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Dipolar-induced planar anisotropy in ultrathin magnetic films
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Monte Carlo simulations are used to study the role of the dipolar interaction in determining the properties of
a monolayer of magnetic dipoles on a square lattice. The dipoles are constrained to lie in the plane but are free
to rotate within it. Comparison of the Monte Carlo results with those from spin-wave theory indicate that the
system orders below a nonzero critical temperature. The effect of the thermally induced anisotropy on the
spin-wave spectrum and its role in stabilizing the ordered phase at low temperatures is discussed. Results for
the correlation function, both above and below the transition temperature, are compared with the corresponding
results for the standardXY model.@S0163-1829~97!05021-2#
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I. INTRODUCTION

The dipolar interaction is often small when compared
the exchange interaction in magnetic systems but can pl
critical role in determining the magnetic properties of tw
and three-dimensional magnetic systems. The long-ra
character of the interaction can change the critical proper
of three-dimensional ferromagnetic systems and can stab
the ferromagnetic phase in two-dimensional systems.1,2 The
dipolar interaction also plays an important role in determ
ing the domain structures magnetic systems exhibit and
give rise to a rich variety of spatially modulated phases
two-dimensional systems.3,4 In thin magnetic films, the com
petition between the magnetic surface anisotropy and the
polar interaction can lead to the existence of a reorienta
transition.5–7

In this paper we consider a square lattice of magn
dipoles constrained to lie in the plane of the lattice but free
rotate within it. We restrict our considerations to pure dipo
systems.

It is well known that the ground state of the planar dipo
system is antiferromagnetic. However, in a study of t
ground state, Zimmermanet al. realized that the situation i
more subtle than one might initially suppose.8 In the particu-
lar case of the honeycomb lattice, it can be shown that
ground state is highly degenerate and defines a continu
manifold of spin configurations. Thus while the dipolar i
teraction does not exhibit a continuous symmetry with
spect to rotation of the spins, the degeneracy of the gro
state implies the existence of a gapless excitation at z
temperature. In the standard~ferromagnetic exchange inte
actions only! XY model the existence of gapless spin-wa
excitations destroys long-range order at any finite temp
ture in the thermodynamic limit.9 This leads us to question i
the existence of a gapless spin wave, implied by the cont
ously degenerate ground state, will suppress the long-ra
magnetic order at finite temperature even though the dip
interaction does not manifest a continuous symmetry an
long range in nature.
550163-1829/97/55~22!/15108~11!/$10.00
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More recently Prakash and Henley10 have considered the
related problem of a planar spin system in which the sp
interact via a nearest-neighbor interaction. The interaction
this model has the same form as the interaction betw
nearest-neighbor dipoles, but this model neglects the lo
range character of the dipolar interaction. Nevertheless
ground state exhibits a degeneracy similar to that of
analogous dipolar system. Using a linearized spin-wave
culation Prakash and Henley have shown that the spin fl
tuations induce an effective potential in the free energy t
reflects the symmetry of the underlying lattice for both t
honeycomb and the square lattice.10 They conclude that the
system will order magnetically at low temperature and re
to this as thermally induced magnetic order.

While the questions relating to the existence of long-ran
magnetic order in a two-dimensional dipolar system are
interest from the point of view of magnetic thin films, th
process whereby order can be induced through thermal
order is of itself interesting and may have application outs
the realm of magnetic thin films. In this paper we determ
how the spin-wave results of Prakash and Henley are m
fied by the long-range character of the dipolar interaction a
determine, by means of thorough Monte Carlo simulatio
whether or not the planar dipolar system orders at finite te
perature. With regard to this last question, it should be no
that it is not sufficient to demonstrate magnetic ordering
finite temperature in a finite system but, rather, it is nec
sary to determine the dependence of the order paramete
the system size in order to show that the magnetic or
persists in the thermodynamic limitN→`.

