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Zero-temperature phase transitions of an antiferromagnetic Ising model of general spin
on a triangular lattice
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We map the ground-state ensemble of antiferromagnetic Ising model of spin-S on a triangular lattice to an
interface model whose entropic fluctuations are proposed to be described by an effective Gaussian free energy,
which enables us to calculate the critical exponents of various operators in terms of the stiffness constant of the
interface. Monte Carlo simulations for the ground-state ensemble utilizing this interfacial representation are
performed to study both the dynamical and the static properties of the model. This method yields more accurate
numerical results for the critical exponents. By varying the spin magnitude in the model, we find that the model
exhibits three phases with a Kosterlitz-Thouless phase transition at3

2,SKT,2 and a locking phase transition
at 52,SL<3. The phase diagram at finite temperatures is also discussed.@S0163-1829~97!04421-4#
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I. INTRODUCTION

Over the years it has been found that there exist m
two-dimensional classical spin models, discrete and cont
ous alike, whose ground-state manifolds are macroscopic
degenerate and, more interestingly, also exhibit critical
haviors; i.e., spin-spin correlation functions within th
ground-state ensembles decay with distance as power l
The classification of universality class for these models
always been a challenging problem.1

An earlier example of this kind is the antiferromagne
Ising model on the triangular lattice. The exact solution
this model by Wannier2 showed that although this mode
remains paramagnetic at nonzero temperature, its gro
state is critical. Later works by Blo¨te and co-workers re
vealed yet another remarkable property of the ground-s
ensemble of this model; namely, it permits a solid-on-so
~SOS! representation in which spin fluctuations are sub
quently described by the fluctuating interface in the S
model.3 Recent studies also demonstrated that this interfa
representation provides a valuable avenue for studying
ground-state ordering of quantum magnets4,5 and the ground-
state roughness of oriented elastic manifolds in rand
media.6 Other recently studied models with critical groun
states include a three-state antiferromatic Potts model on
Kagomé lattice,7,8 the O(n) model on the honeycomb
lattice,9,10 the four-coloring model on the square lattice,11,12

and the square-lattice noncrossing dimer model and dim
loop models.13 On the other hand, some very similar mode
with degenerate ground states exhibit long-range order, s
as the constrained four-state Potts antiferromagnet.14

In this article we study the ground-state properties of
antiferromagnetic Ising model of general spin on a triangu
lattice, which also belongs to the class of models mentio
above. Recent numerical studies of this model include Mo
Carlo simulations15,16 and transfer matrix calculations.17

Here we revisit this model by performing Monte Carlo sim
lations. The motivation of the present work is twofold:~1!
550163-1829/97/55~22!/14935~13!/$10.00
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Unlike previous simulations, we utilize the interfacial repr
sentation directly in analyzing the simulation results; for e
ample, we compute the stiffness constant of the fluctua
interface which, in turn, yields more accurate critical exp
nents of various operators; and~2! we also study the dynami
cal properties of this model for the first time making use
the interfacial representation.

This type of height mapping~interfacial representation!
differs from other sorts of mapping~e.g., dualities! in a cru-
cial way: Since the spin microstates are mapped essent
one to one to the height microstates, it is possible to perfo
Monte Carlo simulations and construct interface configu
tions after each time step. We have found that analysis of
height-height correlations is much more efficient for extra
ing critical exponents than analysis of the spin correlatio
directly as was done in previous Monte Carlo simu
tions.15,16

The body of the this paper is organized as follows. S
tion II describes the model Hamiltonian and maps it onto
spin-1 problem whose interfacial representation is then
scribed. In Sec. III, we propose an effective continuu
theory for the long-wavelength fluctuations of the interfac
Here we also show how to relate scaling dimensions of v
ous operators to the stiffness constant of the interface,
derive some other analytical results based on this ‘‘hei
representation.’’ This allows analytical understanding of t
phase diagram. Details of Monte Carlo simulations and
merical results on both dynamical and static properties
presented in Sec. IV, including a comparison of the new a
old approaches to determining the exponents. As a con
sion, the paper is summarized and various possible ex
sions are outlined in Sec. V.

II. MODEL

The antiferromagnetic Ising model of spinS on a triangu-
lar lattice can be described by the following Hamiltonian:
14 935 © 1997 The American Physical Society
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H5J(
r

(
e
s~r !s~r1e!, ~1!

where the spin variables(r ) defined on lattice siter of the
triangular lattice can take any value from a discrete
@2S,2S11, . . . ,S21,S#, and the sum overe runs over
three nearest-neighbor vectorse1, e2, ande3 as shown in Fig.
1. Here the coupling constantJ is positive describing the
antiferromagnetic exchange interaction between two nea
neighbor spins:s(r ) ands(r1e).

One important reason for interest in this model is that
S→` limit 18 is the same as the Ising limit of the~classical or
quantum! Heisenberg antiferromagnet on the triangular l
tice with Ising-like anisotropic exchange. That model w
shown to exhibit a continuous classical ground-state deg
eracy and unusual features of the selection by fluctuation
ground states.19

The ground-state configurations of the above model gi
by Eq. ~1! consist entirely of triangles on which one spin
1S, another is2S, and the third can be anything i
@2S,1S#.

A. Spin-1 mapping

Therefore, this allows us to reduce each state$s(r )% to a
state $s(r )% of a spin-1model, by mappings(r )51S to
s(r )511, s(r )52S to s(r )521, and intermediate val
ues2S,s(r ),1S to s(r )50. In thisspin-1representation
of the model, the rules for allowed configurations are exac
the same as for theS51 model; however, instead of bein
equal, the statistical weights have a factor 2S21 for each
spin withs(r )50. It should be noted that in theS51/2 case,
s(r )561/2 simply maps tos(r )561.

FIG. 1. Twelve flat states of the ground-state ensemble. E
flat state is simply specified by its spins on three sublatti
A, B, andC of the triangular lattice since all spins on same su
lattice take the same value. The height variableh(R) defined at the
center of an elementary triangle according to Eq.~4!, which is uni-
form for each of these 12 states, is also shown. Note
h(R)→h(R)16 results in identical spin configurations. The thr
nearest-neighbor vectorse1, e2, ande3 defined in Eq.~1! are also
displayed.
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It can also be shown that the expectation of any poly
mial in $s(r )%, in the ground-state ensemble of the spinS
model, can be written in terms of a similar expectation in t
spin-1 model, because the extra freedom to haves(r ) vary
from 2(S21) to S21 is trivial: Once given thats(r ) and
s(r 8) are intermediate spin values, there is no correlat
between these values. Thus there is no loss of informatio
this mapping.

So we henceforth restrict ourselves to the spin-1 map
model whose partition function for its ground-state ensem
can be written as

Z5 (
$s~r !%

~2S21!ns, ~2!

wherens denotes the number of zero spins in a ground-s
configuration$s(r )%. By varying the weight factor continu
ously in the spin-1 model, it would be possible to give
precise meaning toany real value ofS, and to simulate such
an ensemble. However, in this article we perform Mon
Carlo simulations for integer-valuedS.

