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We map the ground-state ensemble of antiferromagnetic Ising model oSapina triangular lattice to an
interface model whose entropic fluctuations are proposed to be described by an effective Gaussian free energy,
which enables us to calculate the critical exponents of various operators in terms of the stiffness constant of the
interface. Monte Carlo simulations for the ground-state ensemble utilizing this interfacial representation are
performed to study both the dynamical and the static properties of the model. This method yields more accurate
numerical results for the critical exponents. By varying the spin magnitude in the model, we find that the model
exhibits three phases with a Kosterlitz-Thouless phase transitiéﬁzs;q<2 and a locking phase transition
at §<SL$3. The phase diagram at finite temperatures is also discUS@et63-18207)04421-4

[. INTRODUCTION Unlike previous simulations, we utilize the interfacial repre-
sentation directly in analyzing the simulation results; for ex-
Over the years it has been found that there exist mangmple, we compute the stiffness constant of the fluctuating
two-dimensional classical spin models, discrete and contintinterface which, in turn, yields more accurate critical expo-
ous alike, whose ground-state manifolds are macroscopicallyents of various operators; af@) we also study the dynami-
degenerate and, more interestingly, also exhibit critical becal properties of this model for the first time making use of
haviors; i.e., spin-spin correlation functions within the the interfacial representation.
ground-state ensembles decay with distance as power laws. This type of height mappinginterfacial representation
The classification of universality class for these models hagiffers from other sorts of mapping.g., dualitiesin a cru-
always been a challenging problém. cial way: Since the spin microstates are mapped essentially
An earlier example of this kind is the antiferromagnetic gpne to one to the height microstates, it is possible to perform
Ising model on the triangular lattice. The exact solution forpmonte Carlo simulations and construct interface configura-
this model by Wanniérshowed that although this model tions after each time step. We have found that analysis of the
remains paramagnetic at nonzero temperature, its groungeight-height correlations is much more efficient for extract-
state is critical. Later works by Ble and co-workers re- jng critical exponents than analysis of the spin correlations
vealed yet another remarkable property of the ground-statgjrectly as was done in previous Monte Carlo simula-
ensemble of this model; namely, it permits a solid-on-solidjgng %16
(SOS representation in which spin fluctuations are subse- The body of the this paper is organized as follows. Sec-
quently described by the fluctuating interface in the SOS;jon || describes the model Hamiltonian and maps it onto a
m0de|.3 Recent Studies aISO demonstrated that th|S interfaci%pin_l problem Whose interfacia' representation is then de_
representation provides a valuable avenue for studying thecribed. In Sec. IIl, we propose an effective continuum
ground-state ordering of quantum magfi8iand the ground-  theory for the long-wavelength fluctuations of the interface.
state roughness of oriented elastic manifolds in randonhere we also show how to relate scaling dimensions of vari-
media® Other recently studied models with critical ground ous operators to the stiffness constant of the interface, and
states i,nclude a three-state antiferromatic Potts model on thgyrive some other analytical results based on this “height
Kagomie lattice,® the O() model on the honeycomb representation.” This allows analytical understanding of the
lattice*° the four-coloring model on the square latticé?  phase diagram. Details of Monte Carlo simulations and nu-
and the square-lattice noncrossing dimer model and dimefnerical results on both dynamical and static properties are
loop models:® On the other hand, some very similar models presented in Sec. IV, including a comparison of the new and
with degenerate ground states exhibit long-range order, sucfld approaches to determining the exponents. As a conclu-

as the constrained four-state Potts antiferromatfhet. sion, the paper is summarized and various possible exten-
In this article we study the ground-state properties of thesjons are outlined in Sec. V.

antiferromagnetic Ising model of general spin on a triangular
lattice, which also belongs to the class of models mentioned
above. Recent numerical studies of this model include Monte
Carlo simulation®® and transfer matrix calculatiors.

Here we revisit this model by performing Monte Carlo simu-  The antiferromagnetic Ising model of sgion a triangu-
lations. The motivation of the present work is twofold) lar lattice can be described by the following Hamiltonian:

Il. MODEL
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It can also be shown that the expectation of any polyno-
mial in {s(r)}, in the ground-state ensemble of the sBin-
model, can be written in terms of a similar expectation in the
spin-1 model, because the extra freedom to hs(v¢ vary
from —(S—1) to S—1 is trivial: Once given thas(r) and
s(r') are intermediate spin values, there is no correlation
between these values. Thus there is no loss of information in
this mapping.

So we henceforth restrict ourselves to the spin-1 mapped
model whose partition function for its ground-state ensemble
can be written as

z= > (25-1)", 2
{o(n}

whereng denotes the number of zero spins in a ground-state

configuration{o(r)}. By varying the weight factor continu-

ously in the spin-1 model, it would be possible to give a

precise meaning tanyreal value ofS, and to simulate such
FIG. 1. Twelve flat states of the ground-state ensemble. EacRN €nsemble. However, in this article we perform Monte

flat state is simply specified by its spins on three sublatticescarlo simulations for integer-valuesl

A, B, andC of the triangular lattice since all spins on same sub-

lattice take the same value. The height variagiR) defined at the B. Height mapping

center of an elementary triangle according to &, which is uni- . . L . .
form for each of these 12 states, is also shown. Note that We define amicroscopic discrete-valued height function

h(R)—h(R)+6 results in identical spin configurations. The three 2(r) Iiving on the vertices _Of the triangular lattice SUCh that
nearest-neighbor vectoss, e,, ande, defined in Eq.(1) are also the step irg(r) between adjacent vertices is a function of the

displayed. adjacent spins:
z2(r+e)—z(r)=3+30(r+e)o(r), ©))
H:JZ Ee s(r)s(r+e), (1) whereo(r) is the spin-1 operator anelcan be any of the

three nearest-neighbor vectas, ;. It is easy to show that
where the spin variable(r) defined on lattice siteé of the the total change in height function, when traversed along any
triangular lattice can take any value from a discrete sesmallest loop, i.e., an elementary triangle, is zero. Therefore,
[-S,—S+1,...,5-1S], and the sum ovee runs over z(r) is well defined everywhere for the ground-state configu-
three nearest-neighbor vectas e,, ande; as shown in Fig.  rations, but it is not well defined in any excited state. This
1. Here the coupling constagt is positive describing the prescription generalizes that originally introduced by tBlo
antiferromagnetic exchange interaction between two nearesénd co-workers for the cas=1/2 (Refs. 3, 21 and 22(the

neighbor spinss(r) ands(r+¢€). prescriptions agree in that case
One important reason for interest in this model is that the
S—o [imit*®is the same as the Ising limit of thelassical or Ill. HEIGHT REPRESENTATION THEORY

guantum Heisenberg antiferromagnet on the triangular lat- ) , ) )

tice with Ising-like anisotropic exchange. That model was N this section we propose an effective continuum theory

shown to exhibit a continuous classical ground-state degeff?hich describes the long-wavelength fluctuations of the the

eracy and unusual features of the selection by fluctuations dfterface. We also demonstrate how the critical exponents of

ground state&? various operators are determined by the stiffness constant of
The ground-state configurations of the above model givel® interface. Although we focus on the ground-state phase

by Eq. (1) consist entirely of triangles on which one spin is transitions in zero magnetic field in this paper, the height
+S, another is—S, and the third can be anything in representation is nonetheless very useful in addressing the

