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Dynamics of the spin-12 Heisenberg chain at intermediate temperatures
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Combining high-temperature expansions with the recursion method and quantum Monte Carlo simulations
with the maximum entropy method, we study the dynamics of the spin-1/2 Heisenberg chain at temperatures
above and below the couplingJ. By comparing the two sets of calculations, their relative strengths are
assessed. At high temperatures, we find that there is a low-frequency peak in the momentum-integrated
dynamic structure factor, due to diffusive long-wavelength modes. This peak is rapidly suppressed as the
temperature is lowered belowJ. Calculation of the complete dynamic structure factorS(k,v) shows how the
spectral features associated with the two-spinon continuum develop at low temperatures. We extract the
nuclear spin-lattice relaxation rate 1/T1 from thev→0 limit, and compare with recent experimental results for
Sr2CuO3 and CuGeO3 . We also discuss the scaling behavior of the dynamic susceptibility, and of the static
structure factorS(k) and the static susceptibilityx(k). We confirm the asymptotic low-temperature forms
S(p);@ ln(T)#3/2 and x(p);T21@ ln(T)#1/2, expected from previous theoretical studies.
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I. INTRODUCTION

Quantum antiferromagnets represent an important clas
systems in both theoretical and experimental condensed
ter physics. In recent years, greatly improved precision
neutron scattering and NMR experiments have made p
sible very detailed comparisons with theoretical predictio
A number of new materials have been synthesized wh
appear to be near-perfect realizations of the simple sp12
Heisenberg model in various geometries. For exam
Sr2CuO3,

1,2 SrCu2O3,
3 and Sr2CuO2Cl2 ~Ref. 4! comprise

structural copper-oxygen units with magnetic properties w
described by the Heisenberg model on a single o
dimensional ~1D! chain, two coupled chains, and a 2
square lattice, respectively. Sr2CuO3 is interesting because
appears to be one of the most perfect 1D spin-1

2 Heisenberg
system found so far, with a strong exchangeJ'2000 K and
a 3D ordering temperatureTN'5 K. Detailed experimenta
studies of this system,1,2 as well as other quasi-1D materia
such as KCuF3 ~Ref. 5! and CuGeO3 ~Ref. 6! have pointed to
the need for more accurate theoretical studies of the
dynamics of theS51/2 Heisenberg chain. Although thi
model, defined in standard notation by the Hamiltonian

H5J(
i
Si•Si11 ~J.0!, ~1!

is perhaps the most studied of the basic interacting quan
many-body models, its finite-temperature dynamic proper
are not fully understood. The low-temperature (T!J) be-
havior is controlled by theT50 quantum critical point~line
of critical points to be exact!. The powerful tools of
550163-1829/97/55~22!/14953~15!/$10.00
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bosonization and conformal field theory enable one to m
a number of experimentally verifiable predictions in th
regime.7,8 The high-temperature regime (T@J) has been
studied numerically by short-time or frequency moment e
pansions combined with the recursion method.9 The regime
of intermediate temperaturesT'J is the most difficult to
study theoretically, but is clearly of much experimental a
theoretical significance, containing the crossover from
diffusive high-temperature behavior to the low-temperat
regime dominated by elementary excitations. Here we st
the dynamics at intermediate temperatures using the h
temperature expansion~HTE! technique and a recently de
veloped ‘‘stochastic series expansion’’ quantum Mon
Carlo ~QMC! technique10,11 ~an improved variant of the so
called Handscomb’s method12!. We have also numerically
diagonalized the Hamiltonian for a chain with 16 spin
which, although not large enough to give reliable results
general, provides for a good test of the other methods
certain regimes.

The HTE method has been extensively used to st
static properties of spin models.13 Here we combine it with
the continued fraction~or recursion! method9 to calculate
dynamic properties at finite temperatures. The QMC meth
used here has also previously been applied to both the st
and dynamics of Heisenberg models in several differ
geometries.14,15 Accurate results for imaginary-time
dependent correlation functions can be obtained down
fairly low temperatures. The maximum-entropy~max-ent!
method16,17 is used for analytic continuation to real freque
cies. This approach has previously been applied to the
dynamics of the 1D Heisenberg model by Deisz, Jarrell, a
Cox,18,19 who focused mainly on the low-temperature d
14 953 © 1997 The American Physical Society



al
t
at
a

T

th
e

s

um

-
-
s

ne
o

c
ts
re

de
re

-
de

s

th
a
m

he
u
in
on

is
,
pe
t i

rep-
dent

r
er-
e

q.

ss

pole
-
te,

ity
-
s on
eal-

d

c-

pti-

we
1D

14 954 55O. A. STARYKH, A. W. SANDVIK, AND R. R. P. SINGH
namic structure factor and the differences between h
integer and integer spin. They also discussed at length
accuracy of the max-ent method. Here we find that for st
properties, results obtained using HTE and QMC agree
most perfectly forT/J*1/8, below which the HTE method
becomes unreliable. For dynamic properties, the H
method performs well forT/J*0.5, and in this regime the
results agree well with those of the QMC and max-ent me
ods. This gives us confidence that the QMC and max-
techniques are reliable at lower temperatures as well.

Our main results are the following: At high temperature
we find that the dynamic structure factorS(k,v) grows
sharply~perhaps diverges! ask→0 andv→0. This diffusive
behavior leads to a low-frequency peak in the moment
average,

SA~v!5E dk

2p
uA~k!u2S~k,v!, ~2!

if the form factorA(k50) is nonzero. In an NMR experi
ment, depending on theA(k) corresponding to a given ma
terial and nucleus under study, this can have large effect
the spin-lattice relaxation rate, which is given by20

1

T1
52SA~v→0!. ~3!

QMC1max-ent results for 1/T1 were previously reported in
Ref. 15. Here we provide results of higher accuracy, obtai
by calculating the full momentum dependence
S(k,v→0).

As the temperature is lowered belowT'J/2, the diffusive
peak rapidly diminishes in magnitude, and the low-frequen
spectral weight shifts tok5p, as expected. The QMC resul
for S(k,v) clearly show the emergence of spectral featu
that can be associated with the well-known21,7,8 T50 two-
spinon continuum.

Comparisons of the momentum- and frequency-depen
numerical data with scaling theories at low temperatu
have been presented elsewhere.22 Here we briefly discuss
how the scaling inq/T is violated due to logarithmic correc
tions. We provide numerical results for the temperature
pendence of the staggered structure factorS(p) and the
static staggered susceptibilityx(p). At low temperatures the
former behaves as@ ln(1/T)#3/2, while the latter behaves a
T21@ ln(1/T)#1/2, both expected from theoretical results.

In Sec. II we discuss the dynamic structure factor and
computational methods used in this study. The results
presented in Sec. III, and in Sec. IV we discuss and sum
rize our main conclusions.