B. Height mapping

We define amicroscopic, discrete-valued height function
z(r ) living on the vertices of the triangular lattice such th
the step inz(r ) between adjacent vertices is a function of t
adjacent spins:

z~r1e!2z~r !5 1
21 3

2s~r1e!s~r !, ~3!

wheres(r ) is the spin-1 operator ande can be any of the
three nearest-neighbor vectorse1,2,3. It is easy to show that
the total change in height function, when traversed along
smallest loop, i.e., an elementary triangle, is zero. Theref
z(r ) is well defined everywhere for the ground-state config
rations, but it is not well defined in any excited state. Th
prescription generalizes that originally introduced by Blo¨te
and co-workers for the caseS51/2 ~Refs. 3, 21 and 22! ~the
prescriptions agree in that case!.

III. HEIGHT REPRESENTATION THEORY

In this section we propose an effective continuum the
which describes the long-wavelength fluctuations of the
interface. We also demonstrate how the critical exponent
various operators are determined by the stiffness constan
the interface. Although we focus on the ground-state ph
transitions in zero magnetic field in this paper, the heig
representation is nonetheless very useful in addressing
effects of both finite temperature and finite magnetic field
illustrated by Appendixes A and B.

A. Effective free energy

To describe the interface in the rough phase, we m
define a smooth height fieldh(x) by coarse-graining the dis
crete fieldz(r ). As a first stage, on every triangular plaque
formed by sitesr1 ,r2 ,r3, define a new discrete height

h~R![ 1
3 @z~r1!1z~r2!1z~r3!#, ~4!

whereR is the center of a triangle. The possible values of
h(R) are$n/2%, for any integern. ~For the caseS51/2, the
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only possible values are integers.! Figure 1 shows theh(R)
mapping explicitly where the spinss(r ) take values from
$11,0,21%. The 12 states are arranged in a circle beca
the pattern repeats whenh→h66. Clearly, constraints on
$s(r )% will translate to a complicated set of constraints
h(R); however, simple inspection of Fig. 1 shows that ea
s(r ) is a function of the local height variableh(R), i.e., the
height defined on the triangle that contains the siter . The
precise function form is of no importance for further dev
opment in this paper.

There are certain special ‘‘flat states’’ in whichh(R) is
uniform on all triangles. Each of these is periodic with
A33A3 unit cell — in effect it is a repeat of one of th
triangles in Fig. 1. We shall name these states, by writing
spins on the three sublattices, ‘‘(1,1,2)’’ and
‘‘( 1,2,0);’’ here ‘‘6 ’’ stands for s561. It should be
noted that there are two nonequivalent species of flat s
corresponding to integer- and half-integer-valuedh(R), re-
spectively. They are nonequivalent in the sense that they
not related bylattice symmetries. One of the species that
favored by thelocking potential@see Eq.~6! below# is what
is previously called ‘‘ideal’’ states.11–14

Thus we can imagine that all states can be describe
domains of uniformh(R) separated by domain walls. F
nally, by coarse-grainingh(R) over distances large com
pared to the lattice constant, one obtainsh(x) which enters
the conjectured continuum formula for the free ener
which is entropic in origin,3

F„$h~x!%…5E dxFK2 u¹h~x!u21V„h~x!…G , ~5!

whereK is the stiffness constant of the fluctuating interfac
A lattice shift by one lattice constant leaves the free

ergy invariant, but induces global shifts in height spa
h(x)→h(x)61; hence the potentialV(•) in Eq. ~5! must
have period 1. It is typically approximated as

V~h!'hVcos~2ph!. ~6!

Such a periodic potential, usually referred as thelocking
term,23 favors the heights to take their discrete values one
the two types of flat state, depending on the sign ofhV . For
large S we expecthV,0, favoring the (1,2,0) states, in
view of the large entropy of flippable spins; it is not so su
which state is favored at smallerS, but this does not matte
for the critical exponents~see Sec. III B below!.

B. Fluctuations and correlations in rough phase

In the rough phase, by definition, the locking term is ir-
relevent, and so the long-wavelength fluctations of hei
variableh(x) are governed by the Gaussian term of Eq.~5!:

F„$h~x!%…5E dx
K

2
u¹h~x!u25(

q

K

2
q2uh~q!u2, ~7!

where we have performed the Fourier transform. Hence
the equipartition theorem,

Sh~q![^uh~q!u2&5
1

Kq2
. ~8!
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Similarly, we can also measure theheight-height difference
function in real space as

Ch~r ![
1

2
^@h~r !2h~0!#2&5

ln~pr /a!

2pK
~r@1!, ~9!

wherea is the lattice spacing cutoff.
Using Eq. ~9!, we can compute the scaling dimensio

xO and the critical exponenthO of any local operator
O(r ), which is defined as in the correlation function

^O* ~r !O~0!&;r22xO;r2hO. ~10!

By local operator, we mean thatO(r ) is a local function of
spin operators in the vicinity ofr . Now, the same spin con
figuration is recovered when the height variableh(R) is in-
creased by 6.24 Thus any local operatorO(r ) is also a peri-
odic function in the height space, and can consequently
expanded as a Fourier series:

O~r !5(
G

OGe
iGh~r !;eiGOh~r !, ~11!

where G runs over height-space reciprocal-lattice vecto
~i.e., multiples of 2p/6). The last step of simplification in
Eq. ~11! follows because the scaling dimensionxO of the
operatorO(r ) is determined by the leading relevant opera
in the above expansion; i.e.,GO is the smallestG with non-
zero coefficient in the sum. Inserting Eq.~11! into Eq. ~10!
and making use of Eq.~9!, we obtain the following:

^O* ~r !O~0!&5^e2 iGO[h~r !2h~0!]&5e2GO
2Ch~r !. ~12!

Therefore, the critical exponenthO is given by

hO[2xO5
1

2pK
uGOu2. ~13!

1. Definition of operators

In this paper, besides the usual spin operators(r ), we
also study the bond-energy operatorE(r1e/2) for the reason
that will become clear in the next section:

ES r1 e

2D5
1

2
1
3

2
s~r1e!s~r !5z~r1e!2z~r !, ~14!

wheree denotes one of the three nearest-neighbor vector
before.

As discussed already, the spin operator on a given site
a periodicity of 6 in the height space, from which a simp
inspection shows that the bond-energy operator is also p
odic in the height space with a periodicity of 3. Therefo
the reciprocal-lattice vectors of the most relevant operato
the Fourier expansion in Eq.~11! are

Gs5
2p

6
, GE5

2p

3
, ~15!

for spin and bond-energy operators, respectively.
If a magnetic field is implemented by adding a ter

2H( rs(r ) to the Hamiltonian, then our dimensionless un
form ‘‘magnetic field’’ is defined byH8[H/T. The expo-
nents associated withH8 ~and with the uniform magnetic
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susceptibility! are easily related to the correlation expone
of the uniform magnetization operator,

M ~R!5 1
3 @s~r1!1s~r2!1s~r3!#, ~16!

where R is the center of a triangle formed by site
r1 ,r2 ,r3. A simple inspection of Fig. 1 shows that such
operator has a periodicity of 2 in the height space, thus yie
ing

GM5
2p

2
. ~17!