[—S,+S]. effects of both finite temperature and finite magnetic field as
' illustrated by Appendixes A and B.
A. Spin-1 i
pin-2 mapping A. Effective free energy
Therefore, this allows us to reduce each s{a{g)} to a

state{o(r)} of a spin-1 model, by mappings(r)=+S to
o(r)=+1, s(r)=—Sto a(r)=—1, and intermediate val-
ues— S<s(r)<+Sto o(r)=0. In thisspin-1representation
of the model, the rules for allowed configurations are exactl
the same as for th8=1 model; however, instead of being _1

equal, the statistical weights have a fact®-21 for each h(R)=sl2(ry)+2(ra) +2(rs)], @
spin witha(r)=0. It should be noted that in ttf&=1/2 case, whereR is the center of a triangle. The possible values of the
s(r)==*=1/2 simply maps tar(r)==*1. h(R) are{n/2}, for any integem. (For the cas&=1/2, the

To describe the interface in the rough phase, we must
define a smooth height fieki(x) by coarse-graining the dis-
crete fieldz(r). As a first stage, on every triangular plaguette

)jormed by siteg,r,,r3, define a new discrete height
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only possible values are integerigure 1 shows thé(R) Similarly, we can also measure theight-height difference
mapping explicitly where the spins(r) take values from functionin real space as

{+1,0,—1}. The 12 states are arranged in a circle because

the pattern repeats whdn—h=6. Clearly, constraints on Ch EE([h(r)—h(O)]2)= M
{a(r)} will translate to a complicated set of constraints on =2 27K
h(R); however, simple inspection of Fig. 1 shows that eac
a(r) is a function of the local height variablgR), i.e., the
height defined on the triangle that contains the sit&he
precise function form is of no importance for further devel-
opment in this paper.

(r>1), (9

'\Nherea is the lattice spacing cutoff.

Using Eq.(9), we can compute the scaling dimension
Xo and the critical exponentyo of any local operator
O(r), which is defined as in the correlation function

There are certain special “flat states” in whi¢{R) is (O*(r)O(0))~r ~2*o~r ~ 70, (10)
uniform on all triangles. Each of these is periodic with a . ]
V3% 3 unit cell — in effect it is a repeat of one of the By local operator, we mean th&i(r) is a local function of

triangles in Fig. 1. We shall name these states, by writing théPin operators in the vicinity af. Now, the same spin con-
spins on the three sublattices, +(+,—)” and figuration is recovered when the height variabld) is in-

“(+,—,0);” here “+” stands for o=+1. It should be creased by 6 Thus any local operatdd(r) is also a peri-

noted that there are two nonequivalent species of flat stafedic function in the height space, and can consequently be
corresponding to integer- and half-integer-valug®), re-  €xpanded as a Fourier series:

spectively. They are nonequivalent in the sense that they are

not related bylattice symmetries. One of the species that is O(r)=2, Oge'sN ~giGoh(n) (11)
favored by thdocking potential[see Eq.(6) below] is what G

; . T »” -14
is previously called “ideal” state$. where G runs over height-space reciprocal-lattice vectors

Thl.“'s we can imagine that all states can b_e describeq "’fﬁe., multiples of 27/6). The last step of simplification in
domains of uniformh(R) separated by domain walls. Fi- Eq. (11) follows because the scaling dimensi@g of the

nally(,j tt)y tﬁoalrst?—gralnmg?(Rt) over Stls_tancesh_larr]ge tcom— operatorO(r) is determined by the leading relevant operator
pared to the lattice constant, one obtalts) which enters in the above expansion; i.€5, is the smallesG with non-

the. cqnjectureq f:onti.ng#m formula for the free ENer9Y,zero0 coefficient in the sum. Inserting E@.1) into Eq.(10)
which is entropic in origin, and making use of Eq9), we obtain the following:

glvmxﬂzw(h(x)), (5) (0*(1)0(0))=(e"Golh) Ol =g~ CoChn. (12

F((hoon- | x
. . o Therefore, the critical exponenyt is given by
whereK is the stiffness constant of the fluctuating interface.
A lattice shift by one lattice constant leaves the free en- 1
ergy invariant, but induces global shifts in height space 77052><o:m|(5o|2- 13
h(x)—h(x)£1; hence the potentiaV(-) in Eq. (5) must

have period 1. It is typically approximated as 1. Definition of operators

V(h)~hycog2mh). (6) In this paper, besides the usual spin operatér), we
also study the bond-energy operakdir + €/2) for the reason

Such a periodic potential, usually referred as theking }hat will become clear in the next section:

term?® favors the heights to take their discrete values one o
the two types of flat state, depending on the sighpf For
large S we expecth,<0, favoring the (,—,0) states, in E
view of the large entropy of flippable spins; it is not so sure

which state is favored at small& but this does not matter wheree denotes one of the three nearest-neighbor vectors as

:14- ;U(r+e)g(r)=z(r+e)—2(r), (14

e
r+=
2

2

for the critical exponentgsee Sec. IIl B beloy before.
As discussed already, the spin operator on a given site has
B. Fluctuations and correlations in rough phase a periodicity of 6 in the height space, from which a simple

inspection shows that the bond-energy operator is also peri-
odic in the height space with a periodicity of 3. Therefore,
the reciprocal-lattice vectors of the most relevant operator in
the Fourier expansion in Eqll) are

In the rough phaseby definition, the locking term is ir-
relevent, and so the long-wavelength fluctations of heigh
variableh(x) are governed by the Gaussian term of E):

K K
_ -~ 2_ 2 2 2 21
F({h(x)})—fdxzwmx)l =2 dln@l @ G, =% Ge=% (15
where we have performed the Fourier transform. Hence, byor spin and bond-energy operators, respectively.
the equipartition theorem, If a magnetic field is implemented by adding a term

—HZX,0(r) to the Hamiltonian, then our dimensionless uni-
form “magnetic field” is defined byH’'=H/T. The expo-
nents associated withl’ (and with the uniform magnetic

1
5n(Q)E<|h(Q)|2>=K—qz- 8
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susceptibility are easily related to the correlation exponents dh(x,t) SF({h(x)})
of the uniform magnetization operator, a Bh(x) +&(x.1), (20
M(R)=3[a(ry)+a(rp)+o(ra)]l, (16)  whereT is the dissipation constant, and the static free energy

where R is the center of a triangle formed by sites functional F({h(x)}) is given by Eq.(5). Here &(x.t) is a
F1,F5,5 A simple inspection of Fig. 1 shows that such ansStochastic noise generated in the Markov chain of Monte

operator has a periodicity of 2 in the height space, thus yield-CarIo simulations. As it is exp(_ected _that_the correlation time
of the slow mode under consideration is much longer than

in
g that of the noise, and since the update steps are local and
27 independent, it is proper to modé{x,t) as Gaussian noise,
GM=7- 17) uncorrelated in space or time:
(§(x,1EX 1)) =2T 8(x—x") 8(t—t), (21