II. BASIC DEFINITIONS AND NUMERICAL TECHNIQUES

We begin by reviewing some basic definitions of t
static and dynamic correlation functions we wish to calc
late. Both the neutron scattering intensity and the NMR sp
lattice relaxation rate measure the dynamics of the electr
spin system through coupling via the operatorSk

1 . Hence,
the relevant dynamic correlation function
^S2k

2 (t)Sk
1(0)&. In a spin-rotationally invariant system

which is considered here, this can be evaluated with res
to any quantization axis, and in numerical calculations i
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most practical to choose the component diagonal in the
resentation chosen. Hence, we study the time-depen
spin-spin correlation function

Sr~ t !5^Sr
z~ t !S0

z~0!&, ~4!

whereSr
z(t) denotes thez component of a spin-1/2 operato

at siter at time t, and brackets denote thermodynamic av
aging at temperatureT/J5b21. We consider only the cas
of zero average magnetization,^Sr

z&50. The dynamic struc-
ture factorS(k,v) is the space-time Fourier transform of E
~4!:

S~k,v!5(
r
E

2`

`

dt e2 i ~vt2kr !^Sr
z~ t !S0

z~0!&. ~5!

Apart from kinematic factors, the neutron scattering cro
section is directly proportional toS(k,v).

NMR @and related techniques such as nuclear quadru
resonance~NQR!# can provide accurate results for the low
frequency dynamics, through the spin-lattice relaxation ra
given by Eqs.~2! and ~3!. The hyperfine form factorA(k)
can be obtained from the Knight shift and also from impur
effects.26,27 Here we will restrict our attention to the impor
tant case where the nucleus under consideration reside
the sites of the electronic spins, and assume that the r
space hyperfine couplingĀ(r ) has an on-site~direct! term
Ā(0) and a nearest-neighbor~transferred! term Ā(1), giving
A(k)5Ā(0)12Ā(1)cos(k). The spin-lattice relaxation rate
is then given by

1

T1
52Ā2~0!SR~v5vN!, ~6!

where,R5Ā(1)/Ā(0), vN is the resonance frequency, an
we define

SR~v!5~112R2!S0~v!14RS1~v!12R2S2~v!, ~7!

whereSr(v) is the real-space dynamic spin correlation fun
tion at distancer , i.e., the time Fourier transform of Eq.~4!.

The static structure factorS(k) is the Fourier transform of
the equal-time correlation function, and the static susce
bility x(k) is given by the Kubo integral

x~k!5(
r
eikrE

0

b

dt^Sr
z~t!S0

z~0!&, ~8!

whereSr
z(t)5etĤSr

ze2tĤ. S(k) andx(k) can be related to
the dynamic structure factor through the sum rules28

S~k!5
1

pE0
`

dv~11e2bv!S~k,v!, ~9a!

x~k!5
2

pE0
`

dvv21~12e2bv!S~k,v!. ~9b!

Below we briefly describe the numerical techniques
use to calculate the dynamic structure factor of the
Heisenberg model.
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A. High-temperature expansion and the recursion method

The correlation function~4! has a short-time expansion

Sr~ t !5 (
n50

`

Mn

~2 i t !n

n!
, ~10!

where the coefficientsMn are defined as frequency momen

Mn5E
2`

` dv

2p
vnSr~v!, ~11!

of the time Fourier transform

Sr~v!5E
2`

`

dt e2 ivtSr~ t !. ~12!

An important related function is the spectral dens
F(v)5(11e2bv)S(v), which is a real and even functio
of frequency and, consequently, its inverse Fourier transf
C0(t) ~often called the fluctuation function! has an expan-
sion in even powers of time only:

C0~ t !5 (
k50

`

~21!kM2k

~2 i t !2k

~2k!!
. ~13!

A short-time expansion is of little help if one is interested
the asymptotic long-time behavior ofC0(t), unless some
kind of analytic ansatz~most often a Gaussian one! is made.
To this end, let us define the relaxation function9

c0~z!5E
0

`

dt e2ztC0~ t !5 (
k50

`

M2kz
2~2k11!. ~14!

From Eq.~13!, one then has

c0~z!5E
2`

` dv

2p

F~v!

z1 iv
, ~15!

and F(v8)52 lime→10Re@c0(e2 iv8)#. Thus, upon ana-
lytic continuation the relaxation function gives the spect
density. A useful property of the relaxation function is tha
has a continued fraction representation9

c0~z!5
D0

z1
D1

z1
D2

z1•••

. ~16!

To simplify notation we shall in the following write the con
tinued fraction as

c0~z!5D0 /$z1D1 /@z1D2 /~z1••• !#%. ~17!

The firstK of the continued fraction coefficients are unique
determined by the corresponding firstK even frequency mo-
ments~11! through an iterative procedure described in R
9. Of course, we just traded the short-time behavior
C0(t) for the large-z behavior ofc0(z), which does not bring
us any closer to the desiredz;0 region. But as described i
detail in the book by Viswanath and Mu¨ller,9 the relaxation
function is uniquely determined by the sequenceDk , which
contains important information about the asymptotic beh
ior of c0(z). Namely, for the isotropic Heisenberg model~1!,
,

m

l
t

.
f

-

theD sequence grows with the indexk according to a power
law Dk;kl, with 1<l<2, which fixes the high-frequency
behavior of the spectral density toF(v);exp(2uvu2/l).
Moreover, oscillations of the odd~or even! continued frac-
tion coefficients around thekl curve contain information on
the infrared behavior ofF(v). The simplest function tha
incorporates both the high- and low-frequency behavior ty
cal of critical spin systems has the form

F̄~v!5
2p

lv0G@l~11a!/2#
U v

v0
Ua

expS 2U v

v0
U2/lD . ~18!

The frequency moments of this function are known to be

M̄2k5v0
2kG„~l/2!~11a12k!…

G„~l/2!~11a!…
, ~19!

and the corresponding continued fraction coefficientsD̄k can
be calculated from them numerically. Of course, an appro
mation of the spectral densityF(v) of the system under
study by the model densityF̄(v), with parametersv0 ,a,l
determined from a ‘‘given’’ sequenceDk , would be just
marginally better than the often used Gaussian ansatz.
stead, Mu¨ller and collaborators~see Ref. 9 and reference
therein! devised a more accurate procedure, which we
scribe here for completeness.

Suppose that we have calculated the firstK even moments
of the true spectral densityF(v). Then we calculate the
corresponding sequenceDk , and try to approximate it by the
model sequence D̄k by minimizing the sum
(k5kmin
K (Dk2D̄k)

2 with respect to the parametersv0 ,a,l.

The lower cutoffkmin (53 in our study! is necessary becaus
the first few coefficientsD0 ,D1 , . . . ,Dkmin

tend to deviate
significantly from the asymptotic behavior represented
F̄(v). Having determined the parameters of the fit we m
find exactly theKth-level terminator ḠK(z) of the model
relaxation function corresponding toF̄(v) by ~numerically!
inverting the equation

c̄0~z!5D̄0 /„z1D̄1 /$z1•••1D̄K /@z1ḠK~z!#%…. ~20!

