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Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni
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We propose a simple model for itinerant magnetism in the ferromagnetic transition metals. The model
incorporates both the energy of moment formation, and the energy of moment ordering. The parameters of the
model are determined from first-principles density-functional calculations for the ferromagnetic state and a
number of spin spiral states. The simplicity of the magnetic energy functional allows extensive Monte Carlo
simulations to be performed. Results for the finite-temperature magnetic properties of body-centered-cubic Fe,
and face-centered-cubic Co and Ni are preserf®d163-18207)00722-4

I. INTRODUCTION density-functional theory. This approach eliminates the need
of an assumed form of the magnetic Hamiltonian, at some

In recent years, significant progress has been made in thgost of simplicity.
description of magnetic ordering within theories of itinerant ~ Prior to the use of density-functional formalism in the
magnetisnt: 3 This has been achieved through the extensiotocal-spin-density approximation, a description based on
of band methods to describe noncollinear spin structuregoncollinear local magnetic moments was adopted by several
within the density functional scheme. The formalism has alsavorkers, in particular the work of Moriyd, Edwards}
been applied to the study of magnetic excitations, and finiteHubbard'® and Hasegawd, as well as the work of Koren-
temperature properties of ferromagnets. Yetwal! calcu- man and co-workef§ inspired much of the later first-
lated exchange constants of bcc Fe from selected magnetiginciples work on magnetic excitations, and finite-
configurations, and estimated the Curie temperature biemperature properties of ferromagnets.
means of a Heisenberg Hamiltonian and the mean-field ap- Simultaneously with the first-principles developments,
proximation. Oguchi etal? used the Korringa-Kohn- there have been numerous studies of the statistical mechanics
Rostoker multiple-scattering technique in the coherent poteref model Hamiltonians known to reproduce selected mag-
tial approximation(KKR-CPA), and the disordered local netic properties of real magnets. It is the purpose of this
moment(DLM) model to study bcc Fe at finite temperature. paper to bridge the gap between these parallel developments
Similarly, Pindoret al®> combined the KKR-CPA with the by formulating a more realistic model Hamiltonian for the
DLM to study the magnetic & transition metals, Cr, Fe, Co, magnetic interactions based on results of first-principles cal-
and Ni. Liechtensteiret al* used the KKR formalism in the culations on a set of magnetic structures. The magnetic en-
atomic-spheres approximatigASA) to calculate exchange ergy functional which is used in the study of Uhl andtier’
interactions for Fe, Ni, and Ni-Pd alloys. Luchini and Héine is closely related to the one considered in the present study,
studied short-range order, and obtained exchange interagnd the parameters are obtained from the same type of mag-
tions for bce Fe from a large number of magnetic configuranetic structures, i.e., spin spirals. Our final expression for the
tions. Staunton and Gyfy® calculated paramagnetic sus- magnetic energy differs slightly from theirs due to our as-
ceptibilities, and Curie temperatures of Fe and Ni using arfumption of local interatomic exchange interactions which
improved version of the DLM that included some short-lead directly to a real-space expression and an intrasite term
range order effects by Onsager cavity fields. The paramagather than an expression in terms of reciprocal-space fluc-
netic susceptibilities obtained by Staunton and @ywbey  tuations from the ferromagnetic state, as was used by Uhl
a Curie-Weiss law, as observed experimentally, but th@nd Kibler.
Curie-Weiss constants were underestimated. They deter- The paper is organized as follows. In Sec. Il, we describe
mined a Curie temperaturel¢) of bcc Fe in close agree- the model that we use to calculate the energy of a magnetic
ment with the observed., and found a somewhat underes- configuration. We also describe how the model parameters
timated value Oﬂ'c for fcc Ni. In a recent work, Uhl and are obtained from first-principles calculations within the
Kiibler’ studied the finite-temperature properties of the fer-local-spin-density approximation. In Sec. I, we present re-
romagnetic transition metals bcc Fe, fcc and hep Co, and fcgults for the low-temperature magnetic properties obtained
Ni using a model Hamiltonian in conjunction with mean- directly from self-consistent calculations. In Sec. IV, we de-
field spin-fluctuation theory to calculate the free energy.Scribe the results obtained from Monte Carlo simulations at
Similar to Staunton and Gytfy, they find a Curie tempera- finite temperature using our model magnetic energy func-
ture of bce Fe which is in close agreement with the observedional. Section V contains some concluding remarks.
Curie temperature while the Curie temperatures of fcc Co
anq fcc Ni are undelrestlm.ated. Uhl andi{er also note that Il MODEL OF AN ITINERANT MAGNET
their calculated Curie-Weiss constants are underestimated by
a factor~2. Another very recent development, is the formu- Below we will first present the magnetic energy func-
lation of Antropov et al®® of spin dynamics within the tional which we have applied to describe the itinerant ferro-
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magnets, Fe, Co, and Ni. Subsequently, we describe the cal- n

culation of model parameters. We will briefly outline the EFM=EPM+ > APMMZK, 2
main ingredients that enter into the construction of the mag- k=1
netic energy functional. The model is based on a coarse-

grained description of the magnetic state expressed by the set In a flrst-prlnC|pIes_approach, the coefﬂ_ments In the ex-
of local magnetic momentém.} which is used as the basic pansion, may be obtained from so-called fixed spin moment

variable in the representation of the magnetic state. It is th FSM) calculations for the constrained ferromagnetic State.

size and relative direction of the local exchange splitting g'rSFSeChgr;ea\;]VgsN'im&?edl]fii%dtﬁgt Yy%ﬁlégﬁ;/%nf?cgggfﬁ%ﬁg

that determine the interatomic exchange. This in turn bring jve an excellent least-squares fit to the calculated ferromag-
us to represent the interatomic exchange interaction as al q 9

expansion in powers of the local moments, and cosine t etic FSM states in a range extending from the nonmagnetic

their relative angle. Hence, the interatomic exchange is des_tate to states of moments well beyond the equilibrium fer-

scribed using a generalization of the Heisenberg Hamiltoniar'iom"’Igneuc moment. While this approach gives an excellent

that also incorporates the dependence on the size of the IOC%?scnonn of the constrained ferromagnetic states, no dis-

magnetic moments. By also including an on-site exchanggncuon is made between on-site, and interatomic exchange

term, we describe in addition the energy of moment formaiteractions. However, in a model for arbitrary magnetic
onfigurations, we have to introduce such a division.

