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Effective electron-electron interactions and the theory of superconductivity
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~Received 4 November 1996!

Electron pairing is examined from a viewpoint which treats electron-electron interactions first~both in a
single band and two-band context! and only later adds in electron-phonon coupling. We report solutions to the
Eliashberg equation for the one- and two-band interacting electron gas, in the absence of phonons and then
with phonons included, using effective electron-electron interactions that are closely constrained by sum rules.
No s-wave pairing is found for the one-band case in the absence of phonons but higher angular momentum
pairing is possible. In some contrast, intrinsics-wave pairing is found for the two-band case, and again nonzero
angular momentum pairing may arise. With the subsequent inclusion of phonons, but treated on a completely
equal footing with electrons, transition temperatures of several simple metals are determined, and found to
agree to within 20% of measured values. For low density systems, significant deviations from the predictions
of the McMillan expression assumingm*'0.1 are found. An important example is Li where we obtainTc
'0.4 mK in sharp contrast with previous approximations which giveTc;1 K, and are not supported by
experiment.@S0163-1829~97!06821-5#
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I. INTRODUCTION

In the traditional approach to the theory of supercond
tivity, the phonon mediated interaction is usually treated fi
and the direct Coulomb interaction is subsequently int
duced in terms of the Morel-Anderson pseudopotent
m* . Most calculations of the transition temperature conc
trate on treating the phonon mediated interaction, some w
great accuracy, while the Coulomb interaction is often inc
porated in a fairly approximate way, for example, by simp
assuming thatm*;0.1. However, from a consideration o
the energy scales in the initiating problem~H5He-e

1He-ph1Hph, He-e@He-ph@Hph!, it might appear more rea
sonable to first take into account the large electron-elec
interaction and only then treat the smaller electron-pho
interaction. In the following, we take this viewpoint and fir
consider the problem of intrinsic superconductivity in t
one- and two-band electron liquids. We then reconsider
problem when phonons are present, and added~but with due
account taken of their frequency scales! to the electronic
problem. As we will show, the phonon mediated interact
and the Coulomb interaction can together be treated o
completely equal footing.

In 1965 Kohn and Luttinger1 considered the possibility o
superconductivity in the three-dimensional homogeneous
teracting electron gas without phonons or other intermed
ies. A direct consequence of Fermi-Dirac statistics toget
with an approximate treatment of screening could lead
they noted, to regions where the effective electron-elect
interactions were weakly attractive. Though pairing sta
with off-diagonal long-range order could then develop
principle, the corresponding critical temperatures were
tremely low. Intrinsic superconductivity has since been c
sidered by several authors,2–4 the most comprehensive explo
ration in the one-band case being the recent work of Taka4

where the effective interaction included vertex corrections
all orders made possible by the use of the Kukkonen
Overhauser5 ~KO! approximation. This approach leads to
550163-1829/97/55~22!/15130~16!/$10.00
-
t
-
l,
-
th
-

n
n

e

a

n-
r-
er
s
n
s

-
-

a
o
d

physically motivated expression for the effective interactio
and it is derived by considering the rearrangement of e
trons in the vicinity of a test charge with which other pa
ticles interact both through a direct Coulomb term and
exchange and correlation term. The latter is taken to be p
portional to the direct interaction contribution where the p
portionality term is expressed as a local field factor. In t
way, the KO approximation leads to the inclusion of t
major many-body effects through the introduction of loc
field factors. In Takada’s work the expression for the effe
tive interaction actually uses Hubbard-like local field facto
and these show quite significant departures from those
pected from a more complete description.6,7 One of the pur-
poses of the present paper, therefore, is to show that the
of more realistic local field factors leads to an absence
intrinsic s-wave superconductivity in the three-dimension
one-band case over a wide range of densities;p- and
d-wave pairing are not, however, ruled out.

The two-band case is found to be strikingly differen
when again quite realistic forms for the local field factors a
used. The possibility that intrinsic superconductivity mig
occur in atwo-bandelectronic system was raised earlier b
Geilikman,8 following on from a suggestion of Little.9 More
recently, Vignale and Singwi10 and Chakraverty11 have dis-
cussed in some detail the possibility of superconductivity
electron-hole systems, and Ruvalds12 has examined the pos
sibility that acoustic plasmons in a two-band model cou
explain the substantial transition temperatures observe
the high-temperature superconductors. In these models
here, the residual interactions between the two bands lea
physically interesting forms for the effective attractions b
tween electrons. Once again if Hubbard-like forms for t
local field factors are used and the Kirzhnits, Maksimov, a
Khomskii ~KMK ! approximation13 for the calculation of the
superconducting transition temperature,Tc , is also used,
Vignale and Singwi have found that correlated charge fl
tuations~as reflected again in the local-field factors! can me-
diate a superconducting transition. However, the KMK a
15 130 © 1997 The American Physical Society
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55 15 131EFFECTIVE ELECTRON-ELECTRON INTERACTIONS . . .
proximation might reasonably be expected to break down
this system since the frequency scale for the attractive in
action is not at all small compared to the Fermi energy.2,3

In the following we describe a method which attempts
overcome these difficulties; the key is a complete solution
the frequency and momentum dependent Eliashberg equ
using fully self-consistent Green’s functions, which incorp
rate accurate local field factors that satisfy the known s
rules. The principal aims are therefore first to examine
possibility of intrinsic superconductivity in one- and two
band systems, and second to only then reexamine the p
lem when phonons are included but in a manner in wh
electrons and phonons are both treated on acompletely equal
footing. In calculations of the superconducting transiti
temperature in metals, it has become common practic
describe the role of the direct Coulomb interaction throu
the use of the parameterm* ~the Coulomb pseudopotentia
introduced above!, which is usually obtained from tunnelin
data, calculated from the static effective interaction in
square-well approximation, or simply assumed to be ab
0.1 ~see Ref. 14 for a discussion of the physical origins
m* !. We shall describe here a technique for calculating
transition temperature where the Coulomb interaction
the phonon mediated interaction are actually treated toge
a priori. A principal finding is that the role of the Coulom
repulsion in establishing the transition temperature can
always be treated using the standard approximations
m* . In particular, the rather common assumption thatm*
'0.1 appears to significantly overestimate the supercond
ing transition temperature in low density three-dimensio
one-band systems where the Coulomb repulsion is stron
striking example of this may be found in the element lithiu
~which, accounting for the band mass has aneffective rs
55.7! where the assumptionm*50.1 causes an overestima
tion of the transition temperature by orders of magnitude.
the other hand, for two-band systems, which we find can
superconducting even without phonons, it will be seen
assumption thatm*'0.1 can significantly underestimate th
superconducting transition temperature.

II. ELIASHBERG EQUATION

The Eliashberg equation15 for the pairing function,
F l(k,ivn), of l -wave superconductivity can be written as

F l~k,ivn!52T(
vn8

E
0

`

dk8Kl~k,ivn ;k8,ivn8!F l~k8,ivn8!,

~1!

where

Kl~k,ivn ;k8,ivn8!

5
k8

4p2k
uG~k8,ivn8!u

2E
uk2k8u

k1k8
dqPl

3S k21k822q2

2kk8 DqVeff~q,ivn2 ivn8!, ~2!

andVeff(q,iv) is the irreducible electron-electron interactio
Equation~1! can be solved by using a technique similar

that of Rietschel and Sham2 and Takada.4 To do so the
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anomalous self-energy,F l(k,ivn), is evaluated on a finite
grid in k and vn with a grid spacing chosen to be sma
compared to the scale on whichF l(k,ivn) varies. For the
evaluation ofF l(k,ivn) at arbitraryk,vn we then linearly
interpolate between nearest grid points. When we exam
the possibility of intrinsic superconductivity, we must sele
a grid spacing in frequency which is small compared to
Fermi energy at small frequencies and which then increa
for large frequencies until it is on the order of the Fer
energy. Later, with phonons included, we must choose
stead a grid spacing in frequency which is also small co
pared to the Debye frequency for small frequencies a
which again increases for larger frequencies~until it is again
on the order of the Fermi energy!. We find, as has Takada,4

thatF l(k,ivn) possesses considerable structure at the Fe
wave vector; a sharp dip appears in it for frequencies lar
than the Fermi energy, and in order to accurately accom
date this structure in our calculations it is essential to us
grid spacing ink that is very small at the Fermi wave vecto
For typical transition temperatures,Tc;1025e f , this grid
spacing at the Fermi wave vector isDk'0.001kf , but an
even smaller spacing is required for systems with sma
transition temperatures. The spacing is also chosen in su
way that it increases ask is moved away fromkf ; that it is
actually fine enough is ensured by examining the result
functionF l(k,ivn). If there are regions whereF l(k,ivn) is
not slowly varying over the grid, we simply repeat the ca
culation with additional grid points supplied and repeat t
procedure yet again until the determination of the transit
temperature is converged.

