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Dipolar-induced planar anisotropy in ultrathin magnetic films
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Monte Carlo simulations are used to study the role of the dipolar interaction in determining the properties of
a monolayer of magnetic dipoles on a square lattice. The dipoles are constrained to lie in the plane but are free
to rotate within it. Comparison of the Monte Carlo results with those from spin-wave theory indicate that the
system orders below a nonzero critical temperature. The effect of the thermally induced anisotropy on the
spin-wave spectrum and its role in stabilizing the ordered phase at low temperatures is discussed. Results for
the correlation function, both above and below the transition temperature, are compared with the corresponding
results for the standardY model.[S0163-182¢07)05021-2

I. INTRODUCTION More recently Prakash and Hentéhave considered the
related problem of a planar spin system in which the spins
The dipolar interaction is often small when compared tointeract via a nearest-neighbor interaction. The interaction in
the exchange interaction in magnetic systems but can play this model has the same form as the interaction between
critical role in determining the magnetic properties of two- nearest-neighbor dipoles, but this model neglects the long-
and three-dimensional magnetic systems. The long-rangange character of the dipolar interaction. Nevertheless the
character of the interaction can change the critical propertieground state exhibits a degeneracy similar to that of the
of three-dimensional ferromagnetic systems and can stabilizgnalogous dipolar system. Using a linearized spin-wave cal-
the ferromagnetic phase in two-dimensional systéfiifhe  culation Prakash and Henley have shown that the spin fluc-
dipolar interaction also plays an important role in determin-tyations induce an effective potential in the free energy that
ing the domain structures magnetic systems exhibit and cagfiects the symmetry of the underlying lattice for both the
give rise to a rich variety of spatially modulated phases inygneycomb and the square lattieThey conclude that the
two-dimensional systenis! In thin magnetic films, the com- system will order magnetically at low temperature and refer

petition between the magnetic surface anisotropy and the d{b this as thermally induced magnetic order

Frglﬁsrit'ir;tﬁgfiftmn can lead to the existence of a reorientation While the questions relating to the existence of long-range
L . . . magnetic order in a two-dimensional dipolar system are of
In this paper we consider a square lattice of magnetic

dipoles constrained to lie in the plane of the lattice but free tdnterest from the point of view of magnetic thin films, the

rotate within it. We restrict our considerations to pure dipolarproce_sS Wherepy order. can be induced through t.hermal .d|s-
systems. order is of itself mtergs‘ung qnd may hf':\ve application outglde
It is well known that the ground state of the planar dipolarthe realm o'f magnetic thin films. In this paper we determmg
system is antiferromagnetic. However, in a study of thishOW the spin-wave results of Prakash and Henley are modi-
ground state, Zimmermaet al. realized that the situation is fied by the long-range character of the dipolar interaction and
more subtle than one might initially suppdsin the particu- determine, by means of thorough Monte Carlo simulations,
lar case of the honeycomb lattice, it can be shown that th&hether or not the planar dipolar system orders at finite tem-
ground state is highly degenerate and defines a continuouggrature. With regard to this last question, it should be noted
manifold of spin configurations. Thus while the dipolar in- that it is not sufficient to demonstrate magnetic ordering at
teraction does not exhibit a continuous symmetry with refinite temperature in a finite system but, rather, it is neces-
spect to rotation of the spins, the degeneracy of the groungary to determine the dependence of the order parameter on
state implies the existence of a gapless excitation at zerthe system size in order to show that the magnetic order
temperature. In the standafférromagnetic exchange inter- persists in the thermodynamic limit—oo.
actions only XY model the existence of gapless spin-wave In Sec. Il we outline a spin-wave calculation for the di-
excitations destroys long-range order at any finite temperggolar system and in Sec. Il Monte Carlo results for this
ture in the thermodynamic limitThis leads us to question if system are reported. Section IV describes the nature of the
the existence of a gapless spin wave, implied by the continuiwo-point correlation function in this system and in Sec. V
ously degenerate ground state, will suppress the long-rangge summarize the conclusions that can be drawn from a
magnetic order at finite temperature even though the dipolatomparison of the spin-wave results and Monte Carlo results.
interaction does not manifest a continuous symmetry and i¥Ve also the implications of these results for recent neutron-
long range in nature. scattering experiments on ErBau;Og.
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FIG. 2. The ground-state spin configurations corresponding to
those in Fig. 1 but shown in the gauge transformed spin variables
defined by Eqgs(2) and (3).

