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Slowing down of medium-energy electrons in solids
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The slowing down of energetic particles in solids has been studied for the special but important case that the
energy loss process is independent of any other interaction characteristic. For a realistic variation of the
scattering characteristics with energy this allows one to go over from the continuous energy variable to a
discrete variable, being equal to the number of inelastic processes. Then, the energy dissipation can be de-
scribed in terms of partial intensities of particles having experienced a given number of inelastic collisions and
the partial energy distributions associated with them. The important advantage of this so-called partial intensity
approach is that it can accurately account for the variation of the scattering characteristics with the energy in
a simple way. The key point in this procedure is the distribution of the stochastic process governing multiple
collisions in the multispeed case. The exact solution as well as an accurate and efficient analytical approxi-
mation is given for the probability fon-fold scattering as a function of the traveled path length. Application
of the proposed method to inelastic backscattering of electrons from solids leads to excellent agreement with
experimental results and simulation data and constitutes a significant improvement over methods that neglect
the energy dependence of the interaction characteristics. The method should prove useful for slowing down
problems of different types of particles like electrons, ions, etc., in sdl#3163-182807)04321-X

[. INTRODUCTION path for inelastic scattering and therefore this method is often
referred to as the convolution methbtf® If particle deflec-

The transport of electrons, ions, neutrons, and other pation can be neglected, i.e., if the rectilinear motion model
ticles is of importance for various fields in physics. The phe—represents a good approximation, this method becomes par-
nomenon may be dealt with in the general framework ofticularly simple since the relative contribution wffold scat-
linear transport theory,®> but unfortunately this does not tered particles is then governed by the Poisson stochastic
generally provide an exact solution in a mathematically tracprocess>4
table form. Therefore it is very often necessary to either em- For many problems of particle transport both the constant
ploy numerical solution approaches or invoke an appropriateross section approximation and the straight line approxima-
approximation. Clearly, the meaningfulness of any approxition are inadequate and alternative approaches have to be
mation is strictly limited by the interaction characteristics employed to properly account for the particle deflection and
and the boundary conditions of any particular case. energy dissipation process. Finding an appropriate approach

Several decades ago, Lan8atudied the energy loss of to deal with particle deflection is greatly facilitated by invok-
fast particles in the case that the total energy loss is smalhg the so-called generalized radiative field similarity
compared to the initial energy. In this quasielastic energyprinciple’®~*"which states that the deflection function in the
regime, the constant cross section approximation appliesransport equation may be replaced by, e.g., an isotropic
Landau’s formalism is based on the Poisson stochastic prdransport cross section if the source angular distribution is
cess that governs multiple energy losses in the constant crossfficiently smooth. Thus for énearly isotropic source an-
section (quasielastic approximation. In many subsequent gular distribution, the deflection process can be treated ana-
works, Landau’s results have been applied to study the intetytically in the transport approximatioff;*®while for, e.g., a
action of energetic ions, electrons, and other particles withwell-collimated beam of particles incident on a surface one is
solids. This author’s approach is particularly useful in theforced to resort to numerical procedures exactly accounting
guasielastic energy range below a peak in an electron spefor the details of the deflection function.
trum, where the constant cross section approximation holds, Properly accounting for the energy dissipation beyond the
since the path lengths of the electrons that contribute to thquasielastic energy regime is not straightforward. If the en-
yield in this region are not much greater than the inelastiergy dissipation takes place concurrently with rapid momen-
mean free path. The theory of noncoherent scattering in elecum relaxation, i.e., if the particle suffers intense deflections,
tron spectroscopy is therefore almost exclusively based othe energy distribution is not determined by energy fluctua-
Landau’s resulf=*? tions, but mainly by the distribution of the traveled path

In the constant cross section approximation, for which thdengths. Then one can use the continuous slowing down
Landau theory was developed, an alternative and completelgpproximatiorf®2%° Such an approach has been success-
equivalent approach exists that describes the energy distrib@ully employed to derive accurate yet simple solutions for
tion as a superposition of groups offold inelastically scat- some integral quantities like the backscattering
tered particles. The energy distribution aftelosses is given  coefficient®?*and has been widely used in numerical model
by an n-fold self-convolution of the differential mean free calculations>?®
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A more accurate description is provided by multigroup ON N 1 .. R R
transport theory(see, e.g., Ref.)2 Here the particle flux b =T T I f 1(Q,Q",E)N(z,Q' ,E)dQ’
density is divided into groups of particles with a speed in a t elam
given interval and for each interval the scattering character- =w(T,E+T) .
istics are assumed to be constant. This procedure requires f mN(Z,EJrT,Q)dT
extensive numerical calculations of high complexity, in par- o Al
ticular if the details of the deflection process play a role in +fo(E)8(z—20). (1
the considered problem, when the source angular distribution
is highly anisotropic. Here u=cosy is the polar direction of the particle’s motion

