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Linear and cubic dynamic susceptibilities of superparamagnetic fine particles

Yuri L. Raikher and Victor I. Stepanov
Institute of Continuous Media Mechanics, Urals Branch of RAS, 614013, Perm, Russia

~Received 21 February 1997!

A consistent theory of linear and nonlinear~cubic! initial susceptibilities of an assembly of uniaxially
anisotropic noninteracting fine magnetic particles is presented. The expressions for the static~equilibrium!
susceptibilities are obtained directly from the pertinent statistical thermodynamics. The contributions of an-
isotropy emerge yet in the first order and are analyzed for random and axes-aligned distributions. The ac
susceptibilities are studied on the basis of the micromagnetic Fokker-Planck equation. Both a numerically
exact solution for arbitrary frequency and a reliable low-frequency approximation are given. The obtained
description proves to be more accurate as compared to the one based on the customary superparamagnetic
blocking model. The results are used for a quantitative interpretation of recently published set of data on Co-Cu
precipitating alloys. In this connection the choice of the particle size-distribution function is discussed.
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INTRODUCTION

Since the very first studies of fine-particle systems,1 the
development of the micromagnetic science was insp
mainly by the necessity to predict the magnetic proper
and response of a ferromagnetic particulate media. Bey
argument, in this objective the fundamental and applicatio
aspects are tied up very closely, if not inseparably.

The problem of prime interest while performing expe
ments on or manufacturing fine-particle magnetic system
to characterize the magnetic content of the sample with
few measurements as possible. Magnetic granulometry
means of a quasistatic magnetization curve is very w
known and widely used.1–3 The dynamic approach, wher
simultaneously linear and nonlinear susceptibilities are ta
into account is more new, being most probably inspired
its use in the spin-glass science. To justify the method,
should process a good deal of experimental data with the
of an appropriate theory. Such a work has been attem
recently in Refs. 4,5 with a precipitating Cu-Co alloy as
test object. The authors had no difficulties in fitting the line
susceptibility measurements with the aid of superparam
netic blocking model assuming that:~i! the particles are
single domain and their magnetization does not depend
temperature,~ii ! the magnetic anisotropy is uniaxial and h
one and the same value for all the particles, and~iii ! the
magnetic dipole-dipole interaction is negligible. It was fittin
the nonlinear~cubic! susceptibility data where a problem
arose, since there was no theory for it insofar, consistent w
the aforementioned assumptions. To fill the place, in R
4,5 were employed the formulas originally derived for
isotropic superparamagnet. They were adjusted by replac
the pertinent relaxation time with a one exponential in
magnetic anisotropyconstantK. However, the resulting
agreement turned out to be poor. From that the author
Refs. 4,5 concluded to that some of the basic assumpt
~i!–~iii ! are wrong. From our viewpoint, in the first place th
reproach should be addressed not to the classic super
magnetic theory as itself but to a rather ‘‘intuitive’’ mann
of its usage.
550163-1829/97/55~22!/15005~13!/$10.00
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The incentive and the main goal of our paper is to co
sistently extend the conventional theory on the case o
nonlinear response and by that to confirm its validity. Wh
doing that we propose practical schemes~both exact and ap-
proximate! to handle linear and cubic dynamic responses
the framework of classical superparamagnetism. Apply
our results to the reported data on the nonlinear susceptib
of Cu-Co precipitates, we demonstrate that a fairly go
agreement may be achieved easily.

I. STATIC SUSCEPTIBILITIES

As a starting point we take an isolated single-domain p
ticle of a ferro- or ferrimagnetic material rigidly trapped
the bulk of a solid nonmagnetic matrix. Single domain ha
spatial uniformity of the spin alignment over the grain th
enables us to describe it by the net magnetic mom
m5me, whose direction is given by a unit vectore. The
magnetic moment magnitude ism5Iv with I the saturation
magnetization of the material at given temperature andv
being the particle volume. Besides that, we assume the
ticle to possess a uniaxial magnetic anisotropy with an
ergy densityK and a direction defined by a unit vectorn.

If the external magnetic fieldH is not too high as to affec
the atomic magnetic structure, its only effect on a sing
domain grain is the magnetic moment rotation. Then the c
responding orientation-dependent part of the particle ene
U may be written as

U52Kv~en!22m~eH!. ~1!

The stationary distribution function of the particle magne
moment or~if we neglect interactions! of an assembly of
magnetic moments is determined by the Gibbs formula

W~e!5Z21exp„s~en!21j~eh!…,

Z~s,j!5E exp„s~en!21j~eh!…de, ~2!

where
15 005 © 1997 The American Physical Society



he
to
t

i-
o
on
io
-
in

ar

u-

t
ead

ter,
ds-
s
sed
an-
le

ne-
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s5Kv/kBT, j5mH/kBT, ~3!

andh is a unit vector along the external magnetic field.
In what follows we shall consider a situation where t

external magnetic field is weak enough, and does not
strongly change the basic state of the system. Assuming
value ofj to be small, one gets by expanding Eq.~2!

W~e!5W0

11j~eh!1 1
2 j2~eh!21 1

6 j3~eh!3

11 1
2 j2^~eh!2&0

, ~4!

where the distribution and partition functions

W0~y!5Z0
21exp~sy2!, Z0~s!52pE

21

1

exp~sy2!,

y5~en!, ~5!

describe the unperturbed stateH50. Accordingly, the angu-
lar brackets with a subscript 0 in Eq.~4! designate averaging
with respect to the distribution~5!.

Due to evenness ofW0, all the odd moments of the equ
librium distribution ~5! vanish. In particular, it means zer
net magnetization. The latter may appear only as a resp
to an applied field. Assuming that the interparticle interact
may be neglected, one finds thatM /cm, the reduced magne
tization in the direction of the field, equals the mean cos
^(eh)&. With the distribution~4! it reads

M /cm5^~eh!&5^~eh!2&0j1@ 1
6 ^~eh!4&02

1
2 ^~eh!2&0

2#j3,
~6!

wherec is the particle number concentration.
To evaluate the averages like those in Eq.~6!, it is very

convenient to pass from cosines^(en)k& to the set of corre-
sponding Legendre polynomials for which a spherical h
monics expansion~addition theorem!
ar
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Pl~eh!5
4p

2l11 (
m52 l

l

Ylm* ~nh!Ylm~en!, ~7!

takes place.
Taking into account a uniaxial symmetry of the distrib

tion functionW0, upon averaging of Eq.~7! one gets a ge-
neric formula

^Pl~eh!&05SlPl~nh!, for l even;

^Pl~eh!&050, for l odd; ~8!

where

Sl~s!5^Pl~en!&05E
21

1

Pl~y!W0~y!dy. ~9!