2. Zone-corner singularities
in which the choice of F ensures that the steady state of the

interface under the Langevin equati¢®0) agrees with its
equilibrium state under the free ener@y.
This linear stochastic differential equation can be solved

Observe that the microscopic height variab(e) in any
flat state is not uniform but is rapidly modulated with the
wave vectorQ=(47/3)(1,0). The amplitude of modulation
itself is a periodic function of theoarse-graineceight field . . : :

h(x) which in turn implies that the correlation function de- f:;ﬂé’ezytoperform'”g Fourier transform. Equatie20) thus
cays with distance as a power law, and consequently that its
structure factor has a power-law singularityat dh(q,t) )

Such a zone-corner singularity is also directly connected TR —T'K[q|*h(q,t)+&(q,1), (22
to the singularity in the structure factor of the bond-energy
operator. To see this, recall that there is a linear relationwhich implies an exponentially decaying correlation function
between the microscopic height variables and the bondef<h*(q,t)h(q,0)>~e*“7q with the relaxation timer, given
energy operator given by E@14). Then it is interesting to by
note that the Fourier transforia(q) of the bond-energy

operator is given by quﬁmrz_ (23)
Ee(q)EiE eld(rre2pl ry Sl —2isin(q;e 2(q). Therefore, the dynamic scaling exponent for the Monte Carlo
INT 2 2 dynamics, defined by,~|q| %, is alwaysz=2 in the rough
(18 phase.
In other words, as a by-product of measurifig(q)|?), we ) N
have at the same time measured the structure factor of, say, D. Locking transition and smooth phase
the bond-energy operator of the same orientation specified The locking potentiaV/(-) in Eq. (5) favors the flat states.
by the nearest-neighbor vecter In view of Eq. (6), its leading reciprocal-lattice vector
is Gy=2m, corresponding to a scaling index,
Se(q)~(|Eda)[?)=4siP(39-e)(|z(q)]?). (19  =|Gy|¥4mK==/K for the corresponding conjugate field

We will utilize this relation in Sec. IV D to extract the expo- hy. Itis well known thf‘lt if_ 2-xy>0, .then hy becomes
nent of the bond-energy operator from the Monte Calrlorelevant(under renormal.lzatlc)nand the mterfacg locks |.nto
simulations one of the flat states Since K grows monotonically with
' S, such a locking transition occurs at a criticgl where
3 Exact solution for S=1/2 K =m/2=1570B... 317 In this “smooth” phase, any _
) ] spin operato©O(r) has long-range order, by arguments as in
The S=1/2 case is exactly soluble. The spin and energygec. ||IB.
correlation functions were computed ~exactly by  One of our aims in this paper was to pinpoint the locking
Stephensof?’ it transpires thaty,=1/2 and 7e=2 ex-  yansition S, which demands that we have a criterion to
actly, implying through the arguments of Béoand co- istinguish these phases. We must supplement@gwhich
workers that the effective stiffness in EQ) is K=m/9 ex-  shows the expected qualitative behavior of height fluctua-
actly. The exponents implied by the interface scefatioin  tigns (|h(g)|?) in the rough phase, with a parallel under-
particular, the magnetic field exponenf; — are fully con-  standing of the smooth phase.

firmed by numerical transfer-matrix computations. In the smooth state, the symmet(gf height shift3 is
broken and a fully equilibrated system has long-range order,
C. Dynamic scaling: The relaxation time 7 such that'h(x)) is well defined and uniform throughout the

We now discuss the correlations between the configuraSyStem. Fluctuations around this height, then, have at most
tions generated sequentially in the Monte Carlo simulationSnort-range(éxponentially d('aca‘yi/lr)gcorre!atlg)ns. Thus we
by studying the relaxation time of the slow modes in the€*Pect them to have a spatial “white noise” spectrum:
model, namely, the Fourier modegq) which play the role h(a) |2
’ ! . . ~const 24
of an order parametér.The linear-response dynamics of (@I 24
such a mode is usually formulated as a Langevin equation for smallg.
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A phase with “hidden” order was suggested by Lipowski
et al1”?° Numerical transfer-matrix calculatiotsusing the
spin-1/2 representation indicated<0;,<1/9 for 25>6,
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whereW, denotes thdare transition probability W= 1/n;
for 2S=1 andW,=1/2n; for 2S=2, which reflect the ran-
dom choice to be made in the local update as discussed

which is impossible if the spin correlations are derived fromabove. With the transition probability given in E@6), it is
height fluctuation$, as we reviewed in Sec. lll. An exotic straightforward to show that the detailed balance principle is
way to reconcile these facts was to postulate a phase isatisfied, i.e.,P(¢)W(p— ¢')=P(d')W(p'— ¢), where
which the interface was smooth and yet for the real spin®(¢) denotes the probability for configuratiap to occur
(o(r))=0 as suggested by spin correlation measurements.and P(¢)~ (2S—1)"s since each spin configuration in the
What does this imply for our height variabtéR), which  original spinS model has equal probability to occur. Note
has a one-to-one correspondence with the real spin configidso thatn;/n{ =1+ O(1/N) for largeN, and so this rule is
ration{o(r)}? If the interface is smooth, then the probability important only because of the finite system size.
distribution of height values on a given plaque®h(R)), To implement in practice the transition probability given
is well defined. In order to “hide” the order, it is necessary above, we randomly select a site out of a list of theflip-
thatP(h) correspond to zero expectations of the spins. Nowpable sites, and randomly update this spin to one of the two
reversings(r) on all three sites in the plaquette requirespossible new spin values if$2=2 or simply flip this spin if
h—h=3, as seen from Fig. 1. One can convince oneselpS=1. The total numbers of zero spimg and flippable
that, to have ensemble average(r))=0, the distribution  spinsn; in the resulting configuration are then computed.

P(h) must be at least as broad asThjs update is subsequently accepted with a probability of
%hb‘(g—hngr 3 8(h—hy), with h;—h,=(h)=3, implying  min{1n,/n/imin{1,(2S— 1)" "s}. A practical implementa-
the boun

tion of the transition probability given in Eq26) is thus
achieved.

Throughout this paper, a unit time or one Monte Carlo
sweep(MCS) is defined such that there aig attempts of
updating within this unit of timgor one attempt per spin on
]averagﬁ Here Ng denotes the total number of spins in the
simulation cell. The simulation cell always contains

which 2S takes only integer values from 1 to 8. We then Ny=72x72 spins in this paper unless explicitly mentioned

present numerical results for the relaxation times of sIovthherW'SG' Periodic boundary conditions are adopted. Since

modes in the Monte Carlo dynamics. Two different methodaVe always start with a flat state, the simulations are thus
. erformed in the sector with a zero global tilt of the inter-

of computing the critical exponents of the spin, bond-energy?
and uniform-magnetization operators are described in differ'ace:
ent subsections: one in terms of the extrapolated stiffness

constants of the interface and the other in terms of the sin-

varfh(R)]=(h(R)>—(h(R))*=(3/2% (25

IV. MONTE CARLO SIMULATIONS AND RESULTS

In this section we describe the implementation details o
Monte Carlo simulations performed for spin-1 model in

gularities of the corrsponding structure factors.

