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Combining high-temperature expansions with the recursion method and quantum Monte Carlo simulations
with the maximum entropy method, we study the dynamics of the spin-1/2 Heisenberg chain at temperatures
above and below the coupling. By comparing the two sets of calculations, their relative strengths are
assessed. At high temperatures, we find that there is a low-frequency peak in the momentum-integrated
dynamic structure factor, due to diffusive long-wavelength modes. This peak is rapidly suppressed as the
temperature is lowered belodv Calculation of the complete dynamic structure fac®(k, ) shows how the
spectral features associated with the two-spinon continuum develop at low temperatures. We extract the
nuclear spin-lattice relaxation rateTi/from the w— 0 limit, and compare with recent experimental results for
Sr,CuO; and CuGeQ. We also discuss the scaling behavior of the dynamic susceptibility, and of the static
structure factorS(k) and the static susceptibility(k). We confirm the asymptotic low-temperature forms
S(m)~[INMP? and x(m)~T YIn(T*¥2 expected from previous theoretical studies.
[S0163-182697)00721-3

[. INTRODUCTION bosonization and conformal field theory enable one to make
a number of experimentally verifiable predictions in this
Quantum antiferromagnets represent an important class oégime’® The high-temperature regimer$J) has been
systems in both theoretical and experimental condensed mastudied numerically by short-time or frequency moment ex-
ter physics. In recent years, greatly improved precision opansions combined with the recursion metfidthe regime
neutron scattering and NMR experiments have made posf intermediate temperatureb~J is the most difficult to
sible very detailed Comparisons with theoretical prediCtiOﬂSstudy theoretica”y’ but is C|ear|y of much experimenta] and
A number of new materials have been synthesized whiclheoretical significance, containing the crossover from the
appear to be near-perfect realizations of the simple $pin-giffusive high-temperature behavior to the low-temperature
Heisenberg model in various geometries. For exampleegime dominated by elementary excitations. Here we study
SKCu0y,*? SrCy0;,° and SpCUOCl, (Ref. 4 comprise  the dynamics at intermediate temperatures using the high-
structural copper-oxygen units with magnetic properties welktemperature expansiofHTE) technique and a recently de-
described by the Heisenberg model on a single oneveloped “stochastic series expansion” quantum Monte
dimensional (1D) chain, two coupled chains, and a 2D Carlo (QMC) techniqué®** (an improved variant of the so-
square lattice, respectively. £uOs is interesting because it called Handscomb’s methtil. We have also numerically
appears to be one of the most perfect 1D sphieisenberg  diagonalized the Hamiltonian for a chain with 16 spins,
system found so far, with a strong exchardge2000 K and  \which, although not large enough to give reliable results in
a 3D ordering temperaturgy~5 K. Detailed experimental general, provides for a good test of the other methods in
studies of this systerh? as well as other quasi-1D materials certain regimes.
such as KCuE(Ref. § and CuGeQ(Ref. 6 have pointed to The HTE method has been extensively used to study
the need for more accurate theoretical studies of the spistatic properties of spin modeig Here we combine it with
dynamics of theS=1/2 Heisenberg chain. Although this the continued fractior{or recursion method to calculate
model, defined in standard notation by the Hamiltonian  dynamic properties at finite temperatures. The QMC method
used here has also previously been applied to both the statics
and dynamics of Heisenberg models in several different
geometries*® Accurate results for imaginary-time-
dependent correlation functions can be obtained down to
is perhaps the most studied of the basic interacting quanturiairly low temperatures. The maximum-entrogmax-en}
many-body models, its finite-temperature dynamic propertiesnethod®!’is used for analytic continuation to real frequen-
are not fully understood. The low-temperatufB<J) be-  cies. This approach has previously been applied to the spin
havior is controlled by th@ =0 quantum critical poinfline  dynamics of the 1D Heisenberg model by Deisz, Jarrell, and

of critical points to be exagt The powerful tools of Cox® who focused mainly on the low-temperature dy-

H=J2i S-S (3>0), (1)
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namic structure factor and the differences between halfmost practical to choose the component diagonal in the rep-

integer and integer spin. They also discussed at length theesentation chosen. Hence, we study the time-dependent

accuracy of the max-ent method. Here we find that for statispin-spin correlation function

properties, results obtained using HTE and QMC agree al-

most perfectly forT/J=1/8, below which the HTE method S (1) =(Sf(t)S5(0)), (4)

becomes unreliable. For dynamic properties, the HTE , )

method performs well fof/J=0.5, and in this regime the WhereSi(t) denotes the component of a spin-1/2 operator

results agree well with those of the QMC and max-ent methat Siter at timet, and brackets denote thermodynamic aver-

ods. This gives us confidence that the QMC and max-er@ding at temperatur&/J=3"*. We consider only the case

techniques are reliable at lower temperatures as well. of zero average magnetizatiof87) =0. The dynamic struc-
Our main results are the following: At high temperatures,ture factorS(k, ) is the space-time Fourier transform of Eq.

we find that the dynamic structure fact&®(k,») grows  (4):

sharply(perhaps divergessk— 0 andw— 0. This diffusive

g\elzgfla\llgijzr leads to a low-frequency peak in the momentum S(k,w)=2 fidt e“(“’t‘k”(Sf(t)Sé(O». 5)

dk ) Apart from kinematic factors, the neutron scattering cross
Salw)= J E|A(k)| Stk,w), 2 section is directly proportional t8(K,w).
. . . NMR [and related techniques such as nuclear quadrupole
if the form factorA(k=0) is nonzero. In an NMR experi- resonancéNQR)] can provide accurate results for the low-
ment, depending on the(k) corresponding to a given ma- frequency dynamics, through the spin-lattice relaxation rate,
terial and nucleus under study, this can have large effects ogyven by Eqgs.(2) and (3). The hyperfine form factoA(k)

the spin-lattice relaxation rate, which is given’by can be obtained from the Knight shift and also from impurity
1 effects?®?" Here we will restrict our attention to the impor-
i tant case where the nucleus under consideration resides on
2S5(0—0). 3 : leus
Ty the sites of the electronic spins, and assume that the real-

QMC-+max-ent results for T, were previously reported in Space hyperfine coupling(r) has an on-sitedirec term
Ref. 15. Here we provide results of higher accuracy, obtained\(0) and a nearest-neighbg@iransferredterm A(1), giving
by calculating the full momentum dependence ofA(k)=A(0)+2A(1)cosk). The spin-lattice relaxation rate
S(k,w—0). is then given by

As the temperature is lowered beldw=J/2, the diffusive
peak rapidly diminishes in magnitude, and the low-frequency 1 —
spectral weight shifts tk= 7, as expected. The QMC results T 2A%(0)Sp(w=wy), ®)
for S(k,w) clearly show the emergence of spectral features o
that can be associated with the well-knéWh® T=0 two- where,R=A(1)/A(0), wy is the resonance frequency, and
spinon continuum. we define