The method of evaluatingF l(k,ivn) then converts Eq.
~1! into a matrix equation with the formal structure

M lFl5Fl , ~3!

and it can be straightforwardly converted into an eigenva
problem by writing

M lFl5gFl , ~4!

showing that Eq.~1! is recovered when one of the eigenva
ues,g, is equal to unity. To calculate the transition tempe
ture, we therefore solve Eq.~4! for the largesteigenvalue as
a function ofT. For high temperatures, this largest eige
value is always found to be less than unity; the transit
temperature is then determined as that temperature for w
the largest eigenvalue eventually equals unity.

Since Eq.~1! involves a sum over Matsubara frequencie
and there are on the order ofe f /Tc such terms in this sum, i
would not be feasible to calculateTc for low temperature
systems if we were required to evaluate the integrand at e
and every such frequency. However, the integrand is
smooth function ofvn , and we can therefore easily evalua
the sum using a technique similar to Romberg integration16

solutions to Eq.~1! for temperatures at least as low asTc
;10211e f can thereby be obtained. Ultimately, the lowe
temperature that can be reached is limited by the sharp s
ture discussed above in the pairing function,F l(k,iv),
namely the dip that occurs neark5kf for large frequencies.
Its origin is traced to the long ranged part of the Coulom
interaction and as noted it was first discovered by Takada4 in
his comprehensive electron gas calculations. For low tra
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15 132 55C. F. RICHARDSON AND N. W. ASHCROFT
tion temperature systems, we must use a high density of
points neark5kf to resolve this important feature sinc
it grows with decreasing temperature. To see this,
may evaluate Eq.~1! for large frequency by treating
F l(k8,ivn8) inside the integral as a constant and simply
placing the momentum integral by an integral over the d
sity of states, which we also treat as a constant. Igno
factors and also ignoring terms that do not contribute
the long-wavelength singularity inPl@(k

21k822q2)/
2kk8]Veff(q,i`), we find

F l~kf ,i`!;E
0

e f
de

1

e
tanhS e

2Tc
D ln~e/e f !F l~kf ,iv0!, ~5!

which in turn implies that

F l~kf ,i`!;2 ln2~Tc /e f !F l~kf ,iv0!, ~6!

in the limit thatTc!e f . This structure will be evident in al
of the pairing functions,F l(k,iv), that we calculate in the
following, and as noted it will also be evident that its sca
grows with decreasing transition temperature.

III. EFFECTIVE INTERACTIONS

The essential input into the Eliashberg equation~1! is the
effective interaction,Veff , which can be defined as the part
the scattering amplitude that is irreducible in the partic
particle channel. For the electron gas, the simplest rea
able approximation to the effective interaction is the rand
phase approximation~RPA!; it includes screening effects bu
ignores exchange and correlation corrections.17 Since the
RPA leads to the form screenedv/e, it might seem that it
could be improved by simply using a more accurate diel
tric function, e. This is not the case: exchange and corre
tion effects enter into vertex corrections and electron-h
ladder diagrams, as well as in the dielectric function its
Kukkonen and Wilkins18 therefore attempted to improve th
RPA by writing the effective interaction asvL̃2/e, where
L̃ is the proper vertex correction evaluated in the local
proximation; this means thatL̃ is taken to depend only on
the momentum and frequency transfer. This local appro
mation allowsL̃ to be evaluated in terms of the local fie
factor, Gs , which is then used to describe the charge
sponse function. However, the Kukkonen-Wilkins intera
tion is still not sufficient for our purposes since it ignores t
electron-hole ladder diagrams. To address this partic
omission, Kukkonen and Overhauser5 derived an expression
for the effective interaction that consistently includes e
change and correlation effects to all orders leading to a re
which includes the Kukkonen-Wilkins term and the sam
local approximation to the electron-hole ladder diagram
The essential inputs into the Kukkonen-Overhauser~KO!
approximation5 are ~i! the identical local field factor,Gs ,
used in the dielectric and the Kukkonen-Wilkins approxim
tion, but additionally~ii ! the local field factor,Ga , used to
describe the spin response function. Kukkonen and O
hauser derive their result by considering the exchan
correlation hole around an electron and they calculate
interaction of a second electron with this screening clo
This expression has also been derived by Vignale and Sin
~VS! using a diagrammatic approach.10,19
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In what follows, we derive the KO expression for amulti-
band electron liquid using the Kukkonen-Overhauser a
proach. To correctly include self-energy effects we find th
the Lindhard function appearing in the effective interacti
will have to be modified. This, as we will see, leads to t
introduction of a third local field factor,Gr . We will show
below that an approximate phonon mediated interaction
also be included, exactly within the same framework.

The Hamiltonian that defines the multiband jellium pro
lem is

H5(
ka

k2

2mb
a cka

† cka

1
1

2V (
ka

(
k8b

(
qÞ0

vc
abck1qa

† ck82qb
† ck8bcka , ~7!

wheremb
a are the band masses,V is the volume, andvc

ab

54peaeb/ebq
2 is the bare Coulomb interaction reduced

the background dielectric constant,eb . The indices,a andb,
indicate both band and spin. We permit the sign of t
charge to depend on band index since we wish to cons
both electron-electron systems and electron-hole system
writing Eq. ~7!, the assumption at this point is that the io
are static and that the electron-ion interaction correspond
a periodic situation. In a one electron description it is th
periodicity that gives rise to the band structure that is h
represented byn separate bands within an effective ma
approximation. It leads to a view that there are no furth
effects of the electron-ion interaction that are not subsum
in the uniform background approximation of the jelliu
model. Note that the Hamiltonian~7! doesnot lead to inter-
band transitions; this has been shown to be a reasonable
proximation if the bands have a small overlap integral su
ass andd bands.20

In the KO formulation, the effective electron-electron i
teraction is determined by examining the interactions
tween a pair of electrons and their accompanying screen
clouds. Following this approach, we consider an elect
from bandi with spins; it can induce a change,Dnkn,is, in
the number of electrons in the surrounding electron gas.~For
notational simplicity we need not explicitly indicate the m
mentum and frequency dependence, but it should be rem
bered that the quantitiesDnkn,is, the local field factors, and
the effective interaction all depend both on momentum a
frequency transfer.! An electron from bandj with spin s8
will interact with both the electron from bandi and with
Dnkn,is; the effectiveinteraction is therefore given by th
interaction between the two electrons augmented by the
teraction that the electron from bandj feels due to the
screening cloud around the electron from bandi . The com-
plete effective interaction can therefore be decomposed
a direct part

Ṽdirect
js8,is5vc

j i1(
kn

vc
jkDnkn,is ~8!

and an exchange-correlation part

Ṽexc
js8,is52vc

j iGjs8,is2(
kn

vc
jkGjs8,knDnkn,is. ~9!
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The quantitiesGjs8,is are here defined as proportionali
terms in the definition of the exchange-correlation inter
tion, but as we shall see they are simply related to the s
dard local field factors used in theories of the electron liq
and they can also be obtained from the response functi
For a static lattice the complete effective interaction is th
Ṽeff
kn,is5Ṽdirect

kn,is1Ṽexc
kn,is , and the effective interaction define

in this way includes interactions that are not included in
irreducible electron-electron interaction since it includes
effects of exchange and correlation between the interac
particles in the first term in Eq.~9!. To obtain the irreducible
effective interaction we subtract this term, i.e.,

Veff
js8,is5Ṽeff

js8,is1vc
j iGjs8,is. ~10!