A. Details of Monte Carlo simulations

A spin is calledflippable if its six surrounding nearest-
neighbor spins alternate betweenl and —1. Clearly,

changing the value of this flippable spin results in anothef
new spin configuration in the ground-state ensemble, pro
vided that we start with a spin configuration in the ensemble.
Moreover, such an update maintains the global tilt of the

interface due to théocal nature of this update. This update
will be used as our Monte Carlo update in this paper. Twi
slightly different cases arise for different values @:21)

flip, i.e., o(r)— — o(r), due to the absence of zero spin, and
(2) for all other values of 8, a random choice must be made
in the local update: for exampley(r)=0—o(r)=1 or
—1. (Recall S denotes the spin magnitude of the original
model)

Let ng and n; denote the number of zero spins and flip-
pable spins of configuratiog. If an attempted single-spin
update for¢ results in a new configuratios’ with n, and
n¢ , then the transition probabilityv in accordance with the
detailed balance principle is

W= Womin{ 1%] min{1,(2S—1)"s~"s}, (26)
f

B. Relaxation time 7

To facilitate the estimation of statistical errors of the
simulation results reported in subsequent sections, we com-
pute the relaxation time, of the slow modes in the model,
i.e., the Fourier modek(q), and also check the prediction
made in Sec. Il C on the dynamic scaling exponent. To this
nd, we compute the following autocorrelation function
C(q,t) of the microscopicheight variablez(q):

(z*(9,02(q,t)) ~ [{z(q,0))|
(z5(9,0)2(0,0)) —[(z(01,0))[*"

C(a,t)= (27)

0Here(> stands for the dynamical average, and the tinie

For 25=1, the local update is precisely equivalent to a Spinmeasured

in unit of MCS. For each interger-valued
25=1,2,...,8, weperform 16 MCS’s with a flat initial
configuration and compute the autocorrelation functions up
to t<50 for modes that correspond to the five smal|egt
values. In Fig. 2, we display the results so obtained for
2S=1. Other cases of & are found to have very similar
features. It is clear from Fig. 2 that IggC(q,t) can be fitted
very well bya—t/7, wherea and the relaxation time, are
the fitting parameters. In other words, the relaxation is
strictly exponential in all cases. Note that we used a cutoff
t=10 in our fitting. The same fitting procedure is carried out
for other cases of &

The final results of the relaxation timeg as a function of
|g|? for 2S=1,...,6 areshown in Fig. 3; and for
25=6,7,8 as an inset. The fact thaj scales adq|? for
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FIG. 2. Autocorrelation function of Fourier components of the
height variablesz(q) for 25=1. Only those corresponding to the
five smallest|g|? are shown where we have averaged over dat
points with the same value g¢|2. The discreteq vectors come
about because of the periodic boundary condition used for th
Monte Carlo simulation cell which consists of X22 spins. The
solid lines in the figure are the fittings discussed in Sec. IV B to
extrapolate the relaxation time, where we have used a cutoff in wherer labels a lattice site of the finite triangular lattice of

FIG. 3. Relaxation timer, as a function of q 2 for
2S=1,...,8. The solid lines are the fittings for cases of
BHs= 1,...,6from bottom to top(see Sec. IV B The dotted lines
in the inset are only a guide for the eye where data 88,7, and
8 are displayed from top to bottom.

time t<10 measured in the units of MSC's. total N, lattice sites used in the simulation. Havg= \/3/2 is
- N theweightof a lattice site, i.e., the area of its Voronoi region,

2S=1,...,5 adndicated by the fitting in Fig. 3 thus shows I - R ;

that the ground-state ensembles f@=21,. ...5 are in the which is introduced so that theicroscopicheight variable

(q) coincides with thecoarse-grainedheight variable
(q) in the long-wavelength limit ¢—0). But unlike
h(q), z(q) still contains features such as zone-corner singu-
larities discussed in Sec. 1lIB2 that are only manifested in
miscroscopic height variables.
Starting with a flat state, we performx210®> MCS'’s as

rough phase. On the other hand, it is indeed clear from th
inset that for 3=7 and 8, 7, curves downward as

|g/>~0 which is in sharp constrast to those of
2S=1,...,5. From this, we conclude that ground-state en
sembles for =7 and 8 are in the flat phase. As for
2S=6, it is not conclusive from the data available whether h ilibri e sub ¢ physical
7 scales asq|? or curves downward als|>—0. Nonethe- the equilibrium time; subsequent measurements of physica

less, the fact that the relaxation time of the slowest mode foguantmgs are carried Ol.ﬂ at intervals of 20 MQS S This
2S=6 is longer than for any smaller larger value of S separation is a compromise between the correlation times of

suggests that =6 is very close to the locking transition. ?m?” q mor:jtlas and ofdlargeq T}ogeﬁ' \;Vhi(t:rr: arg’o rlasgg,c'
Further support for this phase diagram is also obtained b VEly, much fonger and somewhat shorter than S—

explicit calculations of stiffness constants and critical exp0-4ee10'i'g' 2. Each run consstid .of>;805 MCS's; Ib?j ided
nents which is discussed in the next section. X measurements were taken; these were subdivide

into 20 independent groups for the purpose of estimating
C. Stiffness constants and critical exponents statistical errors. The same procedure is used for all
2S=1,2,...,8reported in this paper.
In Fig. 4, we plot(|z(q)|?) ! vs g? for 2S=1, including
g in the first Brillouin zone. From the plot, we observe
that (|z(q)|?)~! is remarkably isotropic up to about
g%~ 1.5. This comes about because of the sixfold rotational
symmetry of the triangular lattice which ensures thaisot-
ropy occurs only ing® and higher-order terms, assuming that
the function is analytic. This is in contrast to other models
Wo _ defined on the square lattice where anisotropy already sets in
h(g) ~z(q)= —>, e 147z(r), (28)  at the order ofy*.*>*3The lower envelope of the data points
INGT in Fig. 4 corresponds to the line af,=0 in the g-vector

As implied by Sec. llIB , the stiffness constant of the
fluctuating interface can be directly measured by studyinga”
the long-wavelength fluctuations of the height variable, i.e.
its structure factor as given by E@). It should be noted that
the calculation of the Fourier componehis) in Eq. (8) can
be replaced by an approximation in terms of thieroscopic
height variablegz(q):
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FIG. 4. Structure facto8,(q) of height variables. We show in
the main figure the inverse of the structure factor as a function of
g? for 2S=1. The lower envelope of the data corresponds to
g,=0. As an inset to the figure, we plot all the lower bounds for
2S=1,2, ... ,8which go from bottom to top. Solid lines in the inset
are only a guide for the eye. Note thglt=17.5459. .. corresponds
to the corner of the first Brillouin zone, i.ey=Q=(47/3)(1,0).

