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Slowing down of medium-energy electrons in solids

Wolfgang S. M. Werner
Institut für Angewandte und Technische Physik, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A 1040 Vienna,

~Received 11 March 1996; revised manuscript received 16 December 1996!

The slowing down of energetic particles in solids has been studied for the special but important case that the
energy loss process is independent of any other interaction characteristic. For a realistic variation of the
scattering characteristics with energy this allows one to go over from the continuous energy variable to a
discrete variable, being equal to the number of inelastic processes. Then, the energy dissipation can be de-
scribed in terms of partial intensities of particles having experienced a given number of inelastic collisions and
the partial energy distributions associated with them. The important advantage of this so-called partial intensity
approach is that it can accurately account for the variation of the scattering characteristics with the energy in
a simple way. The key point in this procedure is the distribution of the stochastic process governing multiple
collisions in the multispeed case. The exact solution as well as an accurate and efficient analytical approxi-
mation is given for the probability forn-fold scattering as a function of the traveled path length. Application
of the proposed method to inelastic backscattering of electrons from solids leads to excellent agreement with
experimental results and simulation data and constitutes a significant improvement over methods that neglect
the energy dependence of the interaction characteristics. The method should prove useful for slowing down
problems of different types of particles like electrons, ions, etc., in solids.@S0163-1829~97!04321-X#
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I. INTRODUCTION

The transport of electrons, ions, neutrons, and other
ticles is of importance for various fields in physics. The ph
nomenon may be dealt with in the general framework
linear transport theory,1–5 but unfortunately this does no
generally provide an exact solution in a mathematically tr
table form. Therefore it is very often necessary to either e
ploy numerical solution approaches or invoke an appropr
approximation. Clearly, the meaningfulness of any appro
mation is strictly limited by the interaction characteristi
and the boundary conditions of any particular case.

Several decades ago, Landau6 studied the energy loss o
fast particles in the case that the total energy loss is sm
compared to the initial energy. In this quasielastic ene
regime, the constant cross section approximation app
Landau’s formalism is based on the Poisson stochastic
cess that governs multiple energy losses in the constant c
section ~quasielastic! approximation. In many subseque
works, Landau’s results have been applied to study the in
action of energetic ions, electrons, and other particles w
solids. This author’s approach is particularly useful in t
quasielastic energy range below a peak in an electron s
trum, where the constant cross section approximation ho
since the path lengths of the electrons that contribute to
yield in this region are not much greater than the inela
mean free path. The theory of noncoherent scattering in e
tron spectroscopy is therefore almost exclusively based
Landau’s result.7–12

In the constant cross section approximation, for which
Landau theory was developed, an alternative and comple
equivalent approach exists that describes the energy dist
tion as a superposition of groups ofn-fold inelastically scat-
tered particles. The energy distribution aftern losses is given
by an n-fold self-convolution of the differential mean fre
550163-1829/97/55~22!/14925~10!/$10.00
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path for inelastic scattering and therefore this method is o
referred to as the convolution method.13,10 If particle deflec-
tion can be neglected, i.e., if the rectilinear motion mod
represents a good approximation, this method becomes
ticularly simple since the relative contribution ofn-fold scat-
tered particles is then governed by the Poisson stocha
process.13,14

For many problems of particle transport both the const
cross section approximation and the straight line approxim
tion are inadequate and alternative approaches have t
employed to properly account for the particle deflection a
energy dissipation process. Finding an appropriate appro
to deal with particle deflection is greatly facilitated by invo
ing the so-called generalized radiative field similar
principle,15–17which states that the deflection function in th
transport equation may be replaced by, e.g., an isotro
transport cross section if the source angular distribution
sufficiently smooth. Thus for a~nearly! isotropic source an-
gular distribution, the deflection process can be treated a
lytically in the transport approximation,10,18while for, e.g., a
well-collimated beam of particles incident on a surface one
forced to resort to numerical procedures exactly accoun
for the details of the deflection function.

Properly accounting for the energy dissipation beyond
quasielastic energy regime is not straightforward. If the
ergy dissipation takes place concurrently with rapid mom
tum relaxation, i.e., if the particle suffers intense deflectio
the energy distribution is not determined by energy fluct
tions, but mainly by the distribution of the traveled pa
lengths. Then one can use the continuous slowing do
approximation.6,19,20,5 Such an approach has been succe
fully employed to derive accurate yet simple solutions
some integral quantities like the backscatteri
coefficient19,21and has been widely used in numerical mod
calculations.22,23
14 925 © 1997 The American Physical Society
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A more accurate description is provided by multigro
transport theory~see, e.g., Ref. 2!. Here the particle flux
density is divided into groups of particles with a speed in
given interval and for each interval the scattering charac
istics are assumed to be constant. This procedure req
extensive numerical calculations of high complexity, in p
ticular if the details of the deflection process play a role
the considered problem, when the source angular distribu
is highly anisotropic.