The induced change,Dnkn,is, in the number of electrons
in bandk surrounding an electron from bandi is related to a
density-density response function by~this is the local ap-
proximation to diagram 1!

Dnkn,is5
1

2
P̄0
kṼeff

kn,is , ~11!

where the factor of12 is included in Eq.~11! becauseP̄0
k

includes a summation over spin. This relation can be dire
derived from the diagram of Fig. 1 where the scattering a
plitude, G( k̃,k̃8,q̃), is replaced by the effective interactio
Ṽeff
kn,is(q̃). Here, we are using a four-vector notationq̃

5( ivq ,q) andq5uqu. Kukkonen and Overhauser originall
took the response function,P̄0 , to be simply the Lindhard
function. All interaction effectsnot included in the Lindhard
function are therefore taken to be included in the effect
interaction through the introduction of local field factor
However, we adopt a somewhat different physical approa
namely, that the local field factors should describe inter
tions betweendressedelectrons, not between bare electron
This viewpoint is quite consistent with the suggestion
Niklasson21 that self-energy effects should be included in
modified version of the Lindhard function. Accordingly w
shall we takeP̄0 to be a modified Lindhard function given b
the definition

P̄0~ q̃!522E d3p

~2p!3
E dvp

2p
G~ p̃1q̃!G~ p̃!, ~12!

which is similar to the standard Lindhard function exce
that the noninteracting Green’s function,G0(q̃), has now
been replaced by the fully interacting Green’s functio

FIG. 1. Feynman diagram for the change in the number of e
trons in a screening cloud induced by a charge fluctuation.
-
n-
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e
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G(q̃). SinceP̄0 is difficult to evaluate, it is convenient to
express it in terms of the Lindhard function by defining t
additional local field factor,Gr , referred to above and in
such a way that

P̄0
i 5

P0
i

11vc
iiGr

i P0
i . ~13!

By substituting Eq.~11! into Eqs.~8! and ~9! we then find
that

Ṽeff
js8,is2

1

2 (
kn

vc
jk~12Gjs8,kn!P̄0

kṼeff
kn,is5vc

j i ~12Gjs8,is!,

~14!

and we can simplify this equation by defining the sp
symmetric interaction

Ṽs
i j5

1

2
~Ṽeff

i↑, j↑1Ṽeff
i↑, j↓! ~15!

and the spin-antisymmetric interaction

Ṽa
i j5

1

2
~Ṽeff

i↑, j↑2Ṽeff
i↑, j↓!. ~16!

Equation~14!, which can be expressed as a 2n32n matrix
equation~n is the number of bands!, can then be separate
into two n3n matrix equations, and we obtain

Ṽs
i j2(

k
vc
ik~12Gs

ik!P̄0
kṼs

k j5vc
i j ~12Gs

i j ! ~17!

and

Ṽa
i j1(

k
vc
ikGa

ikP̄0
kṼa

k j52vc
i jGa

i j , ~18!

where the spin-symmetric and spin-antisymmetric local fi
factors are Gs

i j5 1
2(G

i↑, j↑1Gi↑, j↓) and Ga
i j5 1

2(G
i↑, j↑

2Gi↑, j↓). By defining the matrices (Ṽs)
i j5Ṽs

i j , (Cs)
i j

5vc
i j (12Gs

i j ), (P̄0)
i j5P̄0

i d i j , and

Ps
215P̄0

212Cs, ~19!

the solution to Eq.~17! can be compactly given as

Ṽs5P̄0
21PsCs. ~20!

From a consideration of the interaction between t
charges5 it can easily be seen thatPs is the density-density
response matrix,10 and it can also be seen thatGs

T5Gs

1Gr is the local field factor normally used to describe t
charge-charge response function. Using Eq.~10! and the
definition ofPs, we find

Vs
i j5vc

i j1(
km

Cs
ikPs

kmCs
m j . ~21!

Similarly, from the definitionCa
i j52vc

iiGa
iid i j and a consid-

eration of the effective potential felt by an electron due to
applied magnetic field, the spin-spin response function
be also shown5 to be given by

c-
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Pa
i j5

P̄0
i

12Ca
ii P̄0

i
d i j . ~22!

The spin-spin response function is diagonal in the band in
because as noted above we are working within an appr
mation that neglects interband transitions. The quantity,Ga

T

5Ga1Gr is the local field factor normally used to describ
the spin-spin response function. For the spin-antisymme
interaction, we find

Va
i j5~Ca

i !2Pa
i d i j . ~23!

Expressing these results in a spin-invariant form, we
nally arrive at

VisW , jsW 85vc
i j1(

km
Cs

ikPs
kmCs

m j1sW •sW 8~Ca
i !2Pa

i d i j , ~24!

a result that now has a very compelling physical interpre
tion: the first term is the bare interaction, the second is
interaction mediated by charge fluctuations, and the thir
the interaction mediated by spin fluctuations. The interact
mediated by charge fluctuations is attractive for both the
glet and triplet states, but the interaction mediated by s
fluctuations is only attractive in the triplet state~it is repul-
sive in the singlet state!. Except for the treatment of self
energy effects, Eq.~24! has also been derived using a di
grammatic approach by Vignale and Singwi.10 Our treatment
of self-energy effects can be included within the VS form
ism by using the modified Lindhard function instead of t
usual Lindhard function. The result of this procedure22 is
then precisely Eq.~24!. Since the original KO approximation
includes a factor ofzkf

2 in the definition of the effective

interaction,10 it should be remembered that the appropri
Green’s function to use in calculations involving the origin
KO approximation is then

Ĝ~q,iv!5F iv2S q2

2m*
2m D G21

~25!

andnot the full quasiparticle Green’s function,

G~q,iv!5zqF iv2S q2

2m*
2m D G21

. ~26!

This point has often been overlooked4 in calculations of
the superconducting transition temperature where the f
interacting Green’s function has been used with the orig
KO approximation; its consequence is anoverestimationof
the transition temperature. To acknowledge this import
difference, we have modified the approach by simply avo
ing the quasiparticle approximation for the Green’s fun
tions. The result is that the effective interaction now depe
on the modified Lindhard function as previously discuss
In calculating properties such as the superconducting tra
tion temperature with this modified KO approximation, it
then the fully interacting Green’s function that should
invoked.

For the case of a single band, Eq.~24! simplifies to5,10
x
i-
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Veff5vq1
vq
2~12Gs!

2P̄0

12vq~12Gs!P̄0

2a
vq
2~Ga!

2P̄0

11vqGaP̄0

. ~27!

Here vq is the bare Coulomb interaction andP̄0 is the
Lindhard approximation to the density-density respon
function ~but modified to include self-energy effects!6, and
a53 or 21 for singlet or triplet pairing, respectively. Th
second term in Eq.~27! is the interaction mediated by charg
fluctuations, and in the VS formalism it arises from th
screening of the Coulomb interaction, from vertex corre
tions, and from particle-hole ladder diagrams.19 The third
term is the interaction mediated by spin fluctuations and
the VS formalism it also arises from particle-hole ladd
diagrams.19 In Fig. 2, we plot the effective interaction dete
mined by Eq.~27! along with the results from several othe
approximations.

For a two-band system, the effective interaction betwe
electrons in band~1! is given from Eq.~24! as10

Veff5vq1
vq
2~12Gs

11!2P̄0
~1!

12vq~12Gs
11!P̄0

~1!
2a

vq
2~Ga

11!2P̄0
~1!

11vqGa
11P̄0

~1!

1v12
2 P~2,2!, ~28!

where

v125~12Gs
12!vq /@12vq~12Gs

11!P̄0
~1!#. ~29!

HereP (2,2) is the density-density response function for ca
riers in band~2!. The additional term in the effective inter
action, which is traced to correlated charge~acoustic plas-
monlike! fluctuations between the two bands, is crucia
different. It is attractive and, as we have found, in som
circumstances it can overcome the direct Coulomb repuls
When the lotal field factors are constrained to satisfy
compressibility sum rule and the Ward identities, this attr
tive term is exact in the static, long-wavelength limit for
electrons on the Fermi surface. Note the close and impor

FIG. 2. Effective interaction between electrons in the sing
state in the one-band electron liquid atr s52. The renormalized KO
approximation is the KO effective interaction multiplied by the qu
siparticle renormalization factorzkf

22. The dielectric approximation
is given byvc /e.
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formal similarity of thestructureof this term~the square of
an electron-hole matrix element times a ‘‘plasmon propa
tor’’ ! to that of the conventional phonon-mediated attract
in metals.