In the present paper, an approach is outlined that is free d&lative to the outward surface normal, and A, are the
the drawbacks of the constant cross section approximatioelastic ~ and  elastic  mean free paths, and
while it is much simpler than the usual multigroup ap- \;=AeNi/(Ae+A;) ™% is the total mean free path.
proaches and for certain cases it should be more convenient(},(}’ E) is the scattering function, being equal to the nor-
to use than the continuous slowing down approximation. Inmalized cross section multiplied with andw(T,E) is the
fact, it is only slightly more involved than the convolution normalized differential inverse inelastic mean free p@h
method while it is significantly more accurate. In this ap-IMFP), i.e., the probability that a particle loses enefyn
proach, which will be referred to as the partial intensity ap-an individual inelastic event. Finallyi,,(E) is the normal-
proach, the flux density is divided into groups of particlesized energy distribution at the source. Note that by virtue of
that have suffered a certain number, say,nelastic colli-  the linearity of the kinetic equation, the solution of Hd)
sions, just as in the convolution method. The advantage ddllows us to find the solution for an arbitrary source function
the partial intensity method is that it can accurately accounpy superposition. The kinetic equation needs to be comple-
for the variation of the scattering characteristics with energymented with a boundary condition for a given problem. It is
if the following two conditions are metl) The energy loss omitted here since the results in this section are valid for any
process is independent of all other phenomena relevant fgshysically meaningful boundary condition. It should also be
the particle transfer, in particular the deflection process, angloted that deflections associated with the momentum transfer
(2) the energy dependence of the scattering characteristi¢e an inelastic event have been neglected in Eg. This
within a group can be neglected. The first condition impliesapproximation is admissible when the transport mean free
that the energy of the flux density of timh group is uncor-  path for deflections in an inelastic collision significantly ex-
related with the direction of the particle, while the secondceeds the corresponding mean free path during an elastic
assumption allows us to go over from the continuous energgvent. For medium-energy electrons this requirement is gen-
variable to the discrete variable, being equal to the number adrally met?*?° If inner shell processes associated with large
inelastic processes a particle has suffered. momentum transfers are significant, angular deflections in

The structure of this paper is as follows: The first theoretinelastic collisions must be taken into accotft.
ical section, Sec. Il A, shows how the two assumptions men- We divide the flux density into groups okfold inelasti-
tioned above lead to the formal solution of the kinetic equa<ally scattered particles:
tion for an arbitrary boundary problem in terms of partial
intensities and the energy distributions associated with them. R R
In the second theory section, Sec. Il B, the stochastic process N(z.O0,E)= 2 Ny(z.0,E). 2
is studied for the case that the interaction characteristics vary n=0
with the number of inelastic processes. This is the key tan practical calculations, the upper limit in the summation is
generalizing the convolution method to energies beyond th@sually replaced by=n,,,, wheren=n,,, corresponds to
quasielastic regime where the constant cross section approxhe number of collisions a particle experiences before its en-
mation no longer holds. Ultimately, knowledge of the sto-ergy drops below a certain cutoff value. Inserting the expan-
chastic process gives rise to a very efficient procedure tgjon, Eq.(2), into the kinetic equation yields a system of
calculate the partial intensities that is employed later on. Theoupled equations:
proposed approach is then tested by comparison of theory
with experimental data on electron backscattering from sol-  dNg No 2 2, <, <,
ids and it is shown that the method generally performs better # 57 = — )\_t+ 477)\J47T'(Q'Q E)No(z.Q",E)dQ
than the convolution method in the constant cross section