The order parameters grow from zero withs and saturate a
the unity value. The corresponding asymptotic relations r

Sl~s!5H ~ l21!!!

~2l11!!!
s l /21 . . . for s!1,

12
l ~ l11!

4s
1 . . . for s@1.

~10!

We remark that the first term of this set,S2, has the mean-
ing of the internal orientational magnetic order parame
and as such coincides with the normalized Edwar
Anderson parameterq which is in use in the spin-glas
theory. The main difference is that in a spin glass it is cau
by the exchange interaction while here, by the magnetic
isotropy energy, i.e., either spin-orbit or spin dipole-dipo
coupling.

With the introduced notations, the dimensionless mag
tization ~6! transforms into
^~eh!&5
112S2P2~nh!

3
j2

7170@S2P2~nh!#2140S2P2~nh!212S4P4~nh!

315
j3. ~11!
t

Comparison of Eqs.~6! and~11! with the standard definition
of the magnetic response

M5x~1!H1x~3!H31x~5!H51•••, ~12!

yields explicit expressions for the first two terms: line
(x (1) or simply x) and cubic (x (3)) susceptibilities of the
system in question.

From Eq.~11! it is apparent that in a solid system~immo-
bilized grains! all the susceptibilities depend upon the imp
mented distribution of anisotropy axes. Let us consider so
limiting cases.

Longitudinal alignment: nih. All the angular functions
Pl(nh) turn into unity. From Eq.~11! one gets for the sus
ceptibilities
e

x i5
cm2

kBT

112S2
3

, x i
~3!52

cm4

k3T3
7170S2

2140S2212S4
315

.

~13!

Transversal alignment: n'h. The angular functions turn
into P2(nh)52 1

2 andP4(nh)5
3
8 that yields

x'5
cm2

kBT

12S2
3

, x'
~3!52

cm4

k3T3
14135S2

2240S229S4
630

.

~14!

Random orientation: angular averaging shows tha
P2(ñh) 5 P4(ñh)50 and@P2(ñh)#

25 1
5 that results in

x̃5
cm2

3kBT
, x̃ ~3!52

cm4

k3T3
112S2

2

45
. ~15!
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Note that we use a tilde to mark the random-orientation
erages saving the customary overline for the future to de
nate size averaging.

From Eqs.~13!–~15! one finds that the linear part of th
random-system susceptibility obeys a superposition rulex̃ 5
@x i12x'#/3. Due to that the particle anisotropy falls out
the result. However, the cubic susceptibility turns out to
rather sensitive to it. Indeed, according to Eq.~15! for an
assembly of magnetically rigid grains (S2→1! it is three
times greater than that of an isotropic (S250) system.

Let us compare the formulas for a solid random syst
with those for an assembly of orientationally free grains, e
a magnetic suspension. In the latter case, the extension o
configurational space in the single-particle partition functio
i.e., adding integration overn in Eq. ~2!, removes the effec
of the internal anisotropy on the macroscopic magnetizat
This results~see Ref. 6, for example! in an isotropic~Lange-
vin! equilibrium magnetization curve that expands yieldin

x05
cm2

3kBT
, x0

~3!52
cm4

45k3T3
, ~16!

cf. Eq. ~15!. Coinciding in linear parts—a fact that has be
remarked in Ref. 1—the susceptibilities of a fluid and ra
dom solid assemblies differ in the cubic contributions unl
one deals with magnetically isotropic particles for whi
Sl50. This important fact has been overlooked in Refs. 4
where the authors have taken Eq.~16! as a starting point to
study a solid system. Right from the comparison of the st
formulas~15! and ~16! for x (3) the occurrence of too sma
predicted values, when Eqs.~16! are used, becomes appare

II. DYNAMIC SUSCEPTIBILITIES. GENERAL SCHEME

The rotary diffusion~Fokker-Planck! equation for the dis-
tribution functionW(e,t) of the unit vector of the particle
magnetic moment derived by Brown,7 may be written8 as

2tD]W/]t5 ĴWĴ~U/kBT1 lnW!, ~17!

whereĴ is the operator of infinitesimal rotations with respe
to the components ofe, andtD}T21 is the reference time o
m
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the internal rotary diffusion of the particle magnetic mome
If the basic dynamics of the latter is described by the p
nomenological Landau-Lifshitz equation, then the diffusi
time has a simple representation8

tD5st0 , ~18!

wheret0 is the relaxation time of the Larmor precession a
is assumed to be temperature independent. Below we m
use of the relationship~18! when it becomes necessary
single out temperature dependences.

In the case of isotropic magnetic particles, that
U52m(eH), both linear and cubic dynamic susceptibilitie
may be obtained analytically. To show that, first, we tran
form Eq. ~17! into an infinite set of differential recurrenc
relations

2tD
l ~ l11!

d

dt
^Pl&1^Pl&2

j

2l11
~^Pl21&2^Pl11&!50.

~19!

In absence of the external field (j50, zero-order solution!
the magnetic moments are distributed at random, and

P051, ^Pl&50 for l.0. ~20!

We assume the applied probing field to change harmo
cally

H5 1
2H0~e

ivt1e2 ivt!. ~21!

Substituting it asj5mH/kBT in Eqs. ~17!, one arrives at a
problem that is nonlinear with respect to the field amplitud
However, the field being a probing one, ensures the sm
ness ofj, and it allows us to build up a perturbation a
proach, taking Eq.~20! as the initial step. On doing so, th
result obtained in the first order inj is

M ~1!/cm5^P1&
~1!5 1

6 jS eivt

11 ivtD
1

e2 ivt

12 ivtD
D .