The terminator thus incorporates information on t
asymptotic behavior of theD̄k sequence.

The relaxation functionc0(z) in Eq. ~17! is then approxi-
mated as

c0~z!5D0 /„z1D1 /$z1•••1DK /@z1ḠK~z!#%…, ~21!

and thus, in addition to the correct large-z behavior con-
tained in the first few exactly known continued fraction c
efficients, through the terminatorḠK(z), c0(z) also incorpo-
rates the correct small-z behavior extracted from theDk
sequence. Analytic continuationz→2 iv8 then gives us the
spectral functionF(v8) in the whole range of frequencie
v8. For the model spectral functionF̄(v) of type ~18!, such
analytic continuation is performed by hand and only requi
numerical integration of well-behaved functions.

To study the spin dynamics atfinite temperature we have
calculated moments ofSr(v) by the HTE technique. It is
well known that these momentsMk can be expressed in
terms of a thermal expectation value of ak-fold
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commutator.23,9 High-temperature expansion can be dev
oped for these quantities by the cluster method.24 In fact,
using the same set of clusters, the expansions for thekth
moment will be complete to orderbN2k, whereN depends
on the size of the largest cluster considered. We have ca
lated up toN522 for all nonzero moments. The equal-tim
correlation function is calculated to orderb20. It is more
convenient to do the calculations for the scaled funct
c0(z)/M0, i.e., the one defined by the normalized set of m
ments $1,M2 /M0 , . . . ,M2K /M0%, and obtain the neede
function c0(z) by simple multiplication at the very end o
calculations.

The behavior of the first seven continued fraction coe
cients of the spin autocorrelation function^S0

z(t)zS0(0)& as a
function of inverse temperature is shown in Fig. 1. From
relation betweenM2k and the Dk sequences9 we have
D05M0, and henceD051/4 irrespective of temperature i
that case. Another property of theDk’s that make them con
venient for numerical computations is that they are all nu
bers of order 1, whereas the corresponding frequency
ments grow very fast with the index, for exampl
M14(T5`)5166 988 876. Continued fraction coefficien
with higher indexk are related to the momentsM2k which

FIG. 1. Continued fraction coefficientsDk for SR(v) as a func-
tion of b for R50 ~lower panel! and as a function of the indexk for
R50 and20.5 atb50 ~upper panel!.
-

u-

n
-

-

e

-
o-

are determined by spin correlations at larger distances, a
hence are more temperature sensitive. The HTE ceases
work for D7 atb;0.75 where it starts to change rapidly, and
for D6 atb;1.5. Since we want to reach the lowest possibl
temperature, we restrict ourselves to first 6 (k50, . . . ,5)
coefficients of the sequence, which permits analysis up
b;2. Of course, the shorter theDk sequence the more un-
certain becomes the determination of the paramete
v0 ,a,l, and in each particular study a try-and-see approa
should be used to find a compromise between these two co
flicting requirements. We found that atb<0.5 results ob-
tained withK57 andK55 do not differ much, and up to
b52 the sequenceD0 , . . . ,D5 is stable and reliable.

In Fig. 1 we also show thek dependence of theDk se-
quence forSR(v) @Eq. ~7!# for R50 andR520.5. The
latter has a vanishing form factor atk50 and thus has no
contributions from the diffusive modes. It is evident that th
former sequence exhibits an odd-even oscillation, suggest
an infrared singularity, but this is absent from the latter se
quence. This ability to recognize the presence or absence
diffusive modes at such a simple level shows the power
the recursion method.

The temperature dependence of the parameters of the
Eq. ~18!, is shown in Fig. 2. Notice the drastic difference in
a, the power of the infrared singularity forR50 and
R520.5: In the latter case it is always zero, whereas in th
former it decreases rapidly with temperature, demonstratin
the suppression of the diffusive behavior at lowT.

The overall quality of the described procedure can be e
timated by direct term-to-term comparison of the real se
quenceDk with the model oneD̄k , given in Fig. 3 for

FIG. 2. Temperature dependence of the parameters of the fit
two values ofR.
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k53,4,5. Deviations ofD̄k from Dk are most pronounced a
high temperatures for theR50 case, where the low-
frequency infrared divergence is the strongest, and alm
disappear forT below J. The deviations at highT can be
reduced by working with longerDk sequences, as was men
tioned above, but this would significantly reduce the range
applicability of our calculations. The absolute value of t
discrepancy betweenD ’s does not exceed 5% in the wors
case.

B. Stochastic series expansions
and the maximum entropy method

The stochastic series expansion QMC method10,11 is an
improved variant of the so-called Handscomb’s technique12

It is based on importance sampling of terms of the pow

series expansion of exp(2bĤ), which for a finite system at
finite b can be carried out to all important orders, witho
introducing systematic errors. The current formulation of t
method is described in Ref. 11, and has previously b
applied to both static and dynamic properties of Heisenb
models in several different geometries.14,15 Here we briefly
review how imaginary-time-dependent correlation functio
are evaluated using this technique.

The Hamiltonian for anN-site periodic chain is first writ-
ten as

FIG. 3. Comparison of the real and modelD sequences for two
values ofR at different temperatures. Each panel showsD3 ~bot-
tom!, D4 ~middle!, andD5 ~top!.
st

f
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e
n
rg
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Ĥ52
J

2 (
b51

N

~Ĥ1,b2Ĥ2,b!1
NJ

4
, ~22!

where the operatorsĤ1,b and Ĥ2,b are defined as

Ĥ1,b52~ 1
42Sb

zSb11
z ! , ~23a!

Ĥ2,b5Sb
1Sb11

2 1Sb
2Sb11

1 . ~23b!

The partition functionZ5Tr$e2bĤ% is transformed into a
sum suitable for importance sampling techniques by expa
ing e2bĤ in a power series, and writing the trace as a s
over diagonal matrix elements in the standard ba
$ua&%5$uS1

z , . . . ,SN
z &%. This gives

Z5(
a

(
n

(
Sn

~21!n2

n! S b

2 D nK aU)
l51

n

Ĥal ,blUaL , ~24!

whereSn denotes a sequence of index pairs defining the
erator string) l51

n Ĥal ,bl
,

Sn5@a1 ,b1#@a2 ,b2#•••@an ,bn#,

aiP$1,2%, biP$1, . . . ,Nb%, ~25!

and n2 denotes the total number of index pairs~operators!
@ai ,bi # with ai52. For evenN ~or anyN for an open chain!
n2 is even for all nonzero terms in Eq.~24!. All terms are
then positive, and can be stochastically sampled using s
dard Monte Carlo techniques in the space of index seque
and basis states.