The function,G(k,ivn), appearing in Eq.~2!, is the fully
interacting Green’s function whose corresponding s
energy is given by

S~k,ivn!52T(
nn

E d3q

~2p!3
Vse~q,inn ;q2k,inn2 ivn!

3G~q,inn!. ~30!

An approximation for Vse
i can be derived from the

Kukkonen-Overhauser formalism as the direct interact
and the interaction with the screening cloud produc
through exchange and correlation effects, and it is given

Vse
i 5vc

ii1(
js

vc
i jDnjs,is8. ~31!

No term for the exchange an correlation interaction of
electron with its screening cloud is included here since
exchange-correlation effect is already included inDnjs,is8.
This embodies the same physics that leads to a single ve
correction in the exact expression for the self-energy.23 If an
additional exchange-correlation interaction were to be~in-
correctly! included, the result would then constitute the N
Singwi approximation24 which has been shown to overcou
diagrams.17,25 @Another way to see that Eq.~31! is correct is
to compare Fig. 3, which is an exact representation of
self-energy, to Fig. 1.# If we now substitute from Eq.~11!,
we find

Vse
i 5vc

ii1(
j
vc
i j P̄0

j S Cs
i j1(

km
Cs

ikPs
kmCs

m jD ~32!

and by using the definition ofCs
i j andPs

i j @Eq. ~19!#, this can
be reexpressed as

Vse
i 5

1

P̄0
i (

j
vc
i jPs

i j . ~33!

Because Eq.~33! is the GWG approximation modified to
include self-energy effects we will simply refer to this res
as the modified GWG approximation. In the one-band cas
Eq. ~32! then becomes

Vse5
vc

12vcP̄0~12Gs!
, ~34!

which is similar to the usual GWG approximation excep
that, once again, the Lindhard function has been modifie
include self-energy effects. It is worth repeating again t

FIG. 3. An exact representation of the self-energy.
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this difference is important since we would be unable
satisfy the Ward identities without it. In contrast to oth
approximations forVse(q,iw), such as the Ng-Singw
approximation24 or the usual GWG approximation,24 Eq. ~33!
is alsoexactin the static, long-wavelength limit for electron
on the Fermi surface. Again, this is a direct consequenc
the requirement that the Ward identities and the compre
ibility sum rule are satisfied. For the one-band case this li
is simply given by

lim
q→0

lim
v→0

Vse~kf ,0;q,iv!5
1

zkfm* /m
p2

kfm
. ~35!

At this point we may finally introduce phonons into th
picture. The procedure is completely straightforward and
physical consequences of electron-phonon coupling can
illustrated with sufficient accuracy by adding

Vph~q,iv!52
a

11~q/2kf !
2

vq
2

v21vq
2 ~36!

to the effective interaction. Here the phonon frequenc
vq , are given by

vq
25bq2/~11gq2!. ~37!

We determine the parametera by requiring that the correc
electron-phonon coupling parameter,l, is reproduced; the
parameterb is determined from the Debye temperature, a
g is determined from the measured values of^v& ln ~Ref. 26!
or from the calculated value of^v&.27 Although this is a very
simplified model of the phonon-mediated interaction, it co
rectly incorporates the major physical features, and so l
as the knownl and ^v& ln ~or ^v&! are reproduced it should
result in an accurate value ofTc . It is important to empha-
size that from this point onwards electrons and phonons
treated throughout on acompletely equal footingby a proce-
dure which acknowledges their very different frequen
scales.

IV. LOCAL FIELD FACTORS: SUM RULES
AND CONSTRAINTS

Exact results for the small and largeq limits of the local
field factors are known from the compressibility sum ru
the susceptibility sum rule, the virial theorem, and the co
ditions derived by Niklasson,21 by Zhu and Overhauser,28

and by Vignale.29 These sum rules for the multiband case a
the natural generalization of the well-known equivalents
the one-band case.22 First, the Ward identities can be writte
as

lim
k→0

lim
vk→0

L̃s
i j ~kf

i ,0;k̃!5~zkf
i mi* /mi !

21S p2

kf
i mi D S ]2e

]ni]nj D
21

,

~38!

lim
k→0

lim
vk→0

L̃a
i j ~kf

i ,0;k̃!5d i j ~zkf
i mi* /mi !

21S p2

kf
i mi D S ]2e

]j i
2D 21

,

~39!

wheree is the energy density,j i is ni↑2ni↓, and also
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lim
vk→0

lim
k→0

L̃s
i j ~kf

i ,0;k̃!5 lim
vk→0

lim
k→0

L̃a
i j ~kf

i ,0;k̃!5~zkf
i !21d i j .

~40!

Here, L̃s
i j (kf

i ,0;k̃) and L̃a
i j (kf

i ,0;k̃) are spin-symmetric and
spin-antisymmetric proper vertex functions, respective
Next, the compressibility sum rule is given by

lim
k→0

lim
vk→0

P̃s
i j ~ k̃!52S ]2e

]ni]nj D
21

. ~41!

Finally, the susceptibility sum rule is

lim
k→0

lim
vk→0

P̃a
i j ~ k̃!52d i j S ]2e

]j i
2D 21

. ~42!

In Eqs. ~41! and ~42!, P̃s
i j ( k̃) and P̃a

i j ( k̃) are the proper
charge-charge and spin-spin response functions, respecti

To derive conditions for the largeq limits, we approxi-
mate the modified Lindhard function by

P̄0
i ~ q̃!52E d3k

~2p!3
nk
i 2nk1q

i

ivq2ek1q
i 1ek

i , ~43!

whereek
i 5k2/2mi , a form that results in the correct large

wave vector behavior of the effective interaction. It clea
neglects the renormalization of the effective mass but itdoes
include the more important effect of particle number ren
malization. The local field factors obtained using Eq.~43!
give an effective interaction with the correct largeq limit;
this follows because the divergent part ofGs

T is contained in
Gr and this divergence does not affect the largeq limit of the
effective interaction. If we had used Eq.~12! for P̄0(q̃) both
Gs andGr would diverge for largeq and the effective inter-
action would then fail to approach the bare interaction in t
limit. The fact that Eq.~12! does not result in the correc
large wave-vector limit of the effective interaction is simp
a reflection of the fact that the local approximation is n
expected to be accurate when the interacting electrons
taken to have energies far from the Fermi energy. No d
culties are encountered so long as we ensure that the d
gent part ofGs

T is entirely contained inGr .
The largeq conditions for the one-band case are

lim
q→`

Gs~q,iv!5
2

3
@12g~0!# ~44!

and

lim
q→`

Ga~q,iv!5
4g~0!21

3
. ~45!

For the two-band case the equivalent is

lim
q→`

Gs
~11!~q,iv!5

2

3
@12g11~0!#1

1

3

n2
n1

@12g12~0!#,

~46!

with an analogous result forGs
(22)(q,iv); we also obtain

lim
q→`

Gs
~12!~q,iv!5

1

3
@12g12~0!#. ~47!
.
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In a similar way we find for the spin-antisymmetric loc
field factor

lim
q→`

Ga
~11!~q,iv!5

4g11~0!21

3
1
1

3

n2
n1

@12g12~0!#, ~48!

and again an analogous result forGa
(22)(q,iv).

At this point we are in a position to construct approxima
parametrizations of the local field factors that incorpor
these limits. For the one-band case we may use the pa
etrization of the Monte-Carlo results of Ref. 7 to obtainGs

T

and we obtainGr as a Pade´ approximate. In the two-band
case Monte Carlo results are not available so we must
rametrizeboth Gs

T andGr as Pade´ approximates. The corre
lation energy which is needed in the compressibility sum r
is obtained in the one-band case from the parametrizatio30

of Monte Carlo results and in the two-band case we us
self-consistency condition derived from the fluctuatio
dissipation theorem in evaluating the correlation energy.

A. The one-band electron liquid

Moroni et al.7 have obtainedGs
T(q,0) from Monte Carlo

simulations, and they find that the form

Gs
T~q,0!5$@~A2C!2n1„~q/kf !

