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Linear and cubic dynamic susceptibilities of superparamagnetic fine particles
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A consistent theory of linear and nonline@ubic) initial susceptibilities of an assembly of uniaxially
anisotropic noninteracting fine magnetic particles is presented. The expressions for théegtatibrium)
susceptibilities are obtained directly from the pertinent statistical thermodynamics. The contributions of an-
isotropy emerge yet in the first order and are analyzed for random and axes-aligned distributions. The ac
susceptibilities are studied on the basis of the micromagnetic Fokker-Planck equation. Both a numerically
exact solution for arbitrary frequency and a reliable low-frequency approximation are given. The obtained
description proves to be more accurate as compared to the one based on the customary superparamagnetic
blocking model. The results are used for a quantitative interpretation of recently published set of data on Co-Cu
precipitating alloys. In this connection the choice of the particle size-distribution function is discussed.
[S0163-18207)04722-X

INTRODUCTION The incentive and the main goal of our paper is to con-
sistently extend the conventional theory on the case of a
Since the very first studies of fine-particle systéntee  nonlinear response and by that to confirm its validity. While
development of the micromagnetic science was inspiredloing that we propose practical schenflesth exact and ap-
mainly by the necessity to predict the magnetic propertieProximate to handle linear and cubic dynamic responses in
and response of a ferromagnetic particulate media. Beyonée framework of classical superparamagnetism. Applying
argument, in this objective the fundamental and applicationa®ur results to the reported data on the nonlinear susceptibility
aspects are tied up very closely, if not inseparably. of Cu-Co precipitates, we demonstrate that a fairly good
The problem of prime interest while performing experi- agreement may be achieved easily.
ments on or manufacturing fine-particle magnetic systems is
to characterize the magnetic content of the sample with as I. STATIC SUSCEPTIBILITIES

few measurements as possible. Magnetic granulometry by . . . . .
means of a quasistatic magnetization curve is very well AS @ starting point we take an isolated single-domain par-

known and widely used:® The dynamic approach, where ticle of a ferro- or ferrimagnet.ic mat(_arial_rigidly trapped in
simultaneously linear and nonlinear susceptibilities are takef1® Pulk of a solid nonmagnetic matrix. Single domain has a
into account is more new, being most probably inspired byspat|al uniformity of the spin alignment over the grain that
its use in the spin-glass science. To justify the method, ongnables us to describe it by the net magnetic moment
should process a good deal of experimental data with the ai¢=~€ Whose direction is given by a unit vecter The

of an appropriate theory. Such a work has been attempte@@gnetic moment magnitude js=1Iv with | the saturation
recently in Refs. 4,5 with a precipitating Cu-Co alloy as amagnetization of the material at given temperature and
test object. The authors had no difficulties in fitting the linear?€ind the particle volume. Besides that, we assume the par-
susceptibility measurements with the aid of superparamadicle t0 possess a uniaxial magnetic anisotropy with an en-
netic blocking model assuming thati) the particles are €rgy densityK and a direction defined by a unit vector
single domain and their magnetization does not depend on If the external magnetic fieltl is not too high as to affect
temperature(ii) the magnetic anisotropy is uniaxial and hasthe atomic magnetic structure, its only effect on a single-
one and the same value for all the particles, iid the domain grain is the magnetic moment rotation. Thgn the cor-
magnetic dipole-dipole interaction is negligible. It was fitting "€SPonding orientation-dependent part of the particle energy
the nonlinear(cubid susceptibility data where a problem U may be written as

arose, since there was no theory for it insofar, consistent with 2

the aforementioned assumptions. To fill the place, in Refs. U=—Kv(en"—u(eH). )

4,5 were employed the formulas originally derived for anThe stationary distribution function of the particle magnetic
isotropic superparamagnet. They were adjusted by replacing,oment or(if we neglect interactionsof an assembly of

the pertinent relaxation time with a one exponential in themagnetic moments is determined by the Gibbs formula
magnetic anisotropyconstantK. However, the resulting

agreement turned out to be poor. From that the authors of W(e)=Z texp(o(en)?+ &(eh)),

Refs. 4,5 concluded to that some of the basic assumptions

(i)—(iii ) are wrong. From our viewpoint, in the first place this

reproach should be addressed not to the classic superpara- Z(U,E)Zf exp(o(en)®+ &(eh)de, 2
magnetic theory as itself but to a rather “intuitive” manner

of its usage. where
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o=KuvlkgT, &=puH/KgT, 3

andh is a unit vector along the external magnetic field.

In what follows we shall consider a situation where the
external magnetic field is weak enough, and does not tofKeS place. o o
strongly change the basic state of the system. Assuming the 12king into account a uniaxial symmetry of the distribu-

value of £ to be small, one gets by expanding E2) tion_ function Wy, upon averaging of Eq.7) one gets a ge-
neric formula

47 !
Pi(e)= 57 2 Yin(nh)Yim(en), Y]

120 a2 L £30ap)3
W(e):W01+§(eh)1~:— Zliz(:h)h);sg (eh) N (P,(eh))o=SPi(nh), for | even;
3 en)%lo

where the distribution and partition functions (Pi(en))o=0, for | odd; (8)

1 where
Wo(y)=Z; 'exploy?), Zo(o)=2m J e oy?), .
Si(a)=(Pi(en))o= f_lF’l(y)Wo(y)dy- ©)
y=(en), (5)

describe the unperturbed stade=0. Accordingly, the angu- 1 he order parameters grow from zero withand saturate at
lar brackets with a subscript 0 in Et) designate averaging the unity value. The corresponding asymptotic relations read

with respect to the distributiofb).