FIG. 5. Scaling of(|z(q)|? ! as a function ofg?. We have
averaged data points of the same magnitude ofjthiector in each
space. Other cases ofS2are found to have very similar case of Z=1,2,...,8obtained for system sizds=36, 48, and
features as illustated in the inset of Fig. 4 where we plot thg’2. Note the error bars are smaller than the symbol size. Solid lines
lower envelope for all 3=1,2, ... ,8. are fits using a cutoffi><0.5 discussed in Sec. IV C. Dotted lines

It should be noted that as a general procedure adoptedfe only a guide for the eye.

throughout this paper in extracting numerical values of som 2 B - :

physical quantities, we have averaged the data corna\spondig%féql)| ) VS ql fofr Zi;fl,. -8 inFig. 5._Corfoia3[gng4tge

to the same magnitude |2 to further reduce the effect due S du7a2t|on resm:_ts t?]r ; |detrent systtlelms SIZES dd ' t,

to statistical errors. The relative statistical error on each in&19 /<, W€ notice that data are well converged down to ac-
cessible smalf] vectors — except for the case 0626 7,

. . . 2 . .
dividual data poini|z(q)|") of smallq, which is measured G R e o oo o s still discernible. This is. of

directly from the variance among the 20 groups, is found to

range from 1% to 3%. This is indeed consistent with thecourse, consistent with the fact tha826 and 7 are close to

estimates of such relative errors from the relaxation times of '€ '0€king transition where the correlation length diverges;

the slowest modes of models with different values & 2 't is interesting, however, to notice that their finite-size trends
already given in Sec. IVB. It is perhaps also worth noting@® different. In lthe Cﬁsegﬁe' the datahfl)lOF forr]L=72
that another good check on the statistical errors on each dafyTveS upwards less than that for-48, while in the case

point is to compare the values ¢(q)|?) for threeq vectors ZhSZ 7, theL=72 data showmore upwards curvature than
which are related by 120° rotations in reciprocal spacen®L=48 data. o1 e _
By fitting (|z(q)|*) ~* to a function|q|** with « being the

which ought to be equal by symmetry. For example, in the_ | ) X .
case of B=1, the values of|z(q)|2) for the threeq vectors fitting parameter, we obtain, using the data of system size

e 3 L=72 and a cutoff g°<0.5, the exponent a
of the same smallest magnitudé=0.010 153 9 of system '
size L=72 are, respectively, 285.551, 280.528, and_0:99d1), 0.98§1), 0.9842), 0.9842), 0.9742), and

280.566, from which one thus also obtains the relative errop'gsal)' respectively, for 5=1, 2, 3, 4, 5, "_’md 6. Apart
rom the case of 3=6, these values agree with=1 as in

of about 1%. This observation therefore motivates the averf- ) ) . >
aging procedure used in this paper. the predlctecq power-law singularity of the structure fac-
tor in the rough phase, Eq8). As for 25=7 and 8,
(|z(g)|?) " clearly deviates from a power-law scaling and
instead curves upwards to level off, which indicates that
The structure factor of the height variables in Fig. 4 ap-models with Z=7 and 8 are in the smooth phases where
pears to diverge in the long-wavelength lifgt>—0 for all ~ (|z(q)|?) remains finite ag— 0, as discussed in Sec. Il D.
S values, even for the large& values.(In the latter case, This conclusion is in excellent agreement with that inferred
however, we believe one would see the plot asymptote to ffom dynamic scaling analysis presented in Sec. IV B.
constant value, in a sufficiently large system; see bglow.
To further study the nature of zone-center singularity in
terms of how(|z(q)|?) scales as a function aj? in the The stiffness constants can be subsequently determined
long-wavelength limit, we show the log-log plot of by fitting q~2(|z(q)|?) ! to the functionK +C,q? for the

2>—1

1. Zone-center singularity

2. Stiffness constants
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give the value for the critical exponents of spin, bond-
energy, and uniform magnetization operators which are ob-
tained straightforwardly according to Eqg&l3), (15), and
3 (17). The agreement of ouvf,K) values with the "p,” val-
sl s, 256 | ues from transfer-matrix eigenvalugsee Table | of Ref. 1)7
' \‘*\‘\ is quite close and becomes betterSagrows (until 2S=6).

‘ﬁ

As discussed in Appendix A, a Kosterlitz-Thouless

2.0

A I——‘—'—‘—*—JE:S;,.,N (KT) transition occurs at a critical valu&yr where
NE 3 o 1,=1/4, such t_ha_lt folS> Syt algebraic_ correlations persist
Y = . 254 even at small finite temperatures. It is clear from our data
o e that Sr>3/2.
- y ——— As for 25=6, the value ofq~?(|z(q)|?) ~1=1.75+0.06
25=2 at the smallest nonzem?=0.010 153 is already larger than
05 ¢ e K =w/2=1.570 79. That is, even if the system may have a

“rough” behavior at the length scales probed in the simula-
tion, the stiffness constant is such that the locking potential is
relevant and must dominate at sufficiently large length
) scales, as discussed in Sec. llID. A similar observation has
already been used to argue that the constrained Potts antifer-
romagnet is in a smooth pha¥eThis fact together with the
FIG. 6. Extrapolation of stiffness constants. We show POOr fitting using the formula suitable f_or the rQUQh phase
[q%|z(@)|2)]~ ! vs q? as a log-linear plot for 8=1,2, . . . ,6.Note (see the top curve of Fig.)8eaves us little choice but to
that we have performed an average over data points with the sanf@nclude that the ground-state ensemble 8+2 also falls
magpnitude of they vector for each case of Solid lines are the ~into the smooth phase or possibly, is exactly at the locking
linear fitting discussed in Sec. IV C in order to extract the stiffnesstransition.
constant which is given by the intercept of the fitting. Also note that ~ Just as the finite-size effect fo§2-6 was severe both for
the fittings shown are performed with a cutqfi<0.5. Fittings with ~ the spin-spin correlationgmeasured via Monte Carlo
other cutoffs are discussed in the text. simulation®9 and also in spin-operator eigenvaluesea-
sured via tranfer-matrix calculatiot$ we similarly find it is
isotropic part of the data in which the stiffness constdnt severe for height fluctuations. However, in view of the ex-
and C, are the fitting parameters. The final fitting on the ponential relationship between the exponents and the stiff-
averaged data is shown in Fig. 6 where we used a cutoffiess constant, the latter measurements are much more deci-
q%<0.5 in the fitting. We also tried other different cutoffs of sive as to the true phase of the system.
g°<0.1 andg®<1.0, and found as expected that the stiffness To sum up, based on the analysis on the nature of the
is not sensitive to the value of cutoff as long as it falls intosingularity in the height structure factor at the long-
the isotropic part of the data. For example, we obtain, in thevavelength limit and the numerical results on the stiffness
case of B3=1, K=0.3488:0.0022, 0.3496:0.0008, and constants, we thus conclude that the model exhibits three
0.3488-0.0006 for cutoff g?<0.1, 0.5, and 1.0 respec- phases with a KT phase transitionjat Scy<2 and a lock-
tively. Therefore, taking into account of the uncertainty in-ing phase transition a;<S <3.
troduced due to the cutoff, our final estimate for the stiffness
constant is thenK=0.349+-0.001 which is in excellent . .
agreement with the exact valu€,.=0.349 065... . A D. Structure factor and zone-corner singularity
similar procedure is carried out for other cases 8féhd the Two other interesting features of the structure factor are
results are tabulated in Table I. In the same table, we alsalso revealed in the inset in Fig. &) For 25=2, it appears

0.0 Loy

TABLE |. Stiffness constant and critical exponents. Hef&) , »), and %{) are the estimates for the critical exponents of spin and
bond-energy operators calculated from the stiffness conktarst done in Sec. IV C, whilg® , %, and {7 stand for the same critical
exponents, but extracted from the singularities of their respective structure factors in Sec. IV D. Estimated errors are also given in the
parentheses.