2/B…n#21/n1C%~q/kf !
2

~49!

provides a good representation of their Monte Carlo res
with n58 for r s52 or r s55, and n54 for r s510. The
coefficientA is fixed by the compressibility sum rule, Eq
~41!, along with Voskoet al.’s30 parametrization of the cor
relation energy as determined from Monte Carlo simulatio
An expression forC can now be derived from Eq.~43! ~Ref.
6! and the result is

C52
p

e2kf
3

]~r sec!

]r s
, ~50!

whereec is the correlation energy per electron. The para
eter,B, is given by Moroniet al.7 as

B5
a1bx1cx3

d1ex1 f x3
, ~51!

wherex5r s
1/2; specific values for the coefficients area51,

b52.15, c50.435,d53, e51.57, andf50.409.
To obtain the local field factorGa

T(q,0), we notice that
the polarization diagrams contributing to the differen
Gs
T(q,0)2Ga

T(q,0) are exclusively of the fluctuation type
Since the result of perturbation theory6 implies that the con-
tribution of this type of diagram can be reasonably expres
in the Hubbard form, we can therefore use the approxima

Ga
T~q,0!5Gs

T~q,0!1
aaq

2

11baq
2 . ~52!

Here, aa is determined by the susceptibility sum rule, E
~42!, and ba is determined from Eq. ~45!, where
Yasuhara’s31 result for the radial distribution function at zer
separation,g(0), isused. Although there have been attemp
to extract the susceptibility from Monte Carlo simulation
large error bars are generally associated with the res
Takada has calculated the susceptibility and compressib
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using the effective potential expansion~EPX! method.32

Since his results for the compressibility agree very well w
the Monte Carlo results and since there are no large sta
cal errors in his calculated susceptibility, we will use the
results to determineGa

T(q,0).
The final local field factor we require isGr(q,0), and this

is also determined as a Pade´ approximant, i.e.,

Gr~q,0!5
arq

21brq
41crq

6

11drq
4 . ~53!

The coefficientar is fixed by the Ward identity in Eq.~38!,
cr /dr5C, br /dr is obtained from Eq.~44!, and dr is ob-
tained by requiring that the dip inGr(q,0) occur atq52kf
~we note that the presence of such structure is guaran
sincear,0 andcr.0!.

In the foregoing, all of the local field factors have be
treated in the static limit since it is usually argued that th
vary slowly on the scale of the Fermi frequency33 implying
therefore that their frequency dependences can be negle
However, if the frequency dependence ofGr is neglected
entirely, then it is certainly not possible to satisfy the Wa
identity @Eq. ~40!#. Accordingly we assume thatGs

T andGa
T

are independent of frequency but incorporate the freque
dependence inGr , namely

Gv~ iv!5
avv2

11bvv4 . ~54!

Within this approximation, we then write the local field fa
tors as

Gs~q,iv!5Gs~q,0!2Gv~ iv!, ~55!

Ga~q,iv!5Ga~q,0!2Gv~ iv!, ~56!

and

Gr~q,iv!5Gr~q,0!1Gv~ iv!. ~57!

Note that the assumption thatGv approaches zero for larg
v, is in complete conformity with Eq.~43!. The coefficient,
av , is determined from the Ward identity@Eq. ~40!# and the
parameterbv is fixed by making the reasonable assumpt
that the characteristic frequency scale for the electronic c
tribution to Gv is the plasma frequency,vpl , i.e., bv

5vpl
24.
To this point in the discussion of local field factors, th

effective interaction has been considered in a complete
sence of phonons. When these are included, Migdal’s th
rem implies that their effect on vertex corrections can
neglected. However, the theorem does not apply34 in the
limit qkf /vm→0, and to treat the non-Migdal correction
this limit, we also take

Gv~ iv!5
avv2

11bvv4 1
aphv

2

11bphv
4 . ~58!

A simple way to see that phonons enter intoGv but not into
Gr(q,0) is to note that the smallq limit of Gr(q,0) is related
to (zkfm* /m)

21 which depends only on the momentum d

rivative of the self-energy, while the smallv limit of Gv is
related to (zkf)

21 which depends on the frequency derivati
ti-
e

ed

y

ed.

cy

n-

b-
o-
e

of the self-energy; this is affected by phonon interactio
The coefficientaph is determined from the Ward identit
@Eq. ~40!#, andbph is determined by assuming that the co
tribution toGv from phonons varies on the scale of a cha
acteristic phonon frequency,vph, i.e., bph5vph

24. In our
treatment of the phonon mediated interaction, we assu
that the phonon frequency approaches a constant for l
q, i.e.,q@2kf @see Eq.~37!#, and we will takevph to be this
constant. Because the second term in Eq.~58! only gives a
significant contribution to the effective interaction whenv
,vph andq/kf,vph/e f , it contributes very little to the de-
termination of the superconducting transition temperatu
But since it is quite simple to incorporate~and it is certainly
present in principle!, we nevertheless include it in what fo
lows.

B. The two-band electron liquid

For the two-band case the local field factors will contin
to be given by Pade´ approximates, and we therefore adop
form

Gs
T~ i i !~q,0!5

as
i q21bs

i q41cs
i q6

11ds
i q4

, ~59!

whereas
i is fixed by the compressibility sum rule, Eq.~41!,

andcs
i /ds

i is given by the largeq sum rule, Eq.~50!. We also
takeds

i 5(2kf
i )24 since this ensures that the transition regi

from small q to large q behavior occurs aroundq52kf .
Finally, bs

i is given by the condition Gs
T( i i )(2kf ,0)

50.8as
i (2kf)

2 which is found to give reasonable agreeme
with the Monte Carlo results for small to intermediateq
when Eq.~59! is applied to the one-band case~the coefficient
of 0.8 is very close to what is expected from the results
perturbation theory!. Motivated by our results from perturba
tion theory, we write the spin-antisymmetric local field fact
as

Ga
T~ i i !~q,0!5Gs

T~ i i !~q,0!1
aa
i q2

11da
i q4

, ~60!

and we determineaa
i from the susceptibility sum rule@Eq.

~42!# and da
i from Eq. ~48!. The same perturbation theor

leads to a similar assumption for the form of the off-diagon
local field factor, namely

Gs
12~q,0!5

a12q
2

11b12q
2 . ~61!

Once again the coefficienta12 fixed by the compressibility
sum rule andb12 is determined from the largeq condition
@Eq. ~47!#. As in the one-band case, we must separate
parts of the local field factors that arise from self-ener
effects and we do this by writingGr

ii in the form of Eq.~53!
and by determining the coefficients as in the one-band c
Note the absence ofGr

12; this is because no part ofGs
12

arises purely from self-energy effects.
To implement this method of determining the local fie

factors, we need a procedure for calculating the correla
energy since in turn this is required for the evaluation of
sum rules. Now, the correlation energy can be calculate
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terms of response functions through use of the fluctuat
dissipation theorem. This is accomplished by first writing t
Hamiltonian as

H5H111H221H12, ~62!

whereH11 and H22 are the parts of the Hamiltonian tha
depend only on electrons from bands~1! and ~2!, respec-
tively, andH12 is the part of the Hamiltonian that describ
the interaction between electrons from different bands.
introduce a coupling constantl into the latter, and provided
no ordering ensues asl proceeds through its values, th
Hellmann-Feynman theorem can be used to express
ground state energy per unit volume as

E5E11E21E
0

1

dl^H12&l , ~63!

whereE1 andE2 are the ground state energies of electrons
bands~1! and ~2!, respectively, when there is no interactio
between electrons from different bands; each can be de
mined from Monte Carlo simulations.30 The interaction en-
ergy per unit volume,̂H12&l , can be expressed in terms
the density-density response function as

^H12&l52E dw

2p E d3q

~2p!3
vc
12Ps

12~q,iv;l!, ~64!

wherePs
12(q,iv;l) is the density-density response functio

defined in Eq.~19! but with the interactionvc
12 scaled byl.

Because, as stated, the correlation energy depends on
local field factors through the response functions, we n
arrive at a self-consistent and relatively straightforward p
cedure for determining the local field factors. According
this now completes our discussion of the determination
effective interactions in the one- and two-band cases, with
and with phonons.