FIG. 1. Two examples of ground-state spin configurations in
terms of the original spin variables. make up the ground-state manifold are best parametrized by

Il. SPIN-WAVE CALCULATION transformmg the spins variables by means of a gauge

transformation defined by

The Hamiltonian for the system may be written . .

I . .. SK(r)=(—-1)""2a%(r), 2

0(ri)'U(rj)rizj—3[U(ri)'rij][0(r1)'rij]
5 1
r

H=2

1) (1) =(—1)™ag¥(r), ©)

i
where the spin vectoré(F) are confined to lie in th&XyY wherea is the Ia_ttlce_ spacingiy ar_ld ny are the number of
plane. steps on the lattice in the andy directions measured rela-

The ground-state spin configurations for the dipolartive to an arbitrary origin, anc denotes the transformed
Hamiltonian of Eq(1) form a continuously degenerate mani- SPINS. . . o

fold of antiferromagnetic states. Two ground-state spin con- The ground-state configurations, shown in Fig. 1 in terms
figurations are shown in Fig. 1. The spin configurations thabf the original spin variables, are shown in Fig. 2 in terms
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- Sd(1)=cod,(R) ®)
| | 305 - Loy,
" 3 4 ~C0Yy—Sinfyd60,,(R;) — Ecosﬁoéea(Ri) . (6)
L o
f Sy(r)=sind,(R;) (7
i .1 -
l T ~Sinfy+ €096 ,(R;) — Esmeoéea(Ri)z. .., (8
T whered, refers to the orientation of the order parameter with
l T respect to thex axis and we have defined the fluctuation in
I the orientation of ther spin in the unit cell at positioﬁei as
| 804(R)=0,(R) — b5. ©
To leading order in the fluctuations the Hamiltonian may be
1 written as

H=Eo+ > 2 80,(R)G.s(Ri—R)OR)+ ...,
FIG. 3. Magnetic superlattice used in the spin-wave calculation, i e
showing the labeling of the individual spins within the unit cell. (10)

of the gauge-transformed spin variabl€s The obvious =Eg+ >, fnddﬁaa(&)ew@ 80—+ ..., (11
merit of the gauge transformation defined by Eg).is that, P
for the ground-state configurations shown in Fig. 2, the spifiyhere() denotes the first Brillouin zone. The derivation and

variablesS(r) are all oriented in the same direction. Thesethe specific form ofG,,4(q) is given in the Appendix.

ground states may be characterized in terms of the orienta- The above expression for the Hamiltonian reduces to a
tion of the two-dimensional order parameter defined by thesingle sum by expanding the fluctuation fields in terms of the
vector eigenvectors determined by the equation

2 Gup(@P () =N, (DPH(Q), (12
I . =
V=32 S, (@)
' wherew=0,1,2,3 and the eigenvalm%(ﬁ) is defined so that
_ _ Iimqﬂo)\o(c*])zo. The eigenvalue spectrum of this equation
and, more generally, for all ground-state spin states it can b@epends on the orientation of the order parameter given by

shown that the spin variablé&r) are all parallel so that the 6. Two eigenvalue spectrum are shown in Fig. 4 for the
ground state may be parametrized by the orientation of théase in which the order parameter is oriented along theis

vectorV defined by Eq(4). However, it should be noted that (6o=0). Two features should be noted. First we see that

the rotational invariance of the energy with respect to rota-bOth spec_;trg contain a branch that goes to zero in the limit
g—0. This is a consequence of the fact that the ground-state