2. Zone-corner singularities

Observe that the microscopic height variablez(r ) in any
flat state is not uniform but is rapidly modulated with th
wave vectorQ5(4p/3)(1,0). The amplitude of modulatio
itself is a periodic function of thecoarse-grainedheight field
h(x) which in turn implies that the correlation function d
cays with distance as a power law, and consequently tha
structure factor has a power-law singularity atQ.

Such a zone-corner singularity is also directly connec
to the singularity in the structure factor of the bond-ene
operator. To see this, recall that there is a linear rela
between the microscopic height variables and the bo
energy operator given by Eq.~14!. Then it is interesting to
note that the Fourier transformEe(q) of the bond-energy
operator is given by

Ee~q![
1

AN(
r
eiq•~r1e/2!ES r1 e

2D522isinS q•e2 D z~q!.

~18!

In other words, as a by-product of measuring^uz(q)u2&, we
have at the same time measured the structure factor of,
the bond-energy operator of the same orientation spec
by the nearest-neighbor vectore:

SE~q!;^uEe~q!u2&54sin2~ 1
2q•e!^uz~q!u2&. ~19!

We will utilize this relation in Sec. IVD to extract the expo
nent of the bond-energy operator from the Monte Ca
simulations.

3. Exact solution for S51/2

TheS51/2 case is exactly soluble. The spin and ene
correlation functions were computed exactly
Stephenson;26,27 it transpires thaths51/2 andhE52 ex-
actly, implying through the arguments of Blo¨te and co-
workers that the effective stiffness in Eq.~7! is K5p/9 ex-
actly. The exponents implied by the interface scenario3 — in
particular, the magnetic field exponenthM — are fully con-
firmed by numerical transfer-matrix computations.25

C. Dynamic scaling: The relaxation timetq

We now discuss the correlations between the configu
tions generated sequentially in the Monte Carlo simulati
by studying the relaxation time of the slow modes in t
model, namely, the Fourier modesh(q… which play the role
of an order parameter.5 The linear-response dynamics
such a mode is usually formulated as a Langevin equati
s

-

its

d
y
n
d-

ay,
d

o

y

a-
s

dh~x,t !

dt
52G

dF„$h~x!%…

dh~x!
1j~x,t !, ~20!

whereG is the dissipation constant, and the static free ene
functional F„$h(x)%… is given by Eq.~5!. Here j(x,t) is a
stochastic noise generated in the Markov chain of Mo
Carlo simulations. As it is expected that the correlation tim
of the slow mode under consideration is much longer th
that of the noise, and since the update steps are local
independent, it is proper to modelj(x,t) as Gaussian noise
uncorrelated in space or time:

^j~x,t !j~x8,t8!&52Gd~x2x8!d~ t2t8!, ~21!

in which the choice of 2G ensures that the steady state of t
interface under the Langevin equation~20! agrees with its
equilibrium state under the free energy~5!.

This linear stochastic differential equation can be solv
easily by performing Fourier transform. Equation~20! thus
reduces to

dh~q,t !

dt
52GKuqu2h~q,t !1j~q,t !, ~22!

which implies an exponentially decaying correlation functi
of ^h* (q,t)h(q,0)&;e2t/tq with the relaxation timetq given
by

tq5
1

GK
uqu22. ~23!

Therefore, the dynamic scaling exponent for the Monte Ca
dynamics, defined bytq;uqu2z, is alwaysz52 in the rough
phase.

D. Locking transition and smooth phase

The locking potentialV(•) in Eq. ~5! favors the flat states
In view of Eq. ~6!, its leading reciprocal-lattice vecto
is GV52p, corresponding to a scaling indexxV
5uGVu2/4pK5p/K for the corresponding conjugate fiel
hV . It is well known that if 22xV.0, thenhV becomes
relevant~under renormalization! and the interface locks into
one of the flat states.23 SinceK grows monotonically with
S, such a locking transition occurs at a criticalSL where
KL5p/251.570 79 . . . .3,17 In this ‘‘smooth’’ phase, any
spin operatorO(r ) has long-range order, by arguments as
Sec. III B.

One of our aims in this paper was to pinpoint the locki
transitionSL , which demands that we have a criterion
distinguish these phases. We must supplement Eq.~8!, which
shows the expected qualitative behavior of height fluct
tions ^uh(q)u2& in the rough phase, with a parallel unde
standing of the smooth phase.

In the smooth state, the symmetry~of height shifts! is
broken and a fully equilibrated system has long-range ord
such that̂ h(x)& is well defined and uniform throughout th
system. Fluctuations around this height, then, have at m
short-range~exponentially decaying! correlations. Thus we
expect them to have a spatial ‘‘white noise’’ spectrum:

^uh~q!u2&;const ~24!

for smallq.
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A phase with ‘‘hidden’’ order was suggested by Lipows
et al.17,20 Numerical transfer-matrix calculations17 using the
spin-1/2 representation indicated 0,hs,1/9 for 2S.6,
which is impossible if the spin correlations are derived fro
height fluctuations,3 as we reviewed in Sec. III. An exoti
way to reconcile these facts was to postulate a phas
which the interface was smooth and yet for the real sp
^s(r )&50 as suggested by spin correlation measuremen

What does this imply for our height variableh(R), which
has a one-to-one correspondence with the real spin con
ration$s(r )%? If the interface is smooth, then the probabili
distribution of height values on a given plaquette,P„h(R)…,
is well defined. In order to ‘‘hide’’ the order, it is necessa
thatP(h) correspond to zero expectations of the spins. No
reversings(r ) on all three sites in the plaquette requir
h→h63, as seen from Fig. 1. One can convince ones
that, to have ensemble average^s(r )&50, the distribution
P(h) must be at least as broad a
1
2 d(h2h1)1

1
2 d(h2h2), with h12h25^h&63, implying

the bound

Var@h~R!#[^h~R!2&2^h~R!&2>~3/2!2. ~25!

IV. MONTE CARLO SIMULATIONS AND RESULTS

In this section we describe the implementation details
Monte Carlo simulations performed for spin-1 model
which 2S takes only integer values from 1 to 8. We the
present numerical results for the relaxation times of sl
modes in the Monte Carlo dynamics. Two different metho
of computing the critical exponents of the spin, bond-ener
and uniform-magnetization operators are described in dif
ent subsections: one in terms of the extrapolated stiffn
constants of the interface and the other in terms of the
gularities of the corrsponding structure factors.

A. Details of Monte Carlo simulations

A spin is calledflippable if its six surrounding nearest
neighbor spins alternate between11 and 21. Clearly,
changing the value of this flippable spin results in anot
new spin configuration in the ground-state ensemble, p
vided that we start with a spin configuration in the ensemb
Moreover, such an update maintains the global tilt of
interface due to thelocal nature of this update. This upda
will be used as our Monte Carlo update in this paper. T
slightly different cases arise for different values of 2S: ~1!
For 2S51, the local update is precisely equivalent to a s
flip, i.e.,s(r )→2s(r ), due to the absence of zero spin, a
~2! for all other values of 2S, a random choice must be mad
in the local update: for example,s(r )50→s(r )51 or
21. ~Recall S denotes the spin magnitude of the origin
model.!