V. INTRINSIC PAIRING

With the total effective interaction finally established, w
turn to the identification of a possible superconducting tr
sition. Intrinsic superconductivity in both the one- and tw
band cases is considered first; we then treat the stan
physical case of phonon mediated superconductivity~but in
the presence of electron-electron interactions!.

A. The one-band case

Proceeding with the method of solution as laid out in S
II, we first consider the case where Hubbard-like local fie
factors are assumed. The findings of Takada, namely tha
three-dimensional single-band electron gas can be super
ducting at low densities~Takada found solutions fo
s-wave pairing forr s.5.3!, are confirmed. However, if ou
sum-rule constrained local field factors are used instead
situation changes considerably; no solutions to Eq.~4! for
s-wave superconductivity are found, and from this we co
clude that within the present approximations there is
s-wave superconductivity in the homogeneous one-b
electron gas, at least forr s,10. However, the KO approxi
mation is essentially a mean-field theory and is therefore
expected to be accurate in the vicinity of a phase transi
-
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to, for example, the Wigner crystal state at much higher v
ues ofr s . Therefore,s-wave pairing in the very low density
electron liquid may remain a possibility. Solutions for bo
p- and d-wave pairing are, however, found, but results f
nonzero angular momentum pairing dependvery sensitively
on the assumed form of the local field factors so that at
point definitive conclusions cannot yet be drawn. Our resu
for s-wave pairing differ from those of Takada primaril
because the local field factors we use are quite effectiv
constrained by additional sum rules and are therefore lik
to be more accurate. Takada’s effective interaction actu
does not satisfy the Ward identities since the quasipart
renormalization factor,zkf

22, has been omitted. Because

this, the static Coulomb repulsion is significantly underes
mated; a further difficulty is that the Hubbard-like local fie
factors approach an incorrect limit for largeq @they should
diverge asq2 ~Refs. 6 and 7!#. For this reason, they als
substantially underestimate the local field correction at in
mediate to large momentum transfers,7 and this leads to a
corresponding additional underestimation of the static C
lomb repulsion.

B. The two-band case

With respect to intrinsic pairing, we find the two-ban
case to behave in a remarkably different way. As noted
ready the additional term in the effective interaction in tw
band systems~as mediated by correlated charge fluctuatio!
is attractive, and it can be written as

Vccf~q,iv!5v12
2 ~q!P~2,2!~q,iv!, ~65!

wherev12 is an effective coupling between electrons in ba
~1! and electrons in band~2! as given in Eq.~29!. Here
P (2,2) is the density-density response function between e
trons in band~2!, andVccf , is the effective interaction be
tween electrons in band~1! arising from correlated charg
fluctuations between the two bands. Equation~65! represents
diagrams that are of the form of a screened interaction wh
includes at least one bubble diagram from band~2! and also
incorporates the appropriate vertex corrections. Our appr
mation to this interaction is therefore exact in the static lon
wavelength limit for electrons on the Fermi surface provid
only that the Ward identities and also the compressibi
sum rule are together satisfied. Since these local field fac
are themselves determined in a self-consistent manner
precisely incorporates the Ward identities and the compr
ibility sum rule, we expect our results to be accurate in
static long-wavelength limit. And since it is this limit tha
sets the scale of the effective interaction~see Fig. 4!, we
expect the results for the transition temperature to be co
spondingly accurate. In what follows we will be primaril
considerings-wave pairing which as noted is far less sen
tive to the shape of the local field factors than is the case
higher angular momentum pairing. As in the one-band ca
results for higher angular momentum pairing are expecte
be sensitive to the shape of the local field factors and aga
more accurate treatment will be required to determ
whether higher angular momentum pairing can eventu
occur.

Because of the presence of correlated charge fluctuat
in the two bands,10 the effective interaction as outlined abov
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is actually negative at small to intermediate momenta in
region where limq→0vq /e(q,0) is itself small or negative. In
this region, a structural phase transition associated with p
non softening can also be expected and this will certa
place an upper limit on the maximum attainable transit
temperature achievable in practice with this mechanism.

In Fig. 4 we have shown the static effective interaction
the modified KO approximation. Asr s is increased it be-
comes progressively more attractive and in consequence
superconducting transition temperature is expected to
come correspondingly larger. In Fig. 5, it is seen that
crease of the ratiom2 /m1 of effective masses also makes t
interaction more attractive and therefore also increases
transition temperature. Typical results for the transition te
perature are presented in Table I and corresponding re
for the pairing functionF(k,iv) are given in Figs. 6 and 7
At the transition temperature, pairing occurs in the band w
the most attractive effective interaction~but not in the other!.
If the effective interaction is attractive in the second ba

FIG. 4. Effective interaction between electrons from band~1! in
the singlet state in the electron-hole liquid withn2 /n152 and
m2 /m152.

FIG. 5. Effective interactions between electrons in band~1! in
the singlet state in the electron-hole liquid withr s52 andn2 /n1
50.5.
e
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there may yet be another phase transition at a lower temp
ture were electrons in the second band also to pair.~As a
convention we always label the band with the larger tran
tion temperature as band 1.! Note that in this calculation
there are no intermediaries~e.g., phonons!, an obligatory in-
clusion for realistic systems. This is the case we turn to n

VI. PAIRING WITH ELECTRONS AND PHONONS

As stated earlier, the formal inclusion of phonons in th
generalized procedure is not difficult, and we have a
therefore solved the Eliashberg equation for the one-
two-band electron gas along with a model phonon disp
sion. To accommodate the very disparate frequency sca
we follow the prescription described above and choose a
spacing in frequency which is small compared to the Deb
frequency for small frequencies,v, and which then increase
for larger frequencies until it is on the order of the Fer
energy.

A. Superconducting simple metals

From a complete solution of the Eliashberg equation
cluding both electron-electron interactions and electr
phonon interactions~see Sec. II!, we have calculated the
transition temperature for the five simple polyvalent met
indium, b-gallium, amorphous gallium, thallium, and lea
~for these metals tunneling data are available26! using the
interaction parameters in Eq.~36! extracted from measure
ment. The resulting transition temperatures are presente
Table II and are seen to agree with the experimental va
to within 20%. This level of agreement is quite satisfacto
for an ab initio treatment of the Coulomb interaction and
actually comparable to the level of agreement obtained us
the empirically determined values ofm* in the McMillan
formula.35 It is important to note that these are all relative
high density metals.

In Figs. 8 and 9, are shown the pairing functio
F(k,iv), at T5Tc for b-gallium and lead, respectively. A
discussed above, the sharp structure atk5kf for large fre-
quencies arises from the singular nature of the long-ra
Coulomb interaction which is incompletely screened at fin
frequencies. In the following it will become apparent th
this structure can be far more pronounced in the case
monovalent metal, for example, lithium, a metal of mu
lower effective density, whereTc /e f is also much smaller
than in the metals considered above. The case of met

TABLE I. Transition temperatures in the electron-hole liquid.

r s n2 /n1 m2 /m1 Tc ~K!

2.0 0.5 2.0 '0
2.5 0.5 2.0 1.66
3.0 0.5 2.0 124
2.0 0.5 3.0 10.1
2.0 0.5 4.0 165
2.0 2.0 2.0 0.0066
2.5 2.0 2.0 23.1
3.0 2.0 2.0 312
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FIG. 6. Pairing function,F(k,iv), in the
electron-hole liquid atr s52, n2 /n150.5, and
m2 /m153. Note again the dip~see text! at k
5kf .
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hydrogen is even more interesting, especially the prot
paired metallic state, and is discussed elsewhere.36

Although the results for the simple metals are quite ac
rate for anab initio treatment of the Coulomb interaction,
is important to discuss possible sources of error that m
arise in more complex metallic systems. To begin with,
stated earlier the electron liquid model does not include b
structure effects beyond those incorporated in the band m
mb . This means that the electron liquid model may correc
give the density of states at the Fermi surface but it will n
in general give the correct Fermi energy~sincekf

2/2mb is the
Fermi energy in the electron liquid model and this usua
does not agree with the Fermi energy from band struc
calculations37!. The likely importance of this can be gauge
-

-

y
s
d
ss,
y
t

re

by the fact that the Fermi energy enters into the cru
square-well approximation for the pseudopotential, i.e.,

m*5
m

11m ln~e f /vph!
, ~66!

and we therefore expect an associated error in our calcul
transition temperatures; but it is small. Another potent
source of error can also be seen from Eq.~66!, in this case
originating with the phonon frequency,vph. A very simplis-
tic form for the phonon dispersion relation has been assum
that gives the correct̂v& ln but not in general the other av
erage phonon frequencies; for this reason we may not ne
sarily obtain the correct value ofvph. Based on the succes
FIG. 7. Pairing function,F(k,iv), in the
electron-hole liquid atr s52, n2 /n150.5, and
m2 /m154.
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TABLE II. Transition temperatures of the simple metals. The % error is defined as (Tc
calc2Tc

expt)/Tc
expt

3100%.