©

approximation, while it is only slightly more involved. +fo(E)8(z—20) 8(Q—Qy),
N N 1
Il. THEORY n___"n 3y O 3 3
[y x +47T}\6J'4#I(Q,Q ,E)N,(z,Q" ,E)dQ
A. Derivation of the basic relationships
. . . . . *W(T,E+T) >
The starting point of our considerations is a Boltzmann- f N, ,(z,E+T,0)dT. 3)
type kinetic equation for the flux density(z,ﬁ,E) of par- o MN(E+T)

ticles traveling at the depth in the direction) with an At this stage we make the two assumptions mentioned in the
energyE due to sources a=z, emitting in the direction  |ntroduction. First it is assumed that the energy loss process
0 =Q,. For a case with plane symmetry, the transfer equais independent of the other interaction processes. Since an
tion for the flux density reads inelastic collision is always accompanied by momentum
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transfer, this is never strictly true. However, the characteris- P, P, P,

tic length for deflection during an inelastic event in many 1 =Ty
C g . X 0z )\t,n )\i’n,]_

cases significantly exceeds the corresponding quantity for

elastic scattering. For example, for medium-energy electrons,

the inelastic transport mean free path is at least one order of +

magnitude larger than the elastic dfieOn the other hand,

the energy transfer in an elastic collision is negligibly small

in many cases, in particular if the mass of the incident par-

f 1,(Q, Q)P (z,Q")dQ’ .

4mNenla

Finally, the emerging spectruii(€},E) is found via the

ticle is small compared to the mass of its collision partner.suPerpOS't'on

For electrons interacting with a solid the latter condition is o

therefore generally fulfilled. Under these circumstances it is Y(Q,E)=2, C,(Q)F.(E), (10)
reasonable to assume that the energy and angular variable of n=0

the nth group are uncorrelated. Note that this by no means o ihe partial intensitie€,, are given by

implies that the energy and the angular variable of the flux n

density are uncorrelated. On the contrary, it is well o

known'%?" that this is generally not the case. However, for Cn(ﬁ)=f f P.(z=0,0|25,90)0(2,00)dz,d Qg
0 Jarw

the nth group, the energy should be uncorrelated with the

other variables under these conditions. Therefore, we may (19
write andq is the source strength. Thus for a given boundary prob-
lem, Egs.(6)—(11) completely specify the solution. To find
N,(z,Q,E)=F,(E)P,(z,Q). (4)  this solution, Eq(9) has to be solved for the boundary con-

dition of the specific problem, where the scattering charac-
The second assumption concerns the energy dependencetefistics of the nth equation need to be evaluated at
the scattering characteristics. It will be assumed that the efE=E,,. The general solution approach for E§) is clearly

ergy fluctuations within one group can be neglected: beyond the scope of the present paper. A very simple, gen-
eral, and efficient numerical approach to find the partial in-
)\(E):)\(E_n)E)\n (5) tensities for an arbitrary source distribution will be outlined

further below. For the special but important case that elastic

where\ stands for any of the scattering characteristizess ~ SCattering can be neglected, the solution of E).can be
section or mean free pathThe above approximations allow readily denve_d. This WI|| be_dlqussed in the next section.
us to separate the energy variable in the kinetic equagpn In conclgsmn of this section it is noted that mtggrano_n of
The separation constant follows from the normalization ofth® emerging spectrum, EG10), gives the total intensity
the inverse inelastic mean free path. This immediately leadk({2). By virtue of the normalization of the partial energy
to the following equation for the partial energy distributions: distributions the total intensity is found to be equal to

Fo(E)="fo(E .
ol E)=To(E), (@)=3 C(6D). (12
Fn(E):f Foo1(E+T)w,_o(T)dT. (6) Thi; is.the reason \_/vhy the quanti'giéls, are referred to as
0 partial intensities. Finding the solution of the transport prob-

lem, Eqg.(1), has thus been reduced to finding the appropriate
Multiplying Eq. (6) by the energy and integrating gives the partial intensities. Therefore the term partial intensity ap-
self-consistent solution fdE,,: proach(PIA) is used for the proposed method. The partial

energy distributions are given explicitly by E@) and thus

L n the emerging spectrum can be calculated by(E@). as soon
E,=Eo— > (T), (7)  asthe partial intensities are known for the boundary problem
=1 of interest.

where B. Probability for n-fold scattering

as a function of the path length

(T>|=f w,_(THT'dT’ (8) One of the main differences between the quasielastic en-
0 ergy regime and the energy regime where the constant cross
section approximation no longer holds is the stochastic pro-

is the mean loss in thith collision. The equations for the  cosq governing multiple collisions. In the quasielastic case,

partial escape distributior,(z,Q) read the probabilityW,(s) for n collisions as a function of the
path length s is given by the Poisson distribution
Py Pg . 1 f (6.6 P (2.8 dG Pa(s/N):%
K 0z B )\t,O 47T)\e‘0 4 0( ! ) O(Z’ )

ne—yx

WSE(s)=Pn<s/x>E(X) (13)