tion of V refers only to states belonging to the ground-statenerqy defines a continuously degenerate manifold of spin
mamfolqhand does not imply thfe ﬁXlstence of glc;bal Invarl-configurations associated with a continuous rotation of the
anc%e wit Qresp'ect .to'rotguon of the gauge trarlls Ormed Sp'[]nit vectorV. Secondly we note that in the second branch the
variablesS. This distinction between the rotational invari- eigenvalue spectrum in Fig(l) varies linearly withg in the
ance within a manifold of states and a glObal invariance Oi|m|t q_>0 The Corresponding eigenvectors define oscilla-
the Hamiltonian under rotation is critical in understandingtions in the net magnetization of the lattice. The linear por-
the behavior of the system. tion of the eigenvalue spectrum arises as a consequence of
The low-temperature properties of the spin system may bgne nonanalytic nature of the propaga@;(q) in the limit
analyzed by considering small amplitude fluctuations about § .0, reflecting the long-range character of the dipolar in-
ground-state spin configuration. Given the antiferromagnetigeraction. The results for the “nearest-neighbor” interaction
character of the ground-state spin configurations, we intromodel used by Prakash and Henley are included for compari-
duce the lattice shown in Fig. 3 with lattice spacing @&hd  son.
four spins per unit cell. Labeling the four spins in the unit  The eigenvalue spectrum of the soft mode can be de-
cell as shown, we express the gauge transformed spin varscribed, in the long-wavelength limit, in terms of a spin-
able in terms of the fluctuation fields as wave stiffnes®D defined as
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FIG. 4. Eigenvalue spectra for wave vectors directed along #rds (a) and at 45° to thex axis(b). The corresponding spectra obtained
for the nearest-neighbor interaction used by Prakash and Henley are shown for comgarawh d].

lim )\O(a): D(9)q2. (13) While the gr_ound—state energy of the system is inv.ariant' un-
q—0 der the rotation of the order parameter, the correction arising
from the spin-wave fluctuations is not. The resultant change
The spin-wave stiffness is plotted in Fig. 5 as a function ofin the free energy is plotted as a function of the orientation of
the direction of the wave vector for the case in which thethe order parameter in Fig. 6. The orientational dependence
orientation of the order parameter is parallel toxtexis and  of the free energy reflects the fourfold symmetry of the un-
for the case in which the order parameter is orientated aderlying lattice, with a minimum corresponding to the case
45° to thex axis. Note that it reflects the fourfold symmetry in which the order parameter is aligned parallel to either the
Of the underlying |attice. The resu|tS fOI‘ the COI’I’eSpondingx or they axis_ The resu|ts for‘ the Corresponding “nearest-
“nearest—neighbor” intergction used by Prakash and Heme)heighbor” interaction are included for comparison.
are included for comparison. _ _ _ The breaking of the rotational invariance by the thermal
The free energy may also be calculated in the linearizeg,cy,ations gives rise to an effective anisotropic field. The
spin-wave approximation as amplitude of the field increases with increasing temperature
and manifests the fourfold symmetry of the underlying lat-
F=Eq+ NkBTJ ddin(deG(g))— N BTIn( NkBT) tice. The appearance of this anisotropic field serves as the
87° Jq basis for order induced by thermal disorder. It should be
noted however that while the fourfold anisotropy of the free
) . (14  energycan be obtained from the linearized spin-wave theory
described above, to obtain a finite order parameter requires

ks T - -
=Eot 5= 2qu2 InXo(9) — —
Q )

ko

NkgT ( NkgT
In
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FIG. 6. Variation of the free energy with the orientation of the
order parametefrelative to thex axis) in the spin-wave calculation
(solid line). Shown is the second term of E¢l4) in units of
7 (NkgT/872). The corresponding results for the nearest-neighbor
interaction used by Prakash and Henley are also sh@ashed
line).
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ous order-disorder transition, standard finite-size analysis of
the size dependence of the transition temperature gives, in
the limit of an infinite systemT.=1.39+0.05. The error

estimate reflects the small system sizes used. An attempt to
extract critical exponents has been deferred until larger sys-
10 tems can be studied with more accuracy.
A 16X 16 segment of a typical spin configuration, ob-

tained from the Monte Carlo simulations on a>440 lattice

FIG. 5. Spin-wave stiffnesssolid line) for order parameters
directed along thex axis (@) and at 45° to thex axis (b). The
corresponding results for the nearest-neighbor interaction used bysponding spin configuration for the standd model is

Prakash and Henley are also sho@ashed ling

shown in Fig. 11. These are clearly qualitatively different
from those shown in Fig. 10 for the dipolar system, in par-
that we include the higher-order terms in the spin-wave exiicular the spins are substantially less ordered, due to the

pansion of the Hamiltonian given by E@ll) in a self-

consistent mannét-

IlIl. MONTE CARLO

The results of our Monte Carlo simulation show that the
system orders at low temperature. Within the new gauge, th
order parameter becomes the average magnetization

w=<m>=§< S s

> .