25 K 7y 7 7 7 e U

1 0.3490.00) 0.5000.002 2.00%0.008 4.5020.018 0.511(0.013 1.8440.057

2 0.5540.003 0.3150.001) 1.2600.006 2.8360.013 0.3320.016 1.3400.072

3 0.7430.009 0.2350.001) 0.9400.009 2.1140.01) 0.2540.019 1.0470.082

4 0.9410.006 0.1860.001) 0.7420.009 1.6700.010 0.2030.022 0.7910.092 1.6340.019
5 1.1880.008 0.1470.00)) 0.5880.0049 1.3220.009 0.1800.026 0.5040.115 1.5600.015
6 1.5970.015 0.1090.007) 0.4370.009 0.9840.009 0.2360.036 0.5300.410 1.5270.016
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FIG. 7. Structure factoBg(q) of the bond-energy operator near |G, 8. Structure facto8,(q) of the spin operator near the zone

the zone corne?. Data points are averaged results over those WithcornerQ. Data points are averaged results over those with the same
the samdq—Q|* value for each case of2-12,...,8.Note that  |q—Q|? value for each case of2=1,2,...,8.Note that data

data points for each € have been shifted upwards by 0.5 with points for each 8 are moved downwards by 0.1 with respect to
respect to their counterpart forlS2-1 in order to disentangle the thejr counterpart for 8—1 in order to disentangle the data. Solid
data. Solid lines are the fittings discussed in Sec. IV D to extract thgnes are the fittings discussed in Sec. IV D to extract the critical

critical exponentye of the bond-energy operator. Dotted lines are exponenty, of the spin operator. Dotted lines are only to guide the
only to guide the eye. eye.

to indicate yet another singularity at the zone cornerof a zone-corner singularity as shown in Fig. 4, is not only
09— Q=(47/3)(1,0) in the thermodynamic limiNs—,  expected but also very useful in extracting the critical expo-
and (2) for 2S=1, it approaches a constant instead. As al-nent 7.
ready discussed in Sec. IlIB 2, the appearance of zone-corner Of course, such a zone-corner singularity can also be un-
singularities is expected; the precise nature of such singularderstood within the framework of interfacial representation,
ties is now discussed. as in Sec. lll, particularly Sec. Il B2Similar zone-corner
These divergences are connected in fact to the more traingularities have been studied in Refs. 11 and Eally,
ditional approact? in calculating the critical exponents of according to the exact resuliz=2 (xg=1) in the case of
various operators. One computes the corresponding structupgs—1 | i.e.,Se(q=Q+k)~|k|?*e~— const, the puzzling

factors and analyzes the power-law singularities at the apprezhsence of the zone-corner singularity f&=21 as shown in
priate ordering wave vectors. If the correlation function of anrig. 4 is also resolved.

operatorO decays with distance as a power léhus criti- In Fig. 7, we plot logeSe(q) vs logidq— Q|? where we
cal) have averaged data points with the same magnitude of
|g—Q|?. Fitting Sg(q) to the function|q—Q|2*e~1)(C,
elQr +C,|q—Q|) wherexg, C,, andC, are the fitting param-
(O(NO(0)~—55 (29 eters, we obtain the critical exponen&> which are tabu-

lated in Table I. In practice, we used two different cutoffs in
the fitting:|g— Q|?<0.1 and<0.5. The fitting for the latter
is shown in Fig. 7, and the final quoted errors take into
account the uncertainty due to the cutoffs.
Similarly, we also computed the structure factor for the
So(g=Q+k)~ [k[**o™ D, (300  spin operatorS,(q) using a fast Fourier transform while
computing the height-height correlation function within the
from which the critical exponenyo=2xy can be numeri- same Monte Carlo simulations. Results are shown in Fig. 8
cally extracted. Here in this section, we adopt this approacland the extracted exponents are also tabulated in Table I. The
to calculate the critical exponents of spin, bond-energy, anditting procedure used is exactly the same as that for the bond
uniform-magnetization operators so as to compare with thosenergy except that we fiS,(q) to the function C,|q
obtained from the stiffness constant. —Q|?®%~1) with C; and x, being the fitting parameters.
As given by EQ.(19), Se(q=Q+k)~(|z(q=Q+k)|?). From Table I, we note that the critical exponents extracted in
Here Q=(47/3)(1,0) is the ordering vector of the bond- this way are in good agreement with those obtained from
energy operator. Therefore the interesting feature of thetiffness constant utilizing the interfacial representation;
structure factor of height variables, namely, the appearandeowever, the latter yields much better statistical errors by an

then its structure factor near the ordering vecfoshows a
power-law singularity
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order of magnitude using the same Monte Carlo simulation
data. This clearly demonstates the superiority of the interfa-
cial representation in extracting critical exponents from nu-
merical data. Similar points were made regarding other mod-
els, but based on much less extensive simulation data, in
Refs. 11 and 13.

Similar fits were attempted for&=6, yielding n(ES)(ZS
=6)=0.53+0.41 and 7{¥(2S=6)=0.236+0.036. While
the statistical error omY(2S=6) is too large to render the
fitting meaningful, the increase in the value g (25=6)
when compared with;{®(2S=5) is added evidence that
2S=6 isnotin the rough phase; if it were still rough at that
value of S, we would have expected a continuation of the
decreasing trend o> with S.

As for the cases of 8=7 and 8, the structure factors of
both the spin and bond-energy operators sheoeakerthan
power-law behavior ag—Q, as in Figs. 7 and 8, but they
increase to a larger valfaot seen in these logarithmic plopts
right at Q which are, respectivelySg(q=Q)=205.90,
266.09 and5,(q=Q)=1243.63, 1341.93 for@=7,8. This
is indeed consistent with th&function singularity expected
if these cases fall into the smooth phase with long-range

l0g,,Su(a)

order of the spin and bond-energy operators. %0 15 -1‘.02 05 0.0
Finally, we consider the uniform magnetization correla- l0g,(d")

tion exponenty,,. When S>3/2, it can be predictedsee

nsf) in Table ) that ,<2, implying a divergentferromag- FIG. 9. Structure facto,(q) of the spin operator near the zone

netic) susceptibility and a divergent structure facgy(q) as  centerq—0. Data points are averaged results over those with the
g—0. Now, due to the linear relatior(16) between same|q|? value for each case of$=1,2,...,8.Note that data
{M(R)} and{a(r)}, we immediately obtairSy(q)~S,(q) points for each 3 are moved upwa_rds by 0.15 with respect_to Fheir
nearq=0, just asSE(q)~<|z(q)|2> nearq=Q [see Sec. counterp_ar_t for 8_—1 in orn_jer to disentangle the data. $9I|d lines
1B 2 and Eq.(19)]. Thus, a singularity ay=0 is expected '€ the fittings dlspussed in Sec_:. I\/ D to extract the crltlgal expo-
in the structure factor of spin operator which is plotted in nent ny 0}‘ the uniform magnetization operator. Dotted lines are
Fig. 9. From this figure, it appears that only fo824, 5,  °nly to guide the eye.