In the present paper, an approach is outlined that is fre
the drawbacks of the constant cross section approxima
while it is much simpler than the usual multigroup a
proaches and for certain cases it should be more conven
to use than the continuous slowing down approximation
fact, it is only slightly more involved than the convolutio
method while it is significantly more accurate. In this a
proach, which will be referred to as the partial intensity a
proach, the flux density is divided into groups of particl
that have suffered a certain number, say,n, inelastic colli-
sions, just as in the convolution method. The advantage
the partial intensity method is that it can accurately acco
for the variation of the scattering characteristics with ene
if the following two conditions are met:~1! The energy loss
process is independent of all other phenomena relevan
the particle transfer, in particular the deflection process,
~2! the energy dependence of the scattering characteri
within a group can be neglected. The first condition impl
that the energy of the flux density of thenth group is uncor-
related with the direction of the particle, while the seco
assumption allows us to go over from the continuous ene
variable to the discrete variable, being equal to the numbe
inelastic processes a particle has suffered.

The structure of this paper is as follows: The first theor
ical section, Sec. II A, shows how the two assumptions m
tioned above lead to the formal solution of the kinetic eq
tion for an arbitrary boundary problem in terms of part
intensities and the energy distributions associated with th
In the second theory section, Sec. II B, the stochastic pro
is studied for the case that the interaction characteristics
with the number of inelastic processes. This is the key
generalizing the convolution method to energies beyond
quasielastic regime where the constant cross section app
mation no longer holds. Ultimately, knowledge of the s
chastic process gives rise to a very efficient procedure
calculate the partial intensities that is employed later on. T
proposed approach is then tested by comparison of th
with experimental data on electron backscattering from s
ids and it is shown that the method generally performs be
than the convolution method in the constant cross sec
approximation, while it is only slightly more involved.

II. THEORY

A. Derivation of the basic relationships

The starting point of our considerations is a Boltzman
type kinetic equation for the flux densityN(z,VW ,E) of par-
ticles traveling at the depthz in the directionVW with an
energyE due to sources atz5z0 emitting in the direction
VW 5VW 0. For a case with plane symmetry, the transfer eq
tion for the flux density reads2
a
r-
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]z
52

N

l t
1

1

4ple
E
4p
I ~VW ,VW 8,E!N~z,VW 8,E!dVW 8

1E
0

`w~T,E1T!

l i~E1T!
N~z,E1T,VW !dT

1 f 0~E!d~z2z0!. ~1!

Herem5cosc is the polar direction of the particle’s motio
relative to the outward surface normal,l i and le are the
inelastic and elastic mean free paths, a
l t5lel i /(le1l i)

21 is the total mean free path
I (VW ,VW 8,E) is the scattering function, being equal to the no
malized cross section multiplied with 4p, andw(T,E) is the
normalized differential inverse inelastic mean free path~DI-
IMFP!, i.e., the probability that a particle loses energyT in
an individual inelastic event. Finally,f 0(E) is the normal-
ized energy distribution at the source. Note that by virtue
the linearity of the kinetic equation, the solution of Eq.~1!
allows us to find the solution for an arbitrary source functi
by superposition. The kinetic equation needs to be com
mented with a boundary condition for a given problem. It
omitted here since the results in this section are valid for
physically meaningful boundary condition. It should also
noted that deflections associated with the momentum tran
in an inelastic event have been neglected in Eq.~1!. This
approximation is admissible when the transport mean f
path for deflections in an inelastic collision significantly e
ceeds the corresponding mean free path during an ela
event. For medium-energy electrons this requirement is g
erally met.24,25 If inner shell processes associated with lar
momentum transfers are significant, angular deflections
inelastic collisions must be taken into account.26

We divide the flux density into groups ofn-fold inelasti-
cally scattered particles:

N~z,VW ,E!5 (
n50

`

Nn~z,VW ,E!. ~2!