In Sec. II we outline a spin-wave calculation for the d
polar system and in Sec. III Monte Carlo results for th
system are reported. Section IV describes the nature of
two-point correlation function in this system and in Sec.
we summarize the conclusions that can be drawn from
comparison of the spin-wave results and Monte Carlo resu
We also the implications of these results for recent neutr
scattering experiments on ErBa2Cu3O6.
15 108 © 1997 The American Physical Society
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55 15 109DIPOLAR-INDUCED PLANAR ANISOTROPY IN . . .
II. SPIN-WAVE CALCULATION

The Hamiltonian for the system may be written

H5(
i j

sW ~rW i !•sW ~rW j !r i j
223@sW ~rW i !•rW i j #@s~rW j !•rW i j #

r i j
5 , ~1!

where the spin vectorssW (rW) are confined to lie in theXY
plane.

The ground-state spin configurations for the dipol
Hamiltonian of Eq.~1! form a continuously degenerate man
fold of antiferromagnetic states. Two ground-state spin co
figurations are shown in Fig. 1. The spin configurations th

FIG. 1. Two examples of ground-state spin configurations
terms of the original spin variables.
r

-
t

make up the ground-state manifold are best parametrized b
transforming the spins variablessW by means of a gauge
transformation defined by

Sx~rW !5~21!ny /asx~rW !, ~2!

Sy~rW !5~21!nx /asy~rW !, ~3!

wherea is the lattice spacing,nx andny are the number of
steps on the lattice in thex andy directions measured rela-
tive to an arbitrary origin, andSW denotes the transformed
spins.

The ground-state configurations, shown in Fig. 1 in terms
of the original spin variablessW , are shown in Fig. 2 in terms

n

FIG. 2. The ground-state spin configurations corresponding to
those in Fig. 1 but shown in the gauge transformed spin variables
defined by Eqs.~2! and ~3!.
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15 110 55DE’BELL, MacISAAC, BOOTH, AND WHITEHEAD
of the gauge-transformed spin variablesSW . The obvious
merit of the gauge transformation defined by Eq.~3! is that,
for the ground-state configurations shown in Fig. 2, the s

variablesSW (rW) are all oriented in the same direction. The
ground states may be characterized in terms of the orie
tion of the two-dimensional order parameter defined by
vector

VW 5
1

N(
rW
SW ~rW !, ~4!

and, more generally, for all ground-state spin states it can

shown that the spin variablesSW (rW) are all parallel so that the
ground state may be parametrized by the orientation of

vectorVW defined by Eq.~4!. However, it should be noted tha
the rotational invariance of the energy with respect to ro

tion of VW refers only to states belonging to the ground-st
manifold and does not imply the existence of global inva
ance with respect to rotation of the gauge transformed s

variablesSW . This distinction between the rotational invar
ance within a manifold of states and a global invariance
the Hamiltonian under rotation is critical in understandi
the behavior of the system.

The low-temperature properties of the spin system may
analyzed by considering small amplitude fluctuations abo
ground-state spin configuration. Given the antiferromagn
character of the ground-state spin configurations, we in
duce the lattice shown in Fig. 3 with lattice spacing 2a and
four spins per unit cell. Labeling the four spins in the u
cell as shown, we express the gauge transformed spin
able in terms of the fluctuation fields as

FIG. 3. Magnetic superlattice used in the spin-wave calculat
showing the labeling of the individual spins within the unit cell.
n
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Sx~rW !5cosua~RW i ! ~5!

'cosu02sinu0dua~RW i !2
1

2
cosu0dua~RW i !

2 . . . , ~6!

Sy~rW !5sinua~RW i ! ~7!

'sinu01cosu0dua~RW i !2
1

2
sinu0dua~RW i !

2 . . . , ~8!

whereu0 refers to the orientation of the order parameter w
respect to thex axis and we have defined the fluctuation
the orientation of thea spin in the unit cell at positionRW i as

dua~RW i !5ua~RW i !2u0 . ~9!

To leading order in the fluctuations the Hamiltonian may
written as

H5E01(
i j

(
ab

dua~RW i !Gab~RW i2RW j !dub~RW j !1 . . . ,

~10!

