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Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni

N. M. Rosengaard and Bo¨rje Johansson
Condensed Matter Theory Group, Physics Department, Uppsala University, S-75121 Uppsala, Sweden

~Received 15 January 1997!

We propose a simple model for itinerant magnetism in the ferromagnetic transition metals. The model
incorporates both the energy of moment formation, and the energy of moment ordering. The parameters of the
model are determined from first-principles density-functional calculations for the ferromagnetic state and a
number of spin spiral states. The simplicity of the magnetic energy functional allows extensive Monte Carlo
simulations to be performed. Results for the finite-temperature magnetic properties of body-centered-cubic Fe,
and face-centered-cubic Co and Ni are presented.@S0163-1829~97!00722-4#
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I. INTRODUCTION

In recent years, significant progress has been made in
description of magnetic ordering within theories of itinera
magnetism.1–13This has been achieved through the extens
of band methods to describe noncollinear spin structu
within the density functional scheme. The formalism has a
been applied to the study of magnetic excitations, and fin
temperature properties of ferromagnets. Youet al.1 calcu-
lated exchange constants of bcc Fe from selected mag
configurations, and estimated the Curie temperature
means of a Heisenberg Hamiltonian and the mean-field
proximation. Oguchi et al.2 used the Korringa-Kohn-
Rostoker multiple-scattering technique in the coherent po
tial approximation ~KKR-CPA!, and the disordered loca
moment~DLM ! model to study bcc Fe at finite temperatur
Similarly, Pindoret al.3 combined the KKR-CPA with the
DLM to study the magnetic 3d transition metals, Cr, Fe, Co
and Ni. Liechtensteinet al.4 used the KKR formalism in the
atomic-spheres approximation~ASA! to calculate exchange
interactions for Fe, Ni, and Ni-Pd alloys. Luchini and Hein5

studied short-range order, and obtained exchange inte
tions for bcc Fe from a large number of magnetic configu
tions. Staunton and Gyo¨rffy6 calculated paramagnetic su
ceptibilities, and Curie temperatures of Fe and Ni using
improved version of the DLM that included some sho
range order effects by Onsager cavity fields. The param
netic susceptibilities obtained by Staunton and Gyo¨rffy obey
a Curie-Weiss law, as observed experimentally, but
Curie-Weiss constants were underestimated. They de
mined a Curie temperature (TC) of bcc Fe in close agree
ment with the observedTC , and found a somewhat undere
timated value ofTC for fcc Ni. In a recent work, Uhl and
Kübler7 studied the finite-temperature properties of the f
romagnetic transition metals bcc Fe, fcc and hcp Co, and
Ni using a model Hamiltonian in conjunction with mea
field spin-fluctuation theory to calculate the free ener
Similar to Staunton and Gyo¨rffy, they find a Curie tempera
ture of bcc Fe which is in close agreement with the obser
Curie temperature while the Curie temperatures of fcc
and fcc Ni are underestimated. Uhl and Ku¨bler also note that
their calculated Curie-Weiss constants are underestimate
a factor;2. Another very recent development, is the form
lation of Antropov et al.8,9 of spin dynamics within the
550163-1829/97/55~22!/14975~12!/$10.00
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density-functional theory. This approach eliminates the n
of an assumed form of the magnetic Hamiltonian, at so
cost of simplicity.

Prior to the use of density-functional formalism in th
local-spin-density approximation, a description based
noncollinear local magnetic moments was adopted by sev
workers, in particular the work of Moriya,14 Edwards,15

Hubbard,16 and Hasegawa,17 as well as the work of Koren-
man and co-workers18 inspired much of the later first
principles work on magnetic excitations, and finit
temperature properties of ferromagnets.

Simultaneously with the first-principles developmen
there have been numerous studies of the statistical mecha
of model Hamiltonians known to reproduce selected m
netic properties of real magnets. It is the purpose of t
paper to bridge the gap between these parallel developm
by formulating a more realistic model Hamiltonian for th
magnetic interactions based on results of first-principles
culations on a set of magnetic structures. The magnetic
ergy functional which is used in the study of Uhl and Ku¨bler7

is closely related to the one considered in the present st
and the parameters are obtained from the same type of m
netic structures, i.e., spin spirals. Our final expression for
magnetic energy differs slightly from theirs due to our a
sumption of local interatomic exchange interactions wh
lead directly to a real-space expression and an intrasite t
rather than an expression in terms of reciprocal-space fl
tuations from the ferromagnetic state, as was used by
and Kübler.

The paper is organized as follows. In Sec. II, we descr
the model that we use to calculate the energy of a magn
configuration. We also describe how the model parame
are obtained from first-principles calculations within th
local-spin-density approximation. In Sec. III, we present
sults for the low-temperature magnetic properties obtai
directly from self-consistent calculations. In Sec. IV, we d
scribe the results obtained from Monte Carlo simulations
finite temperature using our model magnetic energy fu
tional. Section V contains some concluding remarks.

II. MODEL OF AN ITINERANT MAGNET

Below we will first present the magnetic energy fun
tional which we have applied to describe the itinerant fer
14 975 © 1997 The American Physical Society



c
e
ag
rs
e
c
th
g
ng
s

d
ia
lo
ng
a
n
en

ib
th
-
th
p
o

ra
-
ite
u
o

r-
th
g

th

th
tr

lso
si
p
ie

d
en
in
he
v
on

x-
ent
te.
s.
ts
ag-
etic
er-
lent
dis-
nge
tic

of
mic
erg
of
he

ite
s at
al
y
tic
sed
e
ag-

ital

e-
ll
berg

re
rbi-
ing
ns,
le.
erm

ubic

14 976 55N. M. ROSENGAARD AND BÖRJE JOHANSSON
magnets, Fe, Co, and Ni. Subsequently, we describe the
culation of model parameters. We will briefly outline th
main ingredients that enter into the construction of the m
netic energy functional. The model is based on a coa
grained description of the magnetic state expressed by th
of local magnetic moments$m̄i% which is used as the basi
variable in the representation of the magnetic state. It is
size and relative direction of the local exchange splittin
that determine the interatomic exchange. This in turn bri
us to represent the interatomic exchange interaction a
expansion in powers of the local moments, and cosine
their relative angle. Hence, the interatomic exchange is
scribed using a generalization of the Heisenberg Hamilton
that also incorporates the dependence on the size of the
magnetic moments. By also including an on-site excha
term, we describe in addition the energy of moment form
tion. In this sense, the present magnetic energy functio
provides a unified description of the energetics of mom
formation, as well as the energetics of moment ordering.