The simulation is carried out using two different eleme
tary modifications of the index sequence, taking into acco
the constraints imposed by the fact that the operators defi
in Eqs.~23! are allowed to operate only on antiferromagne
cally aligned spin pairs, and that the operator product co
sponding toSn must propagate the stateua& onto itself. The
powern is changed by inserting or removing single diagon
operators@1,b#, and the number of spin flipping operators
changed by pair substitutions@1,b#,@1,b#↔@2,b#,@2,b# ~the
two operators selected for updating are typically not adjac
in the sequence!. The grand canonical ensemble with fluct
ating total magnetization,mz5( iSi

z , can be studied for
T/J*0.08 by also performing spin flips in the states.
lower temperatures the acceptance rate for such flips
comes very low, and it is then more convenient to study
canonical ensemble withmz50.

QMC calculations can access the dynamic structure fa
only through the corresponding correlation function
imaginary time,

Cr1 ,r2
~t!5^Sr1

z ~t!Sr2
z ~0!&. ~26!

In the stochastic series expansion method, such a correla
function is estimated by measuring the correlations betw
statesua(p)&5uS1

z@p#, . . . ,SN
z @p#& obtained by propagating

ua& in Eq. ~24! with p of the operators in the product:

ua~p!&5)
l51

p

Ĥal ,bl
ua&, ua~0!&5ua&. ~27!
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The expression for the imaginary-time-dependent spin-s
correlation function is10

Cr1 ,r2
~t!5K (

m50

n
tm~b2t!n2mn!

bn~n2m!!m!
C̄r1 ,r2

~m!L , ~28!

where

C̄r1 ,r2
~m!5

1

n11 (
p50

n

Sr1
z @p#Sr2

z @p1m#. ~29!

The periodicity of the propagated states imply th
Sr
z@p1n#5Sr

z@p#. Note that any value oft is accessible, in
contrast to world line methods wheret must be an intege
multiple of the time-slice width used in the simulation.25 The
corresponding static susceptibilityx r1 ,r2

@i.e., the real-space
version of Eq.~8!# can be directly obtained by integratin
over t in Eq. ~28!. The result is10

x r1 ,r2
5K b

n~n11!S (
p50

n21

Sr1
z @p# D

3S (
p50

n21

Sr2
z @p# D 1b

C̄r1 ,r2
~0!

n11 L . ~30!

The relation betweenCr1 ,r2
(t) and the dynamic structur

factor defined in Eq.~5! is

Sk~t!5
1

pE0
`

dv S~k,v!K~v,t!, ~31!

whereSk(t) is the Fourier transform,

Sk~t!5
1

N (
r1 ,r2

e2 ik~r22r1!Cr1 ,r2
~t!, ~32!

the kernel is

K~v,t!5e2tv1e2~b2t!v, ~33!

and S(k,2v)5e2bvS(k,v). The analytic continuation o
the QMC data forSk(t), i.e., inversion of Eq.~31!, is carried
out using the max-ent method,16,17 which we very briefly
review here for completeness.

For a given momentum transferk, S(k,v) is paremetrized
as a sum ofd functions at frequenciesvn , n51, . . . ,Nv ,

S~k,v!5 (
n51

Nv

Snd~v2vn!. ~34!

The ‘‘classic’’ variant of the max-ent method used he
amounts to determining the coefficientsSn that minimize the
quantity

Q5x2/22aE. ~35!

Here x2 is the deviation of the imaginary-time functio
S̄k(t) corresponding to a particular set of spectral weig
$S1 , . . . ,Sn% in Eq. ~34! from the QMC estimateSk(t) and
its statistical errors(t), which is available for a discrete se
of timest1 , . . . ,tNt

:29
in

t

s

x25(
i51

Nt

@Sk~t i !2S̄k~t i !#
2/s~t i !

2. ~36!

E is the entropy, defined with respect to a ‘‘default mode
m(v). Using a default which is constant forv.0 and sat-
isfiesm(2v)5e2bvm(v), the entropy is@with S(k,v) as-
sumed normalized to unity#

E52(
i51

Nv

Snln~Sn!K~vn,0!. ~37!

The parametera in Eq. ~35! is determined iteratively using a
criterion derived using Bayesian logic, leading to the m
probableS(k,v) compatible with the QMC data and its e
rors, as discussed in detail in Ref. 17. Typically, on the or
of Nv5100–200 frequencies are used in Eq.~34!. The am-
plitudesSn then form a smooth curve representing the f
quency dependence ofS(k,v).

C. Comparisons with exact diagonalization

Accuracies of calculations of dynamic quantities using
HTE and QMC methods are difficult to assess rigorous
Comparing results obtained in the two different ways p
vides for a good test. However, the results will never ag
completely~in contrast, for static quantities the results agr
perfectly in the regime where the HTE performs well,
discussed in Sec. III C!, and it is therefore useful to check th
results against other calculations as well.

For a small system, all the eigenstates can be obta
exactly by numerically diagonalizing the Hamiltonian. Usin
the translational invariance and the conservation of thz
component of the spin, the Hamiltonian consists of bloc
corresponding to all the combinations of the magnetizat
mz and the momentumk. For a 16-site system the large
blocks have 810 states, and can easily be diagonalized
workstation. The next two appropriate sizesN518 and
N520 have largest-block sizes of 2704 and 9252 states
spectively, and could be studied with some more effort. H
we consider onlyN516.

The exact dynamic structure factor of a finite system i
set ofd functions with positions given by the energies of t
excited states, and amplitudes given by the squares of
corresponding matrix elements of the operatorSk

z . For a 16-
site system, the number of contributingd functions is very
small atT50, and it is not possible to carry out a meaningf
comparison with the other methods. As the temperature
raised, the number ofd functions with significant weights
increases rapidly, and a relatively smooth spectrum can
obtained by using some reasonable broadening of the i
vidual d functions. The results can of course not be expec
to completely represent the thermodynamic limit, but at te
peratures where the correlation length is much smaller t
the system size meaningful comparisons should be poss
We here compare HTE, QMC, and exact diagonalization
sults forS(k,v) at k5p/2.

Figure 4 shows results of all the methods at temperatu
T/J51.0 and 0.5. We have chosen to represent the e
results as histograms with a bin widthDv50.1J. Thenth bin
contains the integrated spectral weight in the freque
range@(n21)Dv ,nDv#. On this frequency scale, the resul
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still have structure due to the finite size, but neverthel
exhibit overall shapes that the other results can be comp
with. Indeed, the HTE spectra have shapes that very w
match the histograms. The QMC1 max-ent results are
somewhat broader and have more rounded shapes~less
asymmetric!, as would also be expected, but still repres
quite reasonable distributions of spectral weight. The QM
results were calculated for a system ofN5128 sites. Results
obtained for the same sizeN516 as the exact diagonaliza
tion look very similar, which also indicates that finite-siz
effects are small at these temperatures~for the momentum
considered here!. The relative statistical errors of th
imaginary-time data used were in the range 1024–1023,
which is typical for all the QMC results discussed in th
paper ~the absolute error is typically in the fifth decim
place of the result!.