tion. In this sense, the present magnetic energy functional To obtain a model that incorporates also the energy of

provides a unified description of the energetics of moment ; . o . ;
formation, as well as the energetics of moment ordering magnetic ordermg, It IS necessary to model'the mt_eratomlc
' " exchange explicitly. This is done in the classical Heisenberg

model of ferromagnetism. Atomic magnetic moments of
A. The magnetic energy functional fixed size interact via the interatomic exchange field. The

. . .__energy of magnetic ordering“® m
We now present the model which we will use to descrlbee ergy of magnetic ordering™ becomes

the magnetic energy of an itinerant magnet. As a result of the 1 o

dominantd-orbital contribution to the magnetic moment, lo- EMO=— 52- Jijei-e, ©)

cal atomic moments are well-defined variables within the 1

context of a density-functional description of magnetic propyheree; is the unit vector parallel to the local moment at site
erties of transition metals. A description based on local moj andJj; is the exchange energy between local moments at
ments has been extensively applied to the study of itinerandjte andj, respectively. In the context of density-functional
magnetism from f|rst-_pr|_nC|pIe]s_. In order to give areason- formalism, Liechtensteinet al* showed that the energy
ably complete description of itinerant magnetism at finitechange for incremental deviations from the ferromagnetic
temperature, we need a model that describes simultaneouslyate s described by the Heisenberg Hamiltonian. They used
the energetics of the formation of the local magnetic mo-andersen’s force theorethto derive the energy change due

ment, and the magnetic ordering of the local moments. {4 3 rotation of the moment at the central site in a ferromag-
As a starting point for the description of the moment for- ot through an anglé, i.e.

mation energy, we use the Stoner-Wohlfarth model for the
stability of the ferromagnetic state. In this model, the mag- 1 o
netic energy of the ferromagnetic state of momaéftis AEq 9):;|mf deTr.In
given by a Ginzburg-Landau like energy expansion in the
magnetization

1
1+ E(l—cosﬂ)

xgo APogéjAP,-g,%}. 4)

EFM=pgPM EA|\/|2+ EBM“, (1)  where we have adopted Andersen’s linear muffin-tin-orbital
4 (LMTO) formalism?? In Eq. (4) AP is the potential function
difference between the two spin channels ardis the fer-
where the coefficients in the expansion are derived from theomagnetic KKR-ASA Green’s function connecting sites
strength of the exchange interactions, and include both intraandj. A similar expression was obtained by Oguehial 1*
and interatomic contributions. As it stands Eifj) does not for the interaction of two moments embedded in a CPA me-
include the effect of fluctuations in the moment and it alsodium of randomly oriented moments. In the limit of small
neglects the vector nature of the moment. The expressiofl, one recovers the energy dependence of the Heisenberg
above may be generalized in this respect as, for exampléjamiltonian.
was done by Mohn and Wohlfarth in their study of Curie A Taylor expansion of the logarithm in E@4) gives a
temperatures of ferromagnetic metals and compotfidlee  power series in cag and we therefore anticipate that a more
Stoner-Wohlfarth representation of the magnetic energy decomplete representation of the ordering energy of an arbi-
scribes the stability of the ferromagnetic state of momentrary magnetic configuration can be obtained by including
M. While the Ginzburg-Landau expansion is only valid in also pair interactions, and if required multisite interactions,
the vicinity of the transition from the paramagnetic to thewhich are higher powers of the cosine of the relative angle.
ferromagnetic state where the moment is small, it is howeveln such an expansion, the first term is the Heisenberg term
possible to describe the energy of formation of the con{J;;), while the secondK;;), and third order i(;;) pair in-
strained ferromagnetic state of magnetizatddn as an ex- teractions are denoted as the biquadratic, and the bicubic
pansion in even powers of the magnetization: term, respectively.
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Further, by means of the expression of Liechtenstein Having accounted for the interatomic exchange, we now
et al, we can trace the dependence of the interatomic exproceed to derive the on-site exchange term from the FSM
change on the size of the local magnetic moments througbalculations for constrained ferromagnetic states. Hence, we
the potential function differencAP between the minority- represent the on-site exchange by an expansion similar to the
and majority-spin channel. This difference is essentially theone describing the total energy of the FSM state, i.e.,
exchange splitting of the one-electron potential. In a simpli-
fied Stoner model, it is related to the size of the magnetic ”

. _ . . Eon=2 E A2k
moment, i.e. AP;=m;l, where the local spin-up and spin- — < AT
K R L . i k=1
down density of states are considered rigidly shifted by the
exchange splitting, andl is the Stoner parameter averaged 1
over the one-electron states crossing the Fermi suffags. A= AEMJF _2 (Jgj + K(I;j), (7)
a result, for small deviations the magnetic ordering energy 27]

depends linearly on the size of the local momemis i.e., wherej labels the sites in the neighbor shells of the central

MOy S, . J..{m:: )2 i -
B = 2;) iy (my; ) where (my) is an appropriate aver ite 0. Finally, to get the total magnetic energy of an arbi-

age, to be specified below, of the size of the local moment rary magnetic configuration, we add the on-site contribution
m;, andm; that constitute the paifij). To describe a gen- E°"of Eq. (7) to the interatomic exchangg' given in Eq.

eral magnetic configuration, we therefore include the depen-
dence of the interatomic exchange on the size of the loca

magnetic moment. This dependence is included by eXpreS?ﬂnctional, is that it describes the reduction of the local mag-

ing the interatomic exchange constadfs, K;;, etc. of the netic moment as the local exchange field decreases due to the
Heisenberg term and the higher-order pair terms, in a POWElisorder in the orientational degrees of freedom. It should be

series in the size of the local moments. . . . :
Following our generalization of the Stoner-Wohlfarth ex- realized that the on-site term can be viewed as the energy of
embedding a single magnetic atom into the nonmagnetic

pression for the constrained ferromagnetic states to cover ths%ate of the metal. For an itinerant magnet, the on-site term is

whole range of local moments, we analogously arrive at thef\herefore not only an atomic contribution but depends

following expansion which we use to represent the inter- : : .
atomic exchange energy: strongly on the response of the ligand states to the impurity

moment. To get a practical scheme, we have to estimate the

1 1 L convergence of the expansion E) for the interatomic

E'=—2> Jijei.ej—_E Kij(ei'ej)zv (5) exchange. In the actual calculations, we always neglected
2{7] 2{7) multisite interactions, as well as powers of édseyond the

An important consequence of our chosen total-energy

bicubic term in the pair interactions. The pair interactions

where . -
were furthermore restricted to either the nearest or next-
n n nearest shell of neighbors. Even so, we reproduce very accu-
Jij =k21 Ji‘j-(mij>2", Kij :gl Kikj<mij>2ka (6)  rately the energetics of the set of spin spirals for which first-

principles calculations were performed. For the power-series
expansion given in Eq(6) of the dependence of the ex-