+8(z—29) 5(Q— ), 9) n!
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In this section we will omit the subscriptindicating inelas- evident. Moreover, its accuracy is quite high, in particular
tic scattering, for clarity. An important question in the for n=n.,, SO that it can be used in practical calculations.
present context is the behavior of the functMf(s) in the  The moments of the approximate distributiof,(s) are
general case when the mean free path length depends on thiwen by

energy. Just as in the quasielastic case, the equation describ-

ing W,(s) is found by lettingh .— in Eq. (9): NPP= N, (23
dw, W, W, 4 wappr_ (NTK)!
=__" ppr_
ds Ny i’ (149 ($n T An (24)
with the boundary conditions Thus the position and the norm of the approximate and exact
distribution are identicalcf. Egs.(19) and (20)]. The ratio
W, (s=0)= 1, n=0, (15) between the higher exact and approximate moments for val-
n 0, n>0. ues ofn not too close tm,,,, is bounded by the expression
Equations(14) and (15 can be solved by the method of <Sk>appr 12 A n
variation of the constant. This leads to the recursion 1< Ek;—s K % (25
n I=0 n

Wi(S)=Ann(S)exp( = s/\n), From Egs.(23)—(25), it follows that the approximatio22)

is quite good. For example, the deviation between the exact

Anm(s):%[An—l,m_An—l,n—l and approxirnate widthr2=(s?),—(s)2 increases withn
m— fAn-1 and attains its largest value for=n,,.. However, for a
1 1 realistic energy dependence of the mean free paths,
Xexp —s -—1], (16)
An—l Am

E o
ME)=ME0)(E—) : (26)
Agm(s)=1, m=0, 0
with |a|<2, the deviation inc? does not exceed several
percent, while it is negligible fon<nmax For small path
lengths, when the energy dependence of the interaction char-
acteristics can be neglected, the approximate and exact dis-

which completely specifies the solution. To study the physi-
cal properties of the distributiow,(s), it useful to consider
its moments. These quantities are defined as

1 (= tribution W,,(s) both reduce to the Poisson distribution, Eq.
($9=737 f Wi(s)s‘ds, 17 (3.
n’o A comparison of the distributiolV,(s) with the Poisson
where the normV,, of W,(s) is distribution is shown in Fig(1). The parameters used in the

calculation arexg=25 A, (T),=n(T)o, Nmax=Eo/{T)o
=30, ande=0.7. For simplicity, the energy dependence ex-
pression(26) was adopted for the inelastic mean free path.
The chosen parameters approximately correspond to 3 keV
Multiplication of Eq.(14) by s* and integration immediately electrons traversing a Cu targeee Fig. 3 below The exact
gives [Eg. (16)] and approximatdEq. (22)] function W,(s) are
indistinguishably similar in this representation.
No=N\y, (19

n Ill. APPLICATION TO INELASTIC ELECTRON
<S>n=k§—:0 MN=(n+ 1A, (20) REFLECTION FROM SOLIDS

N,= focwn(s)ds. (19
0

The basic assumption of the proposed approach is that the
where A, is the average mean free path aftecollisions.  energy loss and deflection process are independent. This al-
Generally, one finds the following recursion for the mo-|ows us to separate the energy and direction in the kinetic
ments: equation for the group afi-fold inelastically scattered elec-

_ trons. For medium-energy electrons this requirement is met
(89n=Khn(s" Hnt(sn-1. (1) to a very good approximatioft. It should again be empha-
sized that the energy and angular variable in the total flux
ddensny are generally not uncorrelated at all. On the contrary,
correlation is found for isotropic emission of Auger
electroné0 and is particularly pronounced if the source an-
gular distribution is sharply peaked as in the case of reflec-
s tion experiments'?’ when a well-collimated beam of par-
Wh(s)= A—Pn A_> (22)  ticles is incident on a solid surface. Therefore, the latter case
n n was selected to test the proposed approach.
The advantage of this approximation is that all physically The other basic point is the energy dependence of the
relevant properties of the stochastic process are immediatelpteraction characteristics and the relation between the en-