The limit v→0 is of special interest, as it determines t
spin-lattice relaxation rate. The results shown in Fig. 4 in
cate that meaningful results can be obtained for this quan
The differences between the HTE and QMC1 max-ent re-
sults are typically 10–20 %. We cannot rigorously establ
which calculation is more accurate in thev→0 limit, but
based on the better agreement with the overall shape betw
the HTE and exact diagonalization in the whole frequen
range, we expect the HTE to be more accurate in the t
perature regime where it performs well (T/J*0.5). At lower
temperatures only QMC1 max-ent results are available
since exact diagonalization also does not provide accu
results belowT/J&0.5, especially forv→0. Based on high-
temperature comparisons such as those presented her
expect the error of the QMC1 max-ent calculations at lowe
temperatures to be of the order 10–20 %.

III. RESULTS

The HTE method is best suited for studying the dynam
of k-integrated quantities. Apart from the results f

FIG. 4. Comparison of exactN516 ~histograms!, HTE ~solid
curves!, andN5128 QMC1 max-ent~dashed curves! results for
the dynamic structure factor atk5p/2.
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k5p/2 presented above, we therefore discuss HTE res
mainly for momentum averages and the spin-lattice rel
ation rate 1/T1. With the QMC method we have calculate
the imaginary-time correlation functions needed to obtain
full S(k,v) for systems with up toN5128, down to tem-
peratureT/J51/8. Results for 1/T1, as well as the transvers
rate 1/T2G , were already presented in Ref. 15, where 1/T1
was calculated for slightly larger systems by analytica
continuing weighted imaginary-time correlation averages
space separationsr<2, corresponding to the model form
factor discussed in Sec. II. HereS(k,v) is first calculated for
all momenta, and the momentum averaging is carried
after the analytic continuations. This method, though m
cumbersome and time consuming, should be more relia
for studying long-time tails such as those resulting from s
diffusion at high temperatures.

Below, in Sec. III A, we first consider various aspects
the frequency and momentum dependence of the dyna
structure factor. In Sec. III B we discuss the spin-lattice
laxation rate, and recent experimental results for Sr2CuO3
and CuGeO3. In Sec. III C we discuss the scaling behavi
of the dynamic susceptibility, and how it is affected by log
rithmic corrections. We present explicit calculations of t
logarithmic corrections to the temperature dependence of
staggered structure factor and the staggered susceptibili

A. Dynamic structure factor

Results for S0(v) @corresponding to a form facto
A(k)51#, obtained using the HTE technique at differe
temperatures, are shown in Fig. 5. As discussed earlier,
expect these results to be reliable down toT/J50.5. We find
that at very high temperatures there is strongv2a diver-
gence which diminishes asT is decreased, and spectr
weight is transferred to a broad peak atv;1.5. At T51, a
peak atv;1.5 is evident together with an infrared pea
which is still strong at this temperature. However,
T50.5 the diffusion peak is almost invisible and most of t
spectral weight is concentrated at higher frequencies.

S0(v) calculated using QMC and max-ent analytic co
tinuation is shown in Fig. 6, for temperatures down
T/J51/8. Results for systems withN564 andN5128 are

FIG. 5. The dynamic structure factorSR(v) with R50 calcu-
lated using the HTE method at various temperatures.
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14 960 55O. A. STARYKH, A. W. SANDVIK, AND R. R. P. SINGH
compared, in order to assess effects of the system size.
agreement with the HTE results is quite good forT/J51.0
and 0.5. The diffusivev→0 peak atT51.0 is somewhat
higher and narrower in the HTE result, whereas it is som
what more pronounced in the QMC results atT/J50.5. At
high temperatures, thev→0 peak height grows with the
system size in a QMC calculation, since the diffusive con
butions are cut off at the momentumk152p/N in a finite
system. Considering the intrinsic difficulties of numeric
analytic continuation, in particular of QMC data, the agre
ment between the HTE and QMC1 max-ent results has to
be considered quite satisfactory.

Apart from thev'0 peak at high temperatures, the d
ferences between theN564 andN5128 results are likely
mainly due to statistical fluctuations in the imaginary-tim
data, which are amplified in the real frequency spectra.
dominant peak atv/J'1.5 is very pronounced atb58, and
does not exhibit much size dependence. The position of
peak can be understood on the basis of theT50 two-spinon
continuum. The Bethe ansatz solution gives an exact exp
sion for the lower edge,30 vmin(k)5(p/2)Jsin(k). The upper
bound is approximately given by21 vmax(k)5pJsin(k/2).
Since the dominant spectral weight is concentrated at
lower edge, one can expect a maximum in the momen
averageS0(v) at v5p/2, arising from momentaq'p/2,

FIG. 6. The dynamic structure factor averaged with a cons
form factor calculated using QMC and max-ent analytic contin
tion at different temperatures. Dashed and solid lines are result
system sizesN564 and 128, respectively.
he
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where the lower bound has the smallestq-dependence. This
is indeed the position of the maximum seen in Fig. 6
b58.

A maximum at lower frequency also develops inS0(v)
for T,0.25J. It is due to the gradual change from rela
ational to propagating behavior for modes with mome
3p/4&k<p. The peak sharpens and moves towardsv50
as the temperature is lowered~this trend is seen also in re
sults for lower temperatures, not shown here!. This maxi-
mum is expected from the scaling form for the dynamic s
ceptibility first derived by Schulz7,8 @x9(v);tanh(v/2T) for
T!J#, and has also been discussed in the context of neu
scattering experiments on Cu~C6D5COO! 2•3D2O.

31

Figure 7 shows the momentum dependence
S(k,v→0) at several temperatures. It is clear that the lo
frequency weight is strongly peaked neark50 at T/J51,
but shifts tok5p as the temperature is lowered. The stro
increase ask→0 at high temperatures is clearly not captur
completely in a small system, due to the discreteness of
momentum. Apart from this long-wavelength cutoff, there
no size dependence betweenN564 and 128 within the fluc-
tuations of the data. We have not explicitly calculated sta
tical errors of the results, but one can get an impression
their order from the~rather low! degree of nonsmoothness o
the curves. As discussed in Sec. II C, there may be so
systematic errors present as well, due to the unavoidable
of the max-ent method used for the analytic continuation
particular, this may be the case close to bothk50

nt
-
or

FIG. 7. The low-frequency limit of the dynamic structure fact
vs the momentum. Solid and open circles are forN564 and 128,
respectively.
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55 14 961DYNAMICS OF THE SPIN-1/2 HEISENBERG CHAIN . . .
and k5p, in the neighborhood of the points where low
frequency weight first starts to appear~i.e., at temperatures
where there is an intermediate momentum regime with v
ishing low-frequency weight!. In these regimesS(k,v→0)
may be overestimated due to broadening effects; i.e., l
frequency weight may be seen in Fig. 6 where in fact
actual modes only begin to have significant weight sligh
abovev50. Away from these regimes, we expect syste
atic errors of at most 10–20 %, as discussed in Sec. II C