Let ns andnf denote the number of zero spins and fli
pable spins of configurationf. If an attempted single-spin
update forf results in a new configurationf8 with ns8 and
nf8 , then the transition probabilityW in accordance with the
detailed balance principle is

W5W0minH 1,nfnf8Jmin$1,~2S21!ns82ns%, ~26!
in
s
.

u-

,

lf

f

s
,
r-
ss
n-

r
o-
.
e

o

n

l

whereW0 denotes thebare transition probability,W051/nf
for 2S51 andW051/2nf for 2S>2, which reflect the ran-
dom choice to be made in the local update as discus
above. With the transition probability given in Eq.~26!, it is
straightforward to show that the detailed balance principle
satisfied, i.e.,P(f)W(f→f8)5P(f8)W(f8→f), where
P(f) denotes the probability for configurationf to occur
and P(f);(2S21)ns since each spin configuration in th
original spin-S model has equal probability to occur. No
also thatnf /nf8511O(1/N) for largeN, and so this rule is
important only because of the finite system size.

To implement in practice the transition probability give
above, we randomly select a site out of a list of thenf flip-
pable sites, and randomly update this spin to one of the
possible new spin values if 2S>2 or simply flip this spin if
2S51. The total numbers of zero spinsns8 and flippable
spins nf8 in the resulting configuration are then compute
This update is subsequently accepted with a probability

min$1,nf /nf8%min$1,(2S21)ns82ns%. A practical implementa-
tion of the transition probability given in Eq.~26! is thus
achieved.

Throughout this paper, a unit time or one Monte Ca
sweep~MCS! is defined such that there areNs attempts of
updating within this unit of time~or one attempt per spin on
average!. HereNs denotes the total number of spins in th
simulation cell. The simulation cell always contain
Ns572372 spins in this paper unless explicitly mention
otherwise. Periodic boundary conditions are adopted. S
we always start with a flat state, the simulations are th
performed in the sector with a zero global tilt of the inte
face.

B. Relaxation time tq

To facilitate the estimation of statistical errors of th
simulation results reported in subsequent sections, we c
pute the relaxation timetq of the slow modes in the mode
i.e., the Fourier modesh(q…, and also check the predictio
made in Sec. IIIC on the dynamic scaling exponent. To t
end, we compute the following autocorrelation functio
C(q,t) of themicroscopicheight variablez(q):

C~q,t !5
^z* ~q,0!z~q,t !&2u^z~q,0!&u2

^z* ~q,0!z~q,0!&2u^z~q,0!&u2
. ~27!

Here ^& stands for the dynamical average, and the timet is
measured in unit of MCS. For each interger-valu
2S51,2, . . . ,8, weperform 105 MCS’s with a flat initial
configuration and compute the autocorrelation functions
to t<50 for modes that correspond to the five smallestuqu2
values. In Fig. 2, we display the results so obtained
2S51. Other cases of 2S are found to have very simila
features. It is clear from Fig. 2 that log10C(q,t) can be fitted
very well bya2t/tq wherea and the relaxation timetq are
the fitting parameters. In other words, the relaxation
strictly exponential in all cases. Note that we used a cu
t510 in our fitting. The same fitting procedure is carried o
for other cases of 2S.

The final results of the relaxation timetq as a function of
uqu2 for 2S51, . . . ,6 are shown in Fig. 3; and for
2S56,7,8 as an inset. The fact thattq scales asuqu2 for
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14 940 55CHEN ZENG AND CHRISTOPHER L. HENLEY
2S51, . . . ,5 asindicated by the fitting in Fig. 3 thus show
that the ground-state ensembles for 2S51, . . . ,5 are in the
rough phase. On the other hand, it is indeed clear from
inset that for 2S57 and 8, tq curves downward as
uqu2→0 which is in sharp constrast to those
2S51, . . . ,5. From this, we conclude that ground-state
sembles for 2S57 and 8 are in the flat phase. As fo
2S56, it is not conclusive from the data available wheth
tq scales asuqu2 or curves downward asuqu2→0. Nonethe-
less, the fact that the relaxation time of the slowest mode
2S56 is longer than for any smalleror larger value ofS
suggests that 2S56 is very close to the locking transition
Further support for this phase diagram is also obtained
explicit calculations of stiffness constants and critical exp
nents which is discussed in the next section.

C. Stiffness constants and critical exponents

As implied by Sec. III B , the stiffness constant of th
fluctuating interface can be directly measured by study
the long-wavelength fluctuations of the height variable, i
its structure factor as given by Eq.~8!. It should be noted tha
the calculation of the Fourier componentsh(q) in Eq. ~8! can
be replaced by an approximation in terms of themicroscopic
height variablesz(q):

h~q!'z~q![
w0

ANs
(
r
e2 iq•rz~r !, ~28!

FIG. 2. Autocorrelation function of Fourier components of t
height variablesz(q) for 2S51. Only those corresponding to th
five smallestuqu2 are shown where we have averaged over d
points with the same value ofuqu2. The discreteq vectors come
about because of the periodic boundary condition used for
Monte Carlo simulation cell which consists of 72372 spins. The
solid lines in the figure are the fittings discussed in Sec. IV B
extrapolate the relaxation timetq where we have used a cutoff i
time t<10 measured in the units of MSC’s.
e
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r

r
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g
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wherer labels a lattice site of the finite triangular lattice
totalNs lattice sites used in the simulation. Herew05A3/2 is
theweightof a lattice site, i.e., the area of its Voronoi regio
which is introduced so that themicroscopicheight variable
z(q) coincides with thecoarse-grainedheight variable
h(q) in the long-wavelength limit (q→0). But unlike
h(q), z(q) still contains features such as zone-corner sin
larities discussed in Sec. III B2 that are only manifested
miscroscopic height variables.

Starting with a flat state, we perform 23103 MCS’s as
the equilibrium time; subsequent measurements of phys
quantities are carried out at intervals of 20 MCS’s. Th
separation is a compromise between the correlation time
small q modes and of largerq modes, which are, respec
tively, much longer and somewhat shorter than 20 MCS’s
see Fig. 2. Each run consisted of 83105 MCS’s; i.e.,
43104 measurements were taken; these were subdivi
into 20 independent groups for the purpose of estimat
statistical errors. The same procedure is used for
2S51,2, . . . ,8reported in this paper.

In Fig. 4, we plot^uz(q)u2&21 vs q2 for 2S51, including
all q in the first Brillouin zone. From the plot, we observ
that ^uz(q)u2&21 is remarkably isotropic up to abou
q2;1.5. This comes about because of the sixfold rotatio
symmetry of the triangular lattice which ensures thatanisot-
ropyoccurs only inq6 and higher-order terms, assuming th
the function is analytic. This is in contrast to other mode
defined on the square lattice where anisotropy already se
at the order ofq4.10,13The lower envelope of the data poin
in Fig. 4 corresponds to the line ofqy50 in the q-vector

a

e

FIG. 3. Relaxation time tq as a function of q22 for
2S51, . . . ,8. The solid lines are the fittings for cases
2S51, . . . ,6from bottom to top~see Sec. IV B!. The dotted lines
in the inset are only a guide for the eye where data for 2S56,7, and
8 are displayed from top to bottom.
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space. Other cases of 2S are found to have very simila
features as illustated in the inset of Fig. 4 where we plot
lower envelope for all 2S51,2, . . . ,8.