Due to evenness al,, all the odd moments of the equi- (=DH o2+ . for o<1,
librium distribution (5) vanish. In particular, it means zero ) @+nn
net magnetization. The latter may appear only as a response Si(o)= [(1+1) (10
to an applied field. Assuming that the interparticle interaction iy + ... for o>1.

may be neglected, one finds thdtcu, the reduced magne-
tization in the direction of the field, equals the mean cosine

{(eh)). With the distribution(4) it reads
_ _ 2 1 o 1 7\ 21 .3 and as such coincides with the normalized Edwards-
M/cu=((eh)=((en)oé+[s({(en)o—2((eh))o]¢", Anderson parameteg which is in use in the spin-glass
©6) theory. The main difference is that in a spin glass it is caused
wherec is the particle number concentration. by the exchange interaction while here, by the magnetic an-
To evaluate the averages like those in Eg), it is very  isotropy energy, i.e., either spin-orbit or spin dipole-dipole
convenient to pass from cosineﬁen)k) to the set of corre- coupling.
sponding Legendre polynomials for which a spherical har- With the introduced notations, the dimensionless magne-
monics expansioaddition theorem tization (6) transforms into

We remark that the first term of this s&,, has the mean-
ing of the internal orientational magnetic order parameter,

1+2S,P,(nh) . 7+ 70 S,P,(nh)]?+ 40S,P,(nh) — 12S,P,(nh) £

(11)

Comparison of Eq96) and(11) with the standard definition cu? 1+2S,

. cu® 7+70S5+40S,— 125,
of the magnetic response

__=- - "= 3)_ _
X kgT 3 @ X 7 K3T3 315 '
(13

=, 33 OIH5+ ...
M=XTH TR X H - (12 Transversal alignmentnL h. The angular functions turn

into P,(nh)=—1 and P,(nh) =2 that yields
yields explicit expressions for the first two terms: linear

(x® or simply x) and cubic &) susceptibilities of the :C_,uz 1-S, 3 _ cut 14+3555—40S,-9S,
system in question. XeTkeT 3 0 X K3T3 630 '
From Eq.(11) it is apparent that in a solid systetimmo- (14)

bilized graing all the susceptibilities depend upon the imple-
mented distribution of anisotropy axes. Let us consider some Random orientation angular averaging shows that
limiting cases. P,(nh) = P,(nh)=0 and[P,(nh)]?=1 that results in
Longitudinal alignmentn|h. All the angular functions ) 4 )
P,(nh) turn into unity. From Eq(11) one gets for the sus- ~_Cp ~@__ w1125
ceptibilities X KT’ X &3 a5

(15
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Note that we use a tilde to mark the random-orientation avthe internal rotary diffusion of the particle magnetic moment.
erages saving the customary overline for the future to desigf the basic dynamics of the latter is described by the phe-
nate size averaging. nomenological Landau-Lifshitz equation, then the diffusion
From Egs.(13—(15) one finds that the linear part of the time has a simple representafion
random-system susceptibility obeys a superposition yute
[ x|+ 2x.]/3. Due to that the particle anisotropy falls out of
the result. However, the cubic susceptibility turns out to bewherer, is the relaxation time of the Larmor precession and
rather sensitive to it. Indeed, according to Efj5) for an  is assumed to be temperature independent. Below we make
assembly of magnetically rigid grainsS{—1) it is three use of the relationshig18) when it becomes necessary to
times greater than that of an isotropis,&0) system. single out temperature dependences.
Let us compare the formulas for a solid random system In the case of isotropic magnetic particles, that is
with those for an assembly of orientationally free grains, e.g.lJ = — u(eH), both linear and cubic dynamic susceptibilities
a magnetic suspension. In the latter case, the extension of timeay be obtained analytically. To show that, first, we trans-
configurational space in the single-particle partition function,form Eq. (17) into an infinite set of differential recurrence
i.e., adding integration ovar in Eq. (2), removes the effect relations
of the internal anisotropy on the macroscopic magnetization.
This results(see Ref. 6, for examplén an isotropic(Lange- 2rp d Pt (P )— & P \—(pP —0
vin) equilibrium magnetization curve that expands yielding (1 +1) at’ 0+ (P 2l +1(< -1~ {P1:2))=0.
(19

(16 In absence of the external field€0, zero-order solution
the magnetic moments are distributed at random, and

THh=0To, (18

_CH e ou
Xo 3kBT1 XO 45(31—31

cf. Eq. (15). Coinciding in linear parts—a fact that has been

remarked in Ref. 1—the susceptibilities of a fluid and ran- Po=1, (P)=0 for I>0. (20
dom solid assemblies differ in the cubic contributions unless \\/. << e the applied probing field to change harmoni-
one deals with magnetically isotropic particles for which cally

S =0. This important fact has been overlooked in Refs. 4,5,
where the guthors havg taken Eij6) as a sta_trting point to . H=1Hy(e'“t+e et (22)
study a solid system. Right from the comparison of the static o ] ]
formulas(15) and (16) for x® the occurrence of too small Substituting it ast=uH/kgT in Egs.(17), one arrives at a

predicted values, when Eq4.6) are used, becomes apparent. problem that is nonlinear with respect to the field amplitude.
’ ' However, the field being a probing one, ensures the small-

ness of¢, and it allows us to build up a perturbation ap-

proach, taking Eq(20) as the initial step. On doing so, the
The rotary diffusion(Fokker-Planckequation for the dis- result obtained in the first order ifis

tribution functionW(et) of the uni; vector of the l%par'[icle

magnetic moment derived by Browrmay be writtefi as M /cp=(P,)V=1¢

Il. DYNAMIC SUSCEPTIBILITIES. GENERAL SCHEME

ei ot e ot

o 1+inD+l—i(1)7'D ’
27pdW/at=IWI(U/KkgT +InW), 17 . : .
The second-order correction, due to the parity conditions,

whereJ is the operator of infinitesimal rotations with respect does not contribute to magnetization, whereas the third order
to the components @, and =T~ 1 is the reference time of leads to