We now discuss the full dynamic structure factor in t
temperature regime where there is the most significant s
in spectral weight fromk'0 to k'p. We presentN5128
results forT/J51.0, 0.5, and 0.25 graphed in two differe
ways. First, in Fig. 8, we show 3D graphs with curves
S(k,v) for each individualk. This clearly demonstrates how
the narrowk'0 peak present atT/J51 is significantly re-
duced atT/J50.5, where there is also a massive buildup
spectral weight at momenta close tok5p. The maximum at
k5p is not yet very pronounced at this temperature, ho
ever. AtT/J50.25 thek50 peak has vanished almost com
pletely, and the distribution of spectral weight starts to
semble what would be expected from theT50 two-spinon
continuum. Again, the lack of smoothness along momen
cross sections gives an impression of the considerable am
fication by analytic continuation of the very small statistic
errors in the imaginary-time data. The concentration of
weight between the lower and upper bounds of the tw
spinon spectrum is seen more clearly in the plots of Fig
Here the relative intensity is represented by shades of gra
the (k,v) plane, and theT50 bounds are also shown. It i
clear that there is very little weight above the upper bou
even at high temperatures, whereas there is signific
weight below the lower bound.

One may still wonder how well the max-ent method ca
tures the true temperature dependence ofS(k,v). In the pre-
vious low-temperature calculations by Deiszet al.,19 consid-
erable weight was observed below the rigorous lower bo
even at temperatures as low asT/J51/24, and the expecte
concentration of weight at the lower edge was not well
produced. Above we have shown that our high-tempera
results agree well with HTE calculations. In order to furth
investigate the broadening effects due to max-ent ana
continuation, we have also carried out simulations for
system size and temperature considered by Deiszet al.
(N564, b524). Figure 10 shows our result fork53p/4,
which can be compared with Fig. 9 of Ref. 19. Our res
indeed peaks at the lower bound, and is significantly l
broadened towards lower frequencies. This probably refl
a higher accuracy in the underlying imaginary-time data. T
broadening that is present atb524 may still be partly due to
temperature effects, but is likely mainly max-ent induce
This kind of broadening should be a problem primarily
cases where the lower edge is sharp, i.e., at very low t
peratures. It will be present to some extent also for temp
tures and momenta where there is very little low-frequen
weight and, as already discussed above, may then lead
overestimation ofS(k,v→0). The broadening below th
lowest bound seen in the results of Figs. 8 and 9 is con
erably larger than in Fig. 10, and we therefore believe tha
is mainly due to real temperature effects, with only min
distortions due to max-ent bias.
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B. Spin-lattice relaxation rate

Next we discuss our calculations of the nuclear sp
lattice relaxation rate 1/T1, for different hyperfine couplings
parametrized by the ratioR in Eq. ~6!.

FIG. 8. QMC1 max-ent results for the full dynamic structur
factor S(k,v) at three different temperatures forN5128. The
maxima of the vertical scales are 3.01 (T/J51.0), 1.49
(T/J50.5), and 1.86 (T/J50.25).
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14 962 55O. A. STARYKH, A. W. SANDVIK, AND R. R. P. SINGH
The QMC results are obtained by averaging the lo
frequency dynamic structure factor shown in Fig. 7~for
N5128). As already mentioned, this method differs from t
approach previously used in Ref. 15, where the averag
was done for the short-distance imaginary-time correlat

FIG. 9. QMC1 max-ent results for the dynamic structure fact
S(k,v) atT/J51.0, 0.5, and 0.25, with shades of grey represent
the relative intensity in the (k,v) plane. The curves indicate th
lower and upper bounds atT50. Note that forT51.0 and 0.5,
S(k,v) is sharply peaked atk→0 v→0.
-

g
n

functions, and the analytic continuation carried out sub
quently. With exact imaginary-time data, the two approac
would yield identical results, but in the presence of statisti
errors the max-ent method will bias the outcome differen
in the two approaches. As an illustration of this, results
the on-site dynamic structure factorS0(v) obtained using
the two different orders of averaging and analytic continu
tion is shown in Fig. 11. It is clear that the analytic contin

g

FIG. 10. QMC 1 max-ent results for the dynamic structu
factor atk53p/4, calculated for a 64-site system at inverse te
peratureb524. The dashed line is theT50 Bethe ansatz lower
edge.

FIG. 11. Comparisons ofS0(v) calculated by averaging befor
~dashed curves! and after~solid curves! analytic continuation.
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55 14 963DYNAMICS OF THE SPIN-1/2 HEISENBERG CHAIN . . .
ation of the on-site functionS0(t) misses much of the diffu-
sive behavior forv→0 at the temperatures where the
contributions are the most important. Based on the previ
comparisons with HTE results at high temperatures, we
lieve that the approach of continuingS(k,v) individually for
eachk before averaging is more accurate. This can also
understood on the grounds that the frequency dependen
S(k,v), for a givenk, has less structure than the momentu
average, and is therefore easier to reproduce with a h
entropy curve~which is favored by the max-ent method!.

The HTE 1 recursion method is applied to the sho
distance correlations, according to Eq.~7!. The zero-
frequency limit will produce a divergent 1/T1 when infrared
singularities are present. However, the very-low-frequen
very-long-wavelength limit of our results may not be acc
rate and should be viewed with some caution as the me
is based on a short-time expansion, involving only finite s
clusters. We have therefore chosen not to focus on the e
form of thev→0, k→0 behavior. For calculating 1/T1 we
set the nuclear resonance frequencyvN to 0.01J. In a calcu-
lation using QMC1 max-ent, the divergence is cut off du
to the finite size, and may also be rounded due to resolu
effects. In real materials, several energy scales including
isotropy and coupling between chains serve to determine
cutoff frequency.

Results for 1/T1 from the recursion method are shown f
several different values ofR in Fig. 12, along with the QMC
1 max-ent results forR50 andR520.5. The agreemen
between the HTE and QMC calculations is quite good
T/J>0.5, and gives us confidence in the QMC data at low
temperatures. The main difference from the previous15 QMC
1 max-ent results is that the diffusive contributions f
R50 at T*0.5 are stronger, as already discussed. At l
temperatures the present results are'20% lower than the
previous results, both forR50 andR520.5. It is likely that
the present results at low temperatures are still somewha
high ~likely 10–20 %!, due to the broadening effect of th

FIG. 12. Results for NMR relaxation rates 1/T1 for various val-
ues of the hyperfine parameterR, calculated using HTE and th
QMC and max-ent methods.
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max-ent method discussed above~see also Ref. 22, for a
comparison of results for the ratioT2G /ATT1).