It should be noted that as a general procedure ado
throughout this paper in extracting numerical values of so
physical quantities, we have averaged the data correspon
to the same magnitude ofuqu2 to further reduce the effect du
to statistical errors. The relative statistical error on each
dividual data point̂ uz(q)u2& of small q, which is measured
directly from the variance among the 20 groups, is found
range from 1% to 3%. This is indeed consistent with t
estimates of such relative errors from the relaxation times
the slowest modes of models with different values ofS
already given in Sec. IVB. It is perhaps also worth noti
that another good check on the statistical errors on each
point is to compare the values of^uz(q)u2& for threeq vectors
which are related by 120° rotations in reciprocal spa
which ought to be equal by symmetry. For example, in
case of 2S51, the values of̂ uz(q)u2& for the threeq vectors
of the same smallest magnitudeq250.010 153 9 of system
size L572 are, respectively, 285.551, 280.528, a
280.566, from which one thus also obtains the relative e
of about 1%. This observation therefore motivates the av
aging procedure used in this paper.

1. Zone-center singularity

The structure factor of the height variables in Fig. 4 a
pears to diverge in the long-wavelength limituqu2→0 for all
S values, even for the largestS values.~In the latter case,
however, we believe one would see the plot asymptote
constant value, in a sufficiently large system; see below.!

To further study the nature of zone-center singularity
terms of how^uz(q)u2& scales as a function ofq2 in the
long-wavelength limit, we show the log-log plot o

FIG. 4. Structure factorSh(q) of height variables. We show in
the main figure the inverse of the structure factor as a function
q2 for 2S51. The lower envelope of the data corresponds
qy50. As an inset to the figure, we plot all the lower bounds
2S51,2, . . . ,8which go from bottom to top. Solid lines in the inse
are only a guide for the eye. Note thatq2517.5459 . . . correspond
to the corner of the first Brillouin zone, i.e.,q5Q[(4p/3)(1,0).
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^uz(q)u2&21 vs q2 for 2S51, . . . ,8 inFig. 5. Comparing the
simulation results for different systems sizes ofL536, 48,
and 72, we notice that data are well converged down to
cessible smallq vectors — except for the case of 2S56 7,
where the finite-size effect is still discernible. This is,
course, consistent with the fact that 2S56 and 7 are close to
the locking transition where the correlation length diverg
it is interesting, however, to notice that their finite-size tren
are different. In the case 2S56, the data plot forL572
curves upwards less than that forL548, while in the case
2S57, theL572 data showmore upwards curvature than
theL548 data.

By fitting ^uz(q)u2&21 to a functionuqu2a with a being the
fitting parameter, we obtain, using the data of system s
L572 and a cutoff q2<0.5, the exponent a
50.990(1), 0.988(1), 0.986(2), 0.984(2), 0.974(2), and
0.935(1), respectively, for 2S51, 2, 3, 4, 5, and 6. Apar
from the case of 2S56, these values agree witha51 as in
the predictedq22 power-law singularity of the structure fac
tor in the rough phase, Eq.~8!. As for 2S57 and 8,
^uz(q)u2&21 clearly deviates from a power-law scaling an
instead curves upwards to level off, which indicates th
models with 2S57 and 8 are in the smooth phases whe
^uz(q)u2& remains finite asq→0, as discussed in Sec. IIID
This conclusion is in excellent agreement with that inferr
from dynamic scaling analysis presented in Sec. IVB.

2. Stiffness constants

The stiffness constants can be subsequently determ
by fitting q22^uz(q)u2&21 to the functionK1C1q

2 for the

f

r

FIG. 5. Scaling of^uz(q)u2&21 as a function ofq2. We have
averaged data points of the same magnitude of theq vector in each
case of 2S51,2, . . . ,8obtained for system sizesL536, 48, and
72. Note the error bars are smaller than the symbol size. Solid l
are fits using a cutoffq2<0.5 discussed in Sec. IV C. Dotted line
are only a guide for the eye.
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14 942 55CHEN ZENG AND CHRISTOPHER L. HENLEY
isotropic part of the data in which the stiffness constantK
and C1 are the fitting parameters. The final fitting on th
averaged data is shown in Fig. 6 where we used a cu
q2<0.5 in the fitting. We also tried other different cutoffs
q2<0.1 andq2<1.0, and found as expected that the stiffne
is not sensitive to the value of cutoff as long as it falls in
the isotropic part of the data. For example, we obtain, in
case of 2S51, K50.348860.0022, 0.349060.0008, and
0.348860.0006 for cutoff q2<0.1, 0.5, and 1.0 respec
tively. Therefore, taking into account of the uncertainty
troduced due to the cutoff, our final estimate for the stiffne
constant is thenK50.34960.001 which is in excellent
agreement with the exact valueKexact50.349 065 . . . . A
similar procedure is carried out for other cases of 2S and the
results are tabulated in Table I. In the same table, we

FIG. 6. Extrapolation of stiffness constants. We sho
@q2^uz(q)u2&#21 vs q2 as a log-linear plot for 2S51,2, . . . ,6.Note
that we have performed an average over data points with the s
magnitude of theq vector for each case of 2S. Solid lines are the
linear fitting discussed in Sec. IVC in order to extract the stiffn
constant which is given by the intercept of the fitting. Also note t
the fittings shown are performed with a cutoffq2<0.5. Fittings with
other cutoffs are discussed in the text.
ff
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give the value for the critical exponents of spin, bon
energy, and uniform magnetization operators which are
tained straightforwardly according to Eqs.~13!, ~15!, and
~17!. The agreement of ourhs

(K) values with the ‘‘hs’’ val-
ues from transfer-matrix eigenvalues~see Table I of Ref. 17!
is quite close and becomes better asS grows ~until 2S56!.

As discussed in Appendix A, a Kosterlitz-Thoule
~KT! transition occurs at a critical valueSKT where
hs51/4, such that forS.SKT algebraic correlations persis
even at small finite temperatures. It is clear from our d
thatSKT.3/2.

As for 2S56, the value ofq22^uz(q)u2&2151.7560.06
at the smallest nonzeroq250.010 153 is already larger tha
KL5p/251.570 79. That is, even if the system may have
‘‘rough’’ behavior at the length scales probed in the simu
tion, the stiffness constant is such that the locking potentia
relevant and must dominate at sufficiently large leng
scales, as discussed in Sec. IIID. A similar observation
already been used to argue that the constrained Potts an
romagnet is in a smooth phase.14 This fact together with the
poor fitting using the formula suitable for the rough pha
~see the top curve of Fig. 6! leaves us little choice but to
conclude that the ground-state ensemble for 2S56 also falls
into the smooth phase or possibly, is exactly at the lock
transition.

Just as the finite-size effect for 2S56 was severe both fo
the spin-spin correlations~measured via Monte Carlo
simulations15,16! and also in spin-operator eigenvalues~mea-
sured via tranfer-matrix calculations17! we similarly find it is
severe for height fluctuations. However, in view of the e
ponential relationship between the exponents and the s
ness constant, the latter measurements are much more
sive as to the true phase of the system.

