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Suzuki-Trotter decomposition and renormalization of a transverse-field Ising model
in two dimensions

M. Dudziński and J. Sznajd
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 937, 50-950 Wrocław, Pola

~Received 19 September 1996; revised manuscript received 8 January 1997!

The combined Suzuki-Trotter decomposition and Niemeijer–van Leuween real-space renormalization-group
techniques are used to study the critical properties of a two-dimensional Ising system with a transverse field.
The inverse critical temperature as a function of the external field and the temperature dependence of the
transverse component of the magnetization are found. It is also shown that any real-space renormalization-
group procedure based on the simple generalization of the Niemeijer–van Leeuwen majority rule for one of the
components of the total-cell spin does not preserve the symmetry of the quantum spin space.
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I. INTRODUCTION

Since developing real-space renormalization~RSRG! of
Ising spins on a lattice,1 many attempts have been made
generalize this method to two-dimensional~2D! quantum
spin systems such as the anisotropic Heisenberg2–5 or trans-
verse field Ising6 ~ITF! models. Unfortunately, up to now, fo
the quantum spins the RSRG studies have not given f
satisfactory results. The main problems appear to be the
ficulties in the choice of the proper transformation whi
allocate original site-spin configurations among effect
cell-spin states and decomposition of exponential opera
for noncommutable terms of Hamiltonians.

It is true that contrary to the first procedures2,3 the rota-
tionally invariant RSRG transformations4,5 confirm
univocally7 the existence of the critical points in 2D quantu
XY models at temperatures close to those found from h
temperature expansions;8 however concerning the charact
of the critical behavior the results are rather inconclusiv5

Furthermore the rotationally invariant transformation lea
to rather bad results for an Ising system with a transve
field. In this latter case Stella and Toigo6 proposed simple
generalization of the Niemeijer–van Leeuwen~NvL! major-
ity rule for the z component of the spin operators. The a
thors considered thes51/2 ITF model on the triangular lat
tice and the method was essentially as follows: the lat
was divided into cells of three spins (si); a new effective cell
spin operator (Sa) was assigned to each cell; in the basis
the product eigenstatesus1

zs2
zs3

z& the eight states of the ce
were divided into two groups u1,t& and u2,t&
(t51,2,3,4) and associated with two states of the effec
spin u1&8 and u2&8; the renormalization transformatio
leading from a site HamiltonianH to cell HamiltonianH8
was defined by

8^aueH8ub&85 (
t51

4

^a,tueHub,t&, a,b51,2. ~1!

According to the NvL majority rule Stella and Toigo6

associated the following four states of the cell:
550163-1829/97/55~22!/14948~5!/$10.00
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u111&, u112&, u121&, u211&, ~2!

with the effective spin stateu1&8 and the other four state
with u2&8. The same division of the cell states was also us
to study the critical behavior of the quantumXY model.2

It is obvious that the transformation proposed by Ste
and Toigo, similarly as any transformation based on the
vision of the states with respect to a given component of
total cell spin, distinguishes this component from others.
first glance this kind of procedure is fully justifiable for th
systems with axial symmetry like ITF orXY models. How-
ever, it can be seen that the above-mentioned transforma
violatealso the symmetry in thexy plane.

Let us consider a rotation through anglef about thez
axis; then the states of the spin 1/2 become transforme
follows:

u1&→eif/2u1&, u2&→e2 if/2u2&. ~3!

According to the transformation~1! any operator in the cell-
spin spaceA8 can be expressed in the following form:

8^auA8ub&85 (
t51

4

^a,tuAub,t&, ~4!

whereA is the operator in the site-spin space. It is easy to
that if the diagonal elements of the operatorA8, for example,

8^1uA8u1&85^111uAu111&1^112uAu112&

1••• , ~5!

are invariant with respect to the rotation~3! because the
phase factors cancel out, the off-diagonal elements are
invariant because the phase factors of the eleme
^aaauAubbb& with aÞb differ from others. As an obvious
consequence of this fact, for the ITF model, is dependenc
the results found by using the transformation~4! on the di-
rection of the field in thexy plane. The results are differen
for the fields directed along thex or y axis and if originally
the field is directed between thex andy axes then its direc-
tion is not preserved in the method outlined above.6 The
same problem of the spin-space symmetry violation appe
if one uses, as it has been proposed by Stellaet al.,9 the
14 948 © 1997 The American Physical Society
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55 14 949SUZUKI-TROTTER DECOMPOSITION AND . . .
eigenstates of the cell Hamiltonian with thez component of
the total spin fixed, instead of the states~2!. In conclusion, it
seems that any RSRG procedure based on the simple g
alization of the NvL majority rule for one of the componen
of the total spin of the cell does not preserve the symmetr
the spin space for the quantum models, even in the cas
the uniaxial symmetry. Thus, use of procedures of this k
can lead to uncontrolled spurious results.