A. The magnetic energy functional

We now present the model which we will use to descr
the magnetic energy of an itinerant magnet. As a result of
dominantd-orbital contribution to the magnetic moment, lo
cal atomic moments are well-defined variables within
context of a density-functional description of magnetic pro
erties of transition metals. A description based on local m
ments has been extensively applied to the study of itine
magnetism from first-principles.1–9 In order to give a reason
ably complete description of itinerant magnetism at fin
temperature, we need a model that describes simultaneo
the energetics of the formation of the local magnetic m
ment, and the magnetic ordering of the local moments.

As a starting point for the description of the moment fo
mation energy, we use the Stoner-Wohlfarth model for
stability of the ferromagnetic state. In this model, the ma
netic energy of the ferromagnetic state of momentM is
given by a Ginzburg-Landau like energy expansion in
magnetization

EFM5EPM1
1

2
AM21

1

4
BM4, ~1!

where the coefficients in the expansion are derived from
strength of the exchange interactions, and include both in
and interatomic contributions. As it stands Eq.~1! does not
include the effect of fluctuations in the moment and it a
neglects the vector nature of the moment. The expres
above may be generalized in this respect as, for exam
was done by Mohn and Wohlfarth in their study of Cur
temperatures of ferromagnetic metals and compounds.18 The
Stoner-Wohlfarth representation of the magnetic energy
scribes the stability of the ferromagnetic state of mom
M . While the Ginzburg-Landau expansion is only valid
the vicinity of the transition from the paramagnetic to t
ferromagnetic state where the moment is small, it is howe
possible to describe the energy of formation of the c
strained ferromagnetic state of magnetizationM , as an ex-
pansion in even powers of the magnetization:
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EFM5EPM1 (
k51

n

Ak
FMM2k. ~2!

In a first-principles approach, the coefficients in the e
pansion, may be obtained from so-called fixed spin mom
~FSM! calculations for the constrained ferromagnetic sta
This scheme was introduced by Moruzzi and co-worker20

For Fe, Co, and Ni, we find that typically 5–7 coefficien
give an excellent least-squares fit to the calculated ferrom
netic FSM states in a range extending from the nonmagn
state to states of moments well beyond the equilibrium f
romagnetic moment. While this approach gives an excel
description of the constrained ferromagnetic states, no
tinction is made between on-site, and interatomic excha
interactions. However, in a model for arbitrary magne
configurations, we have to introduce such a division.

To obtain a model that incorporates also the energy
magnetic ordering, it is necessary to model the interato
exchange explicitly. This is done in the classical Heisenb
model of ferromagnetism. Atomic magnetic moments
fixed size interact via the interatomic exchange field. T
energy of magnetic orderingEMO becomes

EMO52
1

2(iÞ j
Ji j ēi•ēj , ~3!

whereēi is the unit vector parallel to the local moment at s
i , andJi j is the exchange energy between local moment
site i and j , respectively. In the context of density-function
formalism, Liechtensteinet al.4 showed that the energ
change for incremental deviations from the ferromagne
state is described by the Heisenberg Hamiltonian. They u
Andersen’s force theorem21 to derive the energy change du
to a rotation of the moment at the central site in a ferrom
net through an angleu, i.e.,

DE0~u!5
1

p
ImE e f

de TrLlnF11
1

2
~12cosu!

3(
jÞ0

DP0g0 j
↑ DPjgj0

↓ G , ~4!

where we have adopted Andersen’s linear muffin-tin-orb
~LMTO! formalism.22 In Eq. ~4! DP is the potential function
difference between the two spin channels andgi j is the fer-
romagnetic KKR-ASA Green’s function connecting sitesi
and j . A similar expression was obtained by Oguchiet al.13

for the interaction of two moments embedded in a CPA m
dium of randomly oriented moments. In the limit of sma
u, one recovers the energy dependence of the Heisen
Hamiltonian.

A Taylor expansion of the logarithm in Eq.~4! gives a
power series in cosu, and we therefore anticipate that a mo
complete representation of the ordering energy of an a
trary magnetic configuration can be obtained by includ
also pair interactions, and if required multisite interactio
which are higher powers of the cosine of the relative ang
In such an expansion, the first term is the Heisenberg t
(Ji j ), while the second (Ki j ), and third order (Li j ) pair in-
teractions are denoted as the biquadratic, and the bic
term, respectively.
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Further, by means of the expression of Liechtenst
et al., we can trace the dependence of the interatomic
change on the size of the local magnetic moments thro
the potential function differenceDP between the minority-
and majority-spin channel. This difference is essentially
exchange splitting of the one-electron potential. In a sim
fied Stoner model, it is related to the size of the magne
moment, i.e.,DPi.miI , where the local spin-up and spin
down density of states are considered rigidly shifted by
exchange splitting, andI is the Stoner parameter averag
over the one-electron states crossing the Fermi surface.23 As
a result, for small deviations the magnetic ordering ene
depends linearly on the size of the local momentsmi , i.e.,
EMO}2(^ i j &Ji j ^mi j &

2 where ^mi j & is an appropriate aver
age, to be specified below, of the size of the local mome
mi , andmj that constitute the pair̂i j &. To describe a gen
eral magnetic configuration, we therefore include the dep
dence of the interatomic exchange on the size of the lo
magnetic moment. This dependence is included by expr
ing the interatomic exchange constantsJi j , Ki j , etc. of the
Heisenberg term and the higher-order pair terms, in a po
series in the size of the local moments.

Following our generalization of the Stoner-Wohlfarth e
pression for the constrained ferromagnetic states to cove
whole range of local moments, we analogously arrive at
following expansion which we use to represent the int
atomic exchange energy:

EI52
1

2(iÞ j
Ji j ēi•ēj2

1

2(iÞ j
Ki j ~ ēi•ēj !

2, ~5!

where

Ji j5 (
k51

n

Ji j
k ^mi j &

2k, Ki j5 (
k51

n

Ki j
k ^mi j &

2k, ~6!

In these equations,Ji j
k and Ki j

k are the coefficients in the
expansion of the Heisenberg term and the biquadratic te
respectively. Other terms such as the bicubic pairLi j and
multi-site interactions of the type (ēi•ēj )(ēi•ēk) can be
treated similarly if they are required for an accurate desc
tion of the magnetic energy. In the above expression, we
for the local moment,̂mi j & the simple average of the loca
momentsmi andmj of site i , and j respectively.