In practical calculations, the upper limit in the summation
usually replaced byn5nmax, wheren5nmax corresponds to
the number of collisions a particle experiences before its
ergy drops below a certain cutoff value. Inserting the exp
sion, Eq. ~2!, into the kinetic equation yields a system
coupled equations:

m
]N0

]z
52

N0

l t
1

1

4ple
E
4p
I ~VW ,VW 8,E!N0~z,VW 8,E!dVW 8

1 f 0~E!d~z2z0!d~VW 2VW 0!,

m
]Nn

]z
52

Nn

l t
1

1

4ple
E
4p
I ~VW ,VW 8,E!Nn~z,VW 8,E!dVW 8

1E
0

`w~T,E1T!

l i~E1T!
Nn21~z,E1T,VW !dT. ~3!

At this stage we make the two assumptions mentioned in
Introduction. First it is assumed that the energy loss proc
is independent of the other interaction processes. Since
inelastic collision is always accompanied by momentu
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transfer, this is never strictly true. However, the characte
tic length for deflection during an inelastic event in ma
cases significantly exceeds the corresponding quantity
elastic scattering. For example, for medium-energy electro
the inelastic transport mean free path is at least one orde
magnitude larger than the elastic one.25 On the other hand
the energy transfer in an elastic collision is negligibly sm
in many cases, in particular if the mass of the incident p
ticle is small compared to the mass of its collision partn
For electrons interacting with a solid the latter condition
therefore generally fulfilled. Under these circumstances i
reasonable to assume that the energy and angular variab
the nth group are uncorrelated. Note that this by no me
implies that the energy and the angular variable of the fl
density are uncorrelated. On the contrary, it is w
known10,27 that this is generally not the case. However,
the nth group, the energy should be uncorrelated with
other variables under these conditions. Therefore, we m
write

Nn~z,VW ,E!5Fn~E!Pn~z,VW !. ~4!

The second assumption concerns the energy dependen
the scattering characteristics. It will be assumed that the
ergy fluctuations within one group can be neglected:

l~E!5l~Ēn![ln , ~5!

wherel stands for any of the scattering characteristics~cross
section or mean free path!. The above approximations allow
us to separate the energy variable in the kinetic equation~3!.
The separation constant follows from the normalization
the inverse inelastic mean free path. This immediately le
to the following equation for the partial energy distribution

F0~E!5 f 0~E!,

Fn~E!5E
0

`

Fn21~E1T!wn21~T!dT. ~6!

Multiplying Eq. ~6! by the energy and integrating gives th
self-consistent solution forĒn :

Ēn5E02(
l51

n

^T& l , ~7!

where

^T& l5E
0

`

wl21~T8!T8dT8 ~8!

is the mean loss in thel th collision. The equations for the
partial escape distributionsPn(z,VW ) read

m
]P0

]z
52

P0

l t,0
1

1

4ple,0
E
4p
I 0~VW ,VW 8!P0~z,VW 8!dVW 8

1d~z2z0!d~VW 2VW 0!, ~9!
-
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m
]Pn

]z
52

Pn

l t,n
1

Pn21

l i ,n21

1
1

4ple,n
E
4p
I n~VW ,VW 8!Pn~z,VW 8!dVW 8.

Finally, the emerging spectrumY(VW ,E) is found via the
superposition

Y~VW ,E!5 (
n50

`

Cn~VW !Fn~E!, ~10!

where the partial intensitiesCn are given by

Cn~VW !5E
0

`E
4p
Pn~z50,VW uz0 ,VW 0!q~z0 ,VW 0!dz0dVW 0

~11!

andq is the source strength. Thus for a given boundary pr
lem, Eqs.~6!–~11! completely specify the solution. To find
this solution, Eq.~9! has to be solved for the boundary co
dition of the specific problem, where the scattering char
teristics of the nth equation need to be evaluated
E5Ēn . The general solution approach for Eq.~9! is clearly
beyond the scope of the present paper. A very simple, g
eral, and efficient numerical approach to find the partial
tensities for an arbitrary source distribution will be outline
further below. For the special but important case that ela
scattering can be neglected, the solution of Eq.~9! can be
readily derived. This will be discussed in the next section

In conclusion of this section it is noted that integration
the emerging spectrum, Eq.~10!, gives the total intensity
I (VW ). By virtue of the normalization of the partial energ
distributions the total intensity is found to be equal to

I ~VW !5 (
n50

`

Cn~VW !. ~12!

This is the reason why the quantitiesCn are referred to as
partial intensities. Finding the solution of the transport pro
lem, Eq.~1!, has thus been reduced to finding the appropri
partial intensities. Therefore the term partial intensity a
proach~PIA! is used for the proposed method. The part
energy distributions are given explicitly by Eq.~6! and thus
the emerging spectrum can be calculated by Eq.~10! as soon
as the partial intensities are known for the boundary prob
of interest.