53 e3iwt §3
M(B)/C,LL= P VB = 2 +CC.|l— 7753
(P 360 (1+iwrp)(1+ Ziwm)(1+3iwmn) 3601+ w’7p)
(3+ Siwrp)e'!
- : P - +c.c.|, (22
(1+tiwmp)(1+ 5iwTp)
|
where c.c. stands for complex conjugates. From &8) it 3 1 @ 1
follows that with respect to frequency the cubic term com- X3w = 2 X0 . 2 - . ,
: . . i : 47" 14iom)(1+ 2iom)(1+3iomp)
prises two harmonics. One oscillates with the single fre- D $D D 23

guency w and hence vyields just a small correction to the

linear contribution whereas the other entirely determines thwhereng) is the static value given by E@16).
response at @. The corresponding complex susceptibility  Formulas like Eqgs.(19)—(23) are well known in the
reads theory of rotary molecular diffusion in dipolar fluids, see
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Ref. 9, for example. Here we recall their magnetic analogs in Resuming the main line of our consideration, nhow we
order to clarify the difference between our theory and theshall show how to consistently take into account the effect of
approach recently developed in Refs. 4,5. The authors of thihe particle magnetic anisotropy by solving the Brown equa-
latter, driven by the intention to extend the superparamagtion (17).

netic blocking model to a nonlinear case, have done that in Choosing spherical coordinates for the unit vectrs,

the following intuitive way. They simply replacet), in Eq.  h as (0,¢), (0,0), (#/,0), respectively, i.e., taking as the
(23) by the Neel asymptotic expression polar axis of the framework, one has

™= ToeXP( o) = (1p/o)exp o), (24 (eh)=cos ¢ cos 6+ sin ¢ sin 6 cos ¢, (26)

and took the corresponding form g5 for a solid system of and Eq.(1) may be rewritten as
randomly oriented uniaxial particles. ) )
Even at the same intuitive level, one can put forward U=—Kuv coS'9—uH(cos cos g+sin ¢ sin 6 cos¢),

some arguments against such a combination. At least two of (27)
them are obvious. First, Eq23) with 7y from Eq. (24) The nonstationary solution of the kinetic equatids) is

yields an incorrect value for the statie{-0) susceptibiity, sought in the form of a spherical harmonics expansion
cf. Eq. (15). Second, it ignores the fact that the magnetic

anisotropy directly imparts the exponential mode only in re- | 21+1 (1—[m)!
laxation of (P;) leaving the quadrupole one(R,)) un- W(6,qo,t)=|20 El by m(t) ?WY'*”"
=0 =L !

changed.

This does not mean, however, that the intuitive way is
completely impossible. For example, the approximate form Y (0,0)= 7 /2| +1 (1= |m])! pMaime (28)
i 4w (I+[mhr =
1 1+2S5 . . .
Xg?;}: - —XBS) , where the variables are separated and the time dependence is
477 (+ion)(1+ fiwmn)(1+3ieTy) determined by the functions

(29

is free of the aforementioned qualitative drawbacks and be-
cause of that, in principle, has much more grounds to b&he set of complex coefficients ,, may be found by solv-
called a blocking model approximation fgf®) than the one ing numerically an infinite set of differential recurrence rela-
of Refs. 4,5. In below we show that E@5) is rather close to  tions obtained by substitution of expansi¢®8) into Eq.
the approximatior(44) which we consider to be the best.  (17):

by m(t)=(P"(cos 8)e'™?). (29

d (I+D)(I1+m—=1)(1+m) [(1+1)—3m? [(l-m+2)(1—-m+1)
2o gLt Dbin =20 ooy et @) T T @ n@rs) e
& cosy £siny
“oIF1 [(|+l)(|+m)b|-1,m—|(|—m+1)b|+1,m]——2(2|+1)[(|+1)(|+m—1)(|+m)b|—1,m—1
1 =m+2)(I=m+1)by 11— (I + )b _ 1+ 11014 1m+1]=0. (30)

These equations are valid for=1. One does not need to consider the negative values lidécause of the symmetry of Eq.
(28) with respect to the replacememt— —m that yieldsb, _,=b, ,,. The casen=0 is somewhat special, and the corre-
sponding equation closing the 4@8), is to be derived separately. On doing so, it reads

d (I-1)I(1+1) 1(1+1) 1(0+1)(1+2)
270 g Dot (Db o= 20l s By P20t Gy 213y PO @ir 21+ 3) Do
g cosy £ sin
g D107 b0+ S [+ 1)D 11Dy 44]=0. (31

We remark that the kinetic equati¢h?) with the energy functioril) since the pioneering work by Browhas been studied
extensively®®1! However, due to mathematical difficulties the case of arbitrary orientation of the external and anisotropy
fields, i.e., vectord andn, has been addressed just recently. The authors of Ref. 12 carried out a numerical solution of the
relaxation problem foh andn crossed under an arbitrary angle.