To determine the dependence of the exchange cons
on varying the local moments independently, we perform
self-consistent calculations of longitudinal spin fluctuatio
from the ferromagnetic state and found for Fe, Co, and
that using the simple average of the local moments gave
excellent description of the energy of these fluctuations. T
choice of ^mi j & as the simple average results in a nonz
interatomic exchange interaction if one local moment te
to zero while the other moment remains constant. The e
that this induces, is insignificant since, for all finite tempe
tures, the local moments will be fluctuating around a va
close to the zero-temperature magnetization. The actual
culation of the interatomic exchange constants (Ji j

k , Ki j
k ,

etc.! is performed by application of the FSM technique to t
spin spiral states and a subsequent fitting of the total en
of the spin spiral states relative to the energy of the fer
magnetic state with the same local moment.
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Having accounted for the interatomic exchange, we n
proceed to derive the on-site exchange term from the F
calculations for constrained ferromagnetic states. Hence
represent the on-site exchange by an expansion similar to
one describing the total energy of the FSM state, i.e.,

Eon5(
i

(
k51

n

Ak
onmi

2k ,

Ak
on5Ak

FM1
1

2(j ~J0 j
k 1K0 j

k !, ~7!

where j labels the sites in the neighbor shells of the cen
site 0. Finally, to get the total magnetic energy of an ar
trary magnetic configuration, we add the on-site contribut
Eon of Eq. ~7! to the interatomic exchangeEI given in Eq.
~5!.

An important consequence of our chosen total-ene
functional, is that it describes the reduction of the local ma
netic moment as the local exchange field decreases due t
disorder in the orientational degrees of freedom. It should
realized that the on-site term can be viewed as the energ
embedding a single magnetic atom into the nonmagn
state of the metal. For an itinerant magnet, the on-site term
therefore not only an atomic contribution but depen
strongly on the response of the ligand states to the impu
moment. To get a practical scheme, we have to estimate
convergence of the expansion Eq.~5! for the interatomic
exchange. In the actual calculations, we always neglec
multisite interactions, as well as powers of cosu beyond the
bicubic term in the pair interactions. The pair interactio
were furthermore restricted to either the nearest or ne
nearest shell of neighbors. Even so, we reproduce very a
rately the energetics of the set of spin spirals for which fir
principles calculations were performed. For the power-se
expansion given in Eq.~6! of the dependence of the ex
change constants on the local magnetic moments, we u
; 3–4 terms.

B. Computational details

In this section, we give the computational details of t
first-principles calculations for Fe~bcc!, Co~fcc!, and Ni~fcc!,
that are used to derive the parameters of the model wh
was described above. We have applied the density-functio
formalism in the local-spin-density approximation~LSDA!
to calculate the total energy of a set of magnetic structu
for the 3d ferromagnets Fe, Co, and Ni. We employed t
parametrization of Vosko-Wilk-Nusair24 for the exchange
and correlation contributions in the LSD approximation. T
first set of calculations consisted in the determination of
energy versus magnetic moment curves of the ferromagn
state. For each of the metals, we have fixed the volume a
calculated equilibrium volume. The second set of calcu
tions were total-energy calculations of planar spin sp
states along high-symmetry directions. For the bcc struct
we chose the@011# and the@001# directions. For the fcc
structure, we used the@111# and the@001# directions. Calcu-
lations were performed for the spin spiral wave vecto
uq̄u5 1

16,
1
8,

1
4, and

1
2 in units of the longest reciprocal-lattic

vector in each direction. The spin spiral states were ca
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14 978 55N. M. ROSENGAARD AND BÖRJE JOHANSSON
lated using the LMTO-ASA method25,26 in the tight-binding
representation of Andersen and Jepsen.27 The implementa-
tion of noncollinearity follows the scheme described by U
et al., see Ref. 12, and references therein. We also inclu
the combined correction term to the One-electron Ham
tonian. This was implemented as described by Antrop
et al.9 For the spin spiral states, as well as for the ferrom
netic states, we applied the FSM technique to study the
pendence of the interatomic exchange on the size of the l
moments. We used the FSM technique in an implementa
similar to the one of Uhlet al.12 In this implementation, an
auxiliary local magnetic field is introduced. This field is d
termined by the requirement of a fixed local magnetic m
ment. The total-energy differences between the spin sp
states and the ferromagnetic state with the same local m
netic moments are used to derive the interatomic excha
constants by least-squares fitting to the model expression
the interatomic exchange. Figure 1 shows the resulting
change parameters for bcc Fe, fcc Co, and fcc Ni as a fu
tion of the local magnetic moment. For all three metals,
nearest-neighbor Heisenberg term, denotedJ1, is the domi-
nating interaction. We stress the fact that the exchange in
actions are renormalized ones, and that the direct calcula
of the exchange parameters as suggested by Liechten
et al.4 may very well result in long oscillatory interaction

FIG. 1. The interatomic exchange constants for bcc Fe~top!, fcc
Co ~middle!, and fcc Ni~bottom!. The Heisenberg term (Ji), biqua-
dratic term (Ki), and bicubic term (Li) for i th nearest neighbors ar
shown as a function of the local magnetic moment.
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What is obtained by the fit is an adequate description of
spin spiral states. The accuracy of the fit in reproducing
spiral energies can be estimated by inspection of Figs. 2
and 4 for, respectively, bcc Fe, fcc Co, and fcc Ni. It shou
be noted that the spin spirals whose energy is shown in
figures, are the planar spin spirals which result when
magnetic moment is allowed to relax to its preferred va
whereas we have applied the spin spirals with constrai
local moments to calculate the exchange constants.

FIG. 2. Calculated total energies~full lines! of planar spin spiral
states in bcc Fe relative to the energy of the FM state. Also sho
~dashed lines!, are the equilibrium local moments of the spir
states. All lines are fit to the calculated values which are shown
symbols. Diamonds represent calculations in the@011# direction.
Circles are results for the@001# direction. Crosses indicate spira
energies calculated from the model expression for the interato
exchange. NM indicates the energy of nonmagnetic bcc Fe rela
to the energy of FM bcc Fe.

FIG. 3. Planar spin spirals in fcc Co. Notation as in Fig. 2. N
indicates the energy of nonmagnetic fcc Co relative to that of
fcc Co. Note that zone boundaries are not shown. The@001# zone
boundary is at 1.78 Å21. The @111# zone boundary is at 1.55
Å21.
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55 14 979FINITE-TEMPERATURE STUDY OF ITINERANT . . .
tested the sensitivity of the exchange parameters to the
of the set of spin spiral states used in the fitting procedu
and found only insignificant changes in the calculated
rameters. We also note that ultimately we will use the
change interactions to study the finite-temperature magn
properties in Monte Carlo simulations. For Fe, we tested
effect of using a smaller set of interactions at a simulat
temperature close to the critical temperature. In this case
effect of changing the set of interactions was of the orde
the statistical errors. We take this as an indication that
derived set of exchange parameters are reasonably com
within the description used for the interatomic exchange. A
ditionally, we show below that our model prediction of e
ergy and local moment stability in the disordered local m
ment configuration compares favorably to the resu
obtained from KKR-CPA calculations. However, the pos
bility exists that a larger set of more general magnetic c
figurations will show that further interactions such as int
actions of longer range or multisite interactions are in f
important.