Comparisons of the momentum- and frequency-dependent
numerical data with scaling theories at low temperatures  Sg(w)=(1+2R?)Sy(w)+4RS(w)+2R?S,(w), (7)
have been presented elsewh&rddere we briefly discuss . ] . )
how the scaling irg/T is violated due to logarithmic correc- WhereS;(w) is the real-space dynamic spin correlation func-
tions. We provide numerical results for the temperature defion at distance, i.e., the time Fourier transform of E(f).
pendence of the staggered structure fac$orr) and the The static structure fact@(k) is the Fourier transform of
static staggered susceptibilig( ). At low temperatures the the_: equal—t_lme_ correlation functl_on, and the static suscepti-
former behaves afin(1/T)]¥2 while the latter behaves as Pility x(k) is given by the Kubo integral
T YIn(1/T)]*? both expected from theoretical results. 5

In Sec. Il we discuss the dynamic structure factor and the - ier' 70\ oz
computational methods used in this study. The results are x(k) zr: © 0 d7(S(n)S5(0)). ®
presented in Sec. lll, and in Sec. IV we discuss and summa- . .
rize our main conclusions. where S{(7)=e™Sfe” ™. S(k) and x(k) can be related to

the dynamic structure factor through the sum rtiles

II. BASIC DEFINITIONS AND NUMERICAL TECHNIQUES

1 o0

We begin by reviewing some basic definitions of the S(k)=—f do(l+e A*)S(k,w), (93
static and dynamic correlation functions we wish to calcu- mJo
late. Both the neutron scattering intensity and the NMR spin- )
lattice relaxation rate measure the dynamics of the electronic _4[" 11 =B
spin system through coupling via the opera&jr. Hence, x(k)= wfo dow™(1-e7")S(k v). (9b)
the relevant dynamic  correlation  function s
(SZ(1)S¢(0)). In a spin-rotationally invariant system, Below we briefly describe the numerical techniques we
which is considered here, this can be evaluated with respecise to calculate the dynamic structure factor of the 1D
to any quantization axis, and in numerical calculations it isHeisenberg model.
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A. High-temperature expansion and the recursion method the A sequence grows with the indéaccording to a power
law A ~k*, with 1<\ <2, which fixes the high-frequency
behavior of the spectral density t®(w)~exp(—|w/?).
(—it)" Moreover, oscillations of the od¢br ever continued frac-
(10)  tion coefficients around thke* curve contain information on

the infrared behavior of®(w). The simplest function that

where the coefficientd!,, are defined as frequency moments, incorporates both the high- and low-frequency behavior typi-
cal of critical spin systems has the form

= d
Vo= [ s (o) v _ 20 Jo|* | |w
oA |
0

_w 2T D(w)= —
, , Nwol [N (1+ a)/2]| wg
of the time Fourier transform

The correlation functiori4) has a short-time expansion

sr<t>=n§0 Mp

n '’

2\
) . (18

The frequency moments of this function are known to be

Sr(w)=ﬁwdt e IS (1). (12 — LT (N2)(1+ a+2k))
=20 (N2)(1+a)

(19

An important related function is the spectral density _
®(w)=(1+e P*)S(w), which is a real and even function and the corresponding continued fraction coefficiehtsan

of frequency and, consequently, its inverse Fourier transfornbe calculated from them numerically. Of course, an approxi-
Co(t) (often called the fluctuation functiorhas an expan- mation of the spectral densitp(w) of the system under

sion in even powers of time only: study by the model densit(w), with parametersog, a,\
" ok determined from a “given” sequencd,, would be just
c (t)=2 (—1)*M (—it) (13) marginally better than the often used Gaussian ansatz. In-
0 K=0 2k (2k)! - stead, Miler and collaborator§see Ref. 9 and references

. L ) ) . . therein devised a more accurate procedure, which we de-
A short-time expansion is of little help if one is interested in g¢ripe here for completeness.

the asymptotic long-time behavior @(t), unless some Suppose that we have calculated the fitstven moments
kind of analytic ansatZmost often a Gaussian onis made. of the true spectral densit(w). Then we calculate the

To this end, let us define the relaxation funcfion corresponding sequendg,, and try to approximate it by the
" o model sequence Ay by minimizing the sum
co(z)=j dt e “Co(t)= 2 Mpz . (14 3, (A —A? with respect to the parametetsy,a,\.
0 k=0 The lower cutoffk,,;;, (=3 in our study is necessary because

From Eq.(13), one then has the first few coefficients\,A;, ... Ay tend to deviate
= do B(w) significantly from the asymptotic behavior represented by
co(z)=f Fy (15  ®(w). Having determined the parameters of the fit we may
— o0 a w =

find exactly theKth-level terminator I'c(z) of the model
and ®(w’)=2 lim__, ,oReco(e—iw’)]. Thus, upon ana- relaxation function corresponding tb(w) by (numerically
lytic continuation the relaxation function gives the spectralinverting the equation
density. A useful property of the relaxation function is that it

has a continued fraction representafion Co(2)=Ap/z+ A H{z+ - -+ A [ 2+ T (2D)]}). (20)
Ao The terminator thus incorporates information on the
ColD)=———7 (16)  asymptotic behavior of thA, sequence.
74—t The relaxation functiorcy(z) in Eq. (17) is then approxi-
7+ Az mated as
Z+ .-

To simplify notation we shall in the following write the con- Co(2)=Ao/ @+ As izt -+ Ak /[zHTk(2)]D), (2)

tinued fraction as and thus, in addition to the correct largesehavior con-
tained in the first few exactly known continued fraction co-
Co(2)=Ao/{zH+Ar/[z+A5/(z+ - )]} 17 efficients, through the terminatdi(z), co(z) also incorpo-
The firstK of the continued fraction coefficients are uniquely rates the correct smatl-behavior extracted from thé,
determined by the corresponding fiksteven frequency mo- Sequence. Analytic continuatian— —ie’ then gives us the
ments(11) through an iterative procedure described in Ref.spectral functiond®(w’) in the whole range of frequencies
9. Of course, we just traded the short-time behavior ofw’. For the model spectral functioh(w) of type (18), such
Co(t) for the largez behavior ofcy(z), which does not bring analytic continuation is performed by hand and only requires
us any closer to the desired- 0 region. But as described in numerical integration of well-behaved functions.
detail in the book by Viswanath and Mer.° the relaxation To study the spin dynamics #hite temperature we have
function is uniquely determined by the sequedge which  calculated moments of;(w) by the HTE technique. It is
contains important information about the asymptotic behavwell known that these moments!, can be expressed in
ior of cy(z). Namely, for the isotropic Heisenberg mod#l, terms of a thermal expectation value of R&-fold
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FIG. 2. Temperature dependence of the parameters of the fit for
two values ofR.

are determined by spin correlations at larger distances, and
hence are more temperature sensitive. The HTE ceases to
work for A; at 8~0.75 where it starts to change rapidly, and
for Ag at 3~1.5. Since we want to reach the lowest possible

