cases with very large transition temperggj|| confront a three-dimensional integral which must be
tures. For these it must be cautioned that other instabilitiegyajuated numerically for each matrix element and this will
(towards charge density waves, or even structural instabilirequire significantly more computational effort than is the
ties) will restrict the largest transition temperature that can bease for the isotropic examples we have considered above.

obtained for either the correlated charge fluctuation mechagyrthermore the matrix Eq4) will be replaced by one with
nism or the phonon mechanism. the structure

C. The two-band case

VIl. CONCLUSIONS DM LD =y D, (69)
L/

The solution to the Eliashberg equations involves a nu- herel is the index in the Fermi surf h .
merically intensive procedure even for the isotropic cased/NEreL 1S e ndexin the Fermi surtace harmonics expan-

considered here; but apart from accommodating the different'o" Slnc_:e the separatepomponents do not decouple, the
frequency scales, this fragment of the study is in some sen mputational effort required to CaIC.UIaI@.W'" scale as the
straightforward and standard. The more important physic yauare f)f the num_ber of terms retained In the Fermi surface
issue dealt with here is therefore the nature of the essentigit MONICS €xpansion. Alternative strategies are therefore be-
input into these equations, namely the manner in whicH"9 investigated.
many-body physics is correctly built into the effective inter-

actions, where the essential feature is the inclusion of the

effective Coulomb interaction on a completely equal footing This work was supported in part by the Office of Scien-
with the phonon mediated interaction. It is particularly im- tific Computing in the U.S. Department of Energy and in part
portant to stress again that the effective electron-electron ingy the National Science Foundation through Grant No.
teraction is subject to rather powerful constraints as provide@®@MR-9319864.
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