III. SCF CALCULATIONS

In what follows, we first present the self-consiste
LMTO calculations of zero-temperature magnetic proper
of the ferromagnetic transition metals Fe, Co, and Ni. S
sequently, we discuss the parameters of the model, and
implications for the picture of the itinerant magnetism of t
transition metals.

A. Zero-temperature magnetic properties

Table I contains some magnetic ground-state proper
Shown in the table are both the values obtained in the pre
study, and where available the experimental values. A
well known, the calculated equilibrium lattice constants d
pend to some extend on the type of exchange-correla
potential one employs. In the local-spin-density approxim
tion the lattice constants for all three metals are undere

FIG. 4. Planar spin spirals in fcc Ni. Notation as in Fig. 3. T
zone boundaries are not shown. The@001# zone boundary is at 1.80
Å21. The @111# zone boundary is at 1.56 Å21.
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mated. However, the errors are at the 1% level. The 0
magnetic moments are also given in Table I. We notice t
since the observed moments include an orbital contribu
of about 0.1mB , the calculated spin magnetic moments a
slighty overestimated in the cases of Ni and Fe.

The spin-wave stiffness constantD that relates the spin
wave frequencyv to the wave vector in the long-waveleng
limit as v5Dq2 may be calculated from the energy of sp
spiral excitations. The relation between the spin-wave st
ness and the energy cost of forming a spin spiral can
derived by noting that the total magnetization loss caused
a spin-wave excitation is 2mB , while the magnetization loss
per siteDM5Meq(12cosu) tends to zero. Hence the energ
of a spin-wave excitation is

v~ q̄!52mB

DEs~ q̄,u!

DM U
u50

5
4mB

Meq
DEps~ q̄!, ~8!

whereDEs(q̄,u) is the energy of a spin spiral of wave vect
q̄, and angleu to the magnetization direction.Meq is the
equilibrium magnetic moment, andDEps(q̄) is the energy of
a planar spin spiral. To derive this relation, we have e
ploited that the energy of a spin spiral is related to the pla
spin spiral of the same wave vector b
DEs(q̄,u).sin2uDEps(q̄). We have established this relatio
which was also noted by Uhl and Ku¨bler,7 empirically by
performing self-consistent calculations of nonplanar spin s
ral energies. The relation is exact for a Heisenberg Ham
tonian, and holds to a good approximation also for the m
netic energy functional used in this work. Hence, we c
calculate the spin-wave stiffness constants from

D5
2mB

Meq

d2Eps~ q̄!

dq̄2
U
q50

5
1

3Meq
(
R

R2~J0R12K0R13L0R!, ~9!

where we have exploited the cubic symmetry, and our
rametrization of the magnetic energy to obtain the sec
equality. In the above expression,J0R , K0R , andL0R denote
the bilinear, the biquadratic, and the bicubic exchange c

TABLE I. Comparison between calculated, and experimen
ground-state properties, whereaeq is the equilibrium lattice con-
stants,M is the zero-temperature magnetization,D is the spin-wave
stiffness constant. The experimental spin-wave stiffness const
are extrapolations to zero temperature, except for Co, where
room-temperature value for the hexagonal close-packed structu
given. All experimental numbers are labeled Expt.

System aeq ~Å! M (mB/atom! D ~meV Å2)
Calc. Expt. Calc. Expt. Calc. Expt.

Fe bcc 2.84 2.87 2.23 2.25a 247 314c

Co fcc 3.52 3.55 1.63 1.72b 502 510d

Ni fcc 3.49 3.52 0.64 0.62a 739 550e

aReference 28.
bReference 29.
cReference 30.
dReference 31.
eReference 32.
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14 980 55N. M. ROSENGAARD AND BÖRJE JOHANSSON
stants, respectively. The exchange constants are those o
ferromagnetic equilibrium magnetic moment.

As Table I shows, the calculated spin-wave stiffness c
stant of fcc Co compare well with the experimental val
while the calculated value for bcc Fe is somewhat unde
timated, and the value for fcc Ni is overestimated. Since
spin-wave stiffness constant is related to the lon
wavelength limit of the spin spiral excitations, its value
independent of the inclusion of biquadratic, and bicu
terms. This is not apparent from Eq.~9!. However, fitting the
spin spiral energies to a Hamiltonian of the pure Heisenb
form results, within a few percent, in the same spin-wa
stiffness constant. We therefore conclude that the inclus
of the higher-order terms are mainly important for the d
scription of the short-wavelength spin spirals.

Figure 2 shows, for bcc Fe, the self-consistently cal
lated total energy of planar spin spiral states along the@001#
and@011# directions relative to the energy of the equilibriu
ferromagnetic state. Also shown are the calculated equ
rium local moments. The itinerant nature of the exchan
interaction gives rise to the strong dependence of the lo
moment on the reduction of the exchange field as the sp
vector approaches the antiferromagnetic spin alignmen
the zone boundary. The effect is most pronounced in
@001# direction, in which the antiferromagnetic structure r
sults in all nearest-neighbor spins being antiparallel. At
zone boundary in the@011# direction, only four of the eight
spins in the nearest-neighbor shell are antiparallel. Hence
the @011# direction the reduction of the local moment fo
increasing spiral vector is moderate. Since the energy dif
ence of the ferromagnetic to the nonmagnetic state is
mRy/atom at fixed volume, we note that the Fe magne
moment is stabilized by less than 3 mRy/atom at the@001#
zone boundary. For both fcc Co and fcc Ni, the depende
of the local magnetic moment on the spin spiral vector
more pronounced than in the case of bcc Fe. As Figs. 3
4 show, the planar spiral states of large wave vectors
unstable relative to the nonmagnetic state. For Ni in
@001# direction, planar spiral states are only found for spi
vectorsq;(1/2)qmax. In the @111# direction planar spiral
states are found at somewhat larger vectors, the energ
these states is, however, only marginally smaller than
energy of the nonmagnetic state whose energy relative to
energy of the FM state is indicated in the figure. For all th
systems, in a region close to the spiral vectorq̄50̄, the pla-
nar spirals have an isotropic energy spectrum, as they m
For Ni, we also performed calculations for the@011# direc-
tion which has the zone boundary at 2.54 Å21. In this direc-
tion, we find that the isotropic region is somewhat narrow
extending only toq;0.3 Å21. Already from the difference
in the stability of the spin spiral excitations, we can conclu
that fcc Co and fcc Ni show stronger effects of itineran
than bcc Fe. This conclusion will be substantiated when
discuss the implications of our model magnetic energy fu
tional.