In thesg equationsl; and Kj; are the coefﬂqents n the change constants on the local magnetic moments, we used
expansion of the Heisenberg term and the biquadratic term

~ —

respectively. Other terms such as the bicubic pajrand 3-4 terms.
multi-site interactions of the typee(-e;)(e;-€) can be
treated similarly if they are required for an accurate descrip-
tion of the magnetic energy. In the above expression, we use In this section, we give the computational details of the
for the local moment(m;;) the simple average of the local first-principles calculations for Fecc), Ca(fcc), and Nifcc),
momentsm; andm; of sitei, andj respectively. that are used to derive the parameters of the model which

To determine the dependence of the exchange constantgas described above. We have applied the density-functional
on varying the local moments independently, we performedormalism in the local-spin-density approximatighSDA)
self-consistent calculations of longitudinal spin fluctuationsto calculate the total energy of a set of magnetic structures
from the ferromagnetic state and found for Fe, Co, and Nfor the 3d ferromagnets Fe, Co, and Ni. We employed the
that using the simple average of the local moments gave aparametrization of Vosko-Wilk-Nus&ft for the exchange
excellent description of the energy of these fluctuations. Thand correlation contributions in the LSD approximation. The
choice of(m;;) as the simple average results in a nonzerdfirst set of calculations consisted in the determination of the
interatomic exchange interaction if one local moment tendenergy versus magnetic moment curves of the ferromagnetic
to zero while the other moment remains constant. The errostate. For each of the metals, we have fixed the volume at the
that this induces, is insignificant since, for all finite tempera-calculated equilibrium volume. The second set of calcula-
tures, the local moments will be fluctuating around a valugions were total-energy calculations of planar spin spiral
close to the zero-temperature magnetization. The actual castates along high-symmetry directions. For the bcc structure,
culation of the interatomic exchange constanﬂﬁ ,(K!‘j, we chose thd011] and the[001] directions. For the fcc
etc) is performed by application of the FSM technique to thestructure, we used tHd 11] and the[001] directions. Calcu-
spin spiral states and a subsequent fitting of the total energgtions were performed for the spin spiral wave vectors
of the spin spiral states relative to the energy of the ferrojq[= 13,7, and 3 in units of the longest reciprocal-lattice
magnetic state with the same local moment. vector in each direction. The spin spiral states were calcu-

B. Computational details
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FIG. 1. The interatomic exchange constants for bcétég, fcc
Co (middle), and fcc Ni(bottom). The Heisenberg termJ(), biqua-
dratic term K;), and bicubic termI(;) for ith nearest neighbors are
shown as a function of the local magnetic moment.

lated using the LMTO-ASA methdd?®in the tight-binding
representation of Andersen and Jep%efihe implementa-

tion of noncollinearity follows the scheme described by Uhl
et al, see Ref. 12, and references therein. We also included Co(fcc)
the combined correction term to the One-electron Hamil-
tonian. This was implemented as described by Antropov 15?'==°9§§¢Q
et al® For the spin spiral states, as well as for the ferromag- ’
netic states, we applied the FSM technique to study the de-
pendence of the interatomic exchange on the size of the local
moments. We used the FSM technique in an implementation

similar to the one of Uhkt al? In this implementation, an

auxiliary local magnetic field is introduced. This field is de-
termined by the requirement of a fixed local magnetic mo-
ment. The total-energy differences between the spin spiral = 05
states and the ferromagnetic state with the same local mag-
netic moments are used to derive the interatomic exchange
constants by least-squares fitting to the model expression for
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FIG. 2. Calculated total energi¢ill lines) of planar spin spiral
states in bcc Fe relative to the energy of the FM state. Also shown
(dashed lines are the equilibrium local moments of the spiral
states. All lines are fit to the calculated values which are shown by
symbols. Diamonds represent calculations in f@&1] direction.
Circles are results for thED01] direction. Crosses indicate spiral
energies calculated from the model expression for the interatomic
exchange. NM indicates the energy of nonmagnetic bcc Fe relative
to the energy of FM bcc Fe.

What is obtained by the fit is an adequate description of the
spin spiral states. The accuracy of the fit in reproducing the
spiral energies can be estimated by inspection of Figs. 2, 3,
and 4 for, respectively, bcc Fe, fcc Co, and fcc Ni. It should

be noted that the spin spirals whose energy is shown in the
figures, are the planar spin spirals which result when the
magnetic moment is allowed to relax to its preferred value

whereas we have applied the spin spirals with constrained
local moments to calculate the exchange constants. We

=
g TS~ 10
Em NM ™
= 3
c L
g 10 o  Ol001] 5
g }3) O[111] g
3 \ 15 =
Q
—

1 » o

the interatomic exchange. Figure 1 shows the resulting ex- 0.5 1.0
change parameters for bcc Fe, fcc Co, and fcc Ni as a func- Wavevector (A™)
tion of the local magnetic moment. For all three metals, the

nearest-neighbor Heisenberg term, denatgdis the domi-

FIG. 3. Planar spin spirals in fcc Co. Notation as in Fig. 2. NM

nating interaction. We stress the fact that the exchange intefndicates the energy of nonmagnetic fcc Co relative to that of FM
actions are renormalized ones, and that the direct calculatioidc Co. Note that zone boundaries are not shown. [094] zone
of the exchange parameters as suggested by Liechtenstdioundary is at 1.78 A'. The [111] zone boundary is at 1.55

et al* may very well result in long oscillatory interactions.

AL
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TABLE I. Comparison between calculated, and experimental

ground-state properties, wheeg, is the equilibrium lattice con-
Ni(fcc) NM stantsM is the zero-temperature magnetizatibnis the spin-wave
- T stiffness constant. The experimental spin-wave stiffness constants
06 ‘e.& 13 are extrapolations to zero temperature, except for Co, where the
£ «— room-temperature value for the hexagonal close-packed structure is
E{b F given. All experimental numbers are labeled Expt.
2 3
S04t 122 System eq (R) M (uglatom D (meV A?)
§ \ O[oo1] g Calc. Expt. Calc. Expt. Calc. Expt.
E Vo o1y { 3
g VRN Febcc 284 287 223 235 247 314
“o02f \ x 11 Cofcc 352 355 163 172 502 510
\\ A4 Ni fcc 3.49 3.52 0.64 0.62 739 550
\b %Reference 28.
© o8 0 PReference 29.
Wavevector (A”) ‘Reference 30.

dReference 31.