5E01(
ab

E
V
dqW dua~qW !Gab~qW !dub~2qW !1 . . . , ~11!

whereV denotes the first Brillouin zone. The derivation an
the specific form ofGab(qW ) is given in the Appendix.

The above expression for the Hamiltonian reduces t
single sum by expanding the fluctuation fields in terms of
eigenvectors determined by the equation

(
a

Gab~qW !Fa
v~qW !5lv~qW !Fb

v~qW !, ~12!

wherev50,1,2,3 and the eigenvaluel0(qW ) is defined so that
limq→0l0(qW )50. The eigenvalue spectrum of this equati
depends on the orientation of the order parameter given
u0. Two eigenvalue spectrum are shown in Fig. 4 for t
case in which the order parameter is oriented along thex axis
(u050). Two features should be noted. First we see t
both spectra contain a branch that goes to zero in the l
q→0. This is a consequence of the fact that the ground-s
energy defines a continuously degenerate manifold of s
configurations associated with a continuous rotation of
unit vectorVW . Secondly we note that in the second branch
eigenvalue spectrum in Fig. 4~b! varies linearly withq in the
limit q→0. The corresponding eigenvectors define osci
tions in the net magnetization of the lattice. The linear p
tion of the eigenvalue spectrum arises as a consequenc
the nonanalytic nature of the propagatorGab(qW ) in the limit
q→0, reflecting the long-range character of the dipolar
teraction. The results for the ‘‘nearest-neighbor’’ interacti
model used by Prakash and Henley are included for comp
son.

The eigenvalue spectrum of the soft mode can be
scribed, in the long-wavelength limit, in terms of a spi
wave stiffnessD defined as

,
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FIG. 4. Eigenvalue spectra for wave vectors directed along thex axis ~a! and at 45° to thex axis ~b!. The corresponding spectra obtaine
for the nearest-neighbor interaction used by Prakash and Henley are shown for comparison@~c and d!#.
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lim
q→0

l0~qW !5D~ q̂!q2. ~13!

The spin-wave stiffness is plotted in Fig. 5 as a function
the direction of the wave vector for the case in which t
orientation of the order parameter is parallel to thex axis and
for the case in which the order parameter is orientated
45° to thex axis. Note that it reflects the fourfold symmet
of the underlying lattice. The results for the correspond
‘‘nearest-neighbor’’ interaction used by Prakash and Hen
are included for comparison.

The free energy may also be calculated in the lineari
spin-wave approximation as

F5E01
NkBT

8p2 E
V
dqW ln„detG~qW !…2

NkBT

2
lnSNkBT8p D

5E01
NkBT

8p2 E
V
dqW(

v
lnlv~qW !2

NkBT

2
lnSNkBT8p D . ~14!
f

at

g
y

d

While the ground-state energy of the system is invariant
der the rotation of the order parameter, the correction aris
from the spin-wave fluctuations is not. The resultant chan
in the free energy is plotted as a function of the orientation
the order parameter in Fig. 6. The orientational depende
of the free energy reflects the fourfold symmetry of the u
derlying lattice, with a minimum corresponding to the ca
in which the order parameter is aligned parallel to either
x or they axis. The results for the corresponding ‘‘neare
neighbor’’ interaction are included for comparison.

The breaking of the rotational invariance by the therm
fluctuations gives rise to an effective anisotropic field. T
amplitude of the field increases with increasing temperat
and manifests the fourfold symmetry of the underlying l
tice. The appearance of this anisotropic field serves as
basis for order induced by thermal disorder. It should
noted however that while the fourfold anisotropy of the fr
energy can be obtained from the linearized spin-wave the
described above, to obtain a finite order parameter requ
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15 112 55DE’BELL, MacISAAC, BOOTH, AND WHITEHEAD
that we include the higher-order terms in the spin-wave
pansion of the Hamiltonian given by Eq.~11! in a self-
consistent manner.11

III. MONTE CARLO

The results of our Monte Carlo simulation show that t
system orders at low temperature. Within the new gauge,
order parameter becomes the average magnetization

C5^uVW u&5
1

N K U(
RW

SW ~RW !U L . ~15!