B. The energetics of the model

Figure 5 shows the total energy of the constrained fe
magnetic states of, respectively, bcc Fe, fcc Co, and fcc
as a function of the magnetic moment. Also shown are
the
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on-site and interatomic model contributions to the total m
netic energy. One important observation that can be m
based on the model contributions to the energy of the fe
magnetic state, is that the stability of the local magnetic m
ment for bcc Fe, due to its large on-site exchange contri
tion, is relatively independent of the ordering of the loc
moments. In contrast, the stability of the local moments
Co, and in particular of Ni depend strongly on the orderi
of the local moments. Based only on the energetics,
suggests that the local moment picture works well for bcc
and less so for fcc Co and Ni. These conclusions are sim
to the ones reached by Pindoret al.3 who applied the so-
called disordered local moment~DLM ! model to the descrip-
tion of the random, high-temperature magnetic state of
Fe and fcc Ni. As noted earlier, the on-site term represe
the energy of an ‘‘impurity’’ moment embedded into th
nonmagnetic state of the metal. However, in the DLM st
consisting of randomly oriented local magnetic moments
the same size, on the average, only the biquadratic part o
interatomic exchange contributes to the stability of the lo
magnetic moment. The magnetic energy of the DLM state
local moments of sizemloc becomes

FIG. 5. The magnetic energy of, and the model contributions
the constrained FM states of respectively bcc Fe, fcc Co, and
Ni. The full line ~total! denotes the total magnetic energy of th
constrained FM state, as calculated in FSM calculations. The s
dashed line~on-site!, denotes the on-site contribution to the mome
formation energy, while the long dashed line~inter! is the inter-
atomic exchange contribution.
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EDLM~mloc!5Eon~mloc!2
1

6(j K0 j~mloc!. ~10!

It may be realized from Fig. 1 that the biquadratic term, i.
the last term in Eq.~10! is small in all cases so that to a goo
approximation, the on-site contribution gives a measure
the stability of the local moment in the random configu
tion. Hence bcc Fe has a stable magnetic moment clos
the ferromagnetic equilibrium moment in the configurati
of randomly oriented local moments. Similarly, fcc Co has
local momentmloc;0.9mB in the random configuration
while fcc Ni does not have a stable local moment at all in
DLM configuration. These results are in good agreem
with the DLM calculations performed by Pindoret al.3

It is also interesting to note that despite the stable DL
solution of fcc Co, we do not find the antiferromagne
~AFM! structure along the@111# direction to be stable, al
though in both configurations, the average nearest-neigh
correlation^ēi•ēj&50. It is the biquadratic term which de
stabilizes the AFM structure in fcc Co. This may be realiz
from Fig. 1 which shows that the biquadratic term will co
tribute 0.75 mRy/atom to the destabilization of the DL
state for a local moment of sizemloc50.9mB . This is slightly
less than the on-site gain in energy;0.9 mRy/atom. For the
@111#-AFM structure, however, the biquadratic term w
contribute 2.25 mRy/atom sufficient to destabilize this str
ture. These simple considerations clearly shows that
magnetic energy functional used in this work is capable
describing even the small energy differences responsible
the stability of the DLM state, even though this state rep
sents the opposite limit of the coherent spin spiral states
we use to derive the magnetic energy functional. Howev
the Monte Carlo simulations will show that at finite tempe
tures, the entropy of spin fluctuations stabilizes the DL
states of Fe, Co, and Ni.

IV. FINITE-TEMPERATURE RESULTS

In this section, we describe the results of Monte Ca
~MC! simulations for the 3d ferromagnets Fe, Co, and N
We have applied the magnetic energy functional outlined
the previous section, and the standard Metropolis algorith32

to study the finite-temperature properties. We perform
runs for system sizes ranging from;700 to ;2700 sites
applying periodic boundary conditions. One MC step co
sisted of a single local moment update in which we choos
random a different direction and size of the local moment
this way, we propagate through the full configurational sp
$m̄i%, and consequently we describe the effect of fluctuati
in both the orientational degrees of freedom, and the siz
the local moments. From these calculations, we extrapo
to the thermodynamic limit using standard finite-size scal
theory. The MC simulations result, after appropriate scal
to infinite system size, in a magnetization curve, and a C
temperatureTC . Alternatively, the Curie temperature can b
estimated from the peak in the magnetic susceptibility. Wh
the actual value of the magnetic susceptibility depends on
number of sites, the peak position of this quantity as a fu
tion of temperature did not show any size dependen
Finite-size scaling also provides information on the sta
critical exponents of the magnetization. However, in t
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present study we found it to be too expensive computati
ally to reliably estimate the critical exponents. The finite-s
scaling was, however, sensitive to the choice of Curie te
perature, and the best fit of the universal scaling function w
obtained for a Curie temperature in the vicinity of the Cu
temperature derived from the susceptibility. From the M
simulations, one may study the temperature dependenc
the local magnetic moment, as well as the magnetic sh
range order. The latter quantities only depend weakly on
number of sites.34

A. The magnetization curve

In Fig. 6, we show the magnetization and the local m
ment of bcc Fe as a function of temperature, obtained fr
simulations, and for the magnetization after finite-size sc
ing. In Figs. 7 and 8, we show similar results for fcc Co a
fcc Ni. We note that the error bars on the magnetizatio
indicate only the statistical error from individual MC run
and they do not include the error arising from the extrapo
tion procedure. The statistical error of the local moment is
all cases,0.01mB . The effect of changing the number o
sites was even smaller for the local magnetic moments.
seen that in all three cases the magnetization is reduced
its zero-temperature value already at moderate tempera
relative to the Curie temperature. If we compare the mag
tization at a temperatureT5 1

2TC , we find that it is reduced
by ; 20–25 %, while experimentally the magnetization fo
lows a Brillouin-like function, and consequently, the expe
mentally observed reduction of the magnetization is onl
few percent.36 This discrepancy is due to the neglect of t
quantization of the elementary excitations that follows fro
using a classical spin model to describe the interaction of
local magnetic moments. In the case of classical spin Ham
tonians, the low-temperature excitations consist of sm
angle fluctuations of the local moments away from the m