FIG. 4. Planar spin spirals in fcc Ni. Notation as in Fig. 3. The ‘Reference 32.

zone boundaries are not shown. TB@1] zone boundary is at 1.80

1 . mated. However, the errors are at the 1% level. The 0 K
A~ The[111] zone boundary is at 1.56 A.

magnetic moments are also given in Table I. We notice that
o _since the observed moments include an orbital contribution
tested the sensitivity of the exchange parameters to the sizg apout 0.5, the calculated spin magnetic moments are
of the set of spin spiral states used in the fitting procedureg|ighty overestimated in the cases of Ni and Fe.

and found only insignificant changes in the calculated pa- The spin-wave stiffness constadt that relates the spin-
rameters. We also note that ultimately we will use the exyyave frequencyw to the wave vector in the long-wavelength
change interactions to study the finite-temperature magnetigyit as »=Dq? may be calculated from the energy of spin
properties in Monte Carlo simulations. For Fe, we tested thgpra| excitations. The relation between the spin-wave stiff-
effect of using a smaller set of interactions at a simulatiohyess and the energy cost of forming a spin spiral can be
temperature close to the critical temperature. In this case, thgerived by noting that the total magnetization loss caused by
effect of changing the set of interactions was of the order of, gpin-wave excitation is2s, while the magnetization loss

the statistical errors. We take this as an indication that th%er siteAM = M (1~ cosf) tends to zero. Hence the energy
derived set of exchange parameters are reasonably complgig 5 spin-wave excitation is

within the description used for the interatomic exchange. Ad- L
ditionally, we show below that our model prediction of en- - AE3(q,6) dug
ergy and local moment stability in the disordered local mo- w(0)=2pus 1 M
ment configuration compares favorably to the results L 6=0 &
obtained from KKR-CPA calculations. However, the possi-whereAE®(q, 6) is the energy of a spin spiral of wave vector
bility exists that a larger set of more general magnetic cong, and angled to the magnetization directiorM, is the
figurations will show that further interactions such as inter-equilibrium magnetic moment, antiEPYq) is the energy of
actions of longer range or multisite interactions are in fact planar spin spiral. To derive this relation, we have ex-
important. ploited that the energy of a spin spiral is related to the planar
spin spiral of the same wave vector by
AES(q, ) =sir*0AEPYq). We have established this relation,
which was also noted by Uhl and ‘Kler,” empirically by

In what follows, we first present the self-consistent performing self-consistent calculations of nonplanar spin spi-
LMTO calculations of zero-temperature magnetic propertiegal energies. The relation is exact for a Heisenberg Hamil-
of the ferromagnetic transition metals Fe, Co, and Ni. Subfonian, and holds to a good approximation also for the mag-
sequently, we discuss the parameters of the model, and thédigtic energy functional used in this work. Hence, we can
implications for the picture of the itinerant magnetism of thecalculate the spin-wave stiffness constants from

transition metals. e ps—
D= 2ug d°EPY Q)

AEPYq), ®

Ill. SCF CALCULATIONS

—
A. Zero-temperature magnetic properties Meq dq q=0
Table | contains some magnetic ground-state properties. 1 )
Shown in the table are both the values obtained in the present =3M ER R(Jort 2Kor*3Lor), 9
eq

study, and where available the experimental values. As is
well known, the calculated equilibrium lattice constants de-where we have exploited the cubic symmetry, and our pa-
pend to some extend on the type of exchange-correlatiorametrization of the magnetic energy to obtain the second
potential one employs. In the local-spin-density approximaequality. In the above expressiahyg, Kor, andL g denote

tion the lattice constants for all three metals are underestithe bilinear, the biquadratic, and the bicubic exchange con-
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stants, respectively. The exchange constants are those of the
ferromagnetic equilibrium magnetic moment.

As Table | shows, the calculated spin-wave stiffness con-
stant of fcc Co compare well with the experimental value
while the calculated value for bcc Fe is somewhat underes-
timated, and the value for fcc Ni is overestimated. Since the
spin-wave stiffness constant is related to the long-
wavelength limit of the spin spiral excitations, its value is
independent of the inclusion of biquadratic, and bicubic
terms. This is not apparent from E§). However, fitting the 05 10 15 20 25
spin spiral energies to a Hamiltonian of the pure Heisenberg
form results, within a few percent, in the same spin-wave
stiffness constant. We therefore conclude that the inclusion
of the higher-order terms are mainly important for the de-
scription of the short-wavelength spin spirals.

Figure 2 shows, for bcc Fe, the self-consistently calcu-
lated total energy of planar spin spiral states along @@
and[011] directions relative to the energy of the equilibrium
ferromagnetic state. Also shown are the calculated equilib-
rium local moments. The itinerant nature of the exchange 0.5 1.0 15
interaction gives rise to the strong dependence of the local T T T T >
moment on the reduction of the exchange field as the spiral -7
vector approaches the antiferromagnetic spin alignment at 5t On-site __ -~ .
the zone boundary. The effect is most pronounced in the ¢ __.-- - /
[001] direction, in which the antiferromagnetic structure re- 0 ——mg=c==="
sults in all nearest-neighbor spins being antiparallel. At the =~z Total
zone boundary in thE011] direction, only four of the eight 51 ~< -
spins in the nearest-neighbor shell are antiparallel. Hence, for S~ -7
the [011] direction the reduction of the local moment for - s L
increasing spiral vector is moderate. Since the energy differ- 02 0.4 06 08
ence of the ferromagnetic to the nonmagnetic state is 31 Morment ()
mRy/atom at fixed volume, we note that the Fe magnetic
moment is stabilized by less than 3 mRy/atom at [ib@1] FIG. 5. The magnetic energy of, aqd the model contributions to,
zone boundary. For both fcc Co and fcc Ni, the dependenc@e constrained FM states of respectively bcc Fe, fcc Co, and fcc

of the local magnetic moment on the spin spiral vector igNi. The full line (total) denotes the total magnetic energy of the

Eonstrained FM state, as calculated in FSM calculations. The short

10 I Fe(bcc) b

| Coftee -
10 (fec) -7

= Total
-10 | N .

S
Inter™
~

Magnetic Energy (mRy)
o
\

more pronounced than in the case of bcc Fe. As Figs. 3 an ; _ . -~

4 show, the planar spiral states of large wave vectors ar ashed lin€on-site, denotes the on-site contribution to the moment

unstablé relative to the nonmagnetic state. For Ni in theOrmation energy, while the long dashed lifieter) is the inter-
. . . : .._atomic exchange contribution.