To sum up, based on the analysis on the nature of
singularity in the height structure factor at the lon
wavelength limit and the numerical results on the stiffne
constants, we thus conclude that the model exhibits th
phases with a KT phase transition at3

2,SKT,2 and a lock-
ing phase transition at52,SL<3.

D. Structure factor and zone-corner singularity

Two other interesting features of the structure factor
also revealed in the inset in Fig. 4:~1! For 2S>2, it appears

me

s
t

nd
l
en in the
TABLE I. Stiffness constant and critical exponents. Herehs
(K) , hE

(K) , andhM
(K) are the estimates for the critical exponents of spin a

bond-energy operators calculated from the stiffness constantK as done in Sec. IV C, whilehs
(S) , hE

(S) , andhM
(S) stand for the same critica

exponents, but extracted from the singularities of their respective structure factors in Sec. IV D. Estimated errors are also giv
parentheses.

2S K hs
(K) hE

(K) hM
(K) hs

(S) hE
(S) hM

(S)

1 0.349~0.001! 0.500~0.002! 2.001~0.008! 4.502~0.018! 0.511~0.013! 1.844~0.057!

2 0.554~0.003! 0.315~0.001! 1.260~0.006! 2.836~0.013! 0.332~0.016! 1.340~0.072!

3 0.743~0.004! 0.235~0.001! 0.940~0.005! 2.114~0.011! 0.254~0.019! 1.047~0.082!

4 0.941~0.006! 0.186~0.001! 0.742~0.004! 1.670~0.010! 0.203~0.022! 0.791~0.092! 1.634~0.014!

5 1.188~0.008! 0.147~0.001! 0.588~0.004! 1.322~0.009! 0.180~0.026! 0.504~0.115! 1.560~0.015!

6 1.597~0.015! 0.109~0.001! 0.437~0.004! 0.984~0.009! 0.236~0.036! 0.530~0.410! 1.527~0.016!
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to indicate yet another singularity at the zone corn
q→Q[(4p/3)(1,0) in the thermodynamic limitNs→`,
and ~2! for 2S51, it approaches a constant instead. As
ready discussed in Sec. III B2, the appearance of zone-co
singularities is expected; the precise nature of such singu
ties is now discussed.

These divergences are connected in fact to the more
ditional approach15 in calculating the critical exponents o
various operators. One computes the corresponding struc
factors and analyzes the power-law singularities at the ap
priate ordering wave vectors. If the correlation function of
operatorO decays with distance as a power law~thus criti-
cal!

^O~r !O~0!&;
eiQ•r

r hO
, ~29!

then its structure factor near the ordering vectorQ shows a
power-law singularity

SO~q5Q1k!;uku2~xO21!, ~30!

from which the critical exponenthO[2xO can be numeri-
cally extracted. Here in this section, we adopt this appro
to calculate the critical exponents of spin, bond-energy,
uniform-magnetization operators so as to compare with th
obtained from the stiffness constant.

As given by Eq.~19!, SE(q5Q1k);^uz(q5Q1k)u2&.
Here Q5(4p/3)(1,0) is the ordering vector of the bond
energy operator. Therefore the interesting feature of
structure factor of height variables, namely, the appeara

FIG. 7. Structure factorSE(q) of the bond-energy operator nea
the zone cornerQ. Data points are averaged results over those w
the sameuq2Qu2 value for each case of 2S51,2, . . . ,8.Note that
data points for each 2S have been shifted upwards by 0.5 wi
respect to their counterpart for 2S21 in order to disentangle the
data. Solid lines are the fittings discussed in Sec. IV D to extract
critical exponenthE of the bond-energy operator. Dotted lines a
only to guide the eye.
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of a zone-corner singularity as shown in Fig. 4, is not on
expected but also very useful in extracting the critical exp
nenthE .

Of course, such a zone-corner singularity can also be
derstood within the framework of interfacial representatio
as in Sec. III, particularly Sec. III B2.~Similar zone-corner
singularities have been studied in Refs. 11 and 13.! Finally,
according to the exact resulthE52 (xE51) in the case of
2S51, i.e.,SE(q5Q1k);uku2(xE21)→ const, the puzzling
absence of the zone-corner singularity for 2S51 as shown in
Fig. 4 is also resolved.

In Fig. 7, we plot log10SE(q) vs log10uq2Qu2 where we
have averaged data points with the same magnitude
uq2Qu2. Fitting SE(q) to the function uq2Qu2(xE21)(C1
1C2uq2Qu) wherexE , C1, andC2 are the fitting param-
eters, we obtain the critical exponentshE

(S) which are tabu-
lated in Table I. In practice, we used two different cutoffs
the fitting: uq2Qu2<0.1 and<0.5. The fitting for the latter
is shown in Fig. 7, and the final quoted errors take in
account the uncertainty due to the cutoffs.

Similarly, we also computed the structure factor for t
spin operatorSs(q… using a fast Fourier transform whil
computing the height-height correlation function within th
same Monte Carlo simulations. Results are shown in Fig
and the extracted exponents are also tabulated in Table I.
fitting procedure used is exactly the same as that for the b
energy except that we fitSs(q) to the function C1uq
2Qu2(xs21) with C1 and xs being the fitting parameters
From Table I, we note that the critical exponents extracted
this way are in good agreement with those obtained fr
stiffness constant utilizing the interfacial representatio
however, the latter yields much better statistical errors by

h

e

FIG. 8. Structure factorSs(q) of the spin operator near the zon
cornerQ. Data points are averaged results over those with the s
uq2Qu2 value for each case of 2S51,2, . . . ,8. Note that data
points for each 2S are moved downwards by 0.1 with respect
their counterpart for 2S21 in order to disentangle the data. Sol
lines are the fittings discussed in Sec. IV D to extract the criti
exponenths of the spin operator. Dotted lines are only to guide t
eye.
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14 944 55CHEN ZENG AND CHRISTOPHER L. HENLEY
order of magnitude using the same Monte Carlo simulat
data. This clearly demonstates the superiority of the inte
cial representation in extracting critical exponents from n
merical data. Similar points were made regarding other m
els, but based on much less extensive simulation data
Refs. 11 and 13.

Similar fits were attempted for 2S56, yielding hE
(S)(2S

56)50.5360.41 andhs
(S)(2S56)50.23660.036. While

the statistical error onhE
(S)(2S56) is too large to render the

fitting meaningful, the increase in the value ofhs
(S)(2S56)

when compared withhs
(S)(2S55) is added evidence tha

2S56 is not in the rough phase; if it were still rough at th
value ofS, we would have expected a continuation of t
decreasing trend ofhs

(S) with S.
As for the cases of 2S57 and 8, the structure factors o

both the spin and bond-energy operators showweakerthan
power-law behavior asq→Q, as in Figs. 7 and 8, but the
increase to a larger value~not seen in these logarithmic plots!
right at Q which are, respectively,SE(q5Q)5205.90,
266.09 andSs(q5Q)51243.63, 1341.93 for 2S57,8. This
is indeed consistent with thed-function singularity expected
if these cases fall into the smooth phase with long-ra
order of the spin and bond-energy operators.