FIG. 6. The magnetization~full line!, and the local magnetic
moment~dashed line! of bcc Fe as a function of temperature. Th
results are obtained from Monte Carlo calculations, and subseq
finite-size extrapolations.
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14 982 55N. M. ROSENGAARD AND BÖRJE JOHANSSON
netization direction. This results in a linear decrease of
magnetization as the temperature approaches zero, and
result the calculated magnetization does not follow Bloc
T3/2 law at low temperature. However, here we will focus
the magnetic behavior in the vicinity of the Curie tempe
ture, and in the paramagnetic regime. We note that the c
sical nearest-neighbor Heisenberg Hamiltonian has an e
nent ofb50.36 ~Ref. 35! for the temperature dependence
the magnetization in the critical regionM}(Tc2T)b. This
exponent agrees well with the experimental critical exp
nents which are 0.38 for Fe and Ni, and 0.42 for Co.31 Since,
as Fig. 1 shows, the nearest-neighbor Heisenberg term is
dominating contribution to the exchange interaction in o
model, we expect that the critical exponents are realis
although the estimation of the static critical exponents
cluding the effect of the higher-order terms, i.e., the biq
dratic, and bicubic terms, and the effect of fluctuations in
size of the local moment has not been performed.

B. The local magnetic moments

The average local magnetic moments as a function
temperature are shown in Fig. 6 for bcc Fe, in Fig. 7 for

FIG. 7. The magnetization~full line!, and the local magnetic
moment~dashed line! of fcc Co as a function of temperature.
e
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Co, and in Fig. 8 for fcc Ni. For temperatures below t
Curie temperature, the average local magnetic moment o
and Ni are close to their zero-temperature magnetization.
bcc Fe, the local magnetic moment increases linearly thro
the critical region from 2.25mB at 0 K to2.35mB at 1600 K.
In contrast, the local magnetic moment of Co drops fro
1.63mB to ;1.4mB at TC . In the paramagnetic region, how
ever, the local moment increases. The local moment of
shows a behavior similar to that of Co above the Curie te
perature but remains constant belowTC . These results
should be correlated with the calculated average angle
tween nearest-neighbor local momentsaNN which is given in
Table II. We see that this angle is;75° which should be
compared to an average angle of 90° for randomly dist
uted local moments. This means that the magnetic sh
range order is moderate compared to what one expects
the energy only arguments outlined above when we d
cussed the disordered local moment state. For fcc Ni,
instance, magnetic configurations which result in a near
neighbor angle of 75° is not stable compared to the nonm
netic state. For bcc Fe, the loss of magnetic energy at

FIG. 8. The magnetization~full line!, and the local magnetic
moment~dashed line! of fcc Ni as a function of temperature.
l

o simu-

ent
TABLE II. Magnetic properties at the theoretical Curie temperature. Heremloc is the average loca
magnetic moment,A(Dmloc)

2 is the rms fluctuation of the local magnetic moment, andaNN is the average
angle between nearest-neighbor magnetic moments. All three values are obtained from Monte Carl
lations.TC is the Curie temperature. Calculated results are presented using mean-field theory~MF!, and
Monte Carlo simulations~MC!. Comparison is made to previous first-principles calculations, and experim
~Expt.!.

System mloc (mB/atom! A(Dmloc)
2 aNN TC ~K!

Calc. Calc. Calc. MF MC SGa UKb Exp.c

Fe bcc 2.33 0.45 74 1460 1060 1015 1095 1043
Co fcc 1.41 0.41 75 1770 1080 1012 1388
Ni fcc 0.63 0.22 75 660 510 450 412 633

aReference 6.
bReference 7.
cReference 31.
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calculated Curie temperature is;1850 K, and this consti-
tutes almost half of the total magnetic energy of the fer
magnetic state. Yet in the simulations, we observe the c
bination of sizeable average local magnetic moments,
small magnetic short-range order. This stresses the im
tance of spin fluctuations. It is the entropy of spin fluctu
tions that stabilizes the local magnetic moments. We m
realize this by noting that the entropy contribution is prop
tional to the phase space volumedV which is thermally
populated. The available phase space volume can rough
taken to depend on the nearest-neighbor angleaNN , and the
local magnetic momentmloc as

dV}sinaNNdaNNmloc
2 dmloc , ~11!

wheredmloc , anddaNN is a measure of the fluctuations o
the local magnetic moment and the fluctuations of the m
netic short-range order, respectively. As a result, we see
the entropy of spin fluctuations favors a sizeable local m
netic moment. This simple analysis suggests that altho
the local moments are not energetically favored, as it is
case in the absence of strong magnetic short-range o
sizeable local magnetic moments can nevertheless be pr
because the available phase space volume depends qua
cally on the size of the local moment. This is in accordan
with the MC simulations. At the same time, it is clear th
fluctuations in the sizes of the local magnetic moments w
be present, and are required to stabilize these. As it ca
seen from the rms value of the fluctuation of the local m
netic moment which is given in Table II, sizeable fluctu
tions are in fact observed in the MC simulations. As a res
of the strong effect of spin fluctuations, we get similar b
havior of bcc Fe, fcc Co, and fcc Ni despite their differen
in itinerant character as discussed in the previous sec
The qualitative similarity of our calculated finite-temperatu
properties for the itinerant ferromagnets bcc Fe, fcc Co,
fcc Ni agrees well with the observation from neutro
scattering experiments37,38 that the paramagnetic scatterin
of bcc Fe and fcc Ni can be described by the same scatte
function. Below we present calculations of the magnetic c
relations in the paramagnetic state and show that the ca
lated inverse correlation lengths agree well with observat

C. The Curie temperature

The MC results for the Curie temperatures are summ
rized in Table II. Also given in the table are the results
previous first-principles calculations, and for comparison
observed Curie temperatures. The calculatedTC of bcc Fe
agrees rather well with the observed value while the ca
lated values for fcc Co and fcc Ni are underestimated
;20–25 %. It is also noteworthy that despite their diffe
ences, the three first-principles approaches result in alm
the same values forTC . Table II also contains the simples
possible estimate of the Curie temperature, i.e., that wh
results from a mean-field calculation assuming local m
ments of temperature-independent size. In this calcula
we have employed the exchange constants for a local
ment equal to the FM equilibrium magnetization per atom
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zero temperature. The mean-field expression for the Heis
berg model reads

Tc
MF5

1

3(j J0 j . ~12!