B. Probability for n-fold scattering
as a function of the path length

One of the main differences between the quasielastic
ergy regime and the energy regime where the constant c
section approximation no longer holds is the stochastic p
cess governing multiple collisions. In the quasielastic ca
the probabilityWn(s) for n collisions as a function of the
path length s is given by the Poisson distributio
Pn(s/l):26

Wn
QE~s!5Pn~s/l![S sl D ne2s/l

n!
. ~13!
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In this section we will omit the subscripti indicating inelas-
tic scattering, for clarity. An important question in th
present context is the behavior of the functionWn(s) in the
general case when the mean free path length depends o
energy. Just as in the quasielastic case, the equation des
ingWn(s) is found by lettingle→` in Eq. ~9!:

dWn

ds
52

Wn

ln
1
Wn21

ln21
, ~14!

with the boundary conditions

Wn~s50!5H 1, n50,

0, n.0.
~15!

Equations~14! and ~15! can be solved by the method o
variation of the constant. This leads to the recursion

Wn~s!5Ann~s!exp~2s/ln!,

Anm~s!5
lm

lm2ln21
HAn21,m2An21,n21

3expS 2sF 1

ln21
2

1

lm
G D J , ~16!

A0,m~s!51, m>0,

which completely specifies the solution. To study the phy
cal properties of the distributionWn(s), it useful to consider
its moments. These quantities are defined as

^sk&n5
1

Nn
E
0

`

Wn~s!skds, ~17!

where the normNn of Wn(s) is

Nn5E
0

`

Wn~s!ds. ~18!

Multiplication of Eq. ~14! by sk and integration immediately
gives

Nn5ln , ~19!

^s&n5 (
k50

n

lk[~n11!Ln , ~20!

whereLn is the average mean free path aftern collisions.
Generally, one finds the following recursion for the m
ments:

^sk&n5kln^s
k21&n1^sk&n21 . ~21!

The above results allow us to numerically model the s
chastic process beyond the quasielastic regime. Howev
very effective and accurate analytic approximation for
distributionWn(s) is given by the expression

Wn~s!5
ln

Ln
PnS s

Ln
D . ~22!

The advantage of this approximation is that all physica
relevant properties of the stochastic process are immedia
the
rib-

i-

-
, a
e

ly

evident. Moreover, its accuracy is quite high, in particu
for n&nmax, so that it can be used in practical calculation
The moments of the approximate distributionWn(s) are
given by

Nn
appr5ln , ~23!

^sk&n
appr5

~n1k!!

n!
Ln
k . ~24!

Thus the position and the norm of the approximate and ex
distribution are identical@cf. Eqs. ~19! and ~20!#. The ratio
between the higher exact and approximate moments for
ues ofn not too close tonmax is bounded by the expressio

1<
^sk&n

appr

^sk&n
&
1

k (
l50

k21 S Ln21

Ln
D l . ~25!

From Eqs.~23!–~25!, it follows that the approximation~22!
is quite good. For example, the deviation between the ex
and approximate widthsn

25^s2&n2^s&n
2 increases withn

and attains its largest value forn5nmax. However, for a
realistic energy dependence of the mean free paths,

l~E!5l~E0!S EE0
D a

, ~26!

with uau,2, the deviation insn
2 does not exceed severa

percent, while it is negligible forn&nmax. For small path
lengths, when the energy dependence of the interaction c
acteristics can be neglected, the approximate and exact
tributionWn(s) both reduce to the Poisson distribution, E
~13!.

A comparison of the distributionWn(s) with the Poisson
distribution is shown in Fig.~1!. The parameters used in th
calculation arel0525 Å, ^T&n5n^T&0, nmax5E0 /^T&0
530, anda50.7. For simplicity, the energy dependence e
pression~26! was adopted for the inelastic mean free pa
The chosen parameters approximately correspond to 3
electrons traversing a Cu target~see Fig. 3 below!. The exact
@Eq. ~16!# and approximate@Eq. ~22!# functionWn(s) are
indistinguishably similar in this representation.

III. APPLICATION TO INELASTIC ELECTRON
REFLECTION FROM SOLIDS

The basic assumption of the proposed approach is tha
energy loss and deflection process are independent. Thi
lows us to separate the energy and direction in the kin
equation for the group ofn-fold inelastically scattered elec
trons. For medium-energy electrons this requirement is
to a very good approximation.25 It should again be empha
sized that the energy and angular variable in the total fl
density are generally not uncorrelated at all. On the contr
a correlation is found for isotropic emission of Aug
electrons10 and is particularly pronounced if the source a
gular distribution is sharply peaked as in the case of refl
tion experiments17,27 when a well-collimated beam of par
ticles is incident on a solid surface. Therefore, the latter c
was selected to test the proposed approach.