Finally, we consider the uniform magnetization corre
tion exponenthM . WhenS.3/2, it can be predicted~see
hM
(K) in Table I! thathM,2, implying a divergent~ferromag-

netic! susceptibility and a divergent structure factorSM(q) as
q→0. Now, due to the linear relation~16! between
$M (R)% and $s(r )%, we immediately obtainSM(q);Ss(q)
near q50, just asSE(q);^uz(q)u2& near q5Q @see Sec.
III B2 and Eq.~19!#. Thus, a singularity atq50 is expected
in the structure factor of spin operator which is plotted
Fig. 9. From this figure, it appears that only for 2S54, 5,
and 6 doesSM(q) show a power-law singularity, indicate
by a straight line in this log-log plot. This confirms the pr
diction based on the stiffness constant; however, the num
cal values ofhM extracted this way~see Table I! differ con-
siderably from those calculated from the stiffness constan
the case of 2S55 and 6.

It is also apparent from Table I thaths
(S) is systematically

overestimated as compared with the more accurate value
rived from height fluctuations. We suspect that a simi
overestimation affected the values ofhs that were deduced
from the finite-size scaling of the susceptibility of the sta
gered magnetization15,16 @this obviously measures the sam
fluctuations seen inSs(q) nearQ#. Those data~also quoted
in Ref. 17! have quoted errors about 4 times as large as o
for hs

(K) . Their exponent values are all noticeably larger th
the accurate value (hs

(K) or h` from Ref. 17! — becoming
worseasS grows ~for 2S54,5 the difference is twice thei
their quoted error!. Clearly the systematic contribution t
their errors was underestimated. The transfer-ma
method17 ought to provide the effective exponenths for spin
correlations on length scales comparable to the strip wi
and hence is likewise expected to overestimatehs ; indeed,
everyhs value found in Ref. 17 is slightly larger than ou
correspondinghs

(K) value.

E. Smooth phase

Which type of flat state is actually selected in the smo
phase? Figure 10 shows the measured expectation ofns , the
n
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h

number of zero spins in the spin-1 representation,
1<2S<8. As S grows, it is found that̂ ns& approaches its
maximum allowed valueNs/3 as in the (1,2,0) state, rather
than zero, as in the (1,1,2) state. Thus, the flat states wit
half-integer valuedh(R) in Fig. 1 are being selected in th
smooth phase. Translating back to the spin-S model, this
means that spins on two sublattices of the triangular lat
take the extremal values1S and 2S, respectively, while
spins on the third sublattice remain disordered.

It is perhaps more illuminating to study the distribution
height variables to probe the height fluctuations in t
smooth phase. To this end, we also show, in Fig. 10,
histogram of height variableh(R) in the cases of 2S52 and
2S58, which is measured for atypical configuration gener-
ated in the Monte Carlo simulations.31 The broad distribution
observed in the case of 2S52 (S,SL) evolves to a narrowly
peaked distribution in the case of 2S58 (S.SL). @It decays
as exp(2constuh2^h&u).# This supports the intuitive picture
presented in Sec. IIID. Furthermore, the center of t
peaked distribution is half-integer valued.~Numerically, the
mean iŝ h&50.46 for the distribution plotted in Fig. 10.! In
other words, the locking potentialV(h) favors the
(1,0,2) type of flat state, in which one sublattice is flip
pable, rather than the (1,1,2) type of flat state~see Fig.
1!.28 This kind of flat state was also expected analytically
the limit of largeS.29,30

We have also computed Var(h) for each value ofS, in
two ways. First, Var(z) is just normalization factors time

FIG. 9. Structure factorSM(q) of the spin operator near the zon
centerq→0. Data points are averaged results over those with
sameuqu2 value for each case of 2S51,2, . . . ,8.Note that data
points for each 2S are moved upwards by 0.15 with respect to th
counterpart for 2S21 in order to disentangle the data. Solid line
are the fittings discussed in Sec. IV D to extract the critical ex
nent hM of the uniform magnetization operator. Dotted lines a
only to guide the eye.
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(qÞ0^uz(q)u2&, which we accumulated throughout the Mon
Carlo run, as described earlier in this section; then it can

shown that Var(h)5Var(z)2 1
31

1
2 ^ns& exactly. ForNs572

this gives Var(h)51.06 and 0.20 for 2S52 and 2S58, re-
spectively, showing the contrast of the rough and smo
behavior. Second, we can compute Var(h) directly from the
histogram~from one snapshot! seen in Fig. 10; this gives
respective values 1.1 and 0.15, in satisfactory agreem
with the first method.

The exotic ‘‘hidden order’’ phase17,20 ~see Sec. IIID! can
be ruled out on the basis of these data: According to Eq.~25!
the variance ofh(R) should be at least (3/2)252.25 in the
hidden-order phase, while our measurements indicate it i
most only 0.20. Furthermore, for 2S57 and 8, the structure
factorSs(Q) at the zone-corner wave vectorQ ~not plotted!
was much larger than at nearbyq; that suggests a
d-function singularity in the thermodynamic limit, i.e., th
existence of long-range spin order in which^s(r )&Þ0 on at
least two of the sublattices.

Additionally, the spin structure factorSs(q) near the
zone-corner wave vectorQ ~Fig. 8! showed a striking curva-
ture in the ‘‘smooth’’ cases 2S57 and 8, quite different
from the behavior at smallerS. This makes it plausible tha
Ss(q)→const, so that spin fluctuations have short-ran
rather than power-law correlations forS.SL . ~It was not

FIG. 10. Height distribution measured from one snapshot
eachS value and ensemble average of the number of free sp
ns . On the top panel, we show the histograms of the height v
ablesh(R) for 2S52 and 2S58. On the bottom panel,ns is dis-
played as a function of 2S. Note that the maximum allowed valu
for ^ns& is Ns/3 whereNs denotes the total number of spins in th
simulation cell.
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emphasized in Ref. 17, but power-law correlations are
plied if one takes seriously their measured valu
0,hs,1/9 for 2S57,8.!

We propose, then, that actuallyhs5hE5hM50 for
S.SL , as in the simplest picture of the smooth phase, a
that the observed nonzero values are simply finite-size
fects due to the very slow crossover from rough to smo
behavior near a roughening transition~see Sec. VB, below,
for further discussion!.

V. CONCLUSION AND DISCUSSION

To conclude, in this article, we have investigated t
ground-state properties of the antiferromagnetic Ising mo
of general spin on the triangular lattice by performing Mon
Carlo simulations. Utilizing the interfacial representation, w
extrapolated the stiffness constants by studying the lo
wavelength singularity in the height variables, which in tu
led to straightforward calculation of critical exponents
various operators within the framework of height represen
tion. The results so obtained are further compared with th
extracted from a more traditional method, and demonst
that the method in terms of height representation metho
by far the preferable one for extracting the critic
exponents.33,34

Incidentally, it seems to be possible to take advantage
the height representation to improve the numerical accur
of transfer-matrixresults, analogous to the improvement
Monte Carlo results we discussed here. The transfer ma
would break up into sectors corresponding to the step m
by z(r ) upon following a loop transverse to the strip~across
the periodic boundary conditions!. Then the stiffness could
be extracted directly from the ratio of the dominant eige
values of two such sectors; such an analysis is already s
dard for quasicrystal random tilings, for which the lon
wavelength degree of freedom is also an effect
interface.35

We also analyzed both the dynamical and static proper
of the model in order to map out the phase diagram wh
consists of three phases with a Kosterlitz-Thouless ph
transition at 32,SKT,2 and a locking phase transition a
5
2,SL<3. Even in the smooth state, analysis of the hei
fluctuations@as in Var(h)] was helpful in resolving question
which are made difficult by the strong finite-size effects ne
the locking transition.