The above results allow us to numerically model the sto-
chastic process beyond the quasielastic regime. However,
very effective and accurate analytic approximation for the?
distribution W, (s) is given by the expression
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FIG. 1. Probability fom-fold scatteringW,(s) as a function of
the traveled path length. The solid lines correspond to the true slow-
ing down case when the mean free paths for the interaction process
vary with the energy. The exaEq. (16)] and approximat¢Eq.
(22)] distributions are indistinguishably similar in this representa- . . . .
tion. The dashed lines are the result in the quasielastic or constant FIG. 2. Differential inverse inelastic mean free paIMFP),

cross section approximation, given by the Poisson distribution. I.e. , the energy loss probability, in individual collisions for elec-
' trons of different energies in solid mattés) Si and(b) Au.

ergy and the number of inelastic collisions. This will first be
illustrated for the example of a medium-energy electron-sincew,(T,E) is the normalized mean free path. In this case,
solid interaction before we turn to the reflection problem.gq. (7) simplifies to
The basic quantity for the inelastic interaction is the differ-

ential inverse mean free path. The usual approach to estab-

lish this quantity is to extrapolate the optical limit of the

dielectric function, corrgspondlng to zero momentum trans:l.he actual dependence of the mean enﬁ_gyaftern colli-

fer Ag=0, onto the Qg plane using an appropriate sjons is presented in Fig. 3 for several materialsHgr 30

H H + 1128,29,2. : _ . .
d:spe(rjaﬁn f.e'atl'o'%- | owing I?en h we have er?- keV. It is seen that Eq28) represents a good approximation
ployed the single-pole approximation for the expansion funCq,yqr 5 phroad range of inelastic processes corresponding to
tion using a quadratic plasmon dispersion relation and a

e . LSt Panergies=200 eV.
E;';:jlt:tnto |t3h|(|_:‘|v|0[?|gc?cl) rdzti\}vicgg?igie(\j/vilph Rdeigsti. n‘ré%l a%?ﬁ?éfér;rthe In order to calculate the partial intensities, values are
g y needed for the elastic and inelastic mean free paths as well as

electronic properties, Si and Au, is shown in Fig. 2. While he distributi ¢ . les for the di |
the loss function of Si is dominated by the strong and shar e distribution of scattering angles for the discrete values

plasmon excitation at- 16 eV, the DIIMFP of Au is gener- En. The IMFP was calculated from optical d%f_TazWith the

ally much broader, having its maximum ate?/a,, corre- procedure developed by Peffhwhile the elastic character-
sponding to the binding energy of the outer electrons. Thdstics were evaluated from the Mott cross section for free
shape of the curves is seen to depend only rather weakly ofoms using a Thomas-Fermi-Dirac poterifi@ind employ-
the energy of the probing particle. Consequently, above #ng the partial wave expansion method, provided by the pro-
certain energy the mean energy loss is expected to be neagyam of Yates’

0 50 100 150 200 250
(b} Energy Loss T(eV)

En=Eo—n(T)o. (29)

Aw)
SOF|

independent of the number of inelastic collisions, For a smooth source angular distribution an analytic solu-
. tion for the partial intensities can be derived from E®).in
T (E :f W (T.E)TdT=(T),, 2 the transport _approxmatlon in analogy tlo the qugs!elqstlc
{TnlE) 0 n(TE) {To @0 case'® According to the generalized radiative field similarity
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FIG. 3. Number of inelastic collisions an electron has experi- 5 4 Integral inelastic backscattering coefficieptfor Au,
epced on the average .after Iosing.a. gertain amount of its energy f():(g, Cu, and Al. The open symbols represent experimental results,
different elemental solids and an initial energy of 30 keV. (Refs. 37-5%, and the dashed lines were calculated using Tilinin's

analytical expression E@32) in the continuous slowing down ap-
principle, the exact details of the deflection function need tgyroximation(Refs. 19 and 20 The solid symbols are the results of
be accounted for if the source angular distribution is highlythe partial intensity approach, proposed in the present work.
anisotropic. This is exactly the case when a well-collimated
beam of particles is reflected by a solid surface. Then ana- d o
lytic treatment can become rather compfexand it was T E0)=S C(O)F(E). (31)
therefore decided to directly evaluate the partial intensities dE n=0
O e e T st b Gases, e actal experimental geameny 1as 10 be

\ ) . S, .y accounted for in the modeling of the partial intensities.
weights: Only elastic scattering is explicity modeled, and

L7 : : . . : The result of this procedure is shown in Figs. 4 and 5 for
upon termination, a trajectory is weighted with the function 1-10 keV electrons normally incident on an Au, Ag, Cu, and

W, (s). Of course, the change of the elastic characterlstlc%I targets for the tota(Fig. 4 and differentiakFig. 5) back-