The second-order correction, due to the parity conditio
does not contribute to magnetization, whereas the third o
leads to
M ~3!/cm5^P1&
~3!52

j3

360F e3ivt

~11 ivtD!~11 2
3 ivtD!~113ivtD!

1c.c.G2
j3

360~11v2tD
2 !

3F ~31 7
3 ivtD!eivt

~11 ivtD!~11 2
3 ivtD!

1c.c.G , ~22!
e

where c.c. stands for complex conjugates. From Eq.~22! it
follows that with respect to frequency the cubic term co
prises two harmonics. One oscillates with the single f
quencyv and hence yields just a small correction to t
linear contribution whereas the other entirely determines
response at 3v. The corresponding complex susceptibili
reads
-
-

e

x3v
~3!5

1

4
x0

~3!
1

~11 ivtD!~11 2
3 ivtD!~113ivtD!

,

~23!

wherex0
(3) is the static value given by Eq.~16!.

Formulas like Eqs.~19!–~23! are well known in the
theory of rotary molecular diffusion in dipolar fluids, se



s
th
t
a
t

rd
o

tic
re

i
m

b
b

e
t of
ua-

ce is

la-
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Ref. 9, for example. Here we recall their magnetic analog
order to clarify the difference between our theory and
approach recently developed in Refs. 4,5. The authors of
latter, driven by the intention to extend the superparam
netic blocking model to a nonlinear case, have done tha
the following intuitive way. They simply replacedtD in Eq.
~23! by the Néel asymptotic expression

tN5t0exp~s!5~tD /s!exp~s!, ~24!

and took the corresponding form asx (3) for a solid system of
randomly oriented uniaxial particles.

Even at the same intuitive level, one can put forwa
some arguments against such a combination. At least tw
them are obvious. First, Eq.~23! with tN from Eq. ~24!
yields an incorrect value for the static (v→0) susceptibiity,
cf. Eq. ~15!. Second, it ignores the fact that the magne
anisotropy directly imparts the exponential mode only in
laxation of ^P1& leaving the quadrupole one (^P2&) un-
changed.

This does not mean, however, that the intuitive way
completely impossible. For example, the approximate for

x3v
~3!52

1

4
x0

~3!
112S2

2

~11 ivtN!~11 2
3 ivtD!~113ivtN!

,

~25!

is free of the aforementioned qualitative drawbacks and
cause of that, in principle, has much more grounds to
called a blocking model approximation forx (3) than the one
of Refs. 4,5. In below we show that Eq.~25! is rather close to
the approximation~44! which we consider to be the best.
in
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Resuming the main line of our consideration, now w
shall show how to consistently take into account the effec
the particle magnetic anisotropy by solving the Brown eq
tion ~17!.

Choosing spherical coordinates for the unit vectorse, n,
h as (u,w), (0,0), (c,0), respectively, i.e., takingn as the
polar axis of the framework, one has

~eh!5cosc cosu1 sin c sin u cosw, ~26!

and Eq.~1! may be rewritten as

U52Kv cos2u2mH~cosc cosu1sin c sin u cosw!,
~27!

The nonstationary solution of the kinetic equation~17! is
sought in the form of a spherical harmonics expansion

W~u,w,t !5(
l50

`

(
m52 l

l

bl ,m~ t !A2l11

4p

~ l2umu!!
~ l1umu!!

Ylm* ,

Ylm~u,w!5A2l11

4p

~ l2umu!!
~ l1umu!!

Pl
meimw, ~28!

where the variables are separated and the time dependen
determined by the functions

bl ,m~ t !5^Pl
m~cosu!eimw&. ~29!

The set of complex coefficientsbl ,m may be found by solv-
ing numerically an infinite set of differential recurrence re
tions obtained by substitution of expansion~28! into Eq.
~17!:
.
e-

otropy
of the
2tD
d

dt
bl ,m1 l ~ l11!bl ,m22sF ~ l11!~ l1m21!~ l1m!

~2l21!~2l11!
bl22,m1

l ~ l11!23m2

~2l21!~2l13!
bl ,m2

l ~ l2m12!~ l2m11!

~2l11!~2l13!
bl12,mG

2
j cosc

2l11
@~ l11!~ l1m!bl21,m2 l ~ l2m11!bl11,m#2

j sin c

2~2l11!
@~ l11!~ l1m21!~ l1m!bl21,m21

1 l ~ l2m12!~ l2m11!bl11,m212~ l11!bl21,m112 lbl11,m11#50. ~30!

These equations are valid form>1. One does not need to consider the negative values ofm because of the symmetry of Eq
~28! with respect to the replacementm→2m that yieldsbl ,2m5bl ,m . The casem50 is somewhat special, and the corr
sponding equation closing the set~28!, is to be derived separately. On doing so, it reads

2tD
d

dt
bl ,01 l ~ l11!bl ,022sF ~ l21!l ~ l11!

~2l21!~2l11!
bl22,01

l ~ l11!

~2l21!~2l13!
bl ,02

l ~ l11!~ l12!

~2l11!~2l13!
bl12,0G

2
j cosc

2l11
l ~ l11!~bl21,02bl11,0!1

j sin c

2l11
@~ l11!bl21,11 lbl11,1#50. ~31!

We remark that the kinetic equation~17! with the energy function~1! since the pioneering work by Brown7 has been studied
extensively10,8,11. However, due to mathematical difficulties the case of arbitrary orientation of the external and anis
fields, i.e., vectorsh andn, has been addressed just recently. The authors of Ref. 12 carried out a numerical solution
relaxation problem forh andn crossed under an arbitrary angle.

According to this approach, the observed magnetization induced by an external field is found by averaging of Eq.~26! over
the distribution function~28! and reads

M /cm5^~eh!&5b10cosc1b1,1sin c. ~32!
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The recurrence relations~30!,~31! are convenient for constructing a perturbative calculational scheme. Namely, we re
Eqs.~30!,~31! in a matrix form as

2tD
]bl ,m

~k!

]t
1L̂ l ,l 8

m bl 8,m
~k!