(19

In Fig. 7 we plot this as a function of the temperature for
systems ranging fronfN=64 to N=16 384. The associated

susceptibility,y, is defined to be

1 . -
X=m[<|V|z)—<|V|>2]-

(16)

This is shown in Fig. 8. The peak in the susceptibility coin-
cides with a sharp drop in the order parameter and has fea-
tures consistent with a continuous transition. One can also FIG. 7. Monte Carlo results for the order parametir,defined

see evidence of a phase transition in the heat capacity whidby Eq. (16) as a function of temperature. Results are shown for

<|¥L>

presence of the vortices/antivortices.

is shown in Fig. 10 for {/T.=0.7). Inspection of this figure
reveals a high degree of ordering among the spins. The cor-
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is shown in Fig. 9. Assuming that the system has a continuvarious values of_, the linear size of the system.

4.0
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FIG. 8. Monte Carlo results for the susceptibiligy defined by FIG. 10. A 1616 segment from a typical spin configuration for
Eq. (17) shown as a function of temperature. a 40x 40 lattice generated by Monte Carlo simulation of the dipolar

planar model aff/T.=0.70.

One must be cautious when interpreting the results of g cylatingA from linearized spin-wave theory yields the
Monte Carlo simulations on finite size systems, in low- oq it that

dimensional systems. For example, in the case of the stan-

dardXY model it is well known that while the magnetization 1
is identically zero at all finite temperatures in the thermody- lim A(N)~ 5InN, (18
namic limit,” finite-size systems exhibit an ordered ph¥se. N—e

To study the' size depen.dence of'the order parameter, WEhereD is the spin-wave stiffness averaged over the angle.
note that¥ varies almost linearly with temperature at low The divergence oA in the limit N— is a consequence

temperaturessee Fig. 12 This linear behavior arises as a of the presence of a gapless branch in the linearized spin-

Swave theory spectrum, which arises from the degeneracy of

gpfhrgfg;géyeagﬁeigfgﬁfxztee%hee:gtmuf:?tutrheedcipe?ggigz% ground state. A similar result holds in the case of the
P P y tandardX Y model!? The divergence oA would appear to

of the linear term imply the absence of magnetic order at any finite tempera-
ture, as is the case in the stand&d model. In Fig. 13 we
_ have plotted the coefficienh obtained from Monte Carlo
( ) (17) simulations as a function of kh While A has a linear de-
pendence on N at small values oN, the results differ dras-
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' ‘ ' A N A A N I A A A I

o8 A R R L L N 2 IR T RN

12 L %, z;g | L O A A A Y B N I L N
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FIG. 11. A 16x16 segment from a typical spin configuration for
FIG. 9. Monte Carlo results for the magnetic heat capacity as @ 40x40 lattice generated by Monte Carlo simulation of the stan-
function of temperature. dard XY model atT/T¢=0.70.
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FIG. 12. An expanded plot of the low temperature region in Fig.

7, showing the order parametér as a function of temperature. FIG. 14. Monte Carlo results fd?(T), the field conjugate to the

effective anisotropy and defined by EQO), as a function of tem-

tically from those predicted by linearized spin-wave theoryperature. Data for th&Y model with exchange iljteractions and
[Eq. 18. Not only is the slope in the linear region two orders Na=0."4=0.2, andh,=0.3 are shown for comparison.
of magnitude smaller than that predicted by the linearized
spin-wave theory but, also, the Monte Carlo data appear tof the spin waves to take account of higher-order terms in the
approach a plateau &is increased implying tha&(N) has  expansiort! The anisotropy will manifest itself as a gap in
a well defined finite value in the thermodynamic limit given the renormalized spin-wave spectra. The presence of a gap in
by limy_.A(N)=0.16+0.1. This leads to conclusion that the renormalized spin-wave spectrum implies that the coef-
the system will exhibit long-range magnetic order, at finiteficient A, defined by Eq(17), will yield a well defined finite
temperatures, in the thermodynamic limit. value in the limitN—<. In view of this, we conclude that