FIG. 1. Continued fraction coefficients, for Sz(w) as a func- temp.erature, we restrict ourselvgs to first. k=0, .. . 5)
tion of 8 for R=0 (lower panel and as a function of the indexfor coefficients of the sequence, which permits analysis up to
R=0 and—0.5 at3=0 (upper panel B~2. Of course, the shorter the, sequence the more un-

certain becomes the determination of the parameters
commutato>° High-temperature expansion can be devel-wg,a,\, and in each particular study a try-and-see approach
oped for these quantities by the cluster metfbth fact,  should be used to find a compromise between these two con-
using the same set of clusters, the expansions forkthe flicting requirements. We found that #=<0.5 results ob-
moment will be complete to ordg8N~¥, whereN depends tained withK=7 andK=5 do not differ much, and up to
on the size of the largest cluster considered. We have calc8=2 the sequencd,, ... ,As is stable and reliable.
lated up toN=22 for all nonzero moments. The equal-time In Fig. 1 we also show th& dependence of tha, se-
correlation function is calculated to ordg. It is more  quence forSg(w) [Eq. (7)] for R=0 and R=—0.5. The
convenient to do the calculations for the scaled functionatter has a vanishing form factor k&=0 and thus has no
Co(2)/My, i.e., the one defined by the normalized set of mo-contributions from the diffusive modes. It is evident that the

ments {1, M,/Myg, ... My /Mg}, and obtain the needed former sequence exhibits an odd-even oscillation, suggesting
function co(z) by simple multiplication at the very end of an infrared singularity, but this is absent from the latter se-
calculations. guence. This ability to recognize the presence or absence of

The behavior of the first seven continued fraction coeffi-diffusive modes at such a simple level shows the power of
cients of the spin autocorrelation functi¢g(t)*Sy(0)) as a  the recursion method.
function of inverse temperature is shown in Fig. 1. From the The temperature dependence of the parameters of the fit,
relation betweenM,, and the A, sequencéswe have Ed.(18), is shown in Fig. 2. Notice the drastic difference in
Ay=M,, and hence\,=1/4 irrespective of temperature in @, the power of the infrared singularity foR=0 and
that case. Another property of thig s that make them con- R=—0.5: In the latter case it is always zero, whereas in the
venient for numerical computations is that they are all numformer it decreases rapidly with temperature, demonstrating
bers of order 1, whereas the corresponding frequency mdhe suppression of the diffusive behavior at Iow
ments grow very fast with the index, for example, The overall quality of the described procedure can be es-
M,,(T=)=166 988 876. Continued fraction coefficients timated by direct term-to-term comparison of the real se-
with higher indexk are related to the momentd,, which  quenceA, with the model oneA,, given in Fig. 3 for
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A=—5 2 (Aip—Hop)+ (22
4g8BBEaLLOOY =
301 4 g 98 28 86 1 where the operatorl; , andH,, are defined as
00 goQooooo
goog A
25t q0080°" | Aup=2(§-SiS00). (233
o @ ood " + - — ot
Y- o Hop=S Sp1tSp Spva- (23b)
2.0 a8 ] "
o g 8 = Oreal Ay.Ag R=0.0 The partition fun_ctionZ=Tr{e‘5H}_ is transformed into a
08 g 8 Omodel A,.Ag R=0.0 | sum suitable for importance sampling techniques by expand-
15 ing e A" in a power series, and writing the trace as a sum
: : : : : : : over diagonal matrix elements in the standard basis
T T T T T T T T _ V4 Z - -
@Q@@QQQQQ@@@QQ {la)}={|S], ... ,Sy)}- This gives
30’@©©@© (—1)”2ﬁn nA
oo Z:Z 2 2 ] 2) a H Ha|,b| al, (24)
poooo = n s, no\2 =1
no00P°
25 r 5o° oo® ] whereS, denotes a sequence of index pairs defining the op-
g8"® 5000 ocoP erator stringll[_;Hy .
o O
o O
20 _go®” Oroal s s Re05 | Sh=[as,b1][az,ba] - -[@n,bp],
a del A,..A; R=—0.5
o°f Fimodel &5 ae{l,2, bell...Ny, (25)

50 02 o4 06 08 10 12 14 16 18 20 and n, denotes the total number of index paimperator
B [a;,b;] with a;=2. For everN (or anyN for an open chain
n, is even for all nonzero terms in E{R4). All terms are
FIG. 3. Comparison of the real and modelsequences for two  tN€N Positive, and can be stochastically sampled using stan-
values ofR at different temperatures. Each panel shaws(bot- ~ dard Monte Carlo techniques in the space of index sequences
tom), A, (middle), andAs (top). and basis states.
The simulation is carried out using two different elemen-
_ tary modifications of the index sequence, taking into account
k=3,4,5. Deviations ofy, from A, are most pronounced at the constraints imposed by the fact that the operators defined
high temperatures for theR=0 case, where the low- in Egs.(23) are allowed to operate only on antiferromagneti-
frequency infrared divergence is the strongest, and almoglly aligned spin pairs, and that the operator product corre-
disappear foiT below J. The deviations at higl can be  Sponding toS, must propagate the state) onto itself. The
reduced by working with longe, sequences, as was men- Powern is changed by inserting or removing single diagonal
tioned above, but this would significantly reduce the range oPPerator§ 1,b], and the number of spin flipping operators is
applicability of our calculations. The absolute value of thechanged by pair substitutiofid.b],[1b]—[2,b],[2)b] (the

discrepancy between’s does not exceed 5% in the worst two operators selected for updating are typically not adjacent
case in the sequenge The grand canonical ensemble with fluctu-

ating total magnetizationm?’=3;S?, can be studied for
T/J=0.08 by also performing spin flips in the states. At
B. Stochastic series expansions lower temperatures the acceptance rate for such flips be-
and the maximum entropy method comes very low, and |t_ is then more convenient to study the
canonical ensemble witm*=0.

The stochastic series expansion QMC metfidtlis an QMC calculations can access the dynamic structure factor
improved variant of the so-called Handscomb’s technifue. only through the corresponding correlation function in
It is based on importance sampling of terms of the poweimaginary time,
series expansion of exp(8H), which for a finite system at
finite B can be carried out to all important orders, without Cr, i, (1) =(S (1S (0)). (26)
introducing systematic errors. The current formulation of the ) ) . )
method is described in Ref. 11, and has previously beeH1 th? stqchas_tlc SEries expansion method, such a correlation
applied to both static and dynamic properties of Heisenber unction is estlmzated by mezasurlng th.e correlations be_tween
models in several different geometriés:®> Here we briefly tatesja(p))=|Si[p], - .. Sy[P]) obtained by propag_atlng
review how imaginary-time-dependent correlation functions| @) in Eq. (24) with p of the operators in the product:
are evaluated using this technique. p
tenTQSe Hamiltonian for arN-site periodic chain is first writ- |a(p))=|1:[1 Ha, ,b||a>a |a(0))=|a). (27)
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The expression for the imaginary-time-dependent spin-spin N, _
correlation function i¥ XZ:Zl [Sd(71)—S(m) 1% o (7). (36)
=
L (B ™l — | ined wi . )
c . (n={3 "C. . (m) (28) E is the e.ntropy, defined \'N|th.respect to a “default model
f1:f2 mzo B"(n—m)Im! "2 ' m(w). Using a default which is constant fax>0 and sat-
isfiesm(— w)=e"#“m(w), the entropy igwith S(k,w) as-

where sumed normalized to unity
_ 1 " , , N,
Crl,rz(m):m p§=:O Srl[p]srz[p+m]- (29 E:_E S,In(S)K(wp,0). (37)