5je6 ivt@V̂l ,l 8
m,mbl 8,m

~k21!cosc1~V̂l ,l 8
m,m11bl 8,m11

~k21!
1V̂l ,l 8

m,m21bl 8,m21
~k21!

!sin c#, ~33!
nd
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whereL̂m is the relaxational matrix for the basic state, a

V̂l ,l 8
m,m8 are the matrix elements of the perturbation opera

and sums over repeated indices are implicit. This nota
explicitly separates the contributions with differentm indices
in each order of the perturbation procedure. That means
the solution of Eq.~33! may be constructed as a linear com
bination of the particular solutions of the tridiagonal in ind
l inhomogeneous equations

2tD
]al ,m

~k!

]t
1L̂ l ,l 8

m al 8,m
~k!

5V̂l ,l 8
m,m8al 8,m8

~k21!e6 ivt,

m85m,m11,m21. ~34!

They could be solved using the continued-fraction meth
with any desired accuracy.13 In this sense we call those so
lutionsnumerically exact.

To distinguish the obtained solutions of Eq.~34! we use
the following convention. Letal ,m1 . . .mj21

be the value ob-
tained in the preceding iteration. At the present step it en
the right-hand side of Eq.~33! as a perturbation. Then th
solution of the current iteration will be designated
al ,m1 . . .mj21mj

, that is we simply add the current value

m alongside the second index ofa. In this way it is easy to
trace back the iteration sequence and recover a correct a
lar dependence in the final formulas forbl . As one can see
from Eq. ~33!, every time when the added number diffe
from its left neighbor, the corresponding contribution tobl
emerges bearing sinc as a factor, otherwise it will bea
cosc.

III. DYNAMIC SUSCEPTIBILITIES:
LINEAR AND CUBIC TERMS

To be able to obtain cubic susceptibilities, the abo
described sequence of calculations must be carried out d
to the third order.

Zeroth order. Only even harmonics of the distributio
function work, and they yield the static contributions

bl ,0
~0!5al ,05Sl~s!,

@cf. Eq. ~9!# governed by the dimensionless parameters, see
Eq. ~3!.

First order. The linear contributions take the form

bl ,0
~v!5 1

2 j cosc~al ,00e
ivt1c.c.!,

bl ,1
~v!5 1

2 j sin c~al ,01e
ivt1c.c.!.

Using Eq.~32! one gets the linear complex susceptibility

x5x0~a1,00cos
2c1a1,01sin

2c!. ~35!
r,
n

at

d

rs

gu-

-
n

The frequency dependence of the linear susceptibility~35!
is determined by a superposition of the Debye relaxat
modes as

a1,0m5 (
k51

` wk
~m!

11 ivtk,m
. ~36!

The relaxation spectrum of operatorL̂ is known to a suffi-
ciently good detail. It consists of one interwell modet10
becoming exponential ins ats@1 and of an infinite number
of intrawell modest1,m with weak s dependence. As we
have recently shown,14,15 in superparamagnets with a rath
good accuracy one may set

a1,005
112S2

3

1

11 ivt10
, a1,015

12S2
3

1

11 ivt1,1
.

~37!

In Eq. ~37! the relaxation times are either evaluated nume
cally or taken in the form of approximate expressions

t105tD~11s/4!25/2exp ~s!, t1152tD
12S2
21S2

. ~38!

These compact convenient forms were proposed in Refs
and 17, respectively. We emphasize that both of the formu
~38! are interpolations, not just asymptotics. As such, the
are valid globally, i.e., for the entire range of the parame
s5Kv/kBT. This circumstance considerably facilitates a
the approximate calculations.

For a system with randomly oriented anisotropy axes
~35! yields

x̃5x0Av , Av~s,vt0!5 1
3 ~a1,0012a1,01!, ~39!

whereAv may be called a dispersion factor for the line
susceptibility.

The description rendered by Eqs.~34!–~38! is much more
general than the commonly known superparamagnetic blo
ing model. Indeed, to recover the latter, two limiting tran
tions are to be done. First, one setsvtD!1. This assumption
is not that strong since this condition on frequency usua
holds on up to the MHz range. Then one may neglect
frequency dispersion ofa1,01 in Eq. ~37!. For a random as-
sembly it gives

x̃5
1

3
x0F 112S2

11 ivt10
12~12S2!G . ~40!

The second transition is the low-temperature/mass
particle limit: s@1. With the aid of Eq.~10! and upon plain
replacement oft10 by tN from Eq. ~24! one gets
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x̃5x0

11 ivtN/s

11 ivtN
, ~41!

that is entirely equivalent to the blocking model express
for the linear dynamic susceptibilty proposed in Ref. 18@see
formulas~6!,~7! there# but now all its terms are completel
specified.

According to Eqs.~35!–~41!, the blocking model is in fact
just the low-frequency end of the low-temperature/mass
particle asymptotics of the superparamagnetic theory. H
ever, this approach is still widely used~see Refs. 4,5, for
example! as if it were the only theoretical tool to analyze th
micromagnetic relaxation. We remark that the thus impar
incorrectness is easy to trace back if one considers a si
particle or an assembly of identical particles. But the sit
tion changes when one has to deal with experimental res
and perform size averages, i.e., simultaneously super
calculations for a wide range ofs. In such a case, of which
the situation considered in Refs. 4,5 is a direct example,
implanted mistakes are well hidden and may become m
harmful.

Second order. The corresponding coefficients of the e
pansion~28! write

bl ,0
~2v!5 1

4 j2@~al ,000cos
2c1al ,010sin

2c!e2ivt1c.c.#,

bl ,1
~2v!5 1

4 j2@~al ,0111al ,001!sin c,cosce2ivt1c.c.#,

bl ,2
~2v!5 1

4 j2@al ,012sin
2ce2ivt1c.c.#.

Though they do not directly affect magnetization, one ne
them to proceed to the next order.