and 6 doesSy(q) show a power-law singularity, indicated L . .
by a straight line in this log-log plot. This confirms the pre- number of zero Spins in the spin-1 representatmn_, for
diction based on the stiffness constant; however, the numeril-gz_sgg' As S grows, itis fou_nd thatn,) approaches its
cal values ofy,, extracted this waysee Table)l differ con- ~ maximum allowed valuéls/3 as in the -, —,0) state, rather

siderably from those calculated from the stiffness constant iﬁhan_zero, as in the, + ’__) state. Thus,_the flat states with
the case of =5 and 6. half-integer valuech(R) in Fig. 1 are being selected in the

smooth phase. Translating back to the spimodel, this
means that spins on two sublattices of the triangular lattice
fake the extremal values S and — S, respectively, while
spins on the third sublattice remain disordered.

It is perhaps more illuminating to study the distribution of

1R 16 [ ; height variables to probe the height fluctuations in the
gered magnetizatidf'® [this obviously measures the same smooth phase. To this end, we also show, in Fig. 10, the

fluctuations seen ii$,(q) nearQ]. Those datdalso quoted histogram of height variable(R) in the cases of 3=2 and

in Ref. 17 have quoted errors about 4 times as large as OUSS s \which is measured for ypical configuration gener-

(K) i i
for g " Their expon%nt values are all noticeably Iarggr than,ed in the Monte Carlo simulationThe broad distribution
the accurate valueafr or 7. from Ref. 13 — becoming

i i - . observed in the case 0822 (S<S,) evolves to a narrowly
WOfseaSS grows (for 2S=4,5 the dlfferer_we is tv_vlce_ their peaked distribution in the case 0828 (S>S,). [It decays
their quoted error Clearly the systematic contribution to as expEconsth—(h)|).] This supports the intuitive picture
their errors was underestimated. The transfer—matriﬁresented in Sec. IID. Furthermore. the center of this
7 ) i . . . ,
method_ ought to provide the effective exponen{ for spin. peaked distribution is half-integer value@umerically, the
correlations on length scales comparable to the strip widthy,oo4 is(h)=0.46 for the distribution plotted in Fig. 10l
and hence is likewise _expected to oyerestim@&e indeed,  iher words, the locking potentiaM(h) favors the
every 7, value found in Ref. 17 is slightly larger than our (+,0,—) type of flat state, in which one sublattice is flip-

correspondingy value. pable, rather than thet(,+,—) type of flat state(see Fig.
1).28 This kind of flat state was also expected analytically in
the limit of largeS.2°%

Which type of flat state is actually selected in the smooth We have also computed Vé) for each value ofS, in
phase? Figure 10 shows the measured expectatiop,dhe  two ways. First, Varf) is just normalization factors times

It is also apparent from Table | that® is systematically
overestimated as compared with the more accurate value d
rived from height fluctuations. We suspect that a similar
overestimation affected the values gf that were deduced
from the finite-size scaling of the susceptibility of the stag-

E. Smooth phase
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emphasized in Ref. 17, but power-law correlations are im-
plied if one takes seriously their measured values
s - 0< 5,<1/9 for 25=7,8)
28=2 28=8 We propose, then, that actually,= ng=ny=0 for
S>S,, as in the simplest picture of the smooth phase, and
that the observed nonzero values are simply finite-size ef-
fects due to the very slow crossover from rough to smooth
2x10° behavior near a roughening transitisee Sec. V B, below,

| l for further discussion
1 |

4x10° 4x10°

Counts
Counts

2x10°

-150 -130 -11.0 -9.0 -20 -10 00 10 20 3.0
h(R) h(R)

V. CONCLUSION AND DISCUSSION

1/3

To conclude, in this article, we have investigated the
ground-state properties of the antiferromagnetic Ising model
e L ] of general spin on the triangular lattice by performing Monte
- Carlo simulations. Utilizing the interfacial representation, we
extrapolated the stiffness constants by studying the long-
wavelength singularity in the height variables, which in turn
- led to straightforward calculation of critical exponents of
various operators within the framework of height representa-
tion. The results so obtained are further compared with those
extracted from a more traditional method, and demonstrate
_ S that the method in terms of height representation method is

°o 7 2 3 4 5 e 7 5 o by far the preferable one for extracting the critical
exponents=34

FIG. 10. Height distribution measured from one snapshot for Incidentally, it seems to be possible to take advantage of
eachS value and ensemble average of the number of free spine height representation to improve the numerical accuracy
ns. On the top panel, we show the histograms of the height variOf transfer-matrixresults, analogous to the improvement of
ablesh(R) for 2S=2 and 25=8. On the bottom paneh; is dis- Monte Carlo results we discussed here. The transfer matrix
played as a function of @ Note that the maximum allowed value would break up into sectors corresponding to the step made
for (ng) is N¢/3 whereN denotes the total number of spins in the by z(r) upon following a loop transverse to the stfgcross
simulation cell. the periodic boundary conditionsThen the stiffness could
be extracted directly from the ratio of the dominant eigen-

2 . values of two such sectors; such an analysis is already stan-
Zqzof[Z(a)]%), which we accumulated throughout the Monte dard for quasicrystal random tilings, for which the long-

Carlo run, as described earlier in this section; then it can b%vavelength degree of freedom is also an effective
shown that Varf) = Var(z) — 5+ 3(ns) exactly. FOrNg=72  interface®®
this gives Varf)=1.06 and 0.20 for =2 and 5=38, re- We also analyzed both the dynamical and static properties
spectively, showing the contrast of the rough and smootlof the model in order to map out the phase diagram which
behavior. Second, we can compute \lgr(irectly from the  consists of three phases with a Kosterlitz-Thouless phase
histogram(from one snapshptseen in Fig. 10; this gives transition at3<S«r<2 and a locking phase transition at
respective values 1.1 and 0.15, in satisfactory agreemerit<S =<3. Even in the smooth state, analysis of the height
with the first method. fluctuationd as in Varf)] was helpful in resolving questions
The exotic “hidden order” phas’,léyzo (see Sec. Il D can which are made difficult by the strong finite-size effects near
be ruled out on the basis of these data: According to(2%).  the locking transition.
the variance oh(R) should be at least (3/2%2.25 in the
hidden-order phase, while our measurements indicate it is at
most only 0.20. Furthermore, forS=7 and 8, the structure
factorS,(Q) at the zone-corner wave vectQr (not plotted One of our initial motivations for this study was the pos-
was much larger than at nearby; that suggests a sibility of finding rational exponents even f@&>1/2. We
S-function singularity in the thermodynamic limit, i.e., the believe the results in Table | are accurate enough to rule out
existence of long-range spin order in whig(r))+#0 on at  this possibility. Indeed,(2S=4)~3/16 and 7,(2S=5)
least two of the sublattices. ~4/27, with differences similar to the err.00)). But any
Additionally, the spin structure facto8,(q) near the random number differs from a rational number with denomi-
zone-corner wave vect® (Fig. 8 showed a striking curva- nator <30 by the same typical error. The exception is that
ture in the “smooth” cases =7 and 8, quite different nf,K)(ZSZG) is quite close to 1/9, which is equivalent to
from the behavior at smalle8. This makes it plausible that saying that the critical locking value is close $=3, but
S,(g)—const, so that spin fluctuations have short-rangeve have reason to doubt th&t =3 is the exact valué¢see
rather than power-law correlations f@&>S, . (It was not below).