=1

Tzh © perE)dicity of the propagated s_tates imply _thatThe parametew in Eq. (35) is determined iteratively using a
Siip+n]=S[p]. Note that any value of is accessible, in  qijterion derived using Bayesian logic, leading to the most
cont_rast to wor!d I|ne_ methods whepemust .be an integer probableS(k,») compatible with the QMC data and its er-
multiple of the time-slice width used in the simulatitiiThe 1< "as discussed in detail in Ref. 17. Typically, on the order
corresponding static susceptibiligy ., [i.e., the real-space N, =100—200 frequencies are used in E&4). The am-
version of Eq.(8)] can be directly obtained by integrating plitudes S, then form a smooth curve representing the fre-

over 7 in Eq. (28). The result i80 guency dependence &k, w).
- C.C i ith t di lizati
_ . Comparisons with exact diagonalization
Y=\ nr D 2 Sfl[p]) o _ . o

p=0 Accuracies of calculations of dynamic quantities using the
n—1 . HTE and QMC methods are difficult to assess rigorously.
x| S Sp]]+p 1r2 (30 Comparing results obtained in the two different ways pro-
p=o0 '2 n+1 vides for a good test. However, the results will never agree

completely(in contrast, for static quantities the results agree
The relation betweeﬁ:rl,rz(r) and the dynamic structure perfectly in the regime where the HTE performs well, as
factor defined in Eq(5) is discussed in Sec. lll Cand it is therefore useful to check the
results against other calculations as well.

1(~ For a small system, all the eigenstates can be obtained
Sk(7)= ;fo do S(k,0)K(w,7), (3D exactly by numerically diagonalizing the Hamiltonian. Using
the translational invariance and the conservation of zhe
whereS,(7) is the Fourier transform, component of the spin, the Hamiltonian consists of blocks

corresponding to all the combinations of the magnetization
m? and the momentunk. For a 16-site system the largest

— —ik(ro—r
Sdm)= Nrgz e 2 l)Csz( 7, (32 blocks have 810 states, and can easily be diagonalized on a
workstation. The next two appropriate sizés=18 and
the kernel is N=20 have largest-block sizes of 2704 and 9252 states, re-
spectively, and could be studied with some more effort. Here
K(w,7)=e"™+e F77, (33 we consider onlyN=16.

and S(k, — w) =e~#*S(k,w). The analytic continuation of The exact dynamic structure factor of a finite system is a
the QM&: data foiS,(7), i.e., inversion of Eq(31), is carried set pfé functions with pos_itions gi\_/en by the energies of the
out using the max-ent methdft'” which we very briefly excited states, and amplitudes given by the squares of the
review here for completeness. ’ corresponding matrix elements of the opera8pr For a 16-

For a given momentum transfer S(k, ) is paremetrized site system, the number of contributidgfunctions is very

as a sum o functions at frequencies,,, n=1, ... N,, small atT=0, and it is not possible to carry out a meaningful
comparison with the other methods. As the temperature is
N, raised, the number of functions with significant weights
S(k,w)= 2 Shé(w— wp). (34 increases rapidly, and a relatively smooth spectrum can be
n=1

obtained by using some reasonable broadening of the indi-
vidual é functions. The results can of course not be expected
to completely represent the thermodynamic limit, but at tem-
peratures where the correlation length is much smaller than
the system size meaningful comparisons should be possible.
Q= y2/2—aE. (35)  We here compare HTE, QMC, and exact diagonalization re-
sults forS(k,w) atk= /2.
Here x? is the deviation of the imaginary-time function  Figure 4 shows results of all the methods at temperatures
S«(7) corresponding to a particular set of spectral weightsT/J=1.0 and 0.5. We have chosen to represent the exact
{S:, ....S,} in Eqg. (34) from the QMC estimat&,(7) and  results as histograms with a bin width,=0.1J. Thenth bin
its statistical error(7), which is available for a discrete set contains the integrated spectral weight in the frequency
of times 7y, ...,my % range[ (n—1)A,,nA,]. On this frequency scale, the results

7

The “classic” variant of the max-ent method used here
amounts to determining the coefficiel8sthat minimize the
guantity
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FIG. 5. The dynamic structure fact@z(w) with R=0 calcu-
= o lated using the HTE method at various temperatures.
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k= /2 presented above, we therefore discuss HTE results
mainly for momentum averages and the spin-lattice relax-
FIG. 4. Comparison of exadii=16 (histogramg, HTE (solid ation rat? 1T, _With the QMC method we have Calcu"”,‘ted
curves, andN=128 QMC + max-ent(dashed curvésresults for the imaginary-time correla’glon functions needed to obtain the
the dynamic structure factor &t= /2. full S(k,w) for systems with up tdN=128, down to tem-
peratureT/J=1/8. Results for I/;, as well as the transverse
stilllh'ave structure due to the finite size, but neverthelesggte 1,5, were already presented in Ref. 15, wher&,1/
e>_<h|b|t overall shapes that the other results can be compargglas calculated for slightly larger systems by analytically
with. Indeed, the HTE spectra have shapes that very welontinuing weighted imaginary-time correlation averages for

match the histograms. The QM@ max-ent results are ¢ : ;

pace separations<2, corresponding to the model form
somewhat' broader and have more rounded .shaitm factor discussed in Sec. Il. Hegk, w) is first calculated for
asymmetri¢, as would also be expected, but still represent