~ This discrepancy between the analysis of the Monte Carlgne opserved ordering of the spiSér) is an effect of a gap
simulation data and the linearized spin-wave theory may bg, the excitation spectrum and not merely an artifact of the
understood by noting that the linearized spin-wave theorjpjte system size.

predicts a gapless mode in the spin-wave excitation spectrum |n order to better understand the role of thermally induced
even at finite temperature. However, as shown in the sectiognisotropy, we note that its effect locally will be similar to
on spin-wave theory above, the lack of global invariancentroducing a temperature-dependent —anisotropy —term
with respect to rotation of the spin variableg') leads to an  h,(S}+ @) into the Hamiltoniart® We defineP(T) to be
anisotropy, with respect to rotation of the order parameter, ifthe field conjugate td,(T),
the free energy at any finite temperature. A self-consistent
treatment of the anisotropy requires a renormalized treatment

P(T)=<§ ($+$)>, (19

0-170 and measur®(T) for systems of size betwedh=576, and

N=4096. If the net magnetization is fixed along one of the
+y or £x axis thenP is equal to 1, if instead the system is
free to orientate itself in any direction théh=0.75. Figure
14 showsP as a function of temperature for the pure dipolar
system, the standandY model and the standacdY model
with an anisotropy term of the forrh,(S{+S)). For the
standardXY model P=0.75 at all temperatures, reflecting
the orientational freedom of the spins. For the dipolar system
the data extrapolates tB=1 at T=0 indicating that the
system orders completely and along one of the lattice axes.
As T increasesP decays until it is fluctuating about 0.75
well before the transition is reached. Adding the anisotropic
FIG. 13. Monte Carlo results for the coefficieAtN), defined  field to the standarXY model suppresses the orientational
by Eq.(18), as a function of IN. The straight line is a least-squares freedom of the spins at low temperature to give a value of
fit of the lowest four points, which is intended simply as a guide toP that extrapolates to 1 in the limif—0. We note that
the eye. The linear dependence predicted by linearized spin-wavehoosingh,=0.2 yields a temperature dependence Ror
theory would have a slope two orders of magnitude larger. similar to that found for the pure dipolar case.
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IV. CORRELATION FUNCTION g §<>AA
. . H8o
The results reported above fBrindicate that the effective S0® | o % j
anisotropy in the vicinity oflT . and in a region below is Ooo%
very small when compared witkgT. It is therefore natural CTRLYS
to ask to what extent the system behaves like an isotropic 0 | Q%@ |
system. To obtain some insight into this we have calculated o
the two-point correlation function both above and below the
transition temperature. The two-spin correlation function is . ©
defined in our transformed gauge by 0 0 00

C(r)=(S(0)-S(N) —(S(0))(S(r)). (20
. . . . . FIG. 16. Dependence of the correlation function, defined by Eq.
In the isotropic XY model with exchange interactions (21), on distance for various temperatures beldw, in a

only, the .transition' is thg Kosterlitz—ThouIess transi't’rﬁn. N=64x 64 system. Data are shown on a semilagand log-log(b)
However in the anisotropiXY model with a large anisot- ot

ropy field which reflects the symmetry of the square lattice

the behavior is that of a four-state clock modtin either of In principle, it is possible to differentiate between the

these cases, as the temperature approaches the critical teRysterlitz-Thouless transition and the conventional ordering
perature frqm abovg, the dgmlnant dependence of the corrgrnsition by determining the dependence of the high-
lation function on distance is temperature correlation length on temperature as the critical
temperature is approached from abdvén view of the ob-
vious presence of finite-size effects and the uncertainty in the
transition temperature we do not attempt to do so here.
Rather, we have analyzed the dependence of the correlation

C(r)~exp(—r/&). (21)