In Fig. 7 we plot this as a function of the temperature
systems ranging fromN564 toN516 384. The associate
susceptibility,x, is defined to be

x5
1

T2N
@^uVW u2&2^uVW u&2#. ~16!

This is shown in Fig. 8. The peak in the susceptibility co
cides with a sharp drop in the order parameter and has
tures consistent with a continuous transition. One can a
see evidence of a phase transition in the heat capacity w
is shown in Fig. 9. Assuming that the system has a cont

FIG. 5. Spin-wave stiffness~solid line! for order parameters
directed along thex axis ~a! and at 45° to thex axis ~b!. The
corresponding results for the nearest-neighbor interaction use
Prakash and Henley are also shown~dashed line!.
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ous order-disorder transition, standard finite-size analysi
the size dependence of the transition temperature gives
the limit of an infinite system,Tc51.3960.05. The error
estimate reflects the small system sizes used. An attem
extract critical exponents has been deferred until larger s
tems can be studied with more accuracy.

A 16316 segment of a typical spin configuration, o
tained from the Monte Carlo simulations on a 40340 lattice
is shown in Fig. 10 for (T/Tc50.7). Inspection of this figure
reveals a high degree of ordering among the spins. The
responding spin configuration for the standardXY model is
shown in Fig. 11. These are clearly qualitatively differe
from those shown in Fig. 10 for the dipolar system, in p
ticular the spins are substantially less ordered, due to
presence of the vortices/antivortices.

by

FIG. 6. Variation of the free energy with the orientation of th
order parameter~relative to thex axis! in the spin-wave calculation
~solid line!. Shown is the second term of Eq.~14! in units of
(NkBT/8p2). The corresponding results for the nearest-neigh
interaction used by Prakash and Henley are also shown~dashed
line!.

FIG. 7. Monte Carlo results for the order parameter,C, defined
by Eq. ~16! as a function of temperature. Results are shown
various values ofL, the linear size of the system.
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55 15 113DIPOLAR-INDUCED PLANAR ANISOTROPY IN . . .
One must be cautious when interpreting the results
Monte Carlo simulations on finite size systems, in low
dimensional systems. For example, in the case of the s
dardXYmodel it is well known that while the magnetizatio
is identically zero at all finite temperatures in the thermod
namic limit,9 finite-size systems exhibit an ordered phase12

To study the size dependence of the order parameter
note thatC varies almost linearly with temperature at lo
temperatures~see Fig. 12!. This linear behavior arises as
consequence of the thermal excitations of the spin wav
Therefore, we may characterize the temperature depend
of the order parameter at low temperature by the coeffici
of the linear term

A5 lim
T→0

S 12C

T D . ~17!

FIG. 8. Monte Carlo results for the susceptibilityx, defined by
Eq. ~17! shown as a function of temperature.

FIG. 9. Monte Carlo results for the magnetic heat capacity a
function of temperature.
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CalculatingA from linearized spin-wave theory yields the
result that

lim
N→`

A~N!;
1

D lnN, ~18!

whereD is the spin-wave stiffness averaged over the angle
The divergence ofA in the limit N→` is a consequence

of the presence of a gapless branch in the linearized spin
wave theory spectrum, which arises from the degeneracy o
the ground state. A similar result holds in the case of the
standardXY model.12 The divergence ofA would appear to
imply the absence of magnetic order at any finite tempera
ture, as is the case in the standardXY model. In Fig. 13 we
have plotted the coefficientA obtained from Monte Carlo
simulations as a function of lnN. While A has a linear de-
pendence on lnN at small values ofN, the results differ dras-

a

FIG. 10. A 16316 segment from a typical spin configuration for
a 40340 lattice generated by Monte Carlo simulation of the dipolar
planar model atT/Tc50.70.