According to this approach, the observed magnetization induced by an external field is found by averaging®&fduegr
the distribution function(28) and reads

M/cu=((eh))=b;ocos ¢+by jsin ¢. (32
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The recurrence relation@0),(31) are convenient for constructing a perturbative calculational scheme. Namely, we rewrite
Egs.(30),(31) in a matrix form as

abfk .
25—+ AT b, = £e TVl Veos gt (VT Hofl Y+ VT bl sin o, (33)

1”7 m+1 1”,m

where A™ is the relaxational matrix for the basic state, and ghe frequ%ncby dependence of the Pnﬁaf SUSbCE!ptitﬁllﬁ@' .
Vlml’f“ are the matrix elements of the perturbation operatorIS etermined by & superposition of the Debye relaxation

modes as
and sums over repeated indices are implicit. This notat|on
explicitly separates the contributions with differentindices w(m)
in each order of the perturbation procedure. That means that ay an= z (36)
the solution of Eq(33) may be constructed as a linear com- 1+|wTk m
bination of the patrticular solutions of the tridiagonal in index -
| inhomogeneous equations The relaxation spectrum of operatdris known to a suffi-

ciently good detail. It consists of one interwell modg,
gafk) - K1) o becoming exponential ior at > 1 and of an infinite number
27— +A| |,a|, =V a,, et of intrawell modesr;,, with weak o dependence. As we
have recently showf1%in superparamagnets with a rather
m'=mm+1,m-1. (34 good accuracy one may set

They could be solved using the continued-fraction method _
: ; ; 1+2S, 1 1-S, 1
with any desired accuracdy.In this sense we call those so- g, o= _ A g -
; ; 1,00 3 l+iwty 0173 1tiwr
lutions numerically exact 10 11
To distinguish the obtained solutions of E84) we use (37

the following convention. Le& m, ...m_, be the value ob- |5 £q (37) the relaxation times are either evaluated numeri-
tained in the preceding iteration. At the present step it entergally or taken in the form of approximate expressions
the right-hand side of Eq33) as a perturbation. Then the
solution of the current iteration will be designated as s 1-S,
8m, ...m_,m, that is we simply add the current value of 710= 7p(1+0/4)"exp (o), T=27p5 77S, (39)
m alongside the second index af In this way it is easy to
trace back the iteration sequence and recover a correct anglihese compact convenient forms were proposed in Refs. 16
lar dependence in the final formulas for. As one can see and 17, respectively. We emphasize that both of the formulas
from Eq. (33), every time when the added number differs (38) are interpolations not just asymptotics. As such, they
from its left neighbor, the corresponding contributioniio ~ are valid globally, i.e., for the entire range of the parameter
emerges bearing sip as a factor, otherwise it will bear o=Kuv/kgT. This circumstance considerably facilitates all
COS . the approximate calculations.

For a system with randomly oriented anisotropy axes Eq.

l1l. DYNAMIC SUSCEPTIBILITIES: (35) yields
LINEAR AND CUBIC TERMS

Y=x0A,, A,(0,01)=%a;0t2a10), (39
To be able to obtain cubic susceptibilities, the above- X Xo ( 0)=3(8100 107 (39

described sequence of calculations must be carried out dowghere A, may be called a dispersion factor for the linear

to the third order. susceptibility.
Zeroth order Only even harmonics of the distribution The description rendered by Eq84)—(38) is much more
function work, and they yield the static contributions general than the commonly known superparamagnetic block-
© ing model. Indeed, to recover the latter, two limiting transi-
bio=a10=S(0), tions are to be done. First, one setsp<1. This assumption

is not that strong since this condition on frequency usually
holds on up to the MHz range. Then one may neglect the
frequency dispersion o, o; in Eq. (37). For a random as-
sembly it gives

[cf. Eg.(9)] governed by the dimensionless parametesee
Eq. (3).
First order. The linear contributions take the form

big)=3& cosy(a o' +c.c), 11 252

' X=3X + 2(1-Sy) . (40)
bl(,“i):%§ sin (a ge'“'+c.c). 3 1 +iwryg

Using Eq.(32) one gets the linear complex susceptibility as The second transition is the low-temperature/massive-
particle limit: o> 1. With the aid of Eq(10) and upon plain
X= Xo(@1 oLOS Y+ ay oSirfe). (35  replacement ofryo by 7y from Eq.(24) one gets
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~ l+tion/o The modes; contributing toA,,, differ in symmetry and,
X=X0Twm, (41) due to that, in the type of dependence on the dimensionless
parametersr andw 7. Only for an isotropic cases{— 0) all
that is entirely equivalent to the blocking model expressiorof them have the same high-frequency dispersi2®). As
for the linear dynamic susceptibilty proposed in Ref[48e  the interwell potential barrier growsst=1), the dispersion
formulas(6),(7) therg but now all its terms are completely of the modes whose subscripts have zeroes in even positions,
specified. rapidly shifts to lower frequencies. Those modes describe the
According to Eqs(35)—(41), the blocking model is in fact interwell transition, and for them the frequency parameter
just the low-frequency end of the low-temperature/massivetends tow 7y with the exponentiaky, from Eq.(24). For the
particle asymptotics of the superparamagnetic theory. Howmodes of the “intrawell origin” the frequency parameter
ever, this approach is still widely usddee Refs. 4,5, for tends towr, and thus remains in the high-frequency range.
example as if it were the only theoretical tool to analyze the As in the linear susceptibility case, the amplitudes of the
micromagnetic relaxation. We remark that the thus impartedransverse modehe last digit in the subscript is) ¥anish
incorrectness is easy to trace back if one considers a sing{gith o whereas those of the longitudinal modes saturate at
particle or an assembly of identical particles. But the situasome finite values.
tion changes when one has to deal with experimental results One may surmise that the low-frequency limit, introduced
and perform size averages, i.e., simultaneously superposghile discussing the linear relaxation, would simplify the
calculations for a wide range @f. In such a case, of which nonlinear case as well since the process is mainly governed

the situation considered in Refs. 4,5 is a direct example, thgy the relaxation timer;,. Indeed, we have found that the
implanted mistakes are well hidden and may become morgpproximate expression

harmful.
Second orderThe corresponding coefficients of the ex-
pansion(28) write _ 1 (1+2S2)(1—iwTy)
X2 =7 x5 (49