The other basic point is the energy dependence of
interaction characteristics and the relation between the
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ergy and the number of inelastic collisions. This will first b
illustrated for the example of a medium-energy electro
solid interaction before we turn to the reflection proble
The basic quantity for the inelastic interaction is the diffe
ential inverse mean free path. The usual approach to es
lish this quantity is to extrapolate the optical limit of th
dielectric function, corresponding to zero momentum tra
fer DqW 50, onto the (DqW ,Dv) plane using an appropriat
dispersion relation.28,29,24,30Following Penn28 we have em-
ployed the single-pole approximation for the expansion fu
tion using a quadratic plasmon dispersion relation and
plied it to the optical data compiled in Refs. 31 and 32. T
resulting DIIMFP for two solids with distinctly different
electronic properties, Si and Au, is shown in Fig. 2. Wh
the loss function of Si is dominated by the strong and sh
plasmon excitation at;16 eV, the DIIMFP of Au is gener-
ally much broader, having its maximum at;e2/a0, corre-
sponding to the binding energy of the outer electrons. T
shape of the curves is seen to depend only rather weakly
the energy of the probing particle. Consequently, abov
certain energy the mean energy loss is expected to be ne
independent of the number of inelastic collisions,

^T&n~E!5E
0

`

wn~T,E!TdT.^T&0 , ~27!

FIG. 1. Probability forn-fold scatteringWn(s) as a function of
the traveled path length. The solid lines correspond to the true sl
ing down case when the mean free paths for the interaction pro
vary with the energy. The exact@Eq. ~16!# and approximate@Eq.
~22!# distributions are indistinguishably similar in this represen
tion. The dashed lines are the result in the quasielastic or cons
cross section approximation, given by the Poisson distribution.
-
.
-
b-

-

-
p-
e

p

e
on
a
rly

sincewn(T,E) is the normalized mean free path. In this ca
Eq. ~7! simplifies to

Ēn5E02n^T&0 . ~28!

The actual dependence of the mean energyĒn after n colli-
sions is presented in Fig. 3 for several materials forE0530
keV. It is seen that Eq.~28! represents a good approximatio
over a broad range of inelastic processes correspondin
energies*200 eV.

In order to calculate the partial intensities, values a
needed for the elastic and inelastic mean free paths as we
the distribution of scattering angles for the discrete valu
Ēn . The IMFP was calculated from optical data31,32with the
procedure developed by Penn,28 while the elastic character
istics were evaluated from the Mott cross section for fr
atoms using a Thomas-Fermi-Dirac potential33 and employ-
ing the partial wave expansion method, provided by the p
gram of Yates.34

For a smooth source angular distribution an analytic so
tion for the partial intensities can be derived from Eq.~9! in
the transport approximation in analogy to the quasiela
case.10 According to the generalized radiative field similari

-
ss

-
nt FIG. 2. Differential inverse inelastic mean free path~DIIMFP!,
i.e. , the energy loss probability, in individual collisions for ele
trons of different energies in solid matter:~a! Si and~b! Au.
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14 930 55WOLFGANG S. M. WERNER
principle, the exact details of the deflection function need
be accounted for if the source angular distribution is hig
anisotropic. This is exactly the case when a well-collima
beam of particles is reflected by a solid surface. Then a
lytic treatment can become rather complex17 and it was
therefore decided to directly evaluate the partial intensi
employing a Monte Carlo scheme@see Eq.~33! below#. This
can be done efficiently by means of the method of statist
weights: Only elastic scattering is explicitly modeled, a
upon termination, a trajectory is weighted with the functi
Wn(s). Of course, the change of the elastic characteris
with energy has to be accounted for. This can be done
each point of the trajectory by estimating the number of
elastic collisions,ni , as a function of the traveled path leng
Ds:

ni :5IS ni1 Ds

l i
D , ~29!

where the symbolI stands for the nearest integer. Then t
energy dependence of the elastic characteristics can be in
porated by evaluating them atĒni

. This algorithm is similar
to the one by Jablonski35 for the quasielastic case. The im
portant difference consists in the use of the stochastic
cess when the scattering characteristics change with the
ergy. The approximate functionWn(s) has been used in th
calculations since it is accurate enough and simple to ev
ate. The most important advantage of this method over c
ventional Monte Carlo models36,23 is that each trajectory
contributes to all energies in the spectrum and not just to
channel. Therefore, convergence is attained very fast.