[001] direction, planar spiral states are only found for spiral

vectors g~ (1/2)qmax. In the [111] direction planar spiral on-site and interatomic model contributions to the total mag-

states are found at somewnhat larger vectors, the energy gkyic energy. One important observation that can be made
these states is, howeve(, only marginally smaller Fhan @ ased on the model contributions to the energy of the ferro-
energy of the nonmagnetic state whose energy relative to t agnetic state, is that the stability of the local magnetic mo-
energy of the FM state is indicated in the figure. For all thregpont for e Fe, due to its large on-site exchange contribu-
systems, in a region close to the spiral veder0, the pla-  tjon, is relatively independent of the ordering of the local
nar spirals have an isotropic energy spectrum, as they mushoments. In contrast, the stability of the local moments of
For Ni, we also performed calculations for th@l1] direc-  co, and in particular of Ni depend strongly on the ordering
tion which has the zone boundary at 2.54 A In this direc-  of the local moments. Based only on the energetics, this
tion, we find that the isotropic region is somewhat narrowersyggests that the local moment picture works well for bce Fe,
extending only tag~0.3 A~*. Already from the difference and less so for fcc Co and Ni. These conclusions are similar
in the stability of the spin spiral excitations, we can concludeyg the ones reached by Pindet al® who applied the so-
that fcc Co and fcc Ni show stronger effects of itinerancycalled disordered local momef®LM) model to the descrip-
than bcc Fe. This conclusion will be substantiated when We&ion of the random, high_temperature magnetic state of bcc
discuss the implications of our model magnetic energy funcre and fcc Ni. As noted earlier, the on-site term represents
tional. the energy of an “impurity” moment embedded into the
nonmagnetic state of the metal. However, in the DLM state
consisting of randomly oriented local magnetic moments of
the same size, on the average, only the biquadratic part of the

Figure 5 shows the total energy of the constrained ferrointeratomic exchange contributes to the stability of the local
magnetic states of, respectively, bcc Fe, fcc Co, and fcc Nimagnetic moment. The magnetic energy of the DLM state of
as a function of the magnetic moment. Also shown are théocal moments of sizen,. becomes

B. The energetics of the model
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1 T
EPM(Mige) = E®(Myge) — g; Koj(Mige) - (10) Fe(bcc)

It may be realized from Fig. 1 that the biquadratic term, i.e., 25 r

the last term in Eq(10) is small in all cases so that to a good
approximation, the on-site contribution gives a measure of
the stability of the local moment in the random configura-
tion. Hence bcc Fe has a stable magnetic moment close to
the ferromagnetic equilibrium moment in the configuration
of randomly oriented local moments. Similarly, fcc Co has a
local momentm,.~0.9ug in the random configuration,
while fcc Ni does not have a stable local moment at all in the
DLM configuration. These results are in good agreement
with the DLM calculations performed by Pindet al®

It is also interesting to note that despite the stable DLM
solution of fcc Co, we do not find the antiferromagnetic
(AFM) structure along th¢111] direction to be stable, al- . . PN A
though in both configurations, the average nearest-neighbor 200 600 1000 1400
correlation(e;-;)=0. It is the biquadratic term which de- Temperature (K)
stabilizes the AFM structure in fcc Co. This may be realized
from Fig. 1 which shows that the biquadratic term will con-  FIG. 6. The magnetizatioffull line), and the local magnetic
tribute 0.75 mRy/atom to the destabilization of the DLM moment(dasheo_l ling of bce Fe as a function o_f temperature. The
state for a local moment of size,,.=0.9ug . This is slightly rggults_are obtained _from Monte Carlo calculations, and subsequent
less than the on-site gain in energy0.9 mRy/atom. For the finite-size extrapolations.
[111]-AFM structure, however, the biquadratic term will
contribute 2.25 mRy/atom sufficient to destabilize this strucpresent study we found it to be too expensive computation-
ture. These simple considerations clearly shows that thally to reliably estimate the critical exponents. The finite-size
magnetic energy functional used in this work is capable ofcaling was, however, sensitive to the choice of Curie tem-
describing even the small energy differences responsible fgeerature, and the best fit of the universal scaling function was
the stability of the DLM state, even though this state repre-obtained for a Curie temperature in the vicinity of the Curie
sents the opposite limit of the coherent spin spiral states thaémperature derived from the susceptibility. From the MC
we use to derive the magnetic energy functional. Howeversimulations, one may study the temperature dependence of
the Monte Carlo simulations will show that at finite tempera-the local magnetic moment, as well as the magnetic short-
tures, the entropy of spin fluctuations stabilizes the DLMrange order. The latter quantities only depend weakly on the
states of Fe, Co, and Ni. number of sites?

o
=]

Magnetic moment (u /atom)
=} )

@
n

Ly

IV. FINITE-TEMPERATURE RESULTS A. The magnetization curve

In this section, we describe the results of Monte Carlo In Fig. 6, we show the magnetization and the local mo-
(MC) simulations for the @ ferromagnets Fe, Co, and Ni. ment of bcc Fe as a function of temperature, obtained from
We have applied the magnetic energy functional outlined irsimulations, and for the magnetization after finite-size scal-
the previous section, and the standard Metropolis algofthm ing. In Figs. 7 and 8, we show similar results for fcc Co and
to study the finite-temperature properties. We performedcc Ni. We note that the error bars on the magnetizations
runs for system sizes ranging from700 to ~2700 sites indicate only the statistical error from individual MC runs,
applying periodic boundary conditions. One MC step con-and they do not include the error arising from the extrapola-
sisted of a single local moment update in which we choose aton procedure. The statistical error of the local moment is in
random a different direction and size of the local moment. Inall cases<0.01ug. The effect of changing the number of
this way, we propagate through the full configurational spacesites was even smaller for the local magnetic moments. It is
{m;}, and consequently we describe the effect of fluctuationseen that in all three cases the magnetization is reduced from
in both the orientational degrees of freedom, and the size dfs zero-temperature value already at moderate temperatures
the local moments. From these calculations, we extrapolateelative to the Curie temperature. If we compare the magne-
to the thermodynamic limit using standard finite-size scalingization at a temperatur€= 3T, we find that it is reduced
theory. The MC simulations result, after appropriate scalindpy ~ 20-25 %, while experimentally the magnetization fol-
to infinite system size, in a magnetization curve, and a Curidows a Brillouin-like function, and consequently, the experi-
temperaturd . Alternatively, the Curie temperature can be mentally observed reduction of the magnetization is only a
estimated from the peak in the magnetic susceptibility. Whilefew percent® This discrepancy is due to the neglect of the
the actual value of the magnetic susceptibility depends on thquantization of the elementary excitations that follows from
number of sites, the peak position of this quantity as a funcusing a classical spin model to describe the interaction of the
tion of temperature did not show any size dependencdocal magnetic moments. In the case of classical spin Hamil-
Finite-size scaling also provides information on the statictonians, the low-temperature excitations consist of small-
critical exponents of the magnetization. However, in theangle fluctuations of the local moments away from the mag-
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FIG. 7. The magnetizatioffull line), and the local magnetic Temperature (K)
moment(dashed ling of fcc Co as a function of temperature.