Sachdev calculated 1/T1 using the scaling form of
S(k,v) obtained from bosonization and conformal fie
theory.8,32,7 This gives a temperature-independent ra
which, however, is expected to be modified by logarithm
corrections to yield a logarithmic divergence asT→0.8 This
is clearly in qualitative agreement with the above results
R520.5 ~where the diffusive contributions neglected in th
theory are filtered out!, but the accuracy is not high enoug
to extract a form for the low-temperature behavior. We ha
previously discussed other effects of logarithmic correct
on the NMR relaxation rates.22 In particular, it can be noted
that the ratioT2G /ATT1 is modified from the universa
temperature-independent form, approaching the unive
value with infinite slope asT→0 ~in a manner similar to the
bulk susceptibility discussed in Ref. 33!.

We now briefly discuss recent experimental results. Ta
gawaet al.measured both 1/T1 and 1/T2G in Sr2CuO3,

2 for
which an exchangeJ'2000 K had been previously deduce
from susceptibility measurements.1 The hyperfine form fac-
tor could be accurately extracted26 using an impurity effect
on the NMR line shape predicted by Eggert and Affleck27

Hence, there are no free parameters, and nonambiguous
parisons with model calculations can be carried out. Ta
gawaet al.concluded that the agreement with the 1/T2G cal-
culation of Ref. 15 was good. For 1/T1 the lowest
temperature studied in Ref. 15 corresponds to'300 K,
which was the highest temperature studied experimenta
At this temperature, the previous QMC1 max-ent result was
'40% higher than the experimental value. As noted abo
our improved method of calculating 1/T1 gives a value
'20% lower than before, and hence this discrepancy is n
largely reconciled~the remaining differences can likely b
explained by uncertainties in the experimental values oJ
and the hyperfine couplings, and by remaining small err
in the numerical result!. As discussed above and in Ref. 2
also the slight temperature dependence observed
T2G /ATT1 can be explained theoretically, and is largely d
to logarithmic corrections. Hence, all the analytical and n
merical results are now in good agreement with the exp
ments, indicating that Sr2CuO3 indeed is a good realization
of the spin-12 Heisenberg chain with only nearest-neighb
interactions.

We also note that some contributions from diffusive pr
cesses, signaled by a dependence of 1/T1 on vN ~i.e., the
external field strength!, were explicitly observed in
Sr2CuO3.

2 It would clearly be interesting to study this mat
rial also at higher temperatures, where our numerical res
indicate that a considerably stronger diffusive behav
should be observed.

Another quasi-1D compound which has been studied v
actively recently is CuGeO3, which undergoes a spin-Peier
~SP! transition atT'14 K.6 This material has a stronge
coupling between the chains than Sr2CuO3, and also is ex-
pected to have a non-negligible next-nearest-neighbor in
action J2.

34 1/T1 exhibits a strong, almost linear, decrea
with decreasing temperature, with a reduction by almos
factor of 5 betweenT'J andT'J/5 ~if J2 indeed is signifi-
cant, J should here be considered an effective coupl
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14 964 55O. A. STARYKH, A. W. SANDVIK, AND R. R. P. SINGH
constant!.35,36 Itoh et al.argued that the transferred hyperfin
term is small,35 and henceR'0 in our notation. Our results
shown in Fig. 12 then indicate a reduction by a factor of 2
the above temperature regime, which is significantly diff
ent from the experiment. On the other hand, Fagot-Rev
et al.36 argued that there is a significant transferred hyper
coupling, and they were able to obtain a reasonable fit to
previous 1/T1 results forR'0.25.15 Notice that this value of
R leads to a strong enhancement of contributions from
fusive,k'0, modes, and as a result, a stronger tempera
dependence of 1/T1 ~as compared with, e.g., theR50 case!.
Numerical calculations for the NMR rates includingJ2, in-
terchain couplings and dynamic phonons have yet to be
ried out, and would clearly be very useful for determini
the importance of additional interactions beyond the stand
Heisenberg chain in a realistic model of CuGeO3. The fact
that the temperature dependence of 1/T1 above the SP tran
sition extrapolates to a positive value atT50 ~Refs. 35 and
36! indicates that the frustratingJ2 coupling by itself is not
sufficient for opening a gap, but it may clearly contribute
stabilizing the dimerized state.

C. Scaling behavior

In this section we discuss the low-temperature scaling
havior of the staggered susceptibility. At aT50 quantum-
critical point with z51, conventional quantum-critical sca
ing implies that the dynamic staggered susceptibility has
scaling form37

x~q,v!5
a

T22h fS cqkBT , v

kBT
D , ~38!

where a is a nonuniversal number,f(x,y) is a universal
complex function of both arguments, andq measures devia
tions from the antiferromagnetic wave vector,q5p2k. This
in turn also implies that near the antiferromagnetic wave v
tor, the equal-time structure factorS(q) and the antiferro-
magnetic susceptibilityx(q) have scaling forms

S~q!/S~0!5 f 1~cq/T!, ~39a!

x~q!/x~0!5 f 2~cq/T!. ~39b!

However, for the Heisenberg chain these scaling relations
violated by logarithmic factors, which are produced by m
ginally irrelevant operators describing interaction betwe
left- and right-moving currents.33 The failure of scaling for
x(q) was discussed earlier, and a way to take the logarith
corrections into account analytically was proposed.22 Here,
in Fig. 13, we show the scaling plot forS(q). Substantial
systematic deviations from scaling inq/T are apparent even
at the lowest temperatures accessible to us. We also s
results for the quantityS8(q), obtained by subtracting th
ferromagnetic~uniform! component of the spin-spin correla
tion function from the numerical data forSr(0) before Fou-
rier transforming to momentum space. The uniform term
given by2@T/(2csinh(pTr/c)#22, and contains no adjust
able parameters.8 S8(q) then contains fluctuations with mo
menta around the antiferromagnetic wave numberp only,
i.e., withq;0. However,S8(q)/S8(0) also does not exhibi
scaling inq/T, demonstrating the importance of subleadi
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nonuniversal corrections. Unlike what is the case for
static susceptibility,22 which is dominated by low-frequenc
fluctuations, these deviations cannot be explained by tak
only long-distance logarithmic corrections into account.

Turning now to scaling inv/T, we discuss the scaling
amplitudes atq50, i.e., the staggered structure factor a
the staggered susceptibility. Including the leading logari
mic corrections, the sum rules~9! give the low-temperature
forms

S~q50!5Ds@ ln~Ts /T!#3/2, ~40a!

x~q50!5DxT
21@ ln~Tx /T!#1/2. ~40b!

In Fig. 14 these quantities are graphed in such a way that
behavior vs ln(J/T) should be linear if the above asymptot
forms hold. The HTE results shown are from several diff
ent differential approximants. The agreement between
HTE and QMC data is quite good down tob'6–8, where
the HTE approximants start to deviate from each other
from the QMC results, indicating that the HTE method b
comes unreliable. Linear behavior consistent with Eqs.~40!
is indeed observed in the QMC data forJ/T*4. Fitting lines
to the results in this regime givesDs50.09460.001,
Dx50.3260.01,Ts518.360.5, andTx55.960.2.