As mentioned above a second problem in using the RS
approach to study quantum spin systems is the necessi
make some approximation to decompose the exponentia
erator

eH5eH01V for @H0 ,V#Þ0, ~6!

where as usualH0 andV denote the intercell and intrace
terms of the Hamiltonian, respectively. Up to now two d
ferent schemes of approximation have been used: first b
on the Baker-Campbell-Hausdorf~BCH! formula or some of
its symmetric versions, and second based on the Feyn
identity. Unfortunately, in some cases, especially for syste
with single-ion interactions,10 there are difficulties in estima
tion of the errors connected with several decomposition
mulas and the results depend on the kind of chosen form
Thus, the main purpose of this paper is to show how a
ferent scheme based on the Suzuki-Trotter~ST! decomposi-
tion formula,11 used mainly in the Monte Carlo simulation
can be applied as a starting point for the RSRG studies of
Ising model in a transverse field.

II. ST DECOMPOSITION

The following Trotter formula

eA1B5 lim
N→`

~eA/NeB/N!N, ~7!

allows us to transform ad-dimensional quantum system int
the corresponding (d11)-dimensional classical system
~Suzuki-Trotter transformation!.11 For any finite value ofN
formula~6! can be treated as an approximation and the fo
classical counterpart of the considered quantum systems
be composed of the finite number ofd-dimensional ‘‘layers’’
in the d11 direction. The convergence of Eq.~6! is rather
slow10 thus, if one decomposes the exponential opera
eH/kT, the approximation based on formula~6! is a high-
temperature approximation. In this paper we are intereste
the phase transitions of the 2D Ising model in a transve
field, so for small fieldH/kT,1 we need a reasonable a
proximation for relatively high temperature
K[J/kT;0.5, whereJ is an interaction constant. The qua
ity of the finite-N ST approximation has been tested for sp
chains. It has been found that for the above-mentioned ra
of the temperature (J/kT;0.5) even the lowest orders of th
approximation (N51,2,3) lead to almost the exact results12

Considering the noncommutability of several terms of
Hamiltonian in this temperature region the ST formula see
to be a better approximation than the BCH formula or Fe
man identity. However, the main point is that it is mu
more intuitively obvious in which way one should constru
the RSRG transformation for the effective classical syst
than for an original quantum one.

We consider an ITF model defined by
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2bH5K(
^ i , j &

si
zsj
z1h(

i
~si

xcosf1si
ysinf! ~8!

wheresi is the spin-1/2 operator associated with thei th site
of the triangular lattice. Because of the system symmetry
anglef defining the direction of the magnetic field is, o
course, irrelevant for the problem. It is obvious that t
proper calculation procedure should not violate the symm
try of the system and preserve the independence of the
sults onf.

After setting

A[K(
^ i , j &

si
zsj
z and B[h(

i
~si

xcosf1si
ysinf!, ~9!

and using formula~6! one finds theN-order classical ap-
proximation of the original model.11 The new effective
model is composed ofN layers of Ising spinss561 with
interactionKx5K/N between the nearest neighbors in ea
layer. The nearest neighbors of neighboring layers (n21)
and (n) are coupled by the interaction

H125Kzs
~n21!s~n!2

1

2
if~s~n21!2s~n!!,

where Kz5
1
2 ln coth(h/N). This interaction contains the

imaginary fields dependent onf. However, the effective
classical system is periodic in the Trotter direction and a
is easy to see the imaginary fields cancel out. It means
for any anglef the ST decomposition leads to the sam
classical model described by two interaction parametersKx
andKz . Thus, contrary to the method proposed in Ref. 6
present method does not introduce the spurious depend
of the results on the field direction.

The obtained classical model can be understood a
model on the two-dimensional lattice with some objec
more complicated than single Ising spins, associated w
each site. In theNth order approximation a quantum spin
the ITF model is replaced by the column ofN classical spins.
It is easy to see that the ST approximative mapping can
be used in the limit of high magnetic fields for any fini
value ofN. For, in this case, the original quantum model
transformed into the 2D classical Ising model with the int
action K/N, which leads to the wrong result that an IT
system with infinite field undergoes a phase transition at
nite temperature.