A. Rational exponents?

One of our initial motivations for this study was the po
sibility of finding rational exponents even forS.1/2. We
believe the results in Table I are accurate enough to rule
this possibility. Indeed,hs(2S54)'3/16 andhs(2S55)
'4/27, with differences similar to the error~0.001!. But any
random number differs from a rational number with denom
nator,30 by the same typical error. The exception is th
hs
(K)(2S56) is quite close to 1/9, which is equivalent t

saying that the critical locking value is close toSL53, but
we have reason to doubt thatSL53 is the exact value~see
below!.
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B. What is SL?

Another intriguing question was whether the critical va
ues 2SKT and 2SL are exactly integers. Previous data17 sug-
gested thatSL[3 exactly, and had large enough errors th
SKT53/2 could not be excluded. Sincehs(SKT)[1/4 and
hs(SL)[1/9, this question was answered by the preced
subsection: We find that definitelySKT,3/2. Furthermore,
we suspectSL,3 as concluded in Sec. IVC since the effe
tive stiffness at the length scale we access is more t
enough to drive the system to the locked phase.

The question of the value ofSL suggests paying close
attention to the behavior of systems near the locking tra
tion. It has been noted previously how the locked phase te
to behave qualitatively like the rough phase in a finite-s
system, since the crossover is a very slow function of siz25

This is consistent with the apparent power-law behaviors
served atS.SL in previous studies15,17 and with the ten-
dency of those studies to overestimate the exponentshs and
hE ~as compared with our more accurate estimates!. This
would suggest that, if extensive finite-size corrections w
included in our analysis, they would reduce our estimate
SL a bit further; i.e., we would more definitely conclude th
2S56 is in the locked phase.

Our analysis near the locking transition atSL suffers from
our ignorance of the expected functional form of the critic
behavior as a function ofS2SL . A study of the roughening
transition32 used the Kosterlitz-Thouless~KT! renormaliza-
tion group to derive analytic approximations for the to
height fluctuation@closely analogous to Var(h) in our prob-
lem#, which made it possible to overcome very strong fini
size effects and fit the roughening temperature precisely.
of KT finite-size corrections was also essential in extract
meaningful numbers from transfer-matrix calculations n
the locking transition induced by a magnetic field in Ref. 2
Thus, a similar adaptation of the KT renormalization gro
to give expressions for the behavior of^uz(q)u2&, as a func-
tion of ~small! uqu and S2SL , or the functional form of
K(S) nearSL , could make possible a more conclusive a
swer as to whetherSL53 exactly.
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APPENDIX A: FINITE-TEMPERATURE BEHAVIOR

At T.0, plaquettes with nonminimal energy are pres
and they correspond to vortices in the functionh(x). Thus,
unfortunately, the height approach of analyzing simulatio
more or less breaks down. Nevertheless, one can still pre
the T.0 phase diagram from knowledge of theT50 stiff-
ness constant derived from our simulations. The shape of
phase diagram has already been explained in Ref. 17;
we note some additional interesting behaviors which can
predicted@following Ref. 3~b!# using the exponents assoc
ated with vortices.

The other exponents in Kosterlitz-Thouless~KT! theory
are associated with elementary defects~often called vorti-
t
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ces!. Indeed, it is easy to check~in this system! that the
excess energy of a non-ground-state plaquette is directly
portional to its vortex charge~a Burgers vector in heigh
space!, and so the effect of nonzero temperature is simply
make the vortex fugacity nonzero. The vortex exponen
hv51/hs , and so as usual the vortex fugacity becomes
evant and defects unbind, destroying the critical state, at
KT transition defined by a spin exponent taking the critic
value hs51/4. If hs.1/4 at zero temperature, i.e
K,KKT[2p/950.698 13. . . , then defects unbind as soo
as T.0. Thus a zero-temperature KT transition occurs
SKT defined byK5KKT .

17

Reference 17 did not, however, address the critical ex
nents of the correlation lengthj(T) and the specific hea
C(T) as a function of temperature, which are also control
by vortex exponents. Naively, if the energy cost creating o
vortex isEc , and if the minimum excitation is a vortex pai
then one would expect the low-temperature specific hea
behave asC(T);exp(22Ec /T) and atS51/2 this is indeed
true.2 However, the renormalization group3 shows that the
singular specific heat behaves as

f ~T!;y~T!4/~42hv!, ~A1!

where y(T)5exp(2Ec /T) is the vortex fugacity; conse
quently, whenhv,2, the true behavior is

C~T!;exp~22E1 /T!, ~A2!

with E152Ec /(42hv),Ec . ~Physically, part of the excita-
tion energy is canceled by the large entropy due to the m
places where the vortex pair could be placed.! This behavior
has been observed in the three-state Potts antiferromagn
theKagomélattice,7 and should occur in the present syste
for all S.1/2.

APPENDIX B: FINITE MAGNETIC FIELD

It is interesting to consider the effect of a nonzero ma
netic fieldH8. It is known already that atS51/2,3 such a
field is an irrelevant perturbation, so that the system rema
in a critical state, yet at sufficiently largeH it undergoes a
locking into a smooth phase,25 approximated by any of the
three symmetry-equivalent flat states of type ‘‘(1,1,2)’’
with magnetizationS/3.

As also already noted,17 there is a critical valueScH de-
fined byhs(ScH)54/9, beyond whichhM59hs,4, so that
the system locks into long-range order as soon asH8 is
turned on. Within this regime, there are still two subregim
with different behavior of M (h) near h50. For
2,hM,4, the initial slope is zero; i.e., the susceptibility
not divergent; whenhM,2, as occurs forS>2, there is a
divergent susceptibility and correspondingly there should
a singularity atq50 in the spin structure factor̂us(q)u2&.

What do we expect in the locked phase atS.SL? Here
the difference between the two kinds of flat states becom
crucial. TheH8 field favors the (1,1,2) type of flat state,
but entropy favors the (1,2,0) type of flat state. Thus we
expect a transition to the (1,1,2) state only at a nonzero
critical field Hc8 . On reducingH8 throughHc8 , a twofold
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symmetry breaking occurs, in which one of the1 sublattices
becomes the 0~disordered! sublattice; hence, this transitio
should be in the Ising universality class. Presumably the
Hc8(S) meets theH850 axis atS5SL . There must also be
e

line of locking transitionsScH(H8), which terminates on the
H850 axis atScH .

ForS51/2, the effect of the magnetic field was confirme
numerically in Ref. 25.
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