) ST . I momenta, and the momentum averaging is carried out
quite reasonable distributions of spectral wel.ght. The QI\/Icgfter the analytic continuations. This method, though more
results were calculated for a systemMbE 128 sites. Results

obtained for the same si2é=16 as the exact diagonaliza- cumbersome and time consuming, should be more reliable
tion look very similar, which also indicates that finite-size Ij?frfj;l{lgglgtg]A?gnr?;gr?n%é?gfufgsh as those resulting from spin
effects are small at these temperatuffes the momentum ) = , i
considered heje The relative statistical errors of the  Below, in Sec. Il A, we first consider various aspects of
imaginary-time data used were in the range 40103,  the frequency and momentum dependence of the dynamic
which is typical for all the QMC results discussed in this Structure factor. In Sec. Il B we discuss the spin-lattice re-
paper (the absolute error is typically in the fifth decimal |aX§tlc?nGra§, Iang recle”néexp%r_lmentalhresultsl,_ fofgﬂ'r?s _
p|ace of the resu)t an uGe . n Sec. . “We |SCUSS.t .e scaling behavior
The limit w—0 is of special interest, as it determines the ©f the dynamic susceptibility, and how it is affected by loga-
spin-lattice relaxation rate. The results shown in Fig. 4 indi-fithmic corrections. We present explicit calculations of the
cate that meaningful results can be obtained for this quantityogarithmic corrections to the temperature dependence of the
The differences between the HTE and QMCmax-ent re- Staggered structure factor and the staggered susceptibility.
sults are typically 10—20 %. We cannot rigorously establish
which calculation is more accurate in the—0 limit, but A. Dynamic structure factor
based on the better agreement with the overall shape between gagyits for Sy(w) [corresponding to a form factor
the HTE and exact diagonalization in the whole .frequencyA(k)zl]’ obtained using the HTE technique at different
range, we expect the HTE to be more accurate in the teMgmperatures, are shown in Fig. 5. As discussed earlier, we
perature regime where it performs well/0=0.5). Atlower oy nect these results to be reliable dowTtd=0.5. We find
temperatures .only Q.MC'." max-ent results are _avallable, that at very high temperatures there is strang® diver-
since exact diagonalization also does not provide accurat&ence which diminishes a$ is decreased, and spectral
results belowT/JsO.E_;, especially fow— 0. Based on high- weight is transferred to a broad peakat1.5. AtT=1, a
temperaiure comparisons such as those prgsented here, iﬂ’@ak atw~1.5 is evident together with an infrared peak,
expect the error of the QM@ max-ent calculations at lower which is still strong at this temperature. However, at

temperatures to be of the order 10-20 %. T=0.5 the diffusion peak is almost invisible and most of the
Il RESULTS spectral weight is concentrated at higher frequencies.
So(w) calculated using QMC and max-ent analytic con-
The HTE method is best suited for studying the dynamicdinuation is shown in Fig. 6, for temperatures down to
of k-integrated quantities. Apart from the results for T/J=1/8. Results for systems witN=64 andN=128 are

o/J
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FIG. 6. The dynamic structure factor averaged with a constant F|G, 7. The low-frequency limit of the dynamic structure factor

form factor calculated using QMC and max-ent analytic continua-s the momentum. Solid and open circles areNor 64 and 128,
tion at different temperatures. Dashed and solid lines are results fagspectively.

system sized\=64 and 128, respectively. _
where the lower bound has the smallgsiependence. This

. _ is indeed the position of the maximum seen in Fig. 6 at
compared, in order to assess effects of the system size. TIZ?:S.

agreement with the HTE results is quite good Tgd=1.0 A maximum at lower frequency also developsSg(w)

and 0.5. The diffusivew—0 peak atT=1.0 is somewhat for T<0.25). It is due to the gradual change from relax-
higher and narrower in the HTE result, whereas it is someational to propagating behavior for modes with momenta
what more pronounced in the QMC resultsTd=0.5. At  3w/4<k<m. The peak sharpens and moves towaids0
high temperatures, the—0 peak height grows with the as the temperature is loweréthis trend is seen also in re-
system size in a QMC calculation, since the diffusive contri-Sults for lower temperatures, not shown her€his maxi-
butions are cut off at the momentuka=2/N in a finite ~ MUM is expected from the scaling form for the dynamic sus-

system. Considering the intrinsic difficulties of numerical CePUbility first derived by Schul’[x () ~ tanh(w/2T) for

: : L2 . T<J], and has also been discussed in the context of neutron
analytic continuation, in particular of QMC data, the agree scattering experiments on @D sCOO) ,- 3D,0.3:

ment between the HTE and QM€ max-ent results has to Figure 7 shows the momentum dependence of

be considered quite saﬂsfactory._ . S(k,w—0) at several temperatures. It is clear that the low-
Apart from thew~0 peak at high temperatures, the dif- frequency weight is strongly peaked nee0 at T/J=1,
ferences between thid=64 andN=128 results are likely 1, i shifts tok= = as the temperature is lowered. The strong
mainly due to statistical fluctuations in the imaginary-timej,crease ak—0 at high temperatures is clearly not captured
data, which are amplified in the real frequency spectra. Thgompletely in a small system, due to the discreteness of the
dominant peak ab/J~1.5 is very pronounced =8, and  momentum. Apart from this long-wavelength cutoff, there is
does not exhibit much size dependence. The position of thgg size dependence betwelr- 64 and 128 within the fluc-
peak can be understood on the basis offtked two-spinon  tuations of the data. We have not explicitly calculated statis-
continuum. The Bethe ansatz solution gives an exact expresical errors of the results, but one can get an impression of
sion for the lower edg&® win(k) = (7/2)Jsin(k). The upper their order from therather low degree of nonsmoothness of
bound is approximately given wma{K)=mJsin/2).  the curves. As discussed in Sec. Il C, there may be some
Since the dominant spectral weight is concentrated at theystematic errors present as well, due to the unavoidable bias
lower edge, one can expect a maximum in the momentunaf the max-ent method used for the analytic continuation. In
averageSy(w) at w=m/2, arising from momenta~ /2, particular, this may be the case close to bdtk0
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and k=, in the neighborhood of the points where low-
frequency weight first starts to appe@e., at temperatures
where there is an intermediate momentum regime with van-
ishing low-frequency weight In these regimeS(k,w—0)
may be overestimated due to broadening effects; i.e., low- TJ=1.0
frequency weight may be seen in Fig. 6 where in fact the
actual modes only begin to have significant weight slightly
abovew=0. Away from these regimes, we expect system-
atic errors of at most 10—20 %, as discussed in Sec. Il C.
We now discuss the full dynamic structure factor in the
temperature regime where there is the most significant shift
in spectral weight fronk~0 to k=~ . We presentN=128 =
results forT/J=1.0, 0.5, and 0.25 graphed in two different \x—:—;
ways. First, in Fig. 8, we show 3D graphs with curves of Y \\\
S(k,w) for each individuak. This clearly demonstrates how %
the narrowk~0 peak present aI/J=1 is significantly re- 0
duced afT/J=0.5, where there is also a massive buildup of
spectral weight at momenta closeke 7. The maximum at
k= is not yet very pronounced at this temperature, how-
ever. AtT/J=0.25 thek=0 peak has vanished almost com-
pletely, and the distribution of spectral weight starts to re- T/J=0.5
semble what would be expected from tlie=0 two-spinon
continuum. Again, the lack of smoothness along momentum
cross sections gives an impression of the considerable ampli
fication by analytic continuation of the very small statistical
errors in the imaginary-time data. The concentration of the

weight between the lower and upper bounds of the two- S ‘\ —
¥-
\%—

spinon spectrum is seen more clearly in the plots of Fig. 9. = \ -
Here the relative intensity is represented by shades of gray ir = \\—:
the (k,w) plane, and th&@ =0 bounds are also shown. It is \\————i

clear that there is very little weight above the upper bounds
even at high temperatures, whereas there is significani
weight below the lower bound.