X : f ’
(zw)_4§2[(a|oo(ﬁ0321/1+a|omslnzlﬂ)ez'm‘i”CC] 4 0 (1+Iw7’10)(1+3lw7'10)

(2(»):1 2 H 2iwt
bi2” = 267 (a) 011 & 001)SIN ¥h,COS Y™ " +C.C ], describes fairly well the frequency dependencey6? in a

(2w 2 2i ot randomly oriented assembly.
=i [a, ouSift ye*!*!+c.c]. Formula(44) is simple and easy to use for estimations and
Though they do not directly affect magnetization, one needsalculations. At the same time, we remark that it has been

them to proceed to the next order. obtained by a heuristic improvement of Eg3) in its low-
Third order. With the & accuracy one gets frequency w7rp<1) form (25 and as such does not have
any rigorous justification. Our claim of its quantitative reli-
bi%” = 5 £3{[a 000£0S ¥+ (8 0100T A1,0110 ability is based on many comparisons done against the nu-

merically exact results.
The results of numerically exact calculations of the dy-
© . namic nonlinear susceptibilities for a random assembly of
bl(,l = 5€*{[(a o111+ @ 00118 0002)SIN § COS's monodisperse grains algng formul@?)—(43) are presente)é
+ (@ grort &) 0120)SIE Y]e¥ et c.c). in Figs. 1. We show them as the functions of the temperature
parametewro 1/T, taking the reference valuer,=10"8 for
Using that, for the cubic contribution to the dynamic suscepefiniteness. This choice seems reasonable since the low-

+ay go10SiMf ¢ cogpled“t+c.cl,

tibility at the triple frequency we find frequency magnetic measurements are typically carried out
4 at » about 16—10° Hz, and the customary reference value
Xg&_%p\s , of 7o is believed to be in the 10°-10 % range. The
¢ 4kgT ¢ curves obtained by the approximate form@#4) are plotted
with thin dashed lines which visually almost coincide with
Aso(1h,0,0T0) = a1 000608 ¥+ (81 0100" 81,0110+ 81,0010 the curves corresponding to the exact solution.
For comparison in the same figures we present the results
+ay 0111+ A1, 0011+ 81,0000 SIN ¢ COS' of the theory proposed in Refs. 4,5. We remind that this
. approach suffers from two main drawbacks. First, the authors
+ (@1 0101+ 81,0129 SiMT' Y. (42) neglect the dependence of the static susceptibilities on the
For a randomly oriented assembly one gets internal order parametes, introduced by our Eq(9). Sec-
4 ond, they define the frequency dispersion of the cubic term
~@3)_ CM x x> taking formula(23)—which is really valid only for the
X3w_4k§BT3 Bwo case of isotropic particles—and “manually” replacing there

the Debye relaxation timep by the Nel asymptotical one
7n given by Eq.(24).
From Figs. 1 the consequences are apparent. Resembling
the exact results in general, the cubic susceptibilities by the
+ay o111+ a1,00117 A '
Lottt @001+ 10000 theory of Refs. 4,5 display considerable quantitative devia-
+%(a110101+ ay 0129+ (43)  tions. In particular, the relative heights of the extrema are

N 1 2
Az,(0,07) =51 gooot 15(81,0100T @1,01101 @1,0010
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Estimating on this basis the frequency dependence of the
susceptibility (v grows from zero at given finit&) we con-
clude on a stepwise change of the real pgft{w), and a
peak at the imaginary componeyit(w). For both curves the
characteristic points are determined by the same condition

X‘” ‘. relative units

100 a

0 wT107 1.
The temperature behavior of the said quantities is as easy
-100 1 to foresee. One has just to note that the temperature growth
at given frequency is roughly equivalent to reducingwoin
200 formula (41). The main difference is that the static suscepti-

bility entering Eq.(41) imposes the Curie lawq>1/T [see
Eg. (15] on either curve in the high-temperature range.
—_— Therefore, bothy'(T) andx”(T) are expected to have simi-
0.04 0.06 0.08 0.10 0.12 lar contours, be positive and display a peak at a temperature
corresponding tav g~ 1.

A qualitative behavior of the cubic susceptibilip®) may

3 . .
x( )", relative units

be analyzed with the aid of E¢44). Separating there the real
and imaginary parts, one gets
0
X(s)’ _ 70)27'%0—1
4100 | b Y| 41+’ (1+9w°ry)’
-200 1 X3 B wrlO(BwZT%O— 5) 45
Y3 A1+’ (1+ 9wy’
-300 1 l/éxf ~3)