‘é\':?henoei:]?yofhg]setﬁapeectifcobungesﬁligqoarﬁnTh't?]ec?]Ergge?%rf'em%cattering coefficients. For the total backscattering coeffi-
P J y by 9 cient, a large amount of experimental data is available in the

elastic collisionsn;, as a function of the traveled path length literature3’~>" which are represented by the open symbols in
As: !
As
ni:=IZ| nj+ )\_|

Fig. 4. The dashed line corresponds to Tilinin's expressfon,
which was corrected at lower energies for the contribution of
where the symbaf stands for the nearest integer. Then the —Experiment
energy dependence of the elastic characteristics can be incor-

porated by evaluating them &t - This algorithm is similar

to the one by Jablonski for the quasielastic case. The im-
portant difference consists in the use of the stochastic pro-
cess when the scattering characteristics change with the en-
ergy. The approximate function/,(s) has been used in the
calculations since it is accurate enough and simple to evalu-
ate. The most important advantage of this method over con-
ventional Monte Carlo model$?® is that each trajectory
contributes to all energies in the spectrum and not just to one
channel. Therefore, convergence is attained very fast.

Once the partial intensities have been established in this
way, the backscattering coefficient follows from Al

: (29

E(dn/dE) (arb. units)

7(Q)=2, C,(Q). (30) energy (keV)
n=0

FIG. 5. Differential backscattering coefficient of 5 keV electrons
The differential backscattering coefficient is obtained by calmormally incident on Au, Ag, Cu, and Al, measured with a CMA
culating the partial energy distributions, H@), and weight-  (solid lineg (Refs. 58—61 For comparison, the results of the pre-
ing them with the partial intensities: sented approach are shown as dashed lines.
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secondarie®’ and Bethe’s theory was used to determine the IV. DISCUSSION

necessary inelastic interaction characteristics. Tilinin’s ex-

pression was derived in the continuous slowing down ap- Two main assumptions have been made in the present

proximation and read$%° work [see Eqs(4) and(5)], allowing us to describe the trans-
fer of fast charged particles in matter and accounting for the
\/m_ 1 energy d_ependence of the interaction Characteristic_s. The first
= ——, (32) assumption states that the energy loss and deflection process
V1i+to+1.9 should be independent. In the theory section, Sec. Il, it was

outlined that such an assumption is justifiable when the

whereo=R/\, is the scattering parameter in the continuoustransport mean free path for inelastic_scattering_greatly ex-
slowing down approximatid?‘®andR is the electron linear ceeds the elastic one and generally this assumption holds for
range. In spite of its simplicity, it is seen that this formula electrons interacting with solids over a broad energy range.

perfectly describes the energy and atomic number depeﬁ[his conclusion is supported by the good agreement between