One may still wonder how well the max-ent method cap-
tures the true temperature dependenc8(&f w). In the pre-
vious low-temperature calculations by Deistzal,'° consid-
erable weight was observed below the rigorous lower bound
even at temperatures as low B&)=1/24, and the expected
concentration of weight at the lower edge was not well re-
produced. Above we have shown that our high-temperature
results agree well with HTE calculations. In order to further
investigate the broadening effects due to max-ent analytic
continuation, we have also carried out simulations for the
system size and temperature considered by Deisal.
(N=64, B=24). Figure 10 shows our result fér=37/4,
which can be compared with Fig. 9 of Ref. 19. Our result
indeed peaks at the lower bound, and is significantly less
broadened towards lower frequencies. This probably reflects —
a higher accuracy in the underlying imaginary-time data. The 0 ® 4
broadening that is present at= 24 may still be partly due to
temperature effects, but is likely mainly max-ent induced. _

This kind of broadening should be a problem primarily in FIG. 8. QMC + max-ent results for the full dynamic structure
cases where the lower edge is sharp, i.e., at very low ten{actor S(k,w) at three different temperatures fot=128. The
peratures. It will be present to some extent also for tempera{“""x'ma of the vertical scales are 3.01T/=1.0), 1.49
tures and momenta where there is very little low- frequenc;fT/‘] 0.5), and 1.867/J=0.25).

weight and, as already discussed above, may then lead to an

overestimation ofS(k,w—0). The broadening below the B. Spin-lattice relaxation rate

lowest bound seen in the results of Figs. 8 and 9 is consid-

erably larger than in Fig. 10, and we therefore believe that it Next we discuss our calculations of the nuclear spin-
is mainly due to real temperature effects, with only minorlattice relaxation rate T/, for different hyperfine couplings
distortions due to max-ent bias. parametrized by the ratiR in Eq. (6).

Sk, m]

=

T

S[k,w]

T/J=0.25

\ —

Sk, ]




14 962 O. A. STARYKH, A. W. SANDVIK, AND R. R. P. SINGH 55
4 1.5 ¢
T/J=1.0
% of Max. s 1.0 ¢
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o
&
0.5
50
0 : 0 0.0
0.0 0.5 1.0 0
k/m
4 FIG. 10. QMC + max-ent results for the dynamic structure
factor atk=3m/4, calculated for a 64-site system at inverse tem-
perature=24. The dashed line is th€=0 Bethe ansatz lower
T/J=0.5 edge.
% of M functions, and the analytic continuation carried out subse-
o or Viax. quently. With exact imaginary-time data, the two approaches
® 100 would yield identical results, but in the presence of statistical
errors the max-ent method will bias the outcome differently
in the two approaches. As an illustration of this, results for
50 the on-site dynamic structure fact&(w) obtained using
the two different orders of averaging and analytic continua-
tion is shown in Fig. 11. It is clear that the analytic continu-
0 , 0
0.0 0.5 1.0 0.5 . ; ;
k/m
0.4 1
4 0.3 2
T/J=0.25 0.2 .
0.1 1
[¢)
Yo Of I\{Ig())( 0.0
(Q)
LY | ‘
50
0 , 0
0.0 0.5 1.0 -
k/m
0.4 1
. T/J=0.25
FIG. 9. QMC + max-ent results for the dynamic structure factor 03
S(k,w) atT/J=1.0, 0.5, and 0.25, with shades of grey representing ’
the relative intensity in thek{w) plane. The curves indicate the 0.2
lower and upper bounds dt=0. Note that forT=1.0 and 0.5,
S(k,w) is sharply peaked &—0 w—0. 0.1
The QMC results are obtained by averaging the low- 00, , > 3

frequency dynamic structure factor shown in Fig.(fér
N=128). As already mentioned, this method differs from the

approach previously used in Ref. 15, where the averaging FIG. 11. Comparisons d8,(w) calculated by averaging before
was done for the short-distance imaginary-time correlatioridashed curvésand after(solid curve$ analytic continuation.
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15 C ' ' ] max-ent method discussed abose=e also Ref. 22, for a
' comparison of results for the ratib,g/TT,).
"""""" R=0.0, HTE Sachdev calculated T{ using the scaling form of
---- R=-0.1, HTE S(k,w) obtained from bosonization and conformal field
—-— R=-0.2, HTE theory®327 This gives a temperature-independent rate,
10l ——- R=03,HTE | which, however, is expected to be modified by logarithmic
o — R=-05,HTE corrections to yield a logarithmic divergence®s>0 .2 This
:‘ o © R=0.0, QMC is clearly in qualitative agreement with the above results for
= Y ® R=-0.5, QMC R=—0.5 (where the diffusive contributions neglected in the
N:t/ theory are filtered oyt but the accuracy is not high enough
— N to extract a form for the low-temperature behavior. We have
0.5 "\ w0 o i previously discussed other effects of logarithmic correction
S . o . on the NMR relaxation rateZ.In particular, it can be noted
T4 that the ratioT,g/\TT; is modified from the universal
/ temperature-independent form, approaching the universal
value with infinite slope a3 —0 (in a manner similar to the
0.0 ‘ ‘ ; ‘ bulk susceptibility discussed in Ref. 33

We now briefly discuss recent experimental results. Taki-

B gawaet al. measured both T4 and 1T, in Sr,CuOs3,? for
which an exchangd~2000 K had been previously deduced
from susceptibility measuremeritshe hyperfine form fac-
tor could be accurately extractédusing an impurity effect
on the NMR line shape predicted by Eggert and Afflétk.
ation of the on-site functio,(7) misses much of the diffu- Hence, there are no free parameters, and nonambiguous com-
sive behavior foro—0 at the temperatures where theseparisons with model calculations can be carried out. Taki-
contributions are the most important. Based on the previougawaet al. concluded that the agreement with thé 3/ cal-
comparisons with HTE results at high temperatures, we beculation of Ref. 15 was good. For T the lowest
lieve that the approach of continuiiBfk, w) individually for ~ temperature studied in Ref. 15 corresponds~t800 K,
eachk before averaging is more accurate. This can also bwhich was the highest temperature studied experimentally.
understood on the grounds that the frequency dependence 8t this temperature, the previous QM€ max-ent result was
S(k,w), for a givenk, has less structure than the momentum~40% higher than the experimental value. As noted above,
average, and is therefore easier to reproduce with a higreur improved method of calculating Ty gives a value
entropy curvelwhich is favored by the max-ent method ~20% lower than before, and hence this discrepancy is now