FIG. 11. A 16316 segment from a typical spin configuration for
a 40340 lattice generated by Monte Carlo simulation of the stan-
dardXY model atT/TK50.70.
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15 114 55DE’BELL, MacISAAC, BOOTH, AND WHITEHEAD
tically from those predicted by linearized spin-wave theo
@Eq. 18#. Not only is the slope in the linear region two orde
of magnitude smaller than that predicted by the lineariz
spin-wave theory but, also, the Monte Carlo data appea
approach a plateau asN is increased implying thatA(N) has
a well defined finite value in the thermodynamic limit give
by limN→`A(N)50.1660.1. This leads to conclusion tha
the system will exhibit long-range magnetic order, at fin
temperatures, in the thermodynamic limit.

This discrepancy between the analysis of the Monte C
simulation data and the linearized spin-wave theory may
understood by noting that the linearized spin-wave the
predicts a gapless mode in the spin-wave excitation spec
even at finite temperature. However, as shown in the sec
on spin-wave theory above, the lack of global invarian
with respect to rotation of the spin variablesSW (rW) leads to an
anisotropy, with respect to rotation of the order parameter
the free energy at any finite temperature. A self-consis
treatment of the anisotropy requires a renormalized treatm

FIG. 12. An expanded plot of the low temperature region in F
7, showing the order parameterC as a function of temperature.

FIG. 13. Monte Carlo results for the coefficientA(N), defined
by Eq.~18!, as a function of lnN. The straight line is a least-square
fit of the lowest four points, which is intended simply as a guide
the eye. The linear dependence predicted by linearized spin-w
theory would have a slope two orders of magnitude larger.
d
to
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nt

of the spin waves to take account of higher-order terms in
expansion.11 The anisotropy will manifest itself as a gap
the renormalized spin-wave spectra. The presence of a ga
the renormalized spin-wave spectrum implies that the co
ficientA, defined by Eq.~17!, will yield a well defined finite
value in the limitN→`. In view of this, we conclude tha
the observed ordering of the spinsSW (rW) is an effect of a gap
in the excitation spectrum and not merely an artifact of
finite system size.

In order to better understand the role of thermally induc
anisotropy, we note that its effect locally will be similar t
introducing a temperature-dependent anisotropy te
h4(Sx

41Sy
4) into the Hamiltonian.10 We defineP(T) to be

the field conjugate toh4(T),

P~T!5K (
RW

~Sx
41Sy

4!L , ~19!

and measureP(T) for systems of size betweenN5576, and
N54096. If the net magnetization is fixed along one of t
6y or 6x axis thenP is equal to 1, if instead the system
free to orientate itself in any direction thenP50.75. Figure
14 showsP as a function of temperature for the pure dipo
system, the standardXY model and the standardXY model
with an anisotropy term of the formh4(Sx

41Sy
4). For the

standardXY model P50.75 at all temperatures, reflectin
the orientational freedom of the spins. For the dipolar syst
the data extrapolates toP51 at T50 indicating that the
system orders completely and along one of the lattice a
As T increasesP decays until it is fluctuating about 0.7
well before the transition is reached. Adding the anisotro
field to the standardXY model suppresses the orientation
freedom of the spins at low temperature to give a value
P that extrapolates to 1 in the limitT→0. We note that
choosingh450.2 yields a temperature dependence forP
similar to that found for the pure dipolar case.

.

ve

FIG. 14. Monte Carlo results forP(T), the field conjugate to the
effective anisotropy and defined by Eq.~20!, as a function of tem-
perature. Data for theXY model with exchange interactions an
h450, h450.2, andh450.3 are shown for comparison.
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IV. CORRELATION FUNCTION

The results reported above forP indicate that the effective
anisotropy in the vicinity ofTc and in a region belowTc is
very small when compared withkBT. It is therefore natural
to ask to what extent the system behaves like an isotro
system. To obtain some insight into this we have calcula
the two-point correlation function both above and below
transition temperature. The two-spin correlation function
defined in our transformed gauge by

C~rW !5^SW ~0!•SW ~rW !&2^SW ~0!&^SW ~rW !&. ~20!