‘ ——— where x>’ stands for the static cubic susceptibility of a ran-
0.04 0.06 0.08 0.10 0.12 dom assembly introduced by E@.5).
According to Eq.(45), the nonlinear susceptibilities may
FIG. 1. Real(a) and imaginary(b) part of the cubic susceptibil- invert their signs with both frequency and temperature at
ity for wmo=10"8. 1 indicates the numerically exact solutichjs some points in thevr~1 range. This change is from nega-
according to the theory by Refs. 4,5; dashed line is approximationive to positive with the frequency growth, and to the con-
(44). Actual numbers on vertical axes render the correspondingrary with the temperature increase. A simple calculation
x's divided by coefficienC; introduced in Eq(53) proves that on the temperature dependences the node of
X&) always resides at highdt than that ofy(®".
much smaller that those rendered by the exact solution. Also, To completely clarify the effect of anisotropy on suscep-
the nodes of the curves are considerably shifted along thgbility of a random assembly, we plot the surfaces in Figs.
temperature axis. 2,3. Taking cross sections along the frequency axes, one may
observe how the susceptibility curves transform under the
anisotropy ¢K) increase. The isolineg=const drawn in
the underlying planes help to understand the limiting behav-
The set of formulas derived in the preceding section igor. In the low anisotropy ranggere it isoc<5) the “expo-
self-sufficient for a numerically exact evaluation of the linearnentiality” of the relaxation time is not pronounced. This
and cubic magnetic responses as soon as the material parapioduces in each plot short parts of isolines parallel to the
eters are known. Here we assume that the system is dilute axes. Further, there occurs a narrow crossover range. After
enough and interparticle interaction may be neglected. In thi# all the other relaxation modes become insignificant, and
framework, to construct the dependences to be compared tbe isolines turn into linear dependenaes —Inwr,. For a
the experimental data, one, first, has to calculate the regiven w, this reflects the growth of the reference relaxation
sponses for a subsystem of identical grains with a voluméime with o. Accordingly, in all the plots the parts of char-
v, and then perform the averaging with an appropriateacteristic(abrup) changes of(w) move to smaller frequen-
volume-distribution functiorf (v). cies approximately logarithmically. Note that singe:1/T,
However, before doing that, it is useful to understandcross sections along the axes yield the temperature depen-
gualitatively the anticipated behavior of the susceptibilities.dences at constamt and frequency.
Let us consider the Debye-type expression @) for the Some complicated details—inflections and inflations of
linear susceptibility. The drastic change of the exponentiathe representing surfaces—occur in the nearest corner of the
factor reduces all the limiting behavior to just two cases. Theplots Figs. 2, 3, i.e., ab7y>1 ando~1. This is the range
first is wT1>1, i.e., the system is rather “cold and stiff.” that is beyond the scope of the low-frequency approximation,
Due to that the response is close to zero. The second caseand much so the blocking model. Those results are available
wT10<1. The system is “warm and soft,” and readily re- only by numerical evaluation since one has to take into ac-
sponds to a signal of almost any frequency. count on equal basis a wide set of relaxation modes, both

IV. MONODISPERSE ASSEMBLIES
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FIG. 2. Monodisperse random assembly. Reduced linear suscep-

tibilty according to Eq.(39) as transformed with the anisotropy ) | d .
growth: ais the real partb is the imaginary part. FIG. 3. Monodisperse random assembly. Reduced cubic suscep-

tibilty according to Eq.(43) as transformed with the anisotropy

transverse and longitudinal. Physically, that means that aquWth;a'S the real partp is the imaginary part.

:Egazgaequenmes the intrawell modes yield a noticeable COBt the latter, two are known to work better than others.

The surfaces shown in Figs. 2,3 are interesting as Weﬁ\lamely, they arahe log-normal distributiorgiven by
from the viewpoint that they visualize the theoretical data

2
arrays which are involved when one passes to experiment fi(v)= ! ex;{— M , (46)
interpretation. Indeed, performing of sizer volume aver- V21sv 2s

agings of the susceptibilities means superposing of a number = .
of curves each corresponding to its owr=const cross sec- which is the most famous. Its closeness to real histograms of

tion with appropriate weights given by the distribution func- diSPerse systems has been reported in thousands of papers.
tion. The most probable valug, of the argumenfthe position of

fi(v) maximum and thenth moment are, respectively,

V. POLYDISPERSE SYSTEMS: THE CHOICE Vp=vo, XA —S2), vi=v] exd(ns)¥2].  (47)
OF THE TRIAL DISTRIBUTION FUNCTION

. . . The gamma distribution
In the majority of cases when one deals with nanosize

superparamagnetic grains, polydispersity seems to be an in- B
herent feature. The independent measurement of the size- fg(v)= T(B+1) (—)
distribution function, e.g., by electron micrography, is a B Vog!Yog
painstaking and rare opportunity. Besides, even when it isyvhereI'(x) is the Euler gamma function. The most probable
done, from the statistical viewpoint a set of available meavaluev,q and thenth moment are

surements (1B- 10* graing for the particle number concen-

exp(—vlvg), (48)

tration even as small as 1% 10%, that is 0.01% by volume — S T(B+n+1)
at the particle size~10 nm, is far from being statistically vpg=(B+Dvog, vg=(vog TErD (49
representative.

That is why the conventional approach is to choose a trialThe I" distribution is the generalization of the Poisson one
(mode) size-distribution function and determine its param-which is also in use, see, for example, Ref. 18. A detailed
eters upon fitting theoretical curves to the experimental datademonstration of its usefulness for interpretation of the low-
By obvious reasons, of the variety of the available distribu-frequency magnetic spectra of magnetic fluidsspersions
tion formulas, the two-parameter ones are most popular. Andf nanosize ferroparticlesvas given in Ref. 19.
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Note, that in given representatio®6) and(48) of either
of the distribution functions the, parameter is a reference
value and does not have a direct meaning of the mean vol-
ume. The latter is formed as a particular combination—see
Egs.(47) and(49—of corresponding  and the distribution
width.

When passing to the averaging formulas, one must treat
the susceptibility expression like E@1) as yielding a con-
tribution of thejth fraction of the particles with a volume
vj and number concentratiog;. By definition, the latter
writes

c;=c(cj/c)=cf(v)dv, (50

where summation ovef is equivalent to integration over
v. However, the meaning af for a polydisperse system is
ambiguous, and we replace it by introducing the dimension-
less total particle volume fraction

¢=Cv. (52 0

We emphasize that for a polydisperse system replacement -9
Egs.(50),(51) are the only correct way to eliminate Plain 200
substitution ofe instead ofcv in formulas(16), as in Refs.
4,5,18, would have been correct only for monodisperse sys-
tems.