dence of the total backscattering coefficient. The results of’€0"y and experiment in Figs. 4 and 5. It is important to
the present work, represented by the solid symbols, als§MPhasize again that the energy a£17d the angular variable in
agree well with the experimental data. Note that in theth€ total flux density are correlaté®>’ For example, if the
present calculations generation of secondaries was Congi_et_ectlon or incidence _angle is changed in the reflection ex-
pletely disregarded. periment, the energy distribution changes marké’aiy.Th.e
Significant deviations between the presented theory anffason is that the path Ieng_th dlstrlb_uuo_n changes in this case
experiment can be observed, in particular for Al. A possible2"d consequently the relative contribution of tite group,
explanation for this fact is the use of the quadratic dispersiofr€-» the partial intensities, also changes, giving rise to a dif-
relation to calculate the IMFP. Ding and co-work¥ralso ~ [€rént emerging energy spectrum. _
note in their work that this may lead to significant deviations, N€Xt, the assumption that the energy in tiie group may
Furthermore, Penn’s formalism to calculate the IMFP at enP€ replaced by the mean energy aftesollisions is due to be
ergies above=10 000 eV has not been substantiated by gliscussed. Clearly, for sufficiently small valuesrofwhere
direct comparison of experimental IMFP values with theoryth€ constant cross section approximation applies due to the
and may therefore also introduce a certain error in the reflecVeak variation of the scattering parameters with the energy,
tion probability. It should be stressed that the observed delhiS @ssumption poses no problem. For in that case, the width
viations are definitely not due to the proposed approach foPf the partial energy distributions is small compared to the
the particle transfer. This follows from a comparison of the€N€rgy range over which a noticeable change in the scatter-
presented data with results of a conventional Monte Carld"d characteristics occurs.
simulation that was also performed. These data mutually 0 fully appreciate the situation for larger energy losses,
agree to within less than 1%. Hence it is likely that the input!t iS useful to regard the path length distribution function.
parameters of our calculation are responsible for the devialNiS guantity is defined as the distribution of path lengths
tions. that the particles travel for a given boundary problem. On
The advantage of the presented theory lies in the fact thdecalling that the partial intensities are the contributions to
it also describes the energy dependence of the phenomendie SPectrum of particles that have experienoddsses one
fairly well, as can be seen in Fig. 5. Here, theory is compare@2n establish a relationship between these quantities and the
with the experimental data by Goto and co-work¥ré! path length distribution. The partial intensities can s_lm_ply pe
These data are special in that they are not distorted by th@xPressed as the product of the path length distribution
analyzer electron optics or electronics and therefore repreQ(s,{2), and the probability,(s) for n losses for a given
sent the true energy distribution, allowing a meaningful comath length, and integrated over all path lengths:
parison to be made. Such data have only recently become
available>:62:63 .
The theoretical results were normalized to experiment at Cn(ﬁ)zf Q(s,Q)W,(s)ds. (33
the energy just below the elastic peak. Although the general 0
agreement is quite good, theory is in error at lower energies
by a factor sometimes exceeding 2. In this respect, the MontBlow it is clear that for large values of, the energy spread
Carlo results of Ding and co-workéfsagree better with the as a cause of statistical fluctuations in the partial energy dis-
data. tributions is small compared to the uncertainty in the energy
In conclusion of this section, it is noted again that for theintroduced by the broad path length distribution. This allows
present case of the reflection problem, the solution of(8q. us to neglect the energy fluctuations within a group for a
has to be found for the realistic Mott cross section for elastidarge number of collisions.
scattering in order to obtain quantitative agreement with the This is illustrated in Fig. 6, which compares the experi-
experimental data. This follows directly from the radiative mental reflection coefficient with the theoretical result and
field principle and was confirmed by additional calculationsalso shows the partial intensities as a function of the mean
performed for an isotropic cross section. In this case, thenergy aften collisions. The latter quantities are represented
differential backscattering coefficient deviates significantlyby open circles and were normalized to theory at 3 keV. This
from experiment. Therefore the numerical approach that wasomparison clearly shows the transition between the quasi-
adopted here seems to be the most efficient way to establisHastic regime, where the energy fluctuations governed by the
the partial intensities for the backscattering problem. DIIMFP determine the overall energy distribution, and the
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sidering Landau’s approaCt the continuous slowing down

"""""" Theory - Ag approximation(CSDA). In this approach the energy loss
E > Partial |ntenSItIeS, Cn i Spectrum |S Wr|tten as
€ —Experiment f
s 1 (= .
5 G(S,E)=2—f dkexpflk(Eo—E)
. Poisson T e
i (Quasi-Elastic) sds’ o
2 | —f T[l—W(E(s'>,k>]], (35
=2 0 Aj
S
N whereWw is the Fourier transform of the differential mean
""" i free path. The particles’ energy as a function of the path
0 1 S length E(s) is obtained in the CSDA by expressing the en-
Energy (keV) ergy loss as the product of the stopping powWEY/\; and the

) ) ) _path lengths. When the path length is small enough, the
FIG. 6. Comparison of the experimental backscattering coeffl-energy dependence of the quantities in the second term of the
cient (solid line) for 5 keV electrons reflected from a solid silver exponent may be neglected and this term reduces to
target with theory(dashed ling Dashed line labeled “Poisson: s(l—v~v)/)\-. Expanding the exponent in powers of we
result of the convolution method in the constant cross section aqi”nmediatelly arrive at the energy loss function expressed in
proximation. Open circles: partial intensitigsormalized to theory terms of then-fold convolution of the inelastic cross section

at 3 kev. the so-called partial loss distributiohs, [cf. Eq. (6)]:
regime where the path length distributi¢or partial intensi- o

ties) plays the dominant role: Below-3 keV, the energy G(s.E)= L (EYW.(s 36
dependence of the partial intensities quite perfectly coincides (s.E) ngo (E)Wa(s). (38

with the spectral shape of the backscattering coefficient. For

the latter regime, the assumption of continuous energy loss iEhis is the standard result for the energy loss function in the
clearly reasonable. The major advantage of the partial intersonvolution method approach. Since it was assumed that the
sity approach is that it encompasses both energy regimeésteraction characteristics do not depend on the energy, the
merely by the use of the proper stochastic process(E.  probability forn-fold scattering\W,(s) in expressiorn(36), is
Thus its level of complexity is almost the same as the congiven by the Poisson distribution. The partial intensity ap-
volution method in the constant cross section approximatiogproach merely consists of replacing the Poisson distribution
that relies on the Poisson stochastic process while its accipy the general probability fon-fold scatteringW,,(s). This

racy is generally much higher. This can also be seen in Figoecomes practical on account of the effective approximation
6 where the result of the convolution method is shown as théV,(s) for the stochastic process. In this sense, €9) is
dashed line labeled “Poisson.” the central result of the present work.