In the isotropicXY model with exchange interaction
only, the transition is the Kosterlitz-Thouless transition13

However in the anisotropicXY model with a large anisot
ropy field which reflects the symmetry of the square latt
the behavior is that of a four-state clock model.14 In either of
these cases, as the temperature approaches the critical
perature from above, the dominant dependence of the co
lation function on distance is

C~rW !;exp~2r /j!. ~21!

Moreover, in both of these cases, the correlation lengthj,
diverges as the critical temperature is approached f
above.

We estimate the correlation length at high temperature
assuming that the correlation function decays exponenti
as described by Eq.~21!. Semilog plots of the correlation
function as a function of distance at several values of
temperature above the critical temperature are shown in
15. The data in these plots follow the expected straight
over a range that extends from approximately 5 lattice sp
ings to 15 lattice spacings. The observed deviation from
straight line outside of this region is not surprising as
scaling form of Eq.~21! is not expected to hold at distance
of only a few lattice spacings and for distances appro
mately equal to half the system size and larger, the fin
nature of the lattice might be expected to give rise to fin
size effects.

FIG. 15. Dependence of the correlation function, defined by
~21!, on distancer for various temperatures aboveTc , in a
N564364 system.
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In principle, it is possible to differentiate between th
Kosterlitz-Thouless transition and the conventional order
transition by determining the dependence of the hig
temperature correlation length on temperature as the cri
temperature is approached from above.15 In view of the ob-
vious presence of finite-size effects and the uncertainty in
transition temperature we do not attempt to do so he
Rather, we have analyzed the dependence of the correla
function on distance belowTc in order to provide further
evidence for the nature of the transition.

If the transition is an ordering transition such as that o
served in the four-state clock model, the correlation funct
will again have an exponential dependence on distance
described by Eq.~21!. However if the system is isotropic
spin-wave theory would predict a power-law dependence
distance

C~r !;r h. ~22!

For a Kosterlitz-Thouless transitionh is temperature depen
dent and has a value of 0.25 at the transition.

In Fig. 16 the correlation function is plotted as a functio
of distance at various values of temperature below the c
cal temperature using both semilog and log-log plots. T

.

FIG. 16. Dependence of the correlation function, defined by
~21!, on distance for various temperatures belowTc , in a
N564364 system. Data are shown on a semilog~a! and log-log~b!
plot.
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15 116 55DE’BELL, MacISAAC, BOOTH, AND WHITEHEAD
semilog plots are similar to those obtained aboveTc ~Fig.
15!. In particular, a reasonable straight line fit can again
obtained for distances between approximately 5 and 15
tice spacings. In the case of the log-log plots a straight
can be fitted to only relatively few points at small values
r and the data clearly deviates from this line quite quick
Thus the dependence of the correlation function on dista
at temperatures belowTc seems to have the same expone
tial form as the dependence aboveTc ; consistent with the
view that the transition is to an ordered state with rotatio
anisotropy.

The variation of the correlation length with temperatu
obtained by fitting the correlation function data to the exp
nential form of Eq.~21! both above and belowTc , is shown
in Fig. 17. The sharp narrow peak in the region aroundTc
with a rapid decrease to small values on either side of
peak is again consistent with the expected behavior for
dering in a system with rotational anisotropy.

V. CONCLUSION

Our Monte Carlo data for the planarXY model with pure
dipolar interactions exhibit thermally induced rotational a
isotropy, as characterized by the fieldP defined by Eq.~19!,
and indicate that the system orders at a critical tempera
of Tc51.3960.05. The behavior of the order parameter,
the gauge transformed system defined by Eq.~3!, in the vi-
cinity of Tc is consistent with that of a system undergoing
ordering transition and belowTc the order parameter i
found to lie along one of the lattice axes. The exponen
dependence of the two-point correlation function on dista
both above and belowTc is consistent with an ordering tran
sition in a system with rotational anisotropy.