FIG. 8. The magnetizatioffull line), and the local magnetic
netization direction. This results in a linear decrease of th&homentdashed lingof fcc Ni as a function of temperature.
magnetization as the temperature approaches zero, and as a o .
result the calculated magnetization does not follow Bloch’sC0, and in Fig. 8 for fcc Ni. For temperatures below the
T32|aw at low temperature. However, here we will focus on Curie temperature, the average local magnetic moment of Fe
the magnetic behavior in the vicinity of the Curie tempera—a”d Ni are close to their zero-temperature mag_netization. For
ture, and in the paramagnetic regime. We note that the claglcC Fe, the Iogal magnetic moment increases linearly through
sical nearest-neighbor Heisenberg Hamiltonian has an expdbe critical region from 2.2pg at 0 K t02.35u5 at 1600 K.
nent of 3=0.36 (Ref. 35 for the temperature dependence of In contrast, the local magnetic moment of Co drops from
the magnetization in the critical regiddoc(T.—T)A. This  1.63up to ~1.4up atTc. In the paramagnetic region, how-
exponent agrees well with the experimental critical expo-ever, the local moment increases. The local moment of Ni

nents which are 0.38 for Fe and Ni, and 0.42 for€since, Shows a behavior similar to that of Co above the Curie tem-
as Fig. 1 shows, the nearest-neighbor Heisenberg term is tiR@rature but remains constant beldli.. These results
dominating contribution to the exchange interaction in ourshould be correlated with the calculated average angle be-
model, we expect that the critical exponents are realistictween nearest-neighbor local momeaig, which is given in
although the estimation of the static critical exponents in-Table Il. We see that this angle is75° which should be
cluding the effect of the higher-order terms, i.e., the biquacompared to an average angle of 90° for randomly distrib-

dratic, and bicubic terms, and the effect of fluctuations in thedted local moments. This means that the magnetic short-
size of the local moment has not been performed. range order is moderate compared to what one expects from

the energy only arguments outlined above when we dis-
cussed the disordered local moment state. For fcc Ni, for
instance, magnetic configurations which result in a nearest-

The average local magnetic moments as a function oheighbor angle of 75° is not stable compared to the nonmag-
temperature are shown in Fig. 6 for bcc Fe, in Fig. 7 for fccnetic state. For bce Fe, the loss of magnetic energy at the

B. The local magnetic moments

TABLE II. Magnetic properties at the theoretical Curie temperature. Hhagg is the average local
magnetic moment,/(Am,,0)? is the rms fluctuation of the local magnetic moment, ang, is the average
angle between nearest-neighbor magnetic moments. All three values are obtained from Monte Carlo simu-
lations. T is the Curie temperature. Calculated results are presented using mean-field (¥i€prand
Monte Carlo simulation$MC). Comparison is made to previous first-principles calculations, and experiment

(Expt).
System Migc (uglatom V(Amyye) aNN Tc (K)

Calc. Calc. Calc. MF MC s&  UKP  ExpS
Fe bcc 2.33 0.45 74 1460 1060 1015 1095 1043
Co fecc 1.41 0.41 75 1770 1080 1012 1388
Ni fcc 0.63 0.22 75 660 510 450 412 633

8Reference 6.
bReference 7.
‘Reference 31.
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calculated Curie temperature 181850 K, and this consti- zero temperature. The mean-field expression for the Heisen-
tutes almost half of the total magnetic energy of the ferro-berg model reads

magnetic state. Yet in the simulations, we observe the com-

bination of sizeable average local magnetic moments, and ve 1

small magnetic short-range order. This stresses the impor- Te =§Z Joj - (12
tance of spin fluctuations. It is the entropy of spin fluctua- !

tions that stabilizes the local magnetic moments. We mayrq facilitate the mean-field calculation, we adopted the
realize this by noting that the entropy contribution is propor-Hejsenberg model for the interatomic exchange, and fitted
tional to the phase space volun®/ which is thermally  exchange constants for the first three neighbor shells to the
populated. The available phase space volume can roughly keyira| states. The result of this estimate is given in Table 1.
taken to depend on the nearest-neighbor angje, and the  As it may be seen from the results, the mean-field Curie
local magnetic momenty,; as temperature is overestimated compared to the experimental
numbers for Fe and Co. For Ni, the mean-fi€lghas almost
the same value as the observEg. Since it is well known
S8V o SiNar SanyMipedMyoe (1) that the mean-field approximation leads to a systematic over-
estimation of critical temperatures, one might suspect that
) _ the critical temperatures calculated from Monte Carlo simu-
where 6myoc, and dayy is a measure of the fluctuations of |ations would result in good agreement for Fe and Co, while
the local magnetic moment and the fluctuations of the magn; would be underestimated. As it can be seen from Table I,
netic short-range order, respectively. As a result, we see thgtese conclusions hold for Fe and Ni, while for Co the Monte
the entropy of spin fluctuations favors a sizeable local magcarlo simulations result in a Curie temperature which is
netic moment. This simple analysis suggests that althoughomewhat lower than experimentally observed. As it may
the local moments are not energetically favored, as it is thgsg pe realized from Table Il It the local moments of Fe
case in the absence of strong magnetic short-range ordefnq Nj fluctuate around a value close to th@iK magneti-
sizeable local magnetic moments can nevertheless be preseifiion, while the local moment of Co is reduced from 1.63 to
because the available phase space volume depends quadratiy 4. |f we calculate the mean-field estimate of the Curie
cally on the size of the local moment. This is in accordancgemperature of fcc Co using exchange constants for a local
with the MC simulations. At the same time, it is clear that ,oment of 1.4, we get a mean-fieTe: of 1390 K which is
fluctuations in the sizes of the local magnetic moments will _ 30, larger than the MC result. This is similar to the mean-
be present, and are required to stabilize these. As it can Bgy|q overestimation of the Curie temperature which result
seen from the rms value of the fluctuation of the local mag+yr Fe and Ni where the average local magnetic moment at

netic moment which is given in Table I, sizeable fluctua- 1 coincides with the equilibrium magnetization per atom at
tions are in fact observed in the MC simulations. As a result, . temperature.