Third order. With the j3 accuracy one gets

bl ,0
~3v!5 1

8 j3$@al ,0000cos
3c1~al ,01001al ,0110

1al ,0010!sin
2c cosc#e3ivt1c.c.%,

bl ,1
~3v!5 1

8 j3$@~al ,01111al ,00111al ,0001!sin c cos2c

1~al ,01011al ,0121!sin
3 c#e3ivt1c.c.%.

Using that, for the cubic contribution to the dynamic susc
tibility at the triple frequency we find

X3v
~3!5

cm4

4kB
3T3

A3v ,

A3v~c,s,vt0!5a1,0000cos
4c1~a1,01001a1,01101a1,0010

1a1,01111a1,00111a1,0001)sin
2c cos2c

1~a1,01011a1,0121!sin
4c. ~42!

For a randomly oriented assembly one gets

x̃3v
~3!5

cm4

4kB
3T3

Ã3v ,

Ã3v~s,vt0!5 1
5a1,00001

2
15 ~a1,01001a1,01101a1,0010

1a1,01111a1,00111a1,0001)

1 8
15 ~a1,01011a1,0121!. ~43!
n
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The modesa1 contributing toA3v differ in symmetry and,
due to that, in the type of dependence on the dimension
parameterss andvt0. Only for an isotropic case (s→0) all
of them have the same high-frequency dispersion~23!. As
the interwell potential barrier grows (s*1), the dispersion
of the modes whose subscripts have zeroes in even posit
rapidly shifts to lower frequencies. Those modes describe
interwell transition, and for them the frequency parame
tends tovtN with the exponentialtN from Eq. ~24!. For the
modes of the ‘‘intrawell origin’’ the frequency paramete
tends tovt0 and thus remains in the high-frequency rang
As in the linear susceptibility case, the amplitudes of t
transverse modes~the last digit in the subscript is 1! vanish
with s whereas those of the longitudinal modes saturate
some finite values.

One may surmise that the low-frequency limit, introduc
while discussing the linear relaxation, would simplify th
nonlinear case as well since the process is mainly gover
by the relaxation timet10. Indeed, we have found that th
approximate expression

x̃3v
~3!5

1

4
x0

~3!
~112S2

2!~12 ivt10!

~11 ivt10!~113ivt10!
, ~44!

describes fairly well the frequency dependence ofx (3) in a
randomly oriented assembly.

Formula~44! is simple and easy to use for estimations a
calculations. At the same time, we remark that it has b
obtained by a heuristic improvement of Eq.~23! in its low-
frequency (vtD,1) form ~25! and as such does not hav
any rigorous justification. Our claim of its quantitative re
ability is based on many comparisons done against the
merically exact results.

The results of numerically exact calculations of the d
namic nonlinear susceptibilities for a random assembly
monodisperse grains along formulas~32!–~43! are presented
in Figs. 1. We show them as the functions of the tempera
parameters}1/T, taking the reference valuevt051028 for
definiteness. This choice seems reasonable since the
frequency magnetic measurements are typically carried
at v about 1022103 Hz, and the customary reference valu
of t0 is believed to be in the 1021021029s range. The
curves obtained by the approximate formula~44! are plotted
with thin dashed lines which visually almost coincide wi
the curves corresponding to the exact solution.

For comparison in the same figures we present the res
of the theory proposed in Refs. 4,5. We remind that t
approach suffers from two main drawbacks. First, the auth
neglect the dependence of the static susceptibilities on
internal order parameterS2 introduced by our Eq.~9!. Sec-
ond, they define the frequency dispersion of the cubic te
x2 taking formula~23!—which is really valid only for the
case of isotropic particles—and ‘‘manually’’ replacing the
the Debye relaxation timetD by the Néel asymptotical one
tN given by Eq.~24!.

From Figs. 1 the consequences are apparent. Resem
the exact results in general, the cubic susceptibilities by
theory of Refs. 4,5 display considerable quantitative dev
tions. In particular, the relative heights of the extrema
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55 15 011LINEAR AND CUBIC DYNAMIC SUSCEPTIBILITIES . . .
much smaller that those rendered by the exact solution. A
the nodes of the curves are considerably shifted along
temperature axis.

IV. MONODISPERSE ASSEMBLIES

The set of formulas derived in the preceding section
self-sufficient for a numerically exact evaluation of the line
and cubic magnetic responses as soon as the material pa
eters are known. Here we assume that the system is d
enough and interparticle interaction may be neglected. In
framework, to construct the dependences to be compare
the experimental data, one, first, has to calculate the
sponses for a subsystem of identical grains with a volu
v, and then perform the averaging with an appropri
volume-distribution functionf (v).

However, before doing that, it is useful to understa
qualitatively the anticipated behavior of the susceptibiliti
Let us consider the Debye-type expression Eq.~40! for the
linear susceptibility. The drastic change of the exponen
factor reduces all the limiting behavior to just two cases. T
first is vt10@1, i.e., the system is rather ‘‘cold and stiff.
Due to that the response is close to zero. The second ca
vt10!1. The system is ‘‘warm and soft,’’ and readily re
sponds to a signal of almost any frequency.

FIG. 1. Real~a! and imaginary~b! part of the cubic susceptibil
ity for vt051028. 1 indicates the numerically exact solution,2 is
according to the theory by Refs. 4,5; dashed line is approxima
~44!. Actual numbers on vertical axes render the correspond
x ’s divided by coefficientC3 introduced in Eq.~53!
o,
he
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am-
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Estimating on this basis the frequency dependence of
susceptibility (v grows from zero at given finiteT) we con-
clude on a stepwise change of the real part,x8(v), and a
peak at the imaginary componentx9(v). For both curves the
characteristic points are determined by the same condi
vt10'1.

The temperature behavior of the said quantities is as e
to foresee. One has just to note that the temperature gro
at given frequency is roughly equivalent to reducing ofv in
formula ~41!. The main difference is that the static suscep
bility entering Eq.~41! imposes the Curie lawx0}1/T @see
Eq. ~15!# on either curve in the high-temperature rang
Therefore, bothx8(T) andx9(T) are expected to have sim
lar contours, be positive and display a peak at a tempera
corresponding tovt10'1.