Metal l ^v& ln ~K! Tc
expt ~K! Tc

calc ~K! % error

Indium 0.805 68 3.40 2.98 212.4
b-gallium 0.97 87 5.90 5.68 23.7
a-gallium 1.62 55 8.56 7.71 29.9
Thallium 0.795 52 2.36 2.83 19.9
Lead 1.55 56 7.20 7.69 6.8
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we have in calculating the transition temperatures for
metals considered so far, it seems that these effects are
ally not very important in the simple metals; but they shou
certainly be considered in calculating the transition tempe
ture in materials with more complicated band structures
phonon dispersions.

Further, some inaccuracies must also result from our
proximate treatment of the effective interaction in the el
tron liquid itself. Though these can be associated with
assumed forms of the local field factors, we repeat that t
are very effectively constrained by the sum rules and fr
the results of Monte Carlo simulations.7 We have not inves-
tigatednonlocal corrections to the pairing interaction sinc
there is at present no reliable technique for calculating th
But because the integrand in the expression for the nor
state self-energy is not as sharply peaked at the Fermi su
as the integrand in the Eliashberg equation, nonlocal cor
tions to the self-energy are expected to be more impor
than nonlocal corrections to the pairing interaction.25 Some
indication of the error made in our approximation to t
self-energy can readily be gained by comparing with the q
siparticle parameters taken from Takadaet al.’s effective po-
tential expansion32 ~EPX! calculation. The EPX expansio
has been shown to give a correlation energy in very g
agreement with Monte Carlo simulations and it is theref
reasonable to assume that the EPX also gives good re
e
tu-

-
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.
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for the quasiparticle renormalization parameters. We find
fact, that our estimate of the product,zkf

c mc* /mb , is in good
agreement with Takadaet al.’s results but that we underes
timatemc* /mb and overestimatezkf

c . Here,mc* , is the elec-
tron mass renormalized by the Coulomb interaction butnot
the phonon mediated interaction, and similarlyzkf

c is the qua-
siparticle renormalization factor arising from the Coulom
interaction. In addition to errors in the local approximatio
further uncertainties can arise in principle from the use
local field factors that do not contain the full frequency d
pendence so thatmc* /mb ~which depends on the frequenc
derivative of the effective interaction! may not be obtained
accurately; nevertheless,zkf

c mc* /mb , which depends only on
the momentum derivativeis accurately calculated. For th
simple metals considered here,mc* /mb'0.87–0.91 a range
which is reasonably close to the corresponding values fr
the EPX calculation32 of mc* /mb'0.93–0.95. Accordingly
we do not expect significant error from the local approxim
tion to the self-energy. As we will see below, this source
error may be more significant in a lower density~larger r s!
metal, such as lithium.

B. Lithium

Calculations of the superconducting transition tempe
ture in the monovalent and fairly low density metal lithiu
FIG. 8. Pairing function, F(k,iv), for
b-gallium. Note the sharp dip~see text! at k
5kf .
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FIG. 9. Pairing function,F(k,iv), for lead.
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~accounting for the band mass, theeffective rs is 5.7! based
on ab initio electronic structure calculations and the M
Millan expression have previously predicted that lithiu
should be superconducting nearTc;1 K. Experimentally,
however, there is no sign of superconductivity down to
least 6 mK. Subsequently it has been suggested38 that the
electron-phonon coupling parameter,l, might be lowered
because of a reduction in the density of states at the Fe
surface in the 9R phase of lithium, the known low tempera
ture phase. However, band structure calculations27 indicate
that whilel is somewhat smaller in the 9R phase than in the
bcc phase, it is still sufficiently large that the transition te
perature should remain in the vicinityTc;1 K. It has also
been suggested39 that spin fluctuations could be responsib
for suppressingTc , but the corresponding calculations ind
cate an effective mass inconsistently large compared w
specific heat measurements.27 They also assume, howeve
that spin fluctuations contribute to the self-energy in
same way that they contribute to the effective pairing int
action; this is also not the case. Spin fluctuations do ind
play an important role in reducing the transition temperat
but we find that it is necessary to include the full frequen
dependent effective interaction in the calculation ofTc to
obtain its correct order of magnitude.

The electron-phonon coupling parameter,l, and the aver-
age phonon frequency,^v&, have been calculated27 for the
9R phase, the values beingl50.41 and^v&[200 K. An
experimental constraint onl is given by the effective mas
determined from specific heat measurements. The the
mass, which is the effective electron mass, including ren
malizations from electron-electron interactions and electr
phonon interactions, is given by34

mth

mb
5F 12]See/]v2]Sep /]v

11]See/]ek1]Sep /]ek
G

v50,k5kf

, ~67!

whereSee(k,v) andSep(k,v) are the contributions to the
self-energy from electron-electron interactions and fr
t

mi

-

th

e
-
d
e
y

al
r-
-

electron-phonon interactions, respectively.40 Since
Sep(k,v) is but a weak function ofk, we may neglect the
term ]Sep /]ek ;

34 it then follows that

mth5mc* ~11l!. ~68!

Here, as in the McMillan formula,l includes the Coulomb
renormalization factor (zkf

c )2(mc* /mb) and if we usel

50.41 with the band mass27mb51.75 and the effective mas
ratio, mc* /mb , ~attributable to Coulomb interactions! taken
from the EPX calculation of Takadaet al. (mc* /mb50.90),
we then find a thermal massmth52.2, which is in rather
good agreement with the experimental valuemth52.23
60.05.27 This indicates that the value,l50.41, is a quite
satisfactory estimate for lithium in the 9R phase. Note that
the EPX calculation of Takadaet al. includes the effects of
spin fluctuations, and for this reason the argument27 that spin
fluctuations would cause the thermal mass to be too larg
l50.41 is not sustained. The Coulomb-renormalized m
obtained using the modifiedGWG approximation gives
mc* /mb'0.7; this considerably underestimates the effect
mass. By these arguments, we expect that using Tak
et al.’s values forzkf

c andmc* /mb in a quasiparticle approxi-

mation for the part of the self-energy arising from the Co
lomb interaction will give a more accurate treatment of t
self-energy than will the modifiedGWG approximation.

While the thermal mass provides a useful test of the ba
mass corrected jellium model, yet a further test is the s
susceptibility. Experimentally,x f /x50.40 ~Ref. 41! for Li
at room temperature. To include the band-mass correct
we use Takada’s expression4 for the susceptibility in the
electron gas withr s53.2531.63 @the band mass is 1.63 in
the room temperature phase of Li~Ref. 27!# and then divide
the result by 1.63 to convertx f to the free-electron suscep
tibility as appropriate to electrons with the bare mass. T
leads tox f /x50.38 which is also in very good agreeme
with the experimental value. For the sake of comparis
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FIG. 10. Pairing function,F(k,iv), for
lithium. The dip atk5kf ~see text! is very large
here because of the small transition temperatu
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note that if we had ignored the band-mass correction,
would have obtainedx f /x50.70; it follows from this that a
value obtained using the correct band mass is far more se
than one which ignores the band-mass correction. As
pected the band-mass correction is necessary to ensure
the model has the correct density of states at the Fermi
ergy,N(0). Since the transition temperature depends se
tively onN(0), it is also necessary to include the appropria
band mass in calculations ofTc .