The HTE + recursion method is applied to the short- largely reconciled(the remaining differences can likely be
distance correlations, according to E¢7). The zero- explained by uncertainties in the experimental values) of
frequency limit will produce a divergent T{ when infrared and the hyperfine couplings, and by remaining small errors
singularities are present. However, the very-low-frequencyin the numerical result As discussed above and in Ref. 22,
very-long-wavelength limit of our results may not be accu-also the slight temperature dependence observed for
rate and should be viewed with some caution as the methofl,g /T T; can be explained theoretically, and is largely due
is based on a short-time expansion, involving only finite spinto logarithmic corrections. Hence, all the analytical and nu-
clusters. We have therefore chosen not to focus on the exauoterical results are now in good agreement with the experi-
form of the w— 0, k—0 behavior. For calculating T{ we  ments, indicating that S€uO; indeed is a good realization
set the nuclear resonance frequengyto 0.01). In a calcu-  of the spins Heisenberg chain with only nearest-neighbor
lation using QMC+ max-ent, the divergence is cut off due interactions.
to the finite size, and may also be rounded due to resolution We also note that some contributions from diffusive pro-
effects. In real materials, several energy scales including arcesses, signaled by a dependence @f, Wn wy (i.e., the
isotropy and coupling between chains serve to determine thexternal field strengdh were explicitly observed in
cutoff frequency. Sr,Cu0,.2 It would clearly be interesting to study this mate-

Results for 1T, from the recursion method are shown for rial also at higher temperatures, where our numerical results
several different values @ in Fig. 12, along with the QMC indicate that a considerably stronger diffusive behavior
+ max-ent results foR=0 andR=—0.5. The agreement should be observed.
between the HTE and QMC calculations is quite good for Another quasi-1D compound which has been studied very
T/J=0.5, and gives us confidence in the QMC data at lowemctively recently is CuGe@ which undergoes a spin-Peierls
temperatures. The main difference from the previd@MC  (SP transition atT~14 K® This material has a stronger
+ max-ent results is that the diffusive contributions for coupling between the chains than,SuO;, and also is ex-
R=0 at T=0.5 are stronger, as already discussed. At lowpected to have a non-negligible next-nearest-neighbor inter-
temperatures the present results ar80% lower than the action J,.3* 1/T; exhibits a strong, almost linear, decrease
previous results, both fdR=0 andR= —0.5. Itis likely that ~ with decreasing temperature, with a reduction by almost a
the present results at low temperatures are still somewhat tdactor of 5 betwee~J andT~J/5 (if J, indeed is signifi-
high (likely 10—20 %), due to the broadening effect of the cant, J should here be considered an effective coupling

FIG. 12. Results for NMR relaxation ratesT1/for various val-
ues of the hyperfine paramet®; calculated using HTE and the
QMC and max-ent methods.
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constant>*>®1toh et al. argued that the transferred hyperfine [
term is smalf®® and hencéR~0 in our notation. Our results 1.0 #os 5%,
shown in Fig. 12 then indicate a reduction by a factor of 2 in o g O
the above temperature regime, which is significantly differ- °2
ent from the experiment. On the other hand, Fagot-Revurat —~
et al®® argued that there is a significant transferred hyperfine = o
coupling, and they were able to obtain a reasonable fit to the ¥2 © e "o m
previous 1T, results forR~0.25'° Notice that this value of T 0.6
R leads to a strong enhancement of contributions from dif- ¢4 °
fusive, k=0, modes, and as a result, a stronger temperature 0.4 o ]
dependence of T} (as compared with, e.g., tHe=0 case. ) %
Numerical calculations for the NMR rates includidg, in- o4
terchain couplings and dynamic phonons have yet to be car- | , ‘ , .
ried out, and would clearly be very useful for determining 1.0 7
the importance of additional interactions beyond the standard
Heisenberg chain in a realistic model of CuGgO he fact
that the temperature dependence &f,1above the SP tran-

0.8

sition extrapolates to a positive valueTat0 (Refs. 35 and = i
36) indicates that the frustratind, coupling by itself is not A -~~~ P=4,HTE .
sufficient for opening a gap, but it may clearly contribute to >o\" ——— P=8,HTE
stabilizing the dimerized state. 4 0.6 o B=4, QMC
: ® B=8, QMC o
C. Scaling behavior o B=16, QMC “og
In this section we discuss the low-temperature scaling be- = B=32, QMC
havior of the staggered susceptibility. AtTa=0 quantum- 04 - : . :
critical point with z=1, conventional quantum-critical scal- 0 1 2 3 4
ing implies that the dynamic staggered susceptibility has the cq/T
scaling forn?’
a cq FIG. 13. The equal-time structure fact&q) obtained from
- 4 == HTE and QMC, graphed so that the data would collapse onto a
X(qvw) 2—7]¢< ’ )! (38) . . . .
T keT "kgT single curve if scaling ing/T holds. The QMC results fop<8

were calculated in the grand canonical ensembleNer256 and

wherea is a nonuniversal numbeg(x,y) is a universal those forB=16 in the canonical ensemble fbr=1024.

complex function of both arguments, agdneasures devia-

tions from the antiferromagnetic wave veciqrs 7—K. This  onyniversal corrections. Unlike what is the case for the
in turn also |mp[|es that near the antiferromagnetic wave VeCgiaiic susceptibility? which is dominated by low-frequency
tor, the equal-time structure fact®(q) and the antiferro-  fcryations, these deviations cannot be explained by taking

magnetic susceptibility(q) have scaling forms only long-distance logarithmic corrections into account.
B Turning now to scaling inw/T, we discuss the scaling
S(Q)/S(0)=f1(cd/T), (399 amplitudes atg=0, i.e., the staggered structure factor and
_ the staggered susceptibility. Including the leading logarith-
x(@)/x(0)=fa(ca/T). (39b) mic corrections, the sum rulg9) give the low-temperature

However, for the Heisenberg chain these scaling relations af@ms
violated by logarithmic factors, which are produced by mar- P 32
ginally irrelevant operators cti§scribing interaction between S(4=0)=Dd[In(Ts/T)]™, (409

left- and right-moving currents’ The failure of scaling for P 1 12

x(q) was discussed earlier, and a way to take the logarithmic x(@=0)=D, T In(T,/T)]™% (400
corrections into account analytically was propo$ed#iere,  In Fig. 14 these quantities are graphed in such a way that the
in Fig. 13, we show the scaling plot f&(q). Substantial behavior vs InJ/T) should be linear if the above asymptotic
systematic deviations from scaling ¢dT are apparent even forms hold. The HTE results shown are from several differ-
at the lowest temperatures accessible to us. We also shoant differential approximants. The agreement between the
results for the quantitys’(q), obtained by subtracting the HTE and QMC data is quite good down f~6-8, where
ferromagnetiquniform) component of the spin-spin correla- the HTE approximants start to deviate from each other and
tion function from the numerical data f&;(0) before Fou- from the QMC results, indicating that the HTE method be-
rier transforming to momentum space. The uniform term iscomes unreliable. Linear behavior consistent with E46)
given by —[T/(2csinh(#Tr/c)] 2, and contains no adjust- is indeed observed in the QMC data fiT= 4. Fitting lines
able parameter5S’(q) then contains fluctuations with mo- to the results in this regime give®,=0.094+0.001,
menta around the antiferromagnetic wave numbeonly, D,=0.32-0.01,T4=18.3£0.5, andT,=5.9=0.2.

i.e., withq~0. However,S'(q)/S'(0) also does not exhibit The difference inTs and T, may be due to divergent
scaling ing/T, demonstrating the importance of subleadingcontributions toS(0) from short distances, careful treatment
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KCuF3 by Schulz®® using our numerical data fop(q=0),
is in good agreement with experimental results.