A qualitative behavior of the cubic susceptibilityx3v
(3) may

be analyzed with the aid of Eq.~44!. Separating there the rea
and imaginary parts, one gets

x~3!8

u x̃0
~3!u

5
7v2t10

2 21

4~11v2t10
2 !~119v2t10

2 !
,

x~3!9

u x̃0
~3!u

5
vt10~3v2t10

2 25!

4~11v2t10
2 !~119v2t10

2 !
, ~45!

wherex̃0
(3) stands for the static cubic susceptibility of a ra

dom assembly introduced by Eq.~15!.
According to Eq.~45!, the nonlinear susceptibilities ma

invert their signs with both frequency and temperature
some points in thevt;1 range. This change is from nega
tive to positive with the frequency growth, and to the co
trary with the temperature increase. A simple calculat
proves that on the temperature dependences the nod
x (3)8 always resides at higherT than that ofx (3)9.

To completely clarify the effect of anisotropy on susce
tibility of a random assembly, we plot the surfaces in Fig
2,3. Taking cross sections along the frequency axes, one
observe how the susceptibility curves transform under
anisotropy (s}K) increase. The isolinesx5const drawn in
the underlying planes help to understand the limiting beh
ior. In the low anisotropy range~here it iss&5) the ‘‘expo-
nentiality’’ of the relaxation time is not pronounced. Th
produces in each plot short parts of isolines parallel to
s axes. Further, there occurs a narrow crossover range. A
it all the other relaxation modes become insignificant, a
the isolines turn into linear dependencess}2 lnvt0. For a
givenv, this reflects the growth of the reference relaxati
time with s. Accordingly, in all the plots the parts of cha
acteristic~abrupt! changes ofx(v) move to smaller frequen
cies approximately logarithmically. Note that sinces}1/T,
cross sections along thes axes yield the temperature depe
dences at constantK and frequency.

Some complicated details—inflections and inflations
the representing surfaces—occur in the nearest corner o
plots Figs. 2, 3, i.e., atvt0.1 ands;1. This is the range
that is beyond the scope of the low-frequency approximati
and much so the blocking model. Those results are availa
only by numerical evaluation since one has to take into
count on equal basis a wide set of relaxation modes, b

n
g
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15 012 55YURI L. RAIKHER AND VICTOR I. STEPANOV
transverse and longitudinal. Physically, that means tha
those frequencies the intrawell modes yield a noticeable c
tribution.

The surfaces shown in Figs. 2,3 are interesting as w
from the viewpoint that they visualize the theoretical da
arrays which are involved when one passes to experim
interpretation. Indeed, performing of size~or volume! aver-
agings of the susceptibilities means superposing of a num
of curves each corresponding to its owns5const cross sec
tion with appropriate weights given by the distribution fun
tion.

V. POLYDISPERSE SYSTEMS: THE CHOICE
OF THE TRIAL DISTRIBUTION FUNCTION

In the majority of cases when one deals with nanos
superparamagnetic grains, polydispersity seems to be a
herent feature. The independent measurement of the
distribution function, e.g., by electron micrography, is
painstaking and rare opportunity. Besides, even when
done, from the statistical viewpoint a set of available m
surements (1032104 grains! for the particle number concen
tration even as small as 101021012, that is 0.01% by volume
at the particle size;10 nm, is far from being statistically
representative.

That is why the conventional approach is to choose a t
~model! size-distribution function and determine its para
eters upon fitting theoretical curves to the experimental d
By obvious reasons, of the variety of the available distrib
tion formulas, the two-parameter ones are most popular.

FIG. 2. Monodisperse random assembly. Reduced linear sus
tibilty according to Eq.~39! as transformed with the anisotrop
growth;a is the real part,b is the imaginary part.
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of the latter, two are known to work better than othe
Namely, they arethe log-normal distributiongiven by

f l~v !5
1

A2psv
expF2

ln2~v/v0l !
2s2 G , ~46!

which is the most famous. Its closeness to real histogram
disperse systems has been reported in thousands of pa
The most probable valuevp of the argument@the position of
f l(v) maximum# and thenth moment are, respectively,

vpl5v0l ,exp~2s2!, v l
n5v0l

n exp@~ns!2/2#. ~47!

The gamma distribution

f g~v !5
1

G~b11!v0g
S v
v0g

D b

exp~2v/v0l !, ~48!

whereG(x) is the Euler gamma function. The most probab
valuevpg and thenth moment are

vpg5~b11!v0g , vg
n5~v0g!

n
G~b1n11!

G~b11!
. ~49!

The G distribution is the generalization of the Poisson o
which is also in use, see, for example, Ref. 18. A detai
demonstration of its usefulness for interpretation of the lo
frequency magnetic spectra of magnetic fluids~dispersions
of nanosize ferroparticles! was given in Ref. 19.

p-

FIG. 3. Monodisperse random assembly. Reduced cubic sus
tibilty according to Eq.~43! as transformed with the anisotrop
growth;a is the real part,b is the imaginary part.
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Note, that in given representations~46! and~48! of either
of the distribution functions thev0 parameter is a referenc
value and does not have a direct meaning of the mean
ume. The latter is formed as a particular combination—
Eqs.~47! and~49!—of correspondingv0 and the distribution
width.

When passing to the averaging formulas, one must t
the susceptibility expression like Eq.~41! as yielding a con-
tribution of the j th fraction of the particles with a volum
v j and number concentrationcj . By definition, the latter
writes

cj5c~cj /c!5c f~v !dv, ~50!

where summation overj is equivalent to integration ove
v. However, the meaning ofc for a polydisperse system i
ambiguous, and we replace it by introducing the dimensi
less total particle volume fraction

w5c v̄ . ~51!

We emphasize that for a polydisperse system replacem
Eqs.~50!,~51! are the only correct way to eliminatec. Plain
substitution ofw instead ofcv in formulas~16!, as in Refs.
4,5,18, would have been correct only for monodisperse s
tems.

Let us do that taking Eq.~44! as an example. With the ai
of Eqs.~50!,~51! it transforms into

dx̄ 3v
~3!52

wI 4v4

v̄ k3T3
Ã3v~s,vt0! f ~v !dv. ~52!