Once the partial intensities have been established in
way, the backscattering coefficient follows from

h~VW !5 (
n50

`

Cn~VW !. ~30!

The differential backscattering coefficient is obtained by c
culating the partial energy distributions, Eq.~6!, and weight-
ing them with the partial intensities:

FIG. 3. Number of inelastic collisions an electron has expe
enced on the average after losing a certain amount of its energ
different elemental solids and an initial energy of 30 keV.
o
y
d
a-

s

al

s
at
-

or-

o-
n-

u-
n-

e

is

l-

dh

dE
~E,VW !5 (

n50

`

Cn~VW !Fn~E!. ~31!

In both cases, the actual experimental geometry has to
accounted for in the modeling of the partial intensities.

The result of this procedure is shown in Figs. 4 and 5
1–10 keV electrons normally incident on an Au, Ag, Cu, a
Al targets for the total~Fig. 4! and differential~Fig. 5! back-
scattering coefficients. For the total backscattering coe
cient, a large amount of experimental data is available in
literature,37–57which are represented by the open symbols
Fig. 4. The dashed line corresponds to Tilinin’s expressio19

which was corrected at lower energies for the contribution

-
for

FIG. 4. Integral inelastic backscattering coefficienth for Au,
Ag, Cu, and Al. The open symbols represent experimental res
~Refs. 37–57!, and the dashed lines were calculated using Tilinin
analytical expression Eq.~32! in the continuous slowing down ap
proximation~Refs. 19 and 20!. The solid symbols are the results o
the partial intensity approach, proposed in the present work.

FIG. 5. Differential backscattering coefficient of 5 keV electro
normally incident on Au, Ag, Cu, and Al, measured with a CM
~solid lines! ~Refs. 58–61!. For comparison, the results of the pr
sented approach are shown as dashed lines.
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55 14 931SLOWING DOWN OF MEDIUM-ENERGY ELECTRONS IN SOLIDS
secondaries,20 and Bethe’s theory was used to determine
necessary inelastic interaction characteristics. Tilinin’s
pression was derived in the continuous slowing down
proximation and reads19,20

h.
A11s21

A11s11.9
, ~32!

wheres5R/l tr is the scattering parameter in the continuo
slowing down approximation20,19andR is the electron linear
range. In spite of its simplicity, it is seen that this formu
perfectly describes the energy and atomic number dep
dence of the total backscattering coefficient. The results
the present work, represented by the solid symbols,
agree well with the experimental data. Note that in t
present calculations generation of secondaries was c
pletely disregarded.

Significant deviations between the presented theory
experiment can be observed, in particular for Al. A possi
explanation for this fact is the use of the quadratic dispers
relation to calculate the IMFP. Ding and co-workers58 also
note in their work that this may lead to significant deviation
Furthermore, Penn’s formalism to calculate the IMFP at
ergies above*10 000 eV has not been substantiated by
direct comparison of experimental IMFP values with theo
and may therefore also introduce a certain error in the refl
tion probability. It should be stressed that the observed
viations are definitely not due to the proposed approach
the particle transfer. This follows from a comparison of t
presented data with results of a conventional Monte Ca
simulation that was also performed. These data mutu
agree to within less than 1%. Hence it is likely that the inp
parameters of our calculation are responsible for the de
tions.

The advantage of the presented theory lies in the fact
it also describes the energy dependence of the phenom
fairly well, as can be seen in Fig. 5. Here, theory is compa
with the experimental data by Goto and co-workers.58–61

These data are special in that they are not distorted by
analyzer electron optics or electronics and therefore re
sent the true energy distribution, allowing a meaningful co
parison to be made. Such data have only recently bec
available.59,62,63

The theoretical results were normalized to experimen
the energy just below the elastic peak. Although the gen
agreement is quite good, theory is in error at lower energ
by a factor sometimes exceeding 2. In this respect, the Mo
Carlo results of Ding and co-workers58 agree better with the
data.