In passing we have introduced a third approximation that The above clearly demonstrates the conceptual simplicity
deserves to be discussed, although it is not essential. It is thf the partial intensity approach: For a given group of
approximate expression/,(s) for the stochastic process of n-fold scattered particles, the probability that a particle that
multiple scattering. In view of its simplicity, its accuracy is has traveled a path lengghbelongs to this group is given by
remarkably high. It is interesting to note that it would evenW,(s). Multiplying this with the energy(loss distribution
coincide with the exact solution if the right-hand side of Eq.associated with thath group,L,(E), then gives the energy
(25) were equal to unity. We rewrite this condition in the loss function for this group as a function of the traveled path
form length. Summing up the contribution of all groups, one ob-

tains the total energy loss functi@(s,E), Eq. (36). Gener-

AR AK ally, in the partial intensity approach, many expressions for
—n ol g AR (34)  relevant quantities like the loss functi¢@6), the spectrum
A= Anog (10), etc., are essentially trivial once the concept of dividing

the flux density into groups ofi-fold scattered particles is

For a continuous variabld , (or n) this is identical to the clearly understood.
differentiation operation. Thus, it turns out that replacement Both approaches, Eq$35) and (36), are similar in the
of W, (s) with the approximate distribution/,(s) [Eqg.(22)]  way they account for the energy dependence of the interac-
constitutes an approximation similar to making the transitiortion characteristics: These should be evaluated at the energy
from the continuous variable to the discrete variable describg  corresponding to the independent variable keeping track
ing the energy of a particle. of the particles’ energy:

Finally, it seems advisable to place the presented method
in context with other approaches that account for the change _ s
of the interaction characteristics with energy. We will first E(s)=Ey— X<T> (CSDA), (37
confine the discussion to the case when angular deflections
can be neglected. The connection of the present basic as- _
sumptions with those usually made is best illustrated by con- E,=Eq—n(T) (PIA). (39
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According to Poisson statistics, the mean number of colli-This becomes even clearer by inserting B§) into Eq.(39)
sions after a given path lengthis justs/\. This illustrates and using the definition for the partial intensities, E8Q).
that both approaches are equivalent in this sense, the esséhe result exactly corresponds to the formula for the spec-
tial difference, of course, being the use of a continuous asrum in the partial intensity approach, E(L0). Thus the
opposed to a discrete variable keeping track of the energyssumption underlying Ed4)—that energy losses and de-
The freedom we have in choosing the independent variable i#ections are independent—is also very common and the as-
related to the fact that the energy variable does not explicitlysociated approaches have a broad field of application. One
enter the transport equation, as already pointed out bymportant example where this assumption is invalid is when
Landau® The validity of both approaches is restricted by theinner shell excitations are significant, as in angle-resolved
same underlying assumption that energy fluctuations arelectron energy loss spectroscopy. Even in that case, how-
small after traveling a certain path lendibr experiencing a ever, a yield equation of the type of E4.0) can be used, but
given number of collisions[see Eq.(5)]. the partial energy distributions will be geometry dependent.
Now let us consider the situation when angular deflectionsSee Ref. 26 for further details.
are significant. This will lead to enhancement of the traveled Summarizing, it may be stated that the results of the
path lengths compared to the straight line case. In othegpresent work allow us to extend the convolution method to

words, the distribution of path Iength@(s,ﬁ) will be  the case of energy-dependent interaction characteristics in a
broadened owing to angular scattering. Using Landau’s apvery simple way by using Eq22) for the stochastic process
proach, the spectrum is obtained by mu|t|p|y|ng the energ)for multiple collisions. The basic assumptions as well as the

loss function with the path length distribution and integratingrange of validity are the same as for Landau’s approach in
over the path length: the continuous slowing down approximation.

Y(E.Q)= fo Qs )G(s,E)ds. (39 ACKNOWLEDGMENTS
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