Let us do that taking Eq44) as an example. With the aid
of Egs.(50),(51) it transforms into

Vo<T
ol
3 -
d;gaz__—k3_|_3A3w(Uv“’To)f(U)dU- (52 FIG. 4. Modeling of the lognormal volume-averaging effect.
v Real parts of the lineafa) and cubic(b) susceptibilities forw 7,
=108

It is convenient to scale the current volumeyasuv/vg
which does not change the. integration limits. Then the curyion width grows, the positions of the main extrema drift to
rent value of the anisotropy parameter becomeshe higher temperature range. Very qualitatively, this ten-
o=(Kvo/kgT)y=0yy, and the assembly-averaged cubic dency may be understood from the relatibaK v /kg where
susceplibility writes the mean value is determined by Hg.7). We remark that

for a great many of dispersed systems the typical values of

Ug [~ ~ . .
xS = _ngg:fo v (y)As,(ooy, w70)dY, s fall into the interval 0.5-0.2.
v
VI. POLYDISPERSE SYSTEMS:
Cy=ol¥/K3, (53 COMPARISON WITH EXPERIMENT
Similarly, for the linear susceptibility one gets For practical comparison we take an ample set of experi-

mental data reported in Ref.(4nd confirmed in Ref.)50n
— Vo [ 5. o~ s linear and cubic susceptibilities of Cu—Co precipitating al-
XZClUO:—fO yTF(Y)Au(ooy,0mo)dy,  Ci=¢l“/K, loys. The given data cover the frequency domain 30—840 Hz
(54) and the temperature range 10-150 K. Synthesis of the
samples as well as the method of magnetic measurement are
where now the temperature dependence is described by thfscribed. However, apart from the observation that Cu—Co
argumentoox 1/T. Evidently, formulas(53),(54) show the  alloys precipitate yielding a dispersion of cobalt nanosize
general way of volume averaging fgrandx$¥) and hold for  particles in a copper matrix, no particular structural informa-
the exact dispersion factofsas well as for their approxima- tion on the system is given.
tions. When the superparamagnetic theory is applied for inter-
In Fig. 4 we visualize the averaging procedure describegbretation of any measured susceptibility line, it means that
by Eqgs.(53),(54). The dispersion factors are evaluated by thesome model functiory(v,w,T) depending on several mate-
numerically exact procedure. The plots show the evolution ofial parameters is processed through averaging like(E3).
the susceptibility curveg’ (T) with the widening of the log- or (54). In our case the basic set of the material parameters
normal distribution. The front plang=0 corresponds to the comprises magnetizatidn anisotropy energy densitg, re-
monodisperse cadgv)« (v —v,) considered in Fig. 1. Be- laxation timery, and the particle volume fractioga. Obvi-
sides the expected smearing down of sharp peaks, from trausly, for nanosize-dispersed systems the effective values of
sequence of the level lines one observes that as the distribu; K, and 7, do not coincide with those for a bulk material.
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FIG. 5. Linear susceptibility, real part. Com-
parison with the experiment by Ref. 4 for the
frequencies: 30 Hz@), 80 Hz (b), 220 Hz (c),
840 Hz(d). Volume averaging is performed with

y ' ; " ! the magnetic and statistical parameters according

0 50 100 150 0 50 100 150 to Table I. Entry 1 indicated by thick solid lines,
entry 2 indicated by thick dashed lines, entry 3
] indicated by thin solid lines, entry 4 indicated by
thin dashed lines. Almost everywhere the two lat-
ter visually coincide. The vertical scale coincides
with the one adopted in Refs. 4,5 for the experi-
mental data.

-
-~
-~

T(K)

0 50 100 150 0 50 100 150

The size/volume averaging itself introduces two independenteans that either, K or ¢ may be taken as arbitrary. Note
statistical parameters. Therefore, the fitting procedure turnthat if one would have dealt with just linear susceptibility
into an optimization problem in a multidimensional param-measurements, thed; does not appear, and the uncertainty
eter space with rather loose restrictions. of the choice would have been enhanced allowing two of the

Due to that one should not expect that the analysis of justhree parameters as arbitrary. In our case, we set the magne-
the susceptibility temperature-frequency behavior is selftization of the cobalt particles equal to its bulk value
sufficient for unambiguous determination of the magneticl = 1460 G. On doing that, one gets explicit relationships
material parameters. But it is reasonable to ask what is the

real extent to which one could reduce the uncertainty while vo=(kg/l1)yC3/Cy, K=TolyC1/Cy,
fitting the measured data.
h . (,D:(C]_/l)\C1/C3, (56)

First we remark that in the framework of the proposed
theory the number of independent parameters determining|ating the customary physical parameters to the results of
the susceptibilities of a superparamagnetic assembly, equalge fitting procedure.
five. Indeed, from Eq953),(54) and(47),(49) it follows that We perform nonlinear fitting using the Levenberg-
the reference volume as such does not enter the results. Narquardt method implemented in theromIN routine?°
appears just in the combinatiov,/kg. Denoting it as  From the experimental end, eight families of data are in-