of the strong effect of spin fluctuations, we get similar be-
havior of bcc Fe, fcc Co, and fcc Ni despite their difference )
in itinerant character as discussed in the previous section. D. The paramagnetic state
The qualitative similarity of our calculated finite-temperature In a second set of simulations at temperatures above the
properties for the itinerant ferromagnets bcc Fe, fcc Co, andurie temperature, we calculated the static paramagnetic sus-
fcc Ni agrees well with the observation from neutron- cepipility x° for g=0, and the real-space static magnetic
scattering expenmgrﬁ% that the_paramagnenc scattering correlation function(mg-m;). Experimentally, the tempera-
of bcp Fe and fcc Ni can be descnbgd by the same scatteringre dependence of the susceptibilif} obeys a Curie-Weiss
func'qon. Below we present c_:alculatlons of the magnetic cory4y and we have investigated the calcula@cand find that
relations in the paramagnetic state and show that the calcyyithin the statistical errors arising from the MC simulations,
lated inverse correlation lengths agree well with observationyhe opserved Curie-Weiss behavior is obeyed by the model.
From the temperature dependence of the uniform susceptibil-
ity x°, we also determine the value of the Curie-Weiss con-
stant. The real space static magnetic correlation function was
The MC results for the Curie temperatures are summainvestigated to determine the paramagnetic scattering behav-
rized in Table Il. Also given in the table are the results ofior. We have derived inverse correlation lengths from the
previous first-principles calculations, and for comparison thecalculated correlation functions and compare to experimental
observed Curie temperatures. The calculafedof bcc Fe  values.
agrees rather well with the observed value while the calcu- One can, in principle, calculate the static uniform suscep-
lated values for fcc Co and fcc Ni are underestimated bytibility x° from the variance of the magnetization, and as
~20-25%. It is also noteworthy that despite their differ- noted in the previous section, calculated this way the peak of
ences, the three first-principles approaches result in almogt® as a function of temperature gives a good estimate of the
the same values fof . Table Il also contains the simplest Curie temperature. However, using MC to calculate the ab-
possible estimate of the Curie temperature, i.e., that whiclsolute value of the susceptibility’ from the variance of the
results from a mean-field calculation assuming local mo4magnetization is difficult, and requires long MC runs, and
ments of temperature-independent size. In this calculatiosubsequent finite-size scaling. It is easier, and more accurate
we have employed the exchange constants for a local mde calculate x° directly from the definitiony°=dM/dH
ment equal to the FM equilibrium magnetization per atom atwwhereH denotes a uniform magnetic field, aMl the mag-

C. The Curie temperature
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TABLE IIl. Properties of the paramagnetic state, both results of
this work, previous first-principles results, and experim@xpt.).

T
\
C is the Curie-Weiss constant of the paramagnetic susceptibility. \\ Fe(bcc)
« is the inverse correlation length derived from the pair-correlation
function calculated at the temperatufe 1.25T . 0.20 ]
System C (u3) k (A7Y
This work SG& Expt® Thiswork SG Expt. o, 015} .
£
Fe bce 3.0 1.28 341 0.38 0.37 (%0 R
Co fec 1.1 3.31 0.34 go
Ni fcc 022 049 0.86 028 028 0%4 v 010F T

8Reference 6.
bReference 40. 0.05 +
‘Reference 37.
dReference 38.

netization. In practice, we perform a calculation with a Zee- 05 1.0 15 20 25

man term from a magnetic field added to the magnetic en- Distance (Lattice constants)

ergy. Provided the magnetic field is small enough that the

response is linear, we can determig@ directly from the FIG. 9. The real-space static magnetic correlation function of

magnetization obtained in the direction of the magnetic fieldbcc Fe at the temperatures Tgl(diamonds$, and 1.25 ¢ (circles.
For each of the three ferromagnets, we have performed calines are the fit to the Ornstein-Zernike expression.
culations for three different values of the field to ensure that
we sample the linear regime of small fields. The value of thecan be seen in Fig. 9, the calculated correlations show some
field is of the order 0.1 mRy/g~ 20 T which is an order of oscillations which is not contained in the monotoneous de-
magnitude higher than laboratory field strengths. This relacrease of the Ornstein-Zernike function. The oscillations
tive large value of the field is required to ensure that thewhich are common for the two temperatures are rather small
response is significant relative to the magnetization fluctuacompared to the statistical uncertainty of the correlations.
tions which result from the relative small number of sitesThe inverse correlation lengths that can be derived from the
used in the simulations. We also tested the size dependengssumption of the Ornstein-Zernike correlation function are
and conclude that the main effect of increasing the numbe®.19 and 0.38 A! for temperatures of 1.1Q., and
of sites is to reduce the statistical error. 1.25T, respectively. These values corresponds to a value
As already mentioned, within the statistical errors, the cal-»=0.75 for the critical exponent of the correlation length.
culated y® obeys a Curie-Weiss law. The calculated valuesGiven the rather large uncertainty in the determinatiorn of
of the Curie-Weis$CW) constants of bcc Fe, fcc Co, and fcc especially forT=1.10T¢, this value ofy compares favour-
Ni are given in Table Ill. Also given in the tabl@abeled ably to the observed value of=0.70% In Table I, we
SG) are the calculated values of Staunton and'n(ffyo6 and give the calculated values of the inverse correlation length
the observed values. As for the Curie temperature, the CV¥ for the temperature 1.4% for the three systems consid-
constant of bcc Fe is reproduced rather well. For fcc Co anered in the present study. To facilitate a comparison to the
fcc Ni, the CW constants are underestimated. This is in conexperimental values which are also given in the table, we
trast to the results of Staunton and @&fpwho obtained an  kept the ratio of paramagnetic temperature to the Curie tem-
underestimate of the CW constants of both bcc Fe and fcperature the same in calculation, and experiment. As it can
Ni. The absolute value of the CW constant of fcc Ni calcu-be seen, calculation agrees rather well with experiment for
lated by Staunton and Gyffy does however agree consid- both bcc Fe and fcc Ni. We were not able to find experimen-
erably better with observation than the value calculated irtal values ofx for fcc Co. The uncertainty in the determina-
the present work. tion of x was estimated to be- 0.03 A~ for bcc Fe and
The real-space static magnetic correlation function~ 0.02 A~ for fcc Ni. These numbers are comparable to
(mg-m;) has been calculated from simulations on 2744the deviation from observation. Even better agreement is ob-
(14%) sites. From general argumerifsthe paramagnetic tained between the present calculation, and the calculation of
real-space correlation function is expected to show only &taunton and Gyidfy. The close agreement is somewhat sur-
weak dependence on the size of the computational box. Tharising since the approach of Staunton and @yadis very
resulting real-space correlations of bcc Fe at two temperadifferent from that of the present work. It should be noted
tures in the paramagnetic regime are shown in Fig. 9. In thé¢hat the different inverse correlation lengths obtained for bcc
figure, we also show the result of fitting a simple Ornstein-Fe, fcc Co, and fcc Ni are closely related to their different
Zernike correlation function-exp(— «d)/d to the calculated lattice constants. In units of inverse lattice constartxf
real-space correlations. In this expressianis the inverse bcc Fe is 1.05« of fcc Co is 1.19, andc of fcc Niis 0.97.
correlation length, and is the intersite distance. In the fit- That is, the extent of the correlations is about the same mea-
ting, we have neglected the nearest, and next-nearest neigbdred in lattice units. In contrast, the absolute value of the
bor correlation as the simple Ornstein-Zernike correlationstatic correlations differ, as can be realized from their differ-
function is expected to hold in the long-wavelength limit. As ent uniform susceptibilitieg®.
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As witnessed by the nearest-neighbor spin angig only in the calculation of the exchange constants. Our calcu-
given in Table IlI, the present treatment results in a relativelylated Curie temperature of bcc Fe agrees very well with the
small amount of magnetic short-range order. This is in conexperimental Curie temperature, while the Curie tempera-
trast to some of the early theoretical wbiR which, based tures of fcc Co and fcc Ni are underestimated by about 20-
on the experiments of Mookt al** and Lynn?? required  25%. The calculated Curie temperatures agree very well with
considerable magnetic short-range order. Since then thgrevious first-principles calculations of Staunton and
analysis of Edward&’ and neutron-scattering experiments atGyorffy® and Uhl and Kibler.