It is convenient to scale the current volume asy5v/v0
which does not change the integration limits. Then the c
rent value of the anisotropy parameter becom
s5(Kv0 /kBT)y5s0y, and the assembly-averaged cub
susceptibility writes

x̄ 3v
~3!52C3s0

3 v0

v̄
E
0

`

y4f ~y!Ã3v~s0y,vt0!dy,

C35wI 4/K3. ~53!

Similarly, for the linear susceptibility one gets

x̄ 5C1s0

v0

v̄
E
0

`

y2f ~y!Ãv~s0y,vt0!dy, C15wI 2/K,

~54!

where now the temperature dependence is described by
arguments0}1/T. Evidently, formulas~53!,~54! show the
general way of volume averaging forx andx3v

(3) and hold for
the exact dispersion factorsA as well as for their approxima
tions.

In Fig. 4 we visualize the averaging procedure describ
by Eqs.~53!,~54!. The dispersion factors are evaluated by t
numerically exact procedure. The plots show the evolution
the susceptibility curvesx8(T) with the widening of the log-
normal distribution. The front planes50 corresponds to the
monodisperse casef (v)}d(v2v0) considered in Fig. 1. Be
sides the expected smearing down of sharp peaks, from
sequence of the level lines one observes that as the dist
l-
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tion width grows, the positions of the main extrema drift
the higher temperature range. Very qualitatively, this te
dency may be understood from the relationT}K v̄ /kB where
the mean value is determined by Eq.~47!. We remark that
for a great many of dispersed systems the typical value
s fall into the interval 0.560.2.

VI. POLYDISPERSE SYSTEMS:
COMPARISON WITH EXPERIMENT

For practical comparison we take an ample set of exp
mental data reported in Ref. 4~and confirmed in Ref. 5! on
linear and cubic susceptibilities of Cu–Co precipitating
loys. The given data cover the frequency domain 30–840
and the temperature range 10–150 K. Synthesis of
samples as well as the method of magnetic measuremen
described. However, apart from the observation that Cu–
alloys precipitate yielding a dispersion of cobalt nanos
particles in a copper matrix, no particular structural inform
tion on the system is given.

When the superparamagnetic theory is applied for in
pretation of any measured susceptibility line, it means t
some model functionx(v,v,T) depending on several mate
rial parameters is processed through averaging like Eq.~53!
or ~54!. In our case the basic set of the material parame
comprises magnetizationI , anisotropy energy densityK, re-
laxation timet0, and the particle volume fractionw. Obvi-
ously, for nanosize-dispersed systems the effective value
I , K, andt0 do not coincide with those for a bulk materia

FIG. 4. Modeling of the lognormal volume-averaging effec
Real parts of the linear~a! and cubic~b! susceptibilities forvt0
51028.
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FIG. 5. Linear susceptibility, real part. Com
parison with the experiment by Ref. 4 for th
frequencies: 30 Hz~a!, 80 Hz ~b!, 220 Hz ~c!,
840 Hz~d!. Volume averaging is performed with
the magnetic and statistical parameters accord
to Table I. Entry 1 indicated by thick solid lines
entry 2 indicated by thick dashed lines, entry
indicated by thin solid lines, entry 4 indicated b
thin dashed lines. Almost everywhere the two la
ter visually coincide. The vertical scale coincide
with the one adopted in Refs. 4,5 for the expe
mental data.
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The size/volume averaging itself introduces two independ
statistical parameters. Therefore, the fitting procedure tu
into an optimization problem in a multidimensional para
eter space with rather loose restrictions.

Due to that one should not expect that the analysis of
the susceptibility temperature-frequency behavior is s
sufficient for unambiguous determination of the magne
material parameters. But it is reasonable to ask what is
real extent to which one could reduce the uncertainty wh
fitting the measured data.

First we remark that in the framework of the propos
theory the number of independent parameters determi
the susceptibilities of a superparamagnetic assembly, eq
five. Indeed, from Eqs.~53!,~54! and~47!,~49! it follows that
the reference volume as such does not enter the resul
appears just in the combinationKv0 /kB . Denoting it as
T0, one may rewrite Eqs.~53!,~54! as

x̄ 3v
~3!52C3S T0T D 3•A3S T0T ,vt0 ,sD ,
x̄ 5C1S T0T D •A1S T0T ,vt0 ,sD , ~55!

~for the G distribution, one would haveb instead ofs). In
Eqs.~55! the quantitiesA1 andA3 stand for the integrals o
the dispersion factors multiplied by the ratiov0 / v̄ which
depends solely on the distribution widths or b.

Thus, the set of parameters yielded by fitting compri
T0, t0, s, and two amplitudesC1 andC3. From the defini-
tions of the latter—see Eqs.~53!,~54!—one sees that the
incorporate three material parameters of the system. T
nt
s
-

st
f-
c
e
e

g
als

. It

s

at

means that eitherI , K or w may be taken as arbitrary. Not
that if one would have dealt with just linear susceptibili
measurements, thenC3 does not appear, and the uncertain
of the choice would have been enhanced allowing two of
three parameters as arbitrary. In our case, we set the ma
tization of the cobalt particles equal to its bulk valu
I51460 G. On doing that, one gets explicit relationships

v05~kB /I !AC3 /C1, K5T0IAC1 /C3,

w5~C1 /I !AC1 /C3, ~56!

relating the customary physical parameters to the result
the fitting procedure.

We perform nonlinear fitting using the Levenber
Marquardt method implemented in theMRQMIN routine.20

From the experimental end, eight families of data are
volved, viz. x8(T) and x3v

(3)8(T) at four frequencies, taken
from Ref. 4. From the theory end, we employ formulas~53!–
~56! with the numerically exact dispersion factors. The r
sults of fitting are presented in Figs. 5,6, and in Table I.