1/5

N

<>,
U

A. Rational exponents?
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B. What is S, ? ces. Indeed, it is easy to checkn this system that the
Another intriguing question was whether the critical val- €XCeSS energy of a non-ground-state plaquette is directly pro-
ues Byr and 25, are exactly integers. Previous ddtaug- portional to its vortex chargéa Burgers vector in he|ght
gested thas, =3 exactly, and had large enough errors thatSPac% and so the effect of nonzero temperature is simply to
Scr=3/2 could not be excluded. Sincg,(Sc)=1/4 and make the vortex fugacity nonzero. The vortex exponent is

_ : . : =1/ and so as usual the vortex fugacity becomes rel-
S )=1/9, this question was answered by the preceding’v Mo s . . "
gljt()se)ction' We fiﬂd that definitelg < 3/2 gurthe?more %vant and defects unbind, destroying the critical state, at the

we suspecB, <3 as concluded in Sec. IV C since the effec- KT transition defined by a spin exponent taking the critical

: . . lue =1/4. If >1/4 at zero temperature, i.e.
tive stiffness at the length scale we access is more thah? Mo U ) ' '
enough to drive the system to the locked phase. K<Ky1=27/9=0.698 13 . ., then defects unbind as soon

The question of the value o8, suggests paying closer as T>0. Thus a zero-temperature KT transition occurs at
: _ 17
attention to the behavior of systems near the locking transiSxT_d€fined byK =K. g
Reference 17 did not, however, address the critical expo-

tion. It has been noted previously how the locked phase tends

to behave qualitatively like the rough phase in a finite-sizd)€NtS Of the correlation lengt(T) and the specific heat
system, since the crossover is a very slow function of Eize. C(T) as a function of temperature, which are also controlled

This is consistent with the apparent power-law behaviors obPY Vortex exponents. Naively, if the energy cost creating one
served atS>S, in previous studi€’ and with the ten- vortex isE., and if the minimum excitation is a vortex pair,
dency of those studies to overestimate the expongptnd then one would expect the low-temperature §p¢c!f|c heat to
7e (as compared with our more accurate estimat@his beh%ve ag(T)~exp(-2E./T) and atS=1/2 this is indeed
would suggest that, if extensive finite-size corrections werdU€~ However, the renormalization grotishows that the
included in our analysis, they would reduce our estimate ofingular specific heat behaves as
S, a bit further; i.e., we would more definitely conclude that
2S=6 is in the locked phase. f(T)~y(T)¥4= ), (A1)

Our analysis near the locking transitionSt suffers from
our ignorance of the expected functional form of the criticalwhere y(T)=exp(—E./T) is the vortex fugacity; conse-
behavior as a function — S, . A study of the roughening quently, when»n,<2, the true behavior is
transitior’?> used the Kosterlitz-Thoules&T) renormaliza-
tion group to derive analytic approximations for the total C(T)~exp —2E,/T), (A2)
height fluctuatior{closely analogous to Vahnj in our prob-
Ie;m], which made; it possible to overcome very strong finite-\ith E,=2E./(4— 5,)<E.. (Physically, part of the excita-
size eff_e(_:ts a_nd fit the rqughemng temperature premsely. _U%n energy is canceled by the large entropy due to the many
of KT finite-size corrections was also essential in extract|ngp|aces where the vortex pair could be plagdthis behavior

meaningful numbers from transfer-matrix calculations neapag peen observed in the three-state Potts antiferromagnet on

the locking transition induced by a magnetic field in Ref. 25.iha Kagomelattice! and should occur in the present system
Thus, a similar adaptation of the KT renormalization groupsy, g1 s> 1/2.

to give expressions for the behavior @£(q)|?), as a func-
tion of (smal) |g| and S—S_, or the functional form of
K(S) nearS,, could make possible a more conclusive an- APPENDIX B: FINITE MAGNETIC FIELD

swer as to whethe, =3 exactly. It is interesting to consider the effect of a honzero mag-

netic field H'. It is known already that a=1/22 such a
ACKNOWLEDGMENTS field is an irrelevant perturbation, so that the system remains
in a critical state, yet at sufficiently large it undergoes a

fully acknowledges the support from NSF Grant No. DMR- 10¢king into a smooth phasg,approximated by any of the

9419257 at Syracuse University. C.L.H. was supported byI'é€ symmetry-equivalent flat states of type+(+,—)"

NSF Grant No. DMR-9214943. with magnetizatiors/3. o
As also already notel, there is a critical valus,y, de-

fined by ,(S;4) = 4/9, beyond whichyy,,=9%,<4, so that
the system locks into long-range order as soonHdsis

At T>0, plaquettes with nonminimal energy are presentturned on. Within this regime, there are still two subregimes
and they correspond to vortices in the functiofx). Thus, With different behavior of M(h) near h=0. For
unfortunately, the height approach of analyzing simulation®< 7v<4, the initial slope is zero; i.e., the susceptibility is
more or less breaks down. Nevertheless, one can still predigot divergent; whenpy<2, as occurs folS=2, there is a
the T>0 phase diagram from knowledge of tfie=0 stiff-  divergent susceptibility and correspondingly there should be
ness constant derived from our simulations. The shape of thig Singularity atg=0 in the spin structure factdto(q)|?).
phase diagram has already been explained in Ref. 17; here What do we expect in the locked phaseSat S, ? Here
we note some additional interesting behaviors which can béhe difference between the two kinds of flat states becomes
predicted[following Ref. 3b)] using the exponents associ- crucial. TheH' field favors the ¢-,+,—) type of flat state,
ated with vortices. but entropy favors the«,—,0) type of flat state. Thus we

The other exponents in Kosterlitz-Thoule@€T) theory  expect a transition to theH(,+,—) state only at a nonzero
are associated with elementary defeatften called vorti- critical field H,. On reducingH’ throughH/, a twofold

We thank J. Kondev for useful discussions. C.Z. grate
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symmetry breaking occurs, in which one of thesublattices
becomes the Qdisordered sublattice; hence, this transition

ZERO-TEMPERATURE PHASE TRANSITIONS OF AN ...
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line of locking transitionsS.(H"), which terminates on the
H'=0 axis atS. -

should be in the Ising universality class. Presumably the line For S=1/2, the effect of the magnetic field was confirmed

H.(S) meets theH’' =0 axis atS=S, . There must also be

numerically in Ref. 25.
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