Brookhaver®3%4* have clarified the observations made in We also investigated the paramagnetic state of tHe 3
the early experiments. While we cannot rule out the exisferromagnets. We presented calculations of the uniform para-
tence of strong magnetic short-range order, it is clear fronmagnetic susceptibility® and the inverse correlation lengths
the present work, as well as from the work of Staunton andlerived from the static magnetic correlation function. Within
Gyorffy® that a paramagnetic state containing only smallthe statistical uncertainty of the MC simulations, we found
magnetic short-range order can explain the paramagnetibat the uniform paramagnetic susceptibilig’ obeys a
scattering observed experimentally. Curie-Weiss behavior, and we determined the Curie-Weiss
(CW)constants of the @ ferromagnets. As for the Curie tem-
perature, the CW constant of bcc Fe agrees very well with
V. CONCLUSIONS experiment. This is in contrast to the previous work of Staun-
.ton and Gyffy.® For fcc Co and fcc Ni, however we calcu-

We have presented a magnetic energy functional which 'Fate a CW constant which is only a fraction of the experi-

ba;ed on the set OT local magnetic mqme{ﬂs} and Qe— mentally observed CW constant whereas Staunton and
scribes the magnetic energy of an arbitrary magnetic con:

figuration. The ordering of the local magnetic moments iSGyorﬁy get reasonable agreement with experiment for fcc

described by a generalized Heisenberg Hamiltonian in whic . ,It should be noted, that the CW constant of fcc Ni is only
/4’th of the CW constant of bcc Fe, and as a consequence

the direction of the local moments are represented as clas

cal vectors. First of all, the exchange interactions depend offl @Psolute error which is acceptable for bce Fe can for fec
the size of the local magnetic moments. In addition, an onNi be of the order of the CW constant itself. We found that

site exchange contribution is derived from fixed spin mo-the static magnetic correlation functions fit well to the para-
ment calculations for the constrained ferromagnetic stateghagnetic scattering behavior observed experimentally. The
The sum of on-site and local exchange energy provides §alculated inverse correlation lengths are in good agreement
magnetic energy functional which includes the correlationwith experimental values obtained from neutron-scattering
between the stability of the local magnetic moment, and th&xperiments.
ordering of the local moments. We have presented self- Further improvements are certainly possible. The effect of
consistent LMTO calculations of zero-temperature magnetiéncluding self-consistent calculations for other constrained
properties within the local-spin-density approximation to themagnetic structures than the spin spirals would be of interest,
density-functional formalism. Calculations have been perand could clarify the size of multisite interactions which
formed for bcc Fe, fcc Co, and fcc Ni both for the con- have been neglected in the present work. We have com-
strained ferromagnetic states, and for a number of spin spirglletely neglected the effect of Stoner excitations. However,
states using the fixed spin moment technique. The zercdue to the large Stoner-Curie temperatures obtained in the
temperature results of these calculations compare well witfpcal-spin-density approximatiofSDA), we expect the ef-
the experimentally observed low-temperature properties, afect of these excitations to be small. The effect of the LSDA
though we note that some discrepancy was found for théself would also be of interest, as would an investigation of
spin-wave stiffness constants of bcc Fe and fcc Ni. the approximation in the self-consistent calculations of using
The results of the self-consistent electronic-structure cala single spin quantization for each site. Other effects such as
culations were subsequently used to calculate the parametdiwermal expansion, and lattice vibrations are more difficult to
of our magnetic energy functional. In a subsequent set ohandle at present but may obviously influence the magnetic
Monte Carlo simulations, we applied the model magneticproperties. In a wider perspective, mapping to a quantum-
energy functional to determine the equilibrium magneticmechanical representation of the magnetic state instead of
properties of the itinerant ferromagnets Fe, Co, and Ni. In théhe classical representation used in the present work would
simulations, we allowed all degrees of freedom to vary. Foibe very interesting, and could improve the description of the
our chosen description of the magnetic configurations, theynagnetic properties, especially beldv .
include both size, and direction of the local magnetic mo- In summary, a model based on a coarse-grained descrip-
ments on each site. From the MC simulations, we determinetion of the magnetic state in terms of site-dependent local
finite-temperature magnetic properties such as the magnetinagnetic moments was used to calculate the magnetic en-
zation curve, the Curie temperature, and the behavior of thergy. The derived magnetic energy expression was shown to
local magnetic moment as a function of temperature. The&ccount for most of the qualitative features of the itinerant
calculated magnetization curve was found to deviate consicdferromagnetism in bcc Fe, fcc Co, and fcc Ni. The simple
erably from the observed magnetization curve. We believalivision of the magnetic energy into on-site and local inter-
this is a consequence of the separation of quantumsite exchange contributions provides a simple picture of the
mechanical and statistical mechanical averages which resulinerant ferromagnets. Hence, we were able to characterize
from our mapping to a Hamiltonian that describes the locabcc Fe as a weak itinerant ferromagnet whereas the ferro-
magnetic moments classically, and include quantum effectsiagnetism of fcc Co, and in particular of fcc Ni was found
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