Experience with the isotropicXY model with exchange
interactions demonstrates that the occurrence of a non
order parameter in the finite systems used in Monte C
simulations must be treated with caution when drawing c
clusions about the system in the thermodynamic limit. Ho
ever our Monte Carlo results clearly indicate that the dep

FIG. 17. Correlation length as defined by Eq.~22!, calculated
from Monte Carlo results and plotted as a function of tempera
for both aN540340 and aN564364 system.
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dence of the order parameter on system size is significa
less than that predicted by linearized spin-wave theory.
the larger systems studied the decrease in the order pa
eter with system size is small and the order parameter
pears to approach a well defined value for largeN. We there-
fore conclude that the system does indeed exhibit an ord
phase at low temperatures.

Despite the ubiquituous nature of the dipolar interactio
detailed comparison of our results with those for experim
tal systems, is not straightforward. However, one poten
application is the ordering of the rare-earth ions in the hig
Tc superconducting copper oxides and related materi
There is considerable experimental and theoretical evide
that the Er ions in ErBa2Cu3O6 form a quasi-two-
dimensional, square lattice in which the ground state of
Er ions is a continuously degenerate spin doublet.16 More-
over, calculations indicate that the exchange interaction
relatively weak in this compound.17 Chattopadhyayet al. re-
port neutron-scattering results which suggest that the Er
do indeed order at sufficiently low temperature.18 However
there are certain difficulties associated with the interpreta
of these results.19 Indeed, more recent neutron-diffraction r
sults indicate that the Er spins exhibit only short-range m
netic order down to 60 mK.20 The apparent absence of long
range magnetic order in the Er sublattice is surprising in li
of the results obtained from the present analysis and serve
emphasize the puzzling nature of these compounds and
particular, the role played by the dipolar interaction.

In performing the spin-wave calculation we have iden
fied features which occur in the system with a full dipol
interaction but not in the nearest-neighbor model of Prak
and Henley. In particular the linear behavior of the seco
branch of the spin-wave spectra at smallq is associated with
the long-range nature of the dipolar interaction.

The role of the thermally induced anisotropy near the
dering transition is an important consideration of the pres
study. Our Monte Carlo data show that the fieldP, conjugate
to the effective anisotropy fieldh4, decreases as the temper
ture is increased in the ordered phase and for values
T>1.2, P fluctuates about the zero anisotropy value
P50.75. This indicates that the effective strength of the th
mally induced anisotropy is very small compared with t
thermal energykBT in this region which includes the critica
temperature. As noted by Prakash and Henley, some sen
the probable role of the anisotropy can be obtained by c
sidering results for the exchange interactionXYmodel with
an anisotropy fieldh4. Renormalization-group arguments in
dicate that an anisotropy field with the fourfold symmetry
the lattice will always be relevant and that the Kosterli
Thouless transition will be observed only in the ca
h450.21,22 For nonzeroh4 the renormalization-group calcu
lation predicts a continuous line of fixed points which me
the Kosterlitz-Thouless line of fixed points atTKT on the
h450 axis. Thus we expect a transition directly from th
disordered state to an ordered state with fourfold symme
for any finite value of the anisotropy. Our Monte Carlo r
sults are entirely consistent with this. However the renorm
ization results also imply that any exponents determined
be nonuniversal and depend on the specific value of the
fective anisotropy strength.
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APPENDIX:
CALCULATION OF THE SPIN-WAVE PROPAGATOR

The Hamiltonian may be written in terms of the gau
transformed spin variablesSW p(RW ),

H5 (
p,q51

4

(
n,m

8Sp
a~RW n!Apq

abGpqnm
ab Sq

b~RW m!, ~A1!

whereApq
ab is given by

Apq
ab5~21!

urp2rp
au

a 1
urq2rq

bu

a . ~A2!