The difference inTs and Tx may be due to divergen
contributions toS(0) from short distances, careful treatme

FIG. 13. The equal-time structure factorS(q) obtained from
HTE and QMC, graphed so that the data would collapse ont
single curve if scaling inq/T holds. The QMC results forb<8
were calculated in the grand canonical ensemble forN5256 and
those forb>16 in the canonical ensemble forN51024.
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of which would require a separate cutoff. Another importa
reason is the ferromagnetic contribution to the spin-spin c
relation function, already discussed above. This contribu
to bothS(0) andx(0). In Fig. 14 we also show results fo
the quantitiesS8(0) andx8(0), obtained by subtracting th
ferromagnetic contributions fromS(0) and x(0). The pa-
rameters obtained in this case areDs850.10660.001,
Dx850.3460.01,Ts855.160.2, andTx853.960.3. The high-
energy cutoffsT8 obtained in this way are now much clos
to each other, and also close to the valueT054.5 obtained in
Ref. 22 by fitting a scaling form to the real-space correlat
function atb532. Within the accuracy of the numerical pro
cedures~which apart from statistical errors also include e
fects from non-asymptotic contributions! they can be consid
ered equal. We note that these parameters still should
viewed as ‘‘effective’’ or temperature dependent, and th
asymptotic zero-temperature values may only be reache
T/J,0.01 as is the case for the uniform susceptibility33 and
the correlation length.38

The temperature dependence ofx(q50) is important in
the context of systems of weakly coupled spin chains, wh
it determines the critical temperature for ordering into
three-dimensional Nee´l state.39 A recent calculation for

FIG. 14. TheT dependence ofS(k5p) andx(k5p) obtained
from HTE and QMC, graphed so that the predicted forms~40! give
linear behavior. The dashed curves are several different HTE
proximants, and the solid circles with error bars are the QMC
sults. The solid lines are fits to the QMC data forT/J,0.25. The
open circles and dotted lines are results and fits after subtractio
the ferromagnetic contribution to the spin-spin correlation functi
t
r-
s

n

be
ir
at

re

KCuF3 by Schulz,
39 using our numerical data forx(q50),

is in good agreement with experimental results.

IV. CONCLUSIONS

In this paper, we have used several numerical method
study the dynamics of the spin-1/2 Heisenberg chain at
termediate temperatures~above and belowJ). In order to
obtain the dynamic structure factor, we have combined hi
temperature expansions for the frequency moments with
recursion method and quantum Monte Carlo simulatio
with the maximum entropy method. In some cases, the
sults of these methods have been compared with exact re
for a system with 16 spins, as an additional check.

We find that at high temperatures the HTE1 recursion
method works very well even for dynamic quantities. Usi
the first six continued fraction coefficients for the relaxati
function, we have obtained dynamic susceptibilities at va
ous temperatures down toT/J50.5. The calculated fre-
quency dependence of the structure factor atk5p/2 agrees
remarkably well with the exact results on finite systems. T
method is also sensitive to infrared singularities. Already
the level of the continued fractions themselves, that is, be
any numerical extrapolation is done, the presence or abs
of singularities can be detected. We found that the beha
of the continued fractions for the local (k-integrated! suscep-
tibilities changes qualitatively depending on whether the
perfine couplings are vanishing or nonvanishing atk50.
However, when infrared singularities are present, their ex
forms may not be fully captured by these methods. Since
diffusion-related singularities are most robust at infiniteT,
where they have been investigated in the past with hig
number of moments,23 we did not focus on this issue here. I
our study, the HTE with the recursion method became un
liable below T/J50.5 because the extrapolations for th
higher moments became unstable. By extending the se
for the frequency moments, it may be possible to reach
lower temperatures also for dynamic quantities.

The QMC results for the static quantities agree perfec
with the high-temperature expansions down
T/J'0.1–0.2, below which the HTE results become unre
able. Results obtained for the dynamic quantities with
QMC 1 max-ent method are in satisfactory~generally
within 10–20 %! agreement with HTE results aboveT/J
50.5 and, we believe, should have similar reliability dow
to much lower temperatures. For calculating local quantit
such as 1/T1, and incorporating as much as possible the
fects of infrared singularities from certaink regions, it ap-
pears to be better to carry out the analytic continuation for
individual momenta separately before performing the m
mentum sum, rather than carrying out the analytic contin
tion for momentum-integrated quantities.

We have also presented several new results for
Heisenberg chain. These include quantitative estimates
the logarithmic temperature dependence of the static s
gered susceptibility and structure factor and improved e
mates for the temperature dependence of the spin-lattice
laxation rate with various choices of hyperfine couplings,
well as the full dynamic structure factor at intermediate te
peratures. Our results clearly show the shift in the lo
frequency spectral weight from the diffusive modes ne

p-
-

of
.
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k50 at high temperatures to the antiferromagnetic mo
neark5p at low temperatures. At low temperatures we o
served the development of spectral features that can be a
ciated with the two-spinon continuum. Overall, our results
the lowest temperatures are in good agreement with the g
eral expectation of these quantities from various analyti
studies. Our results also allow us to reconcile the meas
ments of the spin-lattice relaxation rates in Sr2CuO3 with
theoretical and numerical calculations for the Heisenb
model.

After completing this work, we became aware of a rece
paper by Fabricius, Lo¨w, and Stolze,40 discussing exact di-
agonalization results forS(k,v) of chains with up to 16
sites. We have here used such short-chain calculat
mainly as a test of the HTE and QMC1 max-ent methods in
some regimes. Fabriciuset al.40 found no signs of spin dif-
fusion. Our results indicate that 16 sites is not large eno
in general, in particular not for addressing the intricate pro
lem of spin diffusion. As can be inferred from Fig. 7, th
momentum cutoffk15p/8 for a 16-site chain prohibits ac
cess to most of the long-wavelength regime where we
signs of diffusive behavior. In the limitT→0 there is most
likely no spin diffusion, as discussed by Sachdev,8 and also
i

-

s
-
so-
t
n-
l
e-

g

t

ns

h
-

e

supported by the numerical results of Ref. 15 and our pre
calculations. We stress again that our study is also not a
rate enough to resolve the exact form ofS(k,v) in the
k→0, v→0 limit. We have strong evidence of a sharp pe
at high temperatures, but cannot determine its exact shap
whether or not it is truly divergent~i.e., whether the long
time behavior of the spin-spin correlations is of the stand
1D diffusive form;t21/2 or, perhaps, is anomalous!. In any
case, as we have discussed above, a sharp maximum s
have detectable effects on, e.g., the spin-lattice relaxa
rate in real materials.
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