Moreover, in both of these cases, the correlation length,

diverges as the critical temperature is approached fronﬂmction on distance below in order to provide further

above. . . . evidence for the nature of the transition.
We estimate the correlation length at high temperature by If the transition is an ordering transition such as that ob-

assuming that the correlation function decays EXponent'a")éerved in the four-state clock model, the correlation function

as d_escnbed by Ec_(21). Se_mllog plots of the correlation will again have an exponential dependence on distance as
function as a function of distance at several values of th%escribed by Eq(21). However if the system is isotropic

temperature above the critical temperature are shown in Fig, ;
. : . in-wave theory would predict a power-law dependence on
15. The data in these plots follow the expected straight Im%?stance y P P P

over a range that extends from approximately 5 lattice spac-
ings to 15 lattice spacings. The observed deviation from a
straight line outside of this region is not surprising as the
scaling form of Eq(21) is not expected to hold at distances For a Kosterlitz-Thouless transition is temperature depen-
of only a few lattice spacings and for distances approxi-dent and has a value of 0.25 at the transition.

mately equal to half the system size and larger, the finite In Fig. 16 the correlation function is plotted as a function
nature of the lattice might be expected to give rise to finite-of distance at various values of temperature below the criti-
size effects. cal temperature using both semilog and log-log plots. The

C(r)~r". (22
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8.0 ; . , dence of the order parameter on system size is significantly
less than that predicted by linearized spin-wave theory. For
the larger systems studied the decrease in the order param-
eter with system size is small and the order parameter ap-
pears to approach a well defined value for lakjaNe there-
fore conclude that the system does indeed exhibit an ordered
phase at low temperatures.

Despite the ubiquituous nature of the dipolar interaction a
detailed comparison of our results with those for experimen-
tal systems, is not straightforward. However, one potential
application is the ordering of the rare-earth ions in the high-
T. superconducting copper oxides and related materials.
There is considerable experimental and theoretical evidence
that the Er ions in ErBsCu;O4 form a quasi-two-

0.0 . . ' dimensional, square lattice in which the ground state of the
0.0 1.0 2.0 3.0 40 : X . :
T Er ions is a continuously degenerate spin doulfietlore-
over, calculations indicate that the exchange interaction is

FIG. 17. Correlation length as defined by E82), calculated relatively weak in this Compounjd.Chattopadhyayet al.re-

from Monte Carlo results and plotted as a function of temperaturé)or'F neutron-scattering results which suggest that the Er ions
for both aN=40x 40 and aN=64x 64 system. do indeed order at sufficiently low temperatdfe-owever

there are certain difficulties associated with the interpretation
semilog plots are similar to those obtained abdye(Fig.  ©f these result$? Indeed, more recent neutron-diffraction re-

15). In particular, a reasonable straight line fit can again besults indicate that the Er spins exhibit only short-range mag-
obtained for distances between approximately 5 and 15 laf2etic order down to 60 mR® The apparent absence of long-
tice spacings. In the case of the log-log plots a straight lindgange magnetic order in the Er sublattice is surprising in light
can be fitted to only relatively few points at small values ofof the results obtained from the present analysis and serves to
r and the data clearly deviates from this line quite quickly.emphasize the puzzling nature of these compounds and, in
Thus the dependence of the correlation function on distancparticular, the role played by the dipolar interaction.
at temperatures beloW. seems to have the same exponen- In performing the spin-wave calculation we have identi-
tial form as the dependence aboVg; consistent with the fied features which occur in the system with a full dipolar
view that the transition is to an ordered state with rotationalinteraction but not in the nearest-neighbor model of Prakash
anisotropy. and Henley. In particular the linear behavior of the second
The variation of the correlation length with temperature,branch of the spin-wave spectra at sntpls associated with
obtained by fitting the correlation function data to the expo-the long-range nature of the dipolar interaction.
nential form of Eq.(21) both above and beloW,, is shown The role of the thermally induced anisotropy near the or-
in Fig. 17. The sharp narrow peak in the region arodid dering transition is an important consideration of the present
with a rapid decrease to small values on either side of thetudy. Our Monte Carlo data show that the fiB®idconjugate
peak is again consistent with the expected behavior for orto the effective anisotropy field,, decreases as the tempera-