VII. DISCUSSION

The fitting process worked sufficiently stably, that mea
that the set of susceptibilities as a function of its magne
and statistical parameters does not have too many l
minima. So, the sets of values presented in the first two li
of the Table I are unique in a wide vicinity of the parame
space. The results given in Figs. 5,6 have almost equal
tistical residuals for the lognormal and gamma functio
However, from the simplechi-by-eyeviewpoint, the lognor-
mal distribution seems far more satisfactory. For theG dis-
tribution two flaws are apparent. Namely, noticeable dev
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FIG. 6. Cubic susceptibility, real part. Com
parison with the experiment by Ref. 4 for th
frequencies: 30 Hz~a!, 80 Hz ~b!, 220 Hz ~c!,
840 Hz ~d!. The line drawing convention is the
same as in Fig. 5. The vertical scale coincid
with the one adopted in Refs. 4,5 for the expe
mental data.
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tions at highT and misplacements of the peak positions
both linear and cubic curves.

The main difference between the lognormal andG distri-
butions is their reduction rate at the right end, i.e.,
v→`. As one may see from Eqs.~53!,~54!, the higher is the
susceptibility order the greater is the enhancement of
right-end effect, since under the integralf (y) is multiplied
by yet higher powers ofy. Apparently, one has no basis
expect that a histogram of a real system would obey
simple two-parameter function. But sincex andx (3) are de-
termined by different moments of the distribution, their
multaneous consideration is an effective method to single
the appropriate and inappropriate ones. According to our
dence, for the Co–Cu systems the lognormal distribution
far better.

At the same time, we remark that if to estimate the d
ference between the two undertaken fittings in terms of
r

t

e

y

ut
i-
is

-
a-

tistical moments, the occurring deviations are rather mod
ate. Indeed, evaluating mean volume and mean-sq
volume from formulas using the numbers from the Tabl
~entries 1 and 2!, one gets for the lognormal andG cases

v l54.43 nm, Av l
254.71 nm,

vg54.11 nm, Avg
254.46 nm,

respectively. Thus one sees that visual comparison hap
to be a sensitive test. The differences in Figs. 5,6 are ra
pronounced whereas the deviations in mean and mean-sq
particle diameters do not exceed 8 and 6%, respectiv
which is a fairly good accuracy.

It is essential to emphasize, however, that even a v
good fitting may be completely misleading unless it match
mag-

tant,
TABLE I. Magnetic and statistical parameters obtained by fitting; for all the entries the saturation
netization isI51460 G.

Fitting Reference relaxation Reference volume, Standard Volume Anisotropy cons
attempt time, sec cm3 deviation fraction, % erg/cm3

1 Lognormal, 2.13310210 3.79310220 0.608 0.704 7.623105

present fit
2 Gamma, 5.32310211 2.30310220 b50.585 0.738 8.363105

present fit
3 Lognormal, 1.60310214 5.6310220 0.72 0.60 8.83105

after Ref. 4
4 Lognormal, 1.00310210 5.6310220 0.72 0.60 5.83105

after Ref. 5
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15 016 55YURI L. RAIKHER AND VICTOR I. STEPANOV
physical considerations. By that we mean that presently th
exists enough knowledge on the static and dynamic pro
ties of magnetic nanosize systems to impose a reason
frame on the orders of magnitude of the sought for para
eters. From this viewpoint, the numerical values obtained
fittings with both lognormal andG distributions are quite
reasonable~entries 1 and 2 in Table I!. On the contrary,
attempting a quantitative explanation with the aid of a lo
normal distribution, the authors of Ref. 4 have obtained so
agreement between their theory and experiment set
t0;10214 s, see the third entry of Table I. The contradicti
is apparent: whatever is thechi-by-eyeagreement in the
graphs, the set of parameters should be discarded. The m
is that so short a time is completely forbidden in superpa
magnetic particles, see Ref. 21, for example. Probably,
those considerations caused the same authors reinterp
Ref. 5 their data—see the fourth entry of Table I—wi
t0;10210. However, the result of fitting given in Ref
5—see thin lines in Figs. 5, 6, though rather good forx8,
suffers from a serious flaw with respect tox3v

(3)8 . Namely,
the position of the theoretical temperature peak is consi
ably shifted from the experimental one to the low
temperature region. Supposedly, this discrepancy res
from the joint effect of using a not completely consiste
theory and not too thorough fitting procedure.

In this connection we make note of a fact that we have
into during our own fitting work. As long as we tried th
procedure involving just the linear susceptibility data, t
best-fit routine, whatever was the initial set, ‘‘stubbornly
lead us deep into the unphysical region of far too small r
erencet ’s. As soon as the data arrays were extended to
clude the cubic susceptibilities as well, the best-fit param
set ~entries 1 and 2 of Table I! immediately became reason
able.

CONCLUSIONS

We present a consistent theory of linear and cubic
namic susceptibilities of a noninteracting superparamagn
system with uniaxial particle anisotropy. The develop
scheme is specified for consideration of the assemblies
J
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random axes distribution but may be easily extended for
other type of the orientational order imposed on the part
anisotropy axes. A proposed simple approximation is sho
to be capable of successful replacement of the results of
merically exact calculations.

The theory is tested with the aid of an ample data array
low-frequency magnetic spectra of solid Co–Cu nanopart
systems. On doing so, we combine it with the two mo
popular volume distribution functions. When the linear a
cubic dynamic susceptibilites are taken into account simu
neously, the fitting procedure yields a unique set of magn
and statistical parameters and enables us to conclude the
appropriate form of the model distribution function~histo-
gram!. For the case under study it is the lognormal distrib
tion.

The achieved agreement yields one more serious a
ment in favor of the idea that magnetic measurements m
work as a sensitive and reliable quantitative material scie
test for nanosize systems.

Note added in proof

Recently we have tested the approximate susceptib
formulas~40! and~44! using fort10 , instead of Eq.~38!, the
expression

t105tD
es21

2s F 1

111/s
As

p
122s21G21

,

proposed by Coffeyet al. in Ref. 22. As a result, we have t
admit that the latter formula indeed realizes a much be
approximation to the exact solution than Eq.~38! for both
linear and cubic susceptibilities.

Recently, a paper23 also dealing with nonlinear suscept
bilities of fine magnetic particles has appeared. However,
authors of the latter in their consideration address only
equilibrium case. Comparison of the results of Ref. 23 w
those of our Sec. I obtained independently, reveals th
complete coincidence.
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