With the modified KO effective interaction and a qua
particle approximation to the Coulomb part of the se
energy both in hand, we again follow the procedure outlin
in Sec. II, the transition temperature we obtain is now 0
mK. Though it is clear that the transition temperature arriv
at with this approachmustbe low, the calculated value ca
still only be considered an order of magnitude estimate s
ply because the net Coulomb repulsion is so closely balan
with the phonon-mediated attraction. Small errors in the
Coulomb repulsion can still yield very large changes in
transition temperature. To see this note that the McMil
formula with Tc50.40 mK implies thatm*50.237. If the
correctm* is just 10% larger than our calculated value, t
transition temperature would be 4.1mK, a reduction inTc by
a further two orders of magnitude. But in the same way
our calculation should overestimatem* by 10%, the transi-
tion temperature would be 4.8 mK, which is certainly
order of magnitude larger than the present estimate but
completely consistent with the experimental limitTc
,6 mK. The Eliashberg equation has also been solved u
the modifiedGWG approximation for the self-energy; and
this case we findTc'0.2mK, again smaller than the resu
from the quasiparticle approximation primarily because
quasiparticle parameterszkf

c and mc* /m are not accurately

obtained in the modifiedGWG approximation for low den-
sity systems. Because of the errors in the quasiparticle
rameters in theGWG approximation, we regardTc
'0.4 mK as the more accurate estimate.

For the purpose of further comparison, we can also fi
e

ure
x-
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n-
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m* from the standard square-well approximation, Eq.~66!,
where we usevph5200 K; the result ism*50.174 which
then gives a transition temperature ofTc50.08; this is also
inconsistent with the experimental limit. The implication
that for this low density system the approximate formula, E
~66!, is too crude and that it is therefore necessary to so
the full momentum and frequency dependent Eliashber
the experimental resultT,6 mK is to be explained. By ig-
noring the term in the effective interaction arising from sp
fluctuations, Eq.~66! givesm*50.108 leading to a transition
temperature ofTc50.8 K. The fact that this is an order o
magnitude greater than the estimate including spin fluct
tions confirms that spin fluctuations can indeed play an
portant role in suppressing the transition temperature.

The pairing functionF(k,iv) for lithium is presented in
Fig. 10. As can be seen, the structure atk5kf is far more
dramatic in this case than in the previous calculations si
the transition temperature is very small@Eq. ~6! shows
clearly that the size of the dip grows with decreasing te
perature#. Although our main result for lithium,Tc
'0.4 mK, also cannot be considered a reliablequantitative
estimate of the transition temperature~because of the ex
treme sensitivity ofTc to m* ! it is nevertheless appears t
possess sufficient accuracy to resolve the conflict betw
the standard approximations and the experimental result
lithium is not superconducting down to at least 6 mK. T
reason that the standard approximation,m*'0.1, fails for
this metal is that the effective electron-electron coupling
rameter,r s55.7, is unusually large compared to the sup
conducting polyvalent simple metals and the ratioe f /vph is
unusually small~other metals may share these characte
tics!. The static Coulomb repulsion grows with increasi
r s , so lithium has a largem and sincevph/e f is unusually
small m* is also unusually large. Although this qualitativ
explanation relies on the crude approximation given in E
~66!, for a more quantitative calculation of the role of th
Coulomb repulsion in setting the transition temperature, i
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necessary to solve the frequency and momentum depen
Eliashberg equation. Finally, since lithium is reasona
compressible this picture offers a possible test via high p
sure studies.

C. The two-band case

Now that it appears established that the modified KO
proximation can give a reasonable description of the eff
tive Coulomb interaction in a set of simple metals, we exa
ine the role of the Coulomb interaction in a selected clas
two-band metals. In particular, we take the electron-h
models considered above augmented by phonons acco
to Eq.~36!. We choosêv& ln560 K as a representative valu
and calculate the transition temperature for an electron-h
system withr s52, n2 /n150.5,m2 /m153 and with various
values ofl. The results following from the procedure of Se
II are summarized in Table III where the valuem*520.650
is chosen to reproduce the resultTc510.1 K in the absence
of phonons. For largel the McMillan formula significantly
underestimates the transition temperature, something
also occurs for positivem* ,26 although this break-down oc
curs for smallerl whenm* is negative. In cases where th
transition temperature is already greater than the phonon
quencies, even withl50, the McMillan formula breaks
down entirely.

The discussion has been confined so far to systems
moderate transition temperatures. As seen in Table I, h
ever, there can be cases with very large transition temp
tures. For these it must be cautioned that other instabili
~towards charge density waves, or even structural insta
ties! will restrict the largest transition temperature that can
obtained for either the correlated charge fluctuation mec
nism or the phonon mechanism.

VII. CONCLUSIONS

The solution to the Eliashberg equations involves a
merically intensive procedure even for the isotropic ca
considered here; but apart from accommodating the diffe
frequency scales, this fragment of the study is in some se
straightforward and standard. The more important phys
issue dealt with here is therefore the nature of the esse
input into these equations, namely the manner in wh
many-body physics is correctly built into the effective inte
actions, where the essential feature is the inclusion of
effective Coulomb interaction on a completely equal footi
with the phonon mediated interaction. It is particularly im
portant to stress again that the effective electron-electron
teraction is subject to rather powerful constraints as provi

TABLE III. Transition temperatures of the electron-hol
phonon model.

l
Tc
McMillan

(m*50) ~K!
Tc
McMillan

(m*520.650) ~K! Tc ~K!

0.0 10.1 10.1
0.4 1.31 15.0 16.8
0.8 4.82 17.4 22.2
1.5 8.83 19.5 31.3
ent
y
s-

-
c-
-
of
e
ing

le

at

e-

ith
-
a-
s
li-
e
a-

-
s
nt
se
al
ial
h

e

n-
d

by the sum rules and the Ward identities. For the two-ba
system, the compressibility sum rule and the Ward identi
together guarantee that the attractive term in the effec
interaction is exact in the static, long-wavelength limit f
electrons on the Fermi surface. Using our best estimate
these effective interactions, the present approximations i
cate that no intrinsics-wave superconductivity occurs in th
one-band electron gas at least forr s,10; we cannot rule out
the possibility of higher angular momentum pairing. In t
two-band electron-hole gas, however, superconductivity
arise if the system is near the region wherevc /e is small or
negative. When phonons are included with electrons fr
the beginning, the transition temperature in high-density o
band systems is adequately described by the McMillan
pression withm*'0.1, but for lower density systems, whic
may include many systems of current interest, the role of
Coulomb repulsion is significantly underestimated by assu
ing m*'0.1. For the group of superconducting simple m
als that we have considered, the transition temperatur
correctly predicted to within 20% by a relatively straightfo
ward procedure. Also calculated is the superconducting tr
sition temperature in lithium and we find thatTc'0.4 mK
thereby resolving a longstanding discrepancy between pr
ous approximations for the transition temperature and
experimental result thatTc,6 mK. If a two-band system
happens to be close to the region where limq→0vq /e(q,0) is
small or negative, large transition temperatures appear
sible (.100 K). However, a charge density wave or stru
tural phase transition should also be anticipated and th
will clearly place an upper limit on the maximum obtainab
transition temperature.

Finally we note that our technique can in principle
extended to treat anisotropic metals by expanding
F(k,ivn), G(k,ivn), and Veff(k,ivn ;k8,ivn8) in Fermi
surface harmonics.42 This will lead to a two-dimensional in-
tegral equation, but there are significant practical consid
ations which might make the solution quite difficult. For e
ample, in the isotropic calculation, most of the computatio
effort is spent in evaluating the matrix,M , since each matrix
element requires a numerical evaluation of a tw
dimensional integral. For the anisotropic case, however,
will confront a three-dimensional integral which must b
evaluated numerically for each matrix element and this w
require significantly more computational effort than is t
case for the isotropic examples we have considered ab
Furthermore the matrix Eq.~4! will be replaced by one with
the structure

(
L8

ML,L8FL85gFL , ~69!

whereL is the index in the Fermi surface harmonics expa
sion. Since the separateL components do not decouple, th
computational effort required to calculateTc will scale as the
square of the number of terms retained in the Fermi surf
harmonics expansion. Alternative strategies are therefore
ing investigated.
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