6.0 1

s 4.0 |

20 |

dering in a system with rotational anisotropy. ture is increased in the ordered phase and for values of
T=1.2, P fluctuates about the zero anisotropy value of
V. CONCLUSION P=0.75. This indicates that the effective strength of the ther-

mally induced anisotropy is very small compared with the

Our Monte Carlo data for the planXrY model with pure  thermal energkgT in this region which includes the critical
dipolar interactions exhibit thermally induced rotational an-temperature. As noted by Prakash and Henley, some sense of
isotropy, as characterized by the figtddefined by Eq(19), the probable role of the anisotropy can be obtained by con-
and indicate that the system orders at a critical temperaturgidering results for the exchange interactiivmodel with
of T,=1.39*+0.05. The behavior of the order parameter, inan anisotropy fieldh,. Renormalization-group arguments in-
the gauge transformed system defined by @g.in the vi-  dicate that an anisotropy field with the fourfold symmetry of
cinity of T, is consistent with that of a system undergoing anthe lattice will always be relevant and that the Kosterlitz-
ordering transition and beloWw . the order parameter is Thouless transition will be observed only in the case
found to lie along one of the lattice axes. The exponentiah,=0.21?? For nonzerch, the renormalization-group calcu-
dependence of the two-point correlation function on distancéation predicts a continuous line of fixed points which meet
both above and beloW. is consistent with an ordering tran- the Kosterlitz-Thouless line of fixed points @ on the
sition in a system with rotational anisotropy. h,=0 axis. Thus we expect a transition directly from the

Experience with the isotropiXY model with exchange disordered state to an ordered state with fourfold symmetry
interactions demonstrates that the occurrence of a nonzefor any finite value of the anisotropy. Our Monte Carlo re-
order parameter in the finite systems used in Monte Carlgults are entirely consistent with this. However the renormal-
simulations must be treated with caution when drawing conization results also imply that any exponents determined will
clusions about the system in the thermodynamic limit. How-be nonuniversal and depend on the specific value of the ef-
ever our Monte Carlo results clearly indicate that the depenfective anisotropy strength.
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S(Ry)=sin(6, ). (AB)

After taking the two derivatives and evaluating the result at

APPENDIX: 0o, We arrive at the result

CALCULATION OF THE SPIN-WAVE PROPAGATOR 4
The Hamiltonian may be written in terms of the gauge H,=_), 2 56, V[ 6""'5i’j|<2 > (1= 8 mdik)
. . > > [ =1
transformed spin variable$,(R), M =1 "

X §‘, BAAMLT L +(1— 66 1)
ree/ B aBra = jm 1,] )
H= > X 'SHR)ATE SE(R,), (Al op

p,q:l n,m
whereAs# is given by XE C"‘BA‘k",‘f,FE‘,‘f, ]MJ o (A7)
5 [rp=rpl +|r |
Apg=(—1)"a a . (A2) The matricedB andC are defined by
In these expressions the indicpsg refer to the positions
within the unit cell and the indices, m refer to the superlat- cos(6y) sin(6y)
tice vectors in the superlattice described in Fige3and B = sin(6y)  sirf(6y) )’

refer to the components of the spin vectors.

In order to obtain an explicit form for the propagator that
appears in Eq(11), we write the Hamiltonian as an expan-
sion in the small fluctuations of the directions of the spin

variablesS relative to a chosen reference direction:

Sirt(6y)  —sin( 00))
—sin(6,) co(fp)

. Taking Fourier transf btai
‘H=Eq+ H,+ higher-order terms. (A3) aKing ourier transforms we obtain

E, is the ground-state energy and . - - -

Ho=2 f dQ36,(Q)Gpq(Q)364(—Q),  (A8)
9 pq JQpg
sz—E E 8011 5— =My 50,1,  (Ad)

297 v k=1 90;x 90, with

4
1 L1 .
G Q== 0pq7 22 2 2 (1= Sr-odq ALB TR+ 52 2, (1= 6a-083p AGRC T (R)e O,
k= R @ R
(A9)
or equivalently
qu(d) = 5qup+ ypq(é)- (A10)
To obtain this compact form fo& we have defined
1 4
A== 2 2 AFBPAR0), (A1)
T aBf k=1
- 1 BB B
Yoo Q= 22 ACAGQ), (A12)