To facilitate the mean-field calculation, we adopted t
Heisenberg model for the interatomic exchange, and fit
exchange constants for the first three neighbor shells to
spiral states. The result of this estimate is given in Table
As it may be seen from the results, the mean-field Cu
temperature is overestimated compared to the experime
numbers for Fe and Co. For Ni, the mean-fieldTC has almost
the same value as the observedTC . Since it is well known
that the mean-field approximation leads to a systematic o
estimation of critical temperatures, one might suspect t
the critical temperatures calculated from Monte Carlo sim
lations would result in good agreement for Fe and Co, wh
Ni would be underestimated. As it can be seen from Table
these conclusions hold for Fe and Ni, while for Co the Mon
Carlo simulations result in a Curie temperature which
somewhat lower than experimentally observed. As it m
also be realized from Table II, atTC the local moments of Fe
and Ni fluctuate around a value close to their 0 K magneti-
zation, while the local moment of Co is reduced from 1.63
;1.4. If we calculate the mean-field estimate of the Cu
temperature of fcc Co using exchange constants for a lo
moment of 1.4, we get a mean-fieldTC of 1390 K which is
;30% larger than the MC result. This is similar to the mea
field overestimation of the Curie temperature which res
for Fe and Ni where the average local magnetic momen
TC coincides with the equilibrium magnetization per atom
zero temperature.

D. The paramagnetic state

In a second set of simulations at temperatures above
Curie temperature, we calculated the static paramagnetic
ceptibility x0 for q̄50̄, and the real-space static magne
correlation function̂ m̄0•m̄i&. Experimentally, the tempera
ture dependence of the susceptibilityx0 obeys a Curie-Weiss
law, and we have investigated the calculatedx0 and find that
within the statistical errors arising from the MC simulation
the observed Curie-Weiss behavior is obeyed by the mo
From the temperature dependence of the uniform suscep
ity x0, we also determine the value of the Curie-Weiss co
stant. The real space static magnetic correlation function
investigated to determine the paramagnetic scattering be
ior. We have derived inverse correlation lengths from t
calculated correlation functions and compare to experime
values.

One can, in principle, calculate the static uniform susc
tibility x0 from the variance of the magnetization, and
noted in the previous section, calculated this way the pea
x0 as a function of temperature gives a good estimate of
Curie temperature. However, using MC to calculate the
solute value of the susceptibilityx0 from the variance of the
magnetization is difficult, and requires long MC runs, a
subsequent finite-size scaling. It is easier, and more accu
to calculatex0 directly from the definitionx05dM/dH
whereH denotes a uniform magnetic field, andM the mag-
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14 984 55N. M. ROSENGAARD AND BÖRJE JOHANSSON
netization. In practice, we perform a calculation with a Ze
man term from a magnetic field added to the magnetic
ergy. Provided the magnetic field is small enough that
response is linear, we can determinex0 directly from the
magnetization obtained in the direction of the magnetic fie
For each of the three ferromagnets, we have performed
culations for three different values of the field to ensure t
we sample the linear regime of small fields. The value of
field is of the order 0.1 mRy/mB;20 T which is an order of
magnitude higher than laboratory field strengths. This re
tive large value of the field is required to ensure that
response is significant relative to the magnetization fluct
tions which result from the relative small number of sit
used in the simulations. We also tested the size depend
and conclude that the main effect of increasing the num
of sites is to reduce the statistical error.

As already mentioned, within the statistical errors, the c
culatedx0 obeys a Curie-Weiss law. The calculated valu
of the Curie-Weiss~CW! constants of bcc Fe, fcc Co, and fc
Ni are given in Table III. Also given in the table~labeled
SG! are the calculated values of Staunton and Gyo¨rffy,6 and
the observed values. As for the Curie temperature, the
constant of bcc Fe is reproduced rather well. For fcc Co
fcc Ni, the CW constants are underestimated. This is in c
trast to the results of Staunton and Gyo¨rffy who obtained an
underestimate of the CW constants of both bcc Fe and
Ni. The absolute value of the CW constant of fcc Ni calc
lated by Staunton and Gyo¨rffy does however agree consid
erably better with observation than the value calculated
the present work.

The real-space static magnetic correlation funct
^m̄0•m̄i& has been calculated from simulations on 27
~143) sites. From general arguments,34 the paramagnetic
real-space correlation function is expected to show onl
weak dependence on the size of the computational box.
resulting real-space correlations of bcc Fe at two temp
tures in the paramagnetic regime are shown in Fig. 9. In
figure, we also show the result of fitting a simple Ornste
Zernike correlation function}exp(2kd)/d to the calculated
real-space correlations. In this expression,k is the inverse
correlation length, andd is the intersite distance. In the fit
ting, we have neglected the nearest, and next-nearest n
bor correlation as the simple Ornstein-Zernike correlat
function is expected to hold in the long-wavelength limit. A

TABLE III. Properties of the paramagnetic state, both results
this work, previous first-principles results, and experiment~Expt.!.
C is the Curie-Weiss constant of the paramagnetic susceptib
k is the inverse correlation length derived from the pair-correlat
function calculated at the temperatureT51.25TC .

System C (mB
2) k ~Å21)

This work SGa Expt.b This work SGa Expt.

Fe bcc 3.0 1.28 3.41 0.38 0.37 0.40c

Co fcc 1.1 3.31 0.34
Ni fcc 0.22 0.49 0.86 0.28 0.28 0.24d

aReference 6.
bReference 40.
cReference 37.
dReference 38.
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can be seen in Fig. 9, the calculated correlations show s
oscillations which is not contained in the monotoneous
crease of the Ornstein-Zernike function. The oscillatio
which are common for the two temperatures are rather sm
compared to the statistical uncertainty of the correlatio
The inverse correlation lengths that can be derived from
assumption of the Ornstein-Zernike correlation function
0.19 and 0.38 Å21 for temperatures of 1.10TC , and
1.25TC , respectively. These values corresponds to a va
h50.75 for the critical exponent of the correlation lengt
Given the rather large uncertainty in the determination ok
especially forT51.10TC , this value ofh compares favour-
ably to the observed value ofh50.70.31 In Table III, we
give the calculated values of the inverse correlation len
k for the temperature 1.25TC for the three systems consid
ered in the present study. To facilitate a comparison to
experimental values which are also given in the table,
kept the ratio of paramagnetic temperature to the Curie t
perature the same in calculation, and experiment. As it
be seen, calculation agrees rather well with experiment
both bcc Fe and fcc Ni. We were not able to find experime
tal values ofk for fcc Co. The uncertainty in the determina
tion of k was estimated to be; 0.03 Å21 for bcc Fe and
; 0.02 Å21 for fcc Ni. These numbers are comparable
the deviation from observation. Even better agreement is
tained between the present calculation, and the calculatio
Staunton and Gyo¨rffy. The close agreement is somewhat su
prising since the approach of Staunton and Gyo¨rffy is very
different from that of the present work. It should be not
that the different inverse correlation lengths obtained for b
Fe, fcc Co, and fcc Ni are closely related to their differe
lattice constants. In units of inverse lattice constants,k of
bcc Fe is 1.05,k of fcc Co is 1.19, andk of fcc Ni is 0.97.
That is, the extent of the correlations is about the same m
sured in lattice units. In contrast, the absolute value of
static correlations differ, as can be realized from their diff
ent uniform susceptibilitiesx0.