III. RSRG TRANSFORMATION

Let us start with the lowest nontrivial order of the S
transformation, i.e.,N52. In this case the corresponding e
fective Hamiltonian

Heff5Kx(
^ i , j &

~si
1sj

11si
2sj

2!1Kz(
i
si
1si

2 , ~10!

describes the classical system with a two-Ising-spin colu
associated with each site of the triangular lattice~Fig. 1!.
Now we apply to this model the NvL RSRG defined by t
transformation:



th
e
n
n
s
n
n-
nt

fo

el

tio
r-

ea

ns
be
a
n

si

rms
cell
c-

t-

ac-

ra-
. 2
f
odel
ot
we

om
nd
ave
ple

la

TF
ote

14 950 55M. DUDZIŃSKI AND J. SZNAJD
eH8~s!5(
s
P~s,s!eH~s!, ~11!

whereP(s,s) denotes the weight operator which couples
cell ~s! and site (s) spins. The mapping to the effectiv
classical system and the character of the phase transitio
the ITF model connected with the appearance of the mag
tization^sz& allows us to use a simple and intuitively obviou
generalization of the NvL majority rule. Namely, we ca
formulate the NvL majority rule for each layer indepe
dently, it means we transform three two-spin columns i
one two-cell-spin column~Fig. 1!, with the weight function
in the form

P5P1P2 ,

where

Pn5
1

2
@11snsgn~si

n1sj
n1sk

n!#. ~12!

We may now use the standard cumulant expansion
classical spins.1 In the first-order calculation an interaction

Kp(
^ i , j &

~si
1sj

21si
2sj

1! ~13!

comes into play and the only fixed point is located at

Kx*5Kp*'0.084, Kz5`.

Now we are able to find the critical line of the ITF mod
separating two regions in the (K,h) plane which correspond
to a low-temperature, ordered phase (^sz&Þ0) with the flow
of the coupling constants under the RSRG transforma
toward theT50 fixed point and a high-temperature, diso
dered phase (^sz&50) with the flow toward theT5` fixed
point. It is easy to see that forKz5` the two interactions
Kx andKp are identical and as one would expect we rev
the NvL fixed-point value of the interaction

K*52Kx*12Kp*'0.3356.

In the outlined procedure we make two approximatio
The first one is connected with using small Trotter num
N and the second one with truncation of the cumulant exp
sion. In order to examine the quality of these approximatio
we have performed the calculations forN53 in the first- and
second-order cumulant expansion. In this case the clas

FIG. 1. Two cells-to-two sites transformation on the triangu
lattice.
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model is composed of three layers and the RSRG transfo
three columns of three spins into one column of the three
spins. Now in the first order calculation three new intera
tions arise:

Kp (
aÞb,a,b51

3

(
^ i , j &

si
asj

b , ~14!

K4(
^ i , j &

@~si
11si

21si
3!sj

1sj
2sj

31si
1si

2si
3~sj

11sj
21sj

3!#,

~15!

K6(
^ i , j &

~si
1si

2si
3sj

1sj
2sj

3!, ~16!

and the fixed-point values of the interactions are

Kx5Kp5K45K6'
1

16
0.3356, Kz5`. ~17!

It is seen in Fig. 2 that for a small enough field in the firs
order calculation the results forN53 are only slightly dif-
ferent from that forN52.

In the second-order calculation 14 and 36 various inter
tions come into play forN52 andN53, respectively. The
appropriate results for the variation of the critical tempe
ture with strength of the transverse field are shown in Fig
~upper curves!. Because of a slightly different truncation o
the cumulant expansion, we have used for the studied m
the zero-field value of the critical temperature that is n
exactly the same as in the NvL approximation. Namely,
find Kc(h50)50.2620 and 0.2735 forN52 and 3, respec-
tively, while the NvL result is 0.2575,1 and the exact value

Kc5 ln3
4'0.2744.