AB(Q)=3 (1 a0 TeE(R)e 1R (A13)
R
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To evaluatefkgqﬁ a lattice sum must be performed. This can be expressed in a rapidly convergent form using standard lattice

sum method$® For p#q

(R4 (RO 15 5 -iQR
A"'B(Q)— PP e IORD| 2 2 R T | - 8, = ,n2|R+r 2
- |R+rpq|5 P B\/— pq|3 pq
a a B S8 . . N 2 R 3
Vo QU mRU2)(QF+ mRAI2) |(Q+7TR/2)~rpq1-*(l |Q+7TR/2| )_ZQ 'Q'querfc(@).
2 225 |Q+ wR/2| 2 2 | 2
(A14)
Forp=q
(RRP) - - (5 ) e IR (3 R
Aaﬁ -~ e~ IQ-R]‘* —: 2R -8, — T —: ZRZ
Q= WR R 5 7°IR| BfE e IR
V7 (Q*+ 7RY2)(QP+7RP2) [1 |Q+ wR/2? 497 mQ"Q* Q|
- i rl=; 5 Sup erfd =—|.  (A15)
2 &0 |Q+wR/2) 2" Ay 3r 2 [Q] 27

1A. Aharony, inPhase Transitions and Critical Phenomerenl-  2J. Tobochnik and G. V. Chester, Phys. Rev2® 3761(1979.
ited by C. Domb and M. S. GredAcademic, New York, 1976  13J. M. Kosterlitz and D. J. Thouless, J. Phys6C1181(1973.

Vol. 6, p. 357. 14F. Y. Wu, Rev. Mod. Phys54, 235 (1982.
23, V. Maleev, Zh. ksp. Teor. Fiz.70, 2375(1976 [Sov. Phys. 15C. Bowen, D. L. Hunter, and N. Jan, J. Stat. Ph§9, 1097
JETP43, 1240(1976)]. (1992.
3M. Seul and R. Wolfe, Phys. Rev. Lei8, 2460(1992; M. Seul  SA. Furrer, P. Allenspach, J. Mesot, U. Staub, H. Blank, H. Mutka,
and D. Andelman, Sciencg67, 476 (1995. C. Vettier, E. Kaldis, J. Karpinski, S. Rusiecki, and A. Mirmel-
4J. Arlett, J. P. Whitehead, A. B. Maclsaac, and K. De'Bell, Phys.  stein, Eur. J. Solid State Inorg. Che@8, 627 (1991).
Rev. B54, 3394(1996, and references therein. 17A. B. Maclsaac, J. P. Whitehead, K. De'Bell, and K. S. Naray-
SA. Abanov, V. Kalatsky, V. L. Pokrovsky, and W. M. Saslow, anan, Phys. Rev. B6, 6387(1992.
Phys. Rev. B51, 1023(1995. 18T Chattopadhyay, P. J. Brown, B. C. Sales, L. A. Boatner, H. A.
6J. Gay and R. Richter, Phys. Rev. Lei6, 2728(1986; J. A. C. Mook, and H. Maletta, Phys. Rev. 80, 2624(1989.

Bland, C. Daboo, G. A. Gehring, B. Kaplan, A. J. R. Ives, R. J.1°T. W. Clinton and J. W. Lynn, Physica €74, 487 (1991).
Hicken, and A. D. Johnson, J. Phys. Condens. Matte8467 20T, W. Clinton, J. W. Lynn, J. Z. Liu, Y. X. Jia, T. J. Goodwin, R.

(1995. N. Shelton, B. W. Lee, M. Buchgeister, M. B. Maple, and J. L.
7A. B. Maclsaac, J. P. Whitehead, K. De’'Bell, and P. H. Poole, Peng, Phys. Rev. B1, 15(1995.

Phys. Rev. Lett77, 739(1996. 213. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
8G. 0. Zimmerman, A. K. Ibrahim, and F. Y. Wu, Phys. Rev. B Phys. Rev. B16, 1217(1977.

37, 2059(1988. 22p, J. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys1A8,
°N. D. Mermin and H. Wagner, Phys. Rev. LetfZ, 1133(1966. 585(1980.
105, pPrakash and C. L. Henley, Phys. Rev4B 6574(1990. 2N. M. Fuijiki, K. De'Bell, and D. J. W. Geldart, Phys. Rev. 35,

113, P. Whitehead, Phys. Essa§,s609 (1996. 8512(1987).