IV. CONCLUSIONS

In this paper, we have used several numerical methods to
study the dynamics of the spin-1/2 Heisenberg chain at in-
termediate temperaturdabove and below)). In order to
obtain the dynamic structure factor, we have combined high-
temperature expansions for the frequency moments with the
recursion method and quantum Monte Carlo simulations
y¥ o with the maximum entropy method. In some cases, the re-
sults of these methods have been compared with exact results
for a system with 16 spins, as an additional check.

We find that at high temperatures the HRE recursion
method works very well even for dynamic quantities. Using
the first six continued fraction coefficients for the relaxation
function, we have obtained dynamic susceptibilities at vari-
ous temperatures down td/J=0.5. The calculated fre-
quency dependence of the structure factokatr/2 agrees
remarkably well with the exact results on finite systems. This
method is also sensitive to infrared singularities. Already at
the level of the continued fractions themselves, that is, before
any numerical extrapolation is done, the presence or absence
of singularities can be detected. We found that the behavior
of the continued fractions for the locat{integrated suscep-
tibilities changes qualitatively depending on whether the hy-

In(J/T) perfine couplings are vanishing or nonvanishingkatO.
However, when infrared singularities are present, their exact

FIG. 14. TheT dependence db(k= ) and x(k=w) obtained  forms may not be fully captured by these methods. Since the
from HTE and QMC, graphed so that the predicted fot#® give  (iffusion-related singularities are most robust at infiffite
linear behavior. The dashed curves are several different HTE agyhere they have been investigated in the past with higher
proximants, and the solid circles with error bars are the QMC renumber of moment%fj we did not focus on this issue here. In

sults. The solid lines are fits to the QMC data 01J<0.25. The our study, the HTE with the recursion method became unre-
open circles and dotted lines are results and fits after subtraction 9,1« hajow T/J=0.5 because the extrapolations for the
the ferromagnetic contribution to the spin-spin correlation function. '

higher moments became unstable. By extending the series
for the frequency moments, it may be possible to reach still
of which would require a separate cutoff. Another importantlower temperatures also for dynamic quantities.
reason is the ferromagnetic contribution to the spin-spin cor- The QMC results for the static quantities agree perfectly
relation function, already discussed above. This contributewith  the  high-temperature  expansions down to
to both S(0) andx(0). In Fig. 14 we also show results for T/J~0.1-0.2, below which the HTE results become unreli-
the quantitiesS’ (0) andx’(0), obtained by subtracting the able. Results obtained for the dynamic quantities with the
ferromagnetic contributions frors(0) and x(0). The pa- QMC + max-ent method are in satisfactorgenerally
rameters obtained in this case af@,=0.106+0.001, W'g"g 10d_20 %T) a:_greemcant I\(IjVILh HTE r_?SUItSI_ abplc')t\?g(;]

' ' , : =0.5 and, we believe, should have similar reliability down
D,=0.34= O'OleS_S.'li 0.'2’ a.ndTX_B'giO'g' The high- to much lower temperatures. For calculating local anntities
energy cutoffsT’ obtained in this way are now much closer

A h nd incorporatin much ible the ef-
to each other, and also close to the valye= 4.5 obtained in such as Iy, and incorporating as much as possible the e

Ref. 22 by it ling f h | lai fects of infrared singularities from certakregions, it ap-
el. 22 by fitting a scaling form to the real-space correlation, o s ¢4 he better to carry out the analytic continuation for all
function atB=32. Within the accuracy of the numerical pro-

’ e _ individual momenta separately before performing the mo-
cedures(which apart from statistical errors also include ef- antum sum, rather than carrying out the analytic continua-
fects from non-asymptotic contributionthey can be consid- tjon for momentum-integrated quantities.
ered equal. We note that these parameters still should be \Wwe have also presented several new results for the
viewed as “effective” or temperature dependent, and theirHejsenberg chain. These include quantitative estimates for
asymptotic zero-temperature values may only be reached gie logarithmic temperature dependence of the static stag-
T/J<0.01 as is the case for the uniform susceptibifignd  gered susceptibility and structure factor and improved esti-
the correlation lengtf® mates for the temperature dependence of the spin-lattice re-
The temperature dependencediqg=0) is important in  laxation rate with various choices of hyperfine couplings, as
the context of systems of weakly coupled spin chains, whergvell as the full dynamic structure factor at intermediate tem-
it determines the critical temperature for ordering into aperatures. Our results clearly show the shift in the low-
three-dimensional Néestate®®* A recent calculation for frequency spectral weight from the diffusive modes near

[Tx(m)I’

[S(m1*”*
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k=0 at high temperatures to the antiferromagnetic modesupported by the numerical results of Ref. 15 and our present
neark= 7 at low temperatures. At low temperatures we ob-calculations. We stress again that our study is also not accu-
served the development of spectral features that can be assate enough to resolve the exact form 8fk,») in the
ciated with the two-spinon continuum. Overall, our results atk— 0, w—0 limit. We have strong evidence of a sharp peak
the lowest temperatures are in good agreement with the geat high temperatures, but cannot determine its exact shape, or
eral expectation of these quantities from various analyticajyhether or not it is truly divergenti.e., whether the long-
studies. Our results also allow us to reconcile the measurgme behavior of the spin-spin correlations is of the standard
ments of the Spin-|attice relaxation rates in26003 with 1D diffusive form,-\,t_l/2 or, perhaps’ is anoma'o)"gn any
theoretical and numerical calculations for the Heisenbergase, as we have discussed above, a sharp maximum should

model. _ _ have detectable effects on, e.g., the spin-lattice relaxation
After completing this work, we became aware of a recentate in real materials.

paper by Fabricius, lw, and Stolzé? discussing exact di-
agonalization results foS(k,w) of chains with up to 16
sites. We have here used such short-chain calculations
mainly as a test of the HTE and QM€ max-ent methods in
some regimes. Fabriciet al*° found no signs of spin dif- We would like to thank M. Horvatic, S. Sachdev, D.
fusion. Our results indicate that 16 sites is not large enougscalapino, H. Schulz, and M. Takigawa for stimulating com-
in general, in particular not for addressing the intricate prob-munication. This work was supported by NSF under Grant
lem of spin diffusion. As can be inferred from Fig. 7, the Nos. DMR-9616574, DMR-9520776, and DMR-8920538,
momentum cutoffk, = 7/8 for a 16-site chain prohibits ac- and by the Campus Laboratory Collaboration of the Univer-
cess to most of the long-wavelength regime where we sesity of California. The QMC calculations were carried out at
signs of diffusive behavior. In the limit—0 there is most the Supercomputations Research Institute at Florida State
likely no spin diffusion, as discussed by Sachfend also  University.
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