IV. CONCLUSIONS

The quantum versions of the RSRG method suffer fr
the difficulties of choosing an optimal weight operator a
suitable approximation. On the other hand, as we h
shown in the Introduction, the methods based on the sim

r

FIG. 2. The field dependence of the critical temperature for I
model on the triangular lattice. The dashed and solid lines den
the results for the Trotter numberN52 and 3, respectively, in the
first- ~upper curves! and second-order cumulant expansions.
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FIG. 3. The temperature dependence of t
transverse component of the magnetization
g/J53 ~solid line!; 2 ~dashed line!; and 1~dot-
dashed line!.
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generalization of the NvL majority rule for one of the sp
components violate the symmetry of the spin space.
these reasons we have used the Suzuki-Trotter transfo
tion to map the original quantum model onto the correspo
ing classical one and then applied the intuitively obvio
extension of the NvL majority rule. Unfortunately, similar
as a choice of the weight operator the ST transformatio
not unique and one can find several classical models co
sponding to an original quantum one. However, in the c
of the ITF model, decomposition proposed by Suzuk11

seems to be the most natural and leads to the effective I
system with the order parameter^s&, which corresponds di-
rectly with the quantum model order parameter^sz&. Such a
simple relation between physical quantities of the quant
model and its classical counterpart is not generally true,
for example, the transverse component of the ITF magn
zation^sx& can be expressed by the correlation of the eff
tive Ising spins of the same column

^sx&5
1

2 S tanh h

N
1coth

h

ND1
1

2 S tanh h

N
2coth

h

ND
3^si

1si
2&. ~18!

The temperature dependence of the magnetization transv
component for several values ofG/J5h/K is shown in Fig.
3.

Of course, the critical singularities of the ITF model a
the same as those appropriate to the free-field Ising m
(h50). As one has expected the transverse field is an ir
evant parameter of the RSRG transformation.6 However, the
purpose of the present paper has been to show how c
bined ST decomposition and NvL RSRG techniques can
applied to study the spin-1/2 Ising model with transve
field at finite temperature and find for this model the dep
dence of the transition temperature on the field stren
Such a procedure seems to be reasonable because both
ods, as it was shown in many cases, lead to qualitatively
quantitatively good results.

Our approximation is only reliable for small values ofK
andh and for this reason we are not able to find the criti
value of the external strength forT→0. But the approxima-
or
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tion is expected to be valid for the temperature range clos
the zero-field critical point which has allowed us to draw t
critical line Kc(h) vs h for small enough values of the ex
ternal field~Fig. 2!. As shown in Fig. 4 the critical line found
in this paper forN53 in the second-order calculation~full
line! essentially differs from that obtained by Stella a
Toigo6 ~dashed line!. Unfortunately, we have not found an
other results for the ITF model on the triangular lattice
compare with ours. For this reason we have performed
calculation for the same model on the square lattice using
five-spin cells in the first order of the cumulant expansion
compare with the results of the high-temperature series
pansions~HTSE’s!.13 The appropriate critical lines are pre
sented also in Fig. 4. Of course, the results of the RSRG
the lowest approximation~top curve! are as usual not very
accurate and rather far from the HTSE result~dot-dashed
line!. However, the slopes of both curves are close to e

FIG. 4. The critical temperature as a function of field streng
for the ITF model: on the triangular lattice, solid line~this paper!,
dashed line~Stella-Toigo, Ref. 6!; on the square lattice, uppe
dashed line~this paper!, dot-dashed line~Elliot-Wood, Ref. 13!.
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other and the dependence of the critical temperature on
field strength is much weaker than that obtained by St
and Toigo,6 similarly as the dependence found in the pres
paper.

One can fit the critical line found in this paper to the for
Kc(h)2Kc(0);hv. The fit for the field range 0,h,0.2 is
very good and gives only small deviation from the parabo
dependence,v52.03. Of course, this deviation increases f
higher field strength. We have also obtained the tempera
dependence of the transverse magnetization component^sx&
~Fig. 3! which may be compared with the molecular fie
approximation results.14 However, in this latter case we hav
had to confine ourselves to the first-order cumulant exp
sion and results are much less accurate than that for the
cal line.

The approach proposed in this paper seems to be ra
promising for some class of the quantum spin models. T
method can be easily generalized for Ising models w
y

he
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t
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h

higher values of spin with nondiagonal single ion terms~e.g.,
the Blume-Capel model in a transverse field!. However,
there are no general rules how to decompose a Hamilto
of the original quantum model and then how to choose
appropriate RSRG scheme. So we are not able to find
effective classical Hamiltonian corresponding to quant
XY or Heisenberg models suitable for the NvL RSRG p
cedure. The point is that in the effective models that we c
find by applying the ST procedure to theXY or Heisenberg
models, some of the spin configurations are forbidden.11 It
means that in these cases it is impossible to construct ap
priate spin Hamiltonians with finite interaction parameter
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