In conclusion of this section, it is noted again that for t
present case of the reflection problem, the solution of Eq.~9!
has to be found for the realistic Mott cross section for ela
scattering in order to obtain quantitative agreement with
experimental data. This follows directly from the radiati
field principle and was confirmed by additional calculatio
performed for an isotropic cross section. In this case,
differential backscattering coefficient deviates significan
from experiment. Therefore the numerical approach that
adopted here seems to be the most efficient way to esta
the partial intensities for the backscattering problem.
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IV. DISCUSSION

Two main assumptions have been made in the pre
work @see Eqs.~4! and~5!#, allowing us to describe the trans
fer of fast charged particles in matter and accounting for
energy dependence of the interaction characteristics. The
assumption states that the energy loss and deflection pro
should be independent. In the theory section, Sec. II, it w
outlined that such an assumption is justifiable when
transport mean free path for inelastic scattering greatly
ceeds the elastic one and generally this assumption hold
electrons interacting with solids over a broad energy ran
This conclusion is supported by the good agreement betw
theory and experiment in Figs. 4 and 5. It is important
emphasize again that the energy and the angular variab
the total flux density are correlated.10,27 For example, if the
detection or incidence angle is changed in the reflection
periment, the energy distribution changes markedly.27,64The
reason is that the path length distribution changes in this c
and consequently the relative contribution of thenth group,
i.e., the partial intensities, also changes, giving rise to a
ferent emerging energy spectrum.

Next, the assumption that the energy in thenth group may
be replaced by the mean energy aftern collisions is due to be
discussed. Clearly, for sufficiently small values ofn where
the constant cross section approximation applies due to
weak variation of the scattering parameters with the ene
this assumption poses no problem. For in that case, the w
of the partial energy distributions is small compared to
energy range over which a noticeable change in the sca
ing characteristics occurs.

To fully appreciate the situation for larger energy loss
it is useful to regard the path length distribution functio
This quantity is defined as the distribution of path leng
that the particles travel for a given boundary problem.
recalling that the partial intensities are the contributions
the spectrum of particles that have experiencedn losses one
can establish a relationship between these quantities and
path length distribution. The partial intensities can simply
expressed as the product of the path length distribu
Q(s,VW ), and the probabilityWn(s) for n losses for a given
path length, and integrated over all path lengths:

Cn~VW !5E
0

`

Q~s,VW !Wn~s!ds. ~33!

Now it is clear that for large values ofn, the energy spread
as a cause of statistical fluctuations in the partial energy
tributions is small compared to the uncertainty in the ene
introduced by the broad path length distribution. This allo
us to neglect the energy fluctuations within a group fo
large number of collisions.

This is illustrated in Fig. 6, which compares the expe
mental reflection coefficient with the theoretical result a
also shows the partial intensities as a function of the m
energy aftern collisions. The latter quantities are represent
by open circles and were normalized to theory at 3 keV. T
comparison clearly shows the transition between the qu
elastic regime, where the energy fluctuations governed by
DIIMFP determine the overall energy distribution, and t
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14 932 55WOLFGANG S. M. WERNER
regime where the path length distribution~or partial intensi-
ties! plays the dominant role: Below;3 keV, the energy
dependence of the partial intensities quite perfectly coinci
with the spectral shape of the backscattering coefficient.
the latter regime, the assumption of continuous energy los
clearly reasonable. The major advantage of the partial in
sity approach is that it encompasses both energy regi
merely by the use of the proper stochastic process, Eq.~22!.
Thus its level of complexity is almost the same as the c
volution method in the constant cross section approxima
that relies on the Poisson stochastic process while its a
racy is generally much higher. This can also be seen in
6 where the result of the convolution method is shown as
dashed line labeled ‘‘Poisson.’’

In passing we have introduced a third approximation t
deserves to be discussed, although it is not essential. It is
approximate expressionWn(s) for the stochastic process o
multiple scattering. In view of its simplicity, its accuracy
remarkably high. It is interesting to note that it would ev
coincide with the exact solution if the right-hand side of E
~25! were equal to unity. We rewrite this condition in th
form

Ln
k2Ln21

k

Ln2Ln21
5kLn

k21 . ~34!

For a continuous variableLn ~or n) this is identical to the
differentiation operation. Thus, it turns out that replacem
ofWn(s) with the approximate distributionWn(s) @Eq. ~22!#
constitutes an approximation similar to making the transit
from the continuous variable to the discrete variable desc
ing the energy of a particle.

Finally, it seems advisable to place the presented met
in context with other approaches that account for the cha
of the interaction characteristics with energy. We will fir
confine the discussion to the case when angular deflect
can be neglected. The connection of the present basic
sumptions with those usually made is best illustrated by c

FIG. 6. Comparison of the experimental backscattering coe
cient ~solid line! for 5 keV electrons reflected from a solid silve
target with theory~dashed line!. Dashed line labeled ‘‘Poisson’’
result of the convolution method in the constant cross section
proximation. Open circles: partial intensities~normalized to theory
at 3 keV!.
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sidering Landau’s approach6 in the continuous slowing down
approximation~CSDA!. In this approach the energy los
spectrum is written as

G~s,E!5
1

2pE2`

`

dkexpH ik~E02E!