In these expressions the indicesp,q refer to the positions
within the unit cell and the indicesn,m refer to the superlat-
tice vectors in the superlattice described in Fig. 3.a andb
refer to the components of the spin vectors.

In order to obtain an explicit form for the propagator th
appears in Eq.~11!, we write the Hamiltonian as an expan
sion in the small fluctuations of the directions of the sp
variablesSW relative to a chosen reference direction:

H5E01H21higher-order terms. ~A3!

E0 is the ground-state energy and

H25
1

2(i , j (
l 8,k851

4

du i ,l 8
]

]u i ,k

]

]u j ,l
Huu0du j ,l , ~A4!
s
rs

e

t

where the first sum is over the superlattice vectors and
second sum is over positions within the unit cell. The ang
u l ,n , are defined such that

Sl
x~RW n!5cos~u l ,n!, ~A5!

Sl
y~RW n!5sin~u l ,n!. ~A6!

After taking the two derivatives and evaluating the result
u0, we arrive at the result

H25(
i , j

(
l 8,k851

4

du i ,l 8H 2d l 8k8d i , j(
k51

4

(
m

~12d j ,mdk,k8!

3(
ab

BabAk8k
ab Gk8k jm

ab
1~12d i , jd l 8,k8!

3(
ab

CabAk8 l 8
ab Gk8 l 8 j i

ab J du j ,k8. ~A7!

The matricesB andC are defined by

B5S cos2~u0! sin~u0!

sin~u0! sin2~u0!
D ,

C5S sin2~u0! 2sin~u0!

2sin~u0! cos2~u0!
D .

Taking Fourier transforms we obtain

H25(
pq

E
VB

dQW dup~QW !Gpq~QW !duq~2QW !, ~A8!

with
Gpq~QW !52dpq

1

p2(
ab

(
k51

4

(
RW

~12dRW 50dqk!Aqk
abBabGqk

ab~RW !1
1

p2(
ab

(
RW

~12dRW 50dqp!Aqp
abCabGqp

ab~RW !e2 iQW •RW ,

~A9!

or equivalently

Gpq~QW !5dpqAp1gpq~QW !. ~A10!

To obtain this compact form forG we have defined

Ap[2
1

p2(
ab

(
k51

4

Apk
abBabDpk

ab~0!, ~A11!

gpq~QW ![
1

p2(
ab

Apq
abCabDpq

ab~QW !, ~A12!

Dpq
ab~QW !5(

RW
~12dRW 50dqp!Gqp

ab~RW !e2 iQW •RW . ~A13!
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To evaluateDpq
ab a lattice sum must be performed. This can be expressed in a rapidly convergent form using standar

sum methods.23 For pÞq

Dpq
ab~QW !5

4

Ap
(
RW

~Ra1r pq
a !~Rb1r pq

b !

uRW 1rWpqu5
e2 iQW •RW GS 52 ;h2uRW 1rWpqu D2dab

2

Ap
(
RW

e2 iQW •RW

uRW 1rWpqu3
GS 32 ;h2uRW 1rWpqu2D

2
Ap

2 (
RW Þ0

~Qa1pRW a/2!~Qb1pRW b/2!

uQW 1pRW /2u
e2 i ~QW 1pRW /2!•rWpqGS 1

2
;
uQW 1pRW /2u2

4h2 D 2
p

2

QaQb

uQW u
eiQ

W
•rWpqerfcS uQW u

2h
D .

~A14!

For p5q

Dpp
ab~QW !5

4

Ap
(
RW

~RaRb!

uRW u5
e2 iQW •RW GS 52 ;h2uRW u D2dab

2

Ap
(
RW

e2 iQW •RW

uRW u3
GS 32 ;h2uRW u2D

2
Ap

2 (
RW Þ0

~Qa1pRW a/2!~Qb1pRW b/2!

uQW 1pRW /2u
GS 1

2
;
uQW 1pRW /2u2

4h2 D 1dab

4h23

3Ap
2

p

2

QaQb

uQW u
erfcS uQW u

2h
D . ~A15!
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