To, one may rewrite Eq953),(54) as volved, viz. x'(T) and X(?’)’(T) at four frequencies, taken
from Ref. 4. From the theory end, we employ formula3)—
TR-_C TO A T w7T0.S (56) with the numerically exact dispersion factors. The re-
X3o™ "3 3 0 sults of fitting are presented in Figs. 5,6, and in Table I.
To To VIl. DISCUSSION
C 55 - -
X 1( ) Al( @70, S) (55 The fitting process worked sufficiently stably, that means

o ] that the set of susceptibilities as a function of its magnetic
(for the I' distribution, one would hav@ instead ofs). In.  5nq statistical parameters does not have too many local
Egs.(55) the quantities4; and.A; stand for the integrals of minima. So, the sets of values presented in the first two lines
the dispersion factors multiplied by the ratig/v which  of the Table | are unique in a wide vicinity of the parameter
depends solely on the distribution widshor 3. space. The results given in Figs. 5,6 have almost equal sta-
Thus, the set of parameters yielded by fitting comprisesistical residuals for the lognormal and gamma functions.
To, 7o, S, and two amplitude€, and C;. From the defini- However, from the simplehi-by-eyeviewpoint, the lognor-
tions of the latter—see Eq$53),(54—one sees that they mal distribution seems far more satisfactory. For Fhelis-
incorporate three material parameters of the system. Thatibution two flaws are apparent. Namely, noticeable devia-
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FIG. 6. Cubic susceptibility, real part. Com-
parison with the experiment by Ref. 4 for the
frequencies: 30 Hz@), 80 Hz (b), 220 Hz (c),
840 Hz (d). The line drawing convention is the
same as in Fig. 5. The vertical scale coincides
with the one adopted in Refs. 4,5 for the experi-
mental data.

-2x1073 i

T(K) T(K)

1 T T 1

0 50 100 150 0 50 100 150

tions at highT and misplacements of the peak positions fortistical moments, the occurring deviations are rather moder-
both linear and cubic curves. ate. Indeed, evaluating mean volume and mean-square
The main difference between the lognormal dhdistri-  volume from formulas using the numbers from the Table |
butions is their reduction rate at the right end, i.e., at(entries 1 and R one gets for the lognormal add cases
v—o. As one may see from Eq&3),(54), the higher is the
susceptibility order the greater is the enhancement of the — 2
right-end effect, since under the integridly) is multiplied v =4.43 nm, \/;_ 4.71 nm,
by yet higher powers of. Apparently, one has no basis to _
expect that a histogram of a real system would obey any ve=4.11 nm, \/;:4.46 nm,
simple two-parameter function. But singeand x(®) are de- ’ 9
termined by different moments of the distribution, their si- respectively. Thus one sees that visual comparison happens
multaneous consideration is an effective method to single oub be a sensitive test. The differences in Figs. 5,6 are rather
the appropriate and inappropriate ones. According to our evipronounced whereas the deviations in mean and mean-square
dence, for the Co—Cu systems the lognormal distribution igarticle diameters do not exceed 8 and 6%, respectively,
far better. which is a fairly good accuracy.
At the same time, we remark that if to estimate the dif- It is essential to emphasize, however, that even a very
ference between the two undertaken fittings in terms of stagood fitting may be completely misleading unless it matches

TABLE |. Magnetic and statistical parameters obtained by fitting; for all the entries the saturation mag-
netization isl = 1460 G.

Fitting Reference relaxation Reference volume, Standard Volume Anisotropy constant,

attempt time, sec ci deviation fraction, % erg/cth

1 Lognormal, 2.1%10 % 3.79x10°%° 0.608 0.704 7.6210°
present fit

2 Gamma, 53210 % 2.30x10°%°  B=0.585  0.738 8.3 10°
present fit

3 Lognormal, 1.66x10 14 5.6x10 20 0.72 0.60 8.&%10°
after Ref. 4

4 Lognormal, 1.0 10 10 5.6x10 20 0.72 0.60 5% 10°

after Ref. 5
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physical considerations. By that we mean that presently thenrandom axes distribution but may be easily extended for any
exists enough knowledge on the static and dynamic propeether type of the orientational order imposed on the particle
ties of magnetic nanosize systems to impose a reasonabigisotropy axes. A proposed simple approximation is shown
frame on the orders of magnitude of the sought for paramto be capable of successful replacement of the results of nu-
eters. From this viewpoint, the numerical values obtained bynerically exact calculations.

fittings with both lognormal and™ distributions are quite ~ The theory is tested with the aid of an ample data array on
reasonable(entries 1 and 2 in Table).l On the contrary, low-frequency magnetic spectra of_solu_j Co-Cu nanoparticle
attempting a quantitative explanation with the aid of a log-SyStems. On doing so, we combine it with the two most

normal distribution, the authors of Ref. 4 have obtained Somgop_ular VO'UF“e distribgt[qn functions. When the Iinea}r and
agreement between their theory and experiment settin ubic dynamic susceptibilites are taken into account simulta-

7o~10 s, see the third entry of Table I. The contradiction eously, the fitting procedure yields a unique set of magnetic
: ) X . . and statistical parameters and enables us to conclude the best
is apparent: whatever is thehi-by-eyeagreement in the

graphs, the set of parameters should be discarded. The mat propriate form of the model distribution functighisto-

. S ; : am). For the case under study it is the lognormal distribu-
is that so short a time is completely forbidden in superparaﬁon@ y 9

magnetic particles, see Ref. 21, for example. Probably, just The achieved agreement yields one more serious argu-

those considerations caused the same authors reinterpret jfnt in favor of the idea that magnetic measurements may

Ref. 5 their data—see the fourth entry of Table I—with york as a sensitive and reliable quantitative material science
To~10_10. However, the result of fitting given in Ref. test for nanosize systems.

5—see thin lines in Figs. 5, 6, though rather good for

-1

suffers from a serious flaw with respect t§%" . Namely, Note added in proof
temperature region. Supposedly, this discrepancy resultxpression
1 oo
. . T10="™D 5 _ |7 1 27 _ —+2 7
In this connection we make note of a fact that we have run 20 |1+1/c N =
best-fit routine, whatever was the initial set, “stubbornly” approximation to the exact solution than H@8) for both
clude the cubic susceptibilities as well, the best-fit parametegjjities of fine magnetic particles has appeared. However, the
those of our Sec. | obtained independently, reveals their
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