2E
0

sds8

l i
@12w̃„Ē~s8!,k…#J , ~35!

where w̃ is the Fourier transform of the differential mea
free path. The particles’ energy as a function of the p
length Ē(s) is obtained in the CSDA by expressing the e
ergy loss as the product of the stopping power^T&/l i and the
path lengths. When the path length is small enough, t
energy dependence of the quantities in the second term o
exponent may be neglected and this term reduces
s(12w̃)/l i . Expanding the exponent in powers ofw̃, we
immediately arrive at the energy loss function expressed
terms of then-fold convolution of the inelastic cross sectio
the so-called partial loss distributionsLn @cf. Eq. ~6!#:

G~s,E!5 (
n50

`

Ln~E!Wn~s!. ~36!

This is the standard result for the energy loss function in
convolution method approach. Since it was assumed tha
interaction characteristics do not depend on the energy,
probability forn-fold scattering,Wn(s) in expression~36!, is
given by the Poisson distribution. The partial intensity a
proach merely consists of replacing the Poisson distribu
by the general probability forn-fold scattering,Wn(s). This
becomes practical on account of the effective approxima
Wn(s) for the stochastic process. In this sense, Eq.~22! is
the central result of the present work.

The above clearly demonstrates the conceptual simpli
of the partial intensity approach: For a given group
n-fold scattered particles, the probability that a particle th
has traveled a path lengths belongs to this group is given b
Wn(s). Multiplying this with the energy~loss! distribution
associated with thenth group,Ln(E), then gives the energy
loss function for this group as a function of the traveled p
length. Summing up the contribution of all groups, one o
tains the total energy loss functionG(s,E), Eq. ~36!. Gener-
ally, in the partial intensity approach, many expressions
relevant quantities like the loss function~36!, the spectrum
~10!, etc., are essentially trivial once the concept of dividi
the flux density into groups ofn-fold scattered particles is
clearly understood.

Both approaches, Eqs.~35! and ~36!, are similar in the
way they account for the energy dependence of the inte
tion characteristics: These should be evaluated at the en
Ēn corresponding to the independent variable keeping tr
of the particles’ energy:

Ē~s!.E02
s

l
^T& ~CSDA!, ~37!

Ēn.E02n^T& ~PIA!. ~38!

-

p-
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55 14 933SLOWING DOWN OF MEDIUM-ENERGY ELECTRONS IN SOLIDS
According to Poisson statistics, the mean number of co
sions after a given path lengths is just s/l. This illustrates
that both approaches are equivalent in this sense, the e
tial difference, of course, being the use of a continuous
opposed to a discrete variable keeping track of the ene
The freedom we have in choosing the independent variab
related to the fact that the energy variable does not explic
enter the transport equation, as already pointed out
Landau.6 The validity of both approaches is restricted by t
same underlying assumption that energy fluctuations
small after traveling a certain path length~or experiencing a
given number of collisions! @see Eq.~5!#.

Now let us consider the situation when angular deflecti
are significant. This will lead to enhancement of the trave
path lengths compared to the straight line case. In o
words, the distribution of path lengthsQ(s,VW ) will be
broadened owing to angular scattering. Using Landau’s
proach, the spectrum is obtained by multiplying the ene
loss function with the path length distribution and integrati
over the path length:

Y~E,VW !5E
0

`

Q~s,VW !G~s,E!ds. ~39!

It is now seen that in the conventional CSDA it is also a
sumed that energy losses and deflections are indepen
f.
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This becomes even clearer by inserting Eq.~36! into Eq.~39!
and using the definition for the partial intensities, Eq.~33!.
The result exactly corresponds to the formula for the sp
trum in the partial intensity approach, Eq.~10!. Thus the
assumption underlying Eq.~4!—that energy losses and de
flections are independent—is also very common and the
sociated approaches have a broad field of application.
important example where this assumption is invalid is wh
inner shell excitations are significant, as in angle-resolv
electron energy loss spectroscopy. Even in that case, h
ever, a yield equation of the type of Eq.~10! can be used, bu
the partial energy distributions will be geometry depende
See Ref. 26 for further details.

Summarizing, it may be stated that the results of
present work allow us to extend the convolution method
the case of energy-dependent interaction characteristics
very simple way by using Eq.~22! for the stochastic proces
for multiple collisions. The basic assumptions as well as
range of validity are the same as for Landau’s approach
the continuous slowing down approximation.
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