f

y.
n

FIG. 9. The real-space static magnetic correlation function
bcc Fe at the temperatures 1.1TC ~diamonds!, and 1.25TC ~circles!.
Lines are the fit to the Ornstein-Zernike expression.
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As witnessed by the nearest-neighbor spin angleaNN

given in Table II, the present treatment results in a relativ
small amount of magnetic short-range order. This is in c
trast to some of the early theoretical work1,18 which, based
on the experiments of Mooket al.41 and Lynn,42 required
considerable magnetic short-range order. Since then
analysis of Edwards,43 and neutron-scattering experiments
Brookhaven38,39,44 have clarified the observations made
the early experiments. While we cannot rule out the ex
tence of strong magnetic short-range order, it is clear fr
the present work, as well as from the work of Staunton a
Györffy6 that a paramagnetic state containing only sm
magnetic short-range order can explain the paramagn
scattering observed experimentally.

V. CONCLUSIONS

We have presented a magnetic energy functional whic
based on the set of local magnetic moments$m̄i% and de-
scribes the magnetic energy of an arbitrary magnetic c
figuration. The ordering of the local magnetic moments
described by a generalized Heisenberg Hamiltonian in wh
the direction of the local moments are represented as cla
cal vectors. First of all, the exchange interactions depend
the size of the local magnetic moments. In addition, an
site exchange contribution is derived from fixed spin m
ment calculations for the constrained ferromagnetic sta
The sum of on-site and local exchange energy provide
magnetic energy functional which includes the correlat
between the stability of the local magnetic moment, and
ordering of the local moments. We have presented s
consistent LMTO calculations of zero-temperature magn
properties within the local-spin-density approximation to t
density-functional formalism. Calculations have been p
formed for bcc Fe, fcc Co, and fcc Ni both for the co
strained ferromagnetic states, and for a number of spin sp
states using the fixed spin moment technique. The z
temperature results of these calculations compare well w
the experimentally observed low-temperature properties
though we note that some discrepancy was found for
spin-wave stiffness constants of bcc Fe and fcc Ni.

The results of the self-consistent electronic-structure
culations were subsequently used to calculate the param
of our magnetic energy functional. In a subsequent se
Monte Carlo simulations, we applied the model magne
energy functional to determine the equilibrium magne
properties of the itinerant ferromagnets Fe, Co, and Ni. In
simulations, we allowed all degrees of freedom to vary. F
our chosen description of the magnetic configurations, t
include both size, and direction of the local magnetic m
ments on each site. From the MC simulations, we determi
finite-temperature magnetic properties such as the mag
zation curve, the Curie temperature, and the behavior of
local magnetic moment as a function of temperature. T
calculated magnetization curve was found to deviate con
erably from the observed magnetization curve. We beli
this is a consequence of the separation of quant
mechanical and statistical mechanical averages which re
from our mapping to a Hamiltonian that describes the lo
magnetic moments classically, and include quantum effe
y
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only in the calculation of the exchange constants. Our ca
lated Curie temperature of bcc Fe agrees very well with
experimental Curie temperature, while the Curie tempe
tures of fcc Co and fcc Ni are underestimated by about
25%. The calculated Curie temperatures agree very well w
previous first-principles calculations of Staunton a
Györffy6 and Uhl and Ku¨bler.7

We also investigated the paramagnetic state of thed
ferromagnets. We presented calculations of the uniform p
magnetic susceptibilityx0 and the inverse correlation length
derived from the static magnetic correlation function. With
the statistical uncertainty of the MC simulations, we fou
that the uniform paramagnetic susceptibilityx0 obeys a
Curie-Weiss behavior, and we determined the Curie-We
~CW!constants of the 3d ferromagnets. As for the Curie tem
perature, the CW constant of bcc Fe agrees very well w
experiment. This is in contrast to the previous work of Stau
ton and Gyo¨rffy.6 For fcc Co and fcc Ni, however we calcu
late a CW constant which is only a fraction of the expe
mentally observed CW constant whereas Staunton
Györffy get reasonable agreement with experiment for
Ni. It should be noted, that the CW constant of fcc Ni is on
1/4’th of the CW constant of bcc Fe, and as a conseque
an absolute error which is acceptable for bcc Fe can for
Ni be of the order of the CW constant itself. We found th
the static magnetic correlation functions fit well to the pa
magnetic scattering behavior observed experimentally.
calculated inverse correlation lengths are in good agreem
with experimental values obtained from neutron-scatter
experiments.

Further improvements are certainly possible. The effec
including self-consistent calculations for other constrain
magnetic structures than the spin spirals would be of inter
and could clarify the size of multisite interactions whic
have been neglected in the present work. We have c
pletely neglected the effect of Stoner excitations. Howev
due to the large Stoner-Curie temperatures obtained in
local-spin-density approximation~LSDA!, we expect the ef-
fect of these excitations to be small. The effect of the LSD
itself would also be of interest, as would an investigation
the approximation in the self-consistent calculations of us
a single spin quantization for each site. Other effects suc
thermal expansion, and lattice vibrations are more difficul
handle at present but may obviously influence the magn
properties. In a wider perspective, mapping to a quantu
mechanical representation of the magnetic state instea
the classical representation used in the present work wo
be very interesting, and could improve the description of
magnetic properties, especially belowTC .

In summary, a model based on a coarse-grained des
tion of the magnetic state in terms of site-dependent lo
magnetic moments was used to calculate the magnetic
ergy. The derived magnetic energy expression was show
account for most of the qualitative features of the itinera
ferromagnetism in bcc Fe, fcc Co, and fcc Ni. The simp
division of the magnetic energy into on-site and local int
site exchange contributions provides a simple picture of
itinerant ferromagnets. Hence, we were able to characte
bcc Fe as a weak itinerant ferromagnet whereas the fe
magnetism of fcc Co, and in particular of fcc Ni was foun
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to have a strong itinerant character. Despite the differenc
itinerancy, the finite-temperature properties of all three s
tems are closely related. This was shown to be a con
quence of the entropy of spin fluctuations. Spin fluctuatio
stabilizes the local magnetic moments at finite-temperatu
and this leads to similar finite temperature behavior of b
Fe, fcc Co, and fcc Ni. The dominating role of spin fluctu
tions leads to a paramagnetic state consisting of sizeabl
cal moments in a weak short-range ordered state.
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