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Nonlinear dynamics of intermittent-contact mode atomic force microscopy
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In intermittent-contact mode atomic force microscagyM), the AFM tip and the harmonically driven
sample only spend a brief time in contact, compared to the driving period. As a result the dynamical response
of the cantilever to the shocks received on impact can be described and analyzed in terms of an instantaneous
impact law specifying the loss of kinetic energy on impact. The simplest such law assumes a constant coeffi-
cient of restitution and results in the impact oscillator model. The coefficient-of-restitution law is modified to
include an absolute loss of energy on impact, modeling the effects of adhesion. The stability of single-impact
orbits for this impact law is analyzed. The analytical results based on these models are found to be in
agreement with experiment. A model of the tip-sample interaction based on the Johnson-Kendall-Roberts
model of contact incorporating the effects of a liquid meniscus between the tip and the sample is presented.
The resulting impact law is found to follow the modified impact law in the presence of adhesion.
[S0163-18297)06121-9

I. INTRODUCTION brevity of impact results from the highly nonlinear increase
in stiffness on impact—from the stiffness of the cantilever to
Since its inceptioh atomic force microscopy(AFM), that of the tip-sample contact. Thus instead of treating the
which employs a nanosized tip on the end of a cantilever téesponse of the tip-cantilever system in the presence of the
sense the interaction between the tip and a sample, has ifample as a perturbation to the linear, and hence harmonic,
curred a wide range of app"catioﬁssimu|taneous|y’ a behaVior, models are considered which are inherently non-
plethora of different techniques based on the AFM principlelinear. As a result the language and tools of dynamic systems
have been developed for a wide range of purpddespar- theory become applicable. The experimental justification for
ticular several dynamic techniques where the AFM tip, canSuch an approach stems from recent wirhere the AFM
tilever base, or the sample are subjected to a periodic excivas excited at frequencies several times higher than that of
tation have been used for a number of applications. Differenthe the free cantilever. Both subharmonic orbits of a period
modes of AFM operation may be set up according to theseveral times that of the excitation as well as chaotic motion
frequency and amplitude of the vibration applied and theof the tip were observed.
AFM component it is applied tb. Throughout, the single-mass model will be used to de-
In th|s paper we will use the too's Of dynamic Systemsscribe the tip'CantileVer SyStem. It has be.en Use.d eXtenSiVely
theory (nonlinear dynamigsto analyze the dynamics of in- to model both contact, noncontact, and intermittent contact
termittent contact mode AFM. Whereas th|s mode has beeAFM.4 In the noncontact and intermittent'contact case there
studied recently using mainly numerical technigties,the IS good agreement with experiment. The single-mass model
emphasis in this paper lies on simplified partially analytically@ssigns the tip and cantilever a single effective mass and
soluble models. It is found that the amplitude of vibration of Stiffness, thus neglecting any higher modes of vibration of
the tip in intermittent contact mode is sensitive to the loss ofhe cantilever. Figure 1 shows a schematic representation of
kinetic energy of the tip on impact, and may thus be used téhe cantilever and the tip and their description by the single-
characterize local energy dissipation on the sample. mass model.
In intermittent contact mode AFM the sample or cantile-
ver is harmonically driven at an amplitude sufficiently large
for the tip to undergo impacts with the sample and to per-
form a “bouncing” motion between impacts. In the follow- The so-called impact oscillator is a prototype model of
ing we consider the case where the sample, rather than thébrating systems undergoing rigid impacts, which has been
cantilever, is harmonically driven, since this case is mathextensively studied® *°It has been used to model processes
ematically and conceptually simpler. The case where thevhere harmonically forced systems undergo impacts with a
cantilever is driven is obtained by the noninertial transforma-igid constraint in fields as diverse as the effects of earth-
tion to the frame where the sample is at rest. The impacts arguakes on rigid structur&or offshore engineerintf:'8As a
assumed to be brief, so that the tip is out of contact with theesult the impact oscillator still remains the subject of con-
sample for most of its motion. If the duration of impact is siderable theoretical, computational, and experimental inter-
short compared to the driving period of the sample, the relaest today*°
tive velocity of tip and sample after impact is a function of It consists of a harmonically driven harmonic oscillator
their relative velocity before impact. Otherwise no such im-undergoing impacts with an infinitely rigid object. These im-
pact law representing the energy loss on impact may holghacts are assumed to occur instantaneously and obey the
due to the acceleration of the sample during impact. Theoefficient-of-restitution rule of impact: On impact the veloc-

Il. THE IMPACT OSCILLATOR
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FIG. 1. Schematic representation of the AFM
setup with sample modulation and the correspond-

cantilever tip tip position z- cantilever-sample offset o ipg singlt_a_—mass model with the tip at its equilib-
v : o rium position.

sample ]\ platform I

amplitude of vibration
of the platform §

ity of the oscillator is reversed and multiplied by a constant‘zp: — Bwsin(wt), the coefficient of restitution law of impact
factorr, the coefficient of restitution. In genenak 1, where  gjyeg

the equality applies to the case of perfectly elastic impacts.
Hence the oscillator loses a constant fractionr? of its zZ——rz—(141)Bwsinot). (1)
kinetic energy on impact.

The motion of the oscillator can be described by two re- When determining the stability of single-impact orbits,
gimes; a linear equation of motion between impacts, and thase is made of the fact that the equation of moti@tween
discontinuous instantaneous impact law. The impact oscillaconsecutive impacts is linear and its solution as well as its
tor exhibits a behavior of fascinating complexifyand, de-  derivatives with respect to the time of impact and impact
pending on the driving frequency and amplitude, its motionvelocity can be given in closed form.
may be periodic or chaotic. The periodic motion is classified Consider two consecutive impacts at tintgsandt,. De-
according to the number of impacts per periog and the  nhoting signed velocities just before impact\asind just after
number of driving cycles per periatl Such a type of motion impact asV’ and neglecting damping, the motion of the
is denoted as annf,n) orbit, wherem andn are integers. Mass between these impacts is given by
Chaotic motion may occur due to the nonlinearity introduced .
by the impact law: The motion of the oscillator between 2(t) =Acod)(t—ty) +BsinQ(t—ty), @
impacts is given by the linear equation of motion and thewhere the initial conditions give
initial conditions set at therevious impact. In this way it is

possible for the initial conditions when starting off the oscil- A= o+ Bcog wty),
lator never to be damped out, although energy is being dis-
sipated. Such a sensitivity on initial conditions is one of the B=V3/Q.

hallmarks of chaotic dynamics. : . L L .
By transforming the equations governing the behavior ofThe impact timet, is given implicitly by the condition

the.|mpa9t oscillator to the frame pf referenge w_here the AcO) (t,—t;) +BsinQ (t,— t;) = o+ Bcod wt,),  (3)

oscillator is unforced but thebstacleis performing simple

harmonic motion, we arrive at the single-mass model awhich is called aswitching condition because the coeffi-

shown in Fig. 1 subject to a coefficient-of restitution rule of cients in the analytic solutio?) for subsequent times switch

impact. to new values given by new initial conditions. The velocity
In order to describe the dynamics of this system, welust before impact is given by

define its Poincare section as the surface z{z,t:

z=1z,,z>0}, wherez is the position of the tip relative to the

lab frame,z is its velocity andz,= o+ Bcos(t) is the po- Phrased in terms of the Poincasection the stability of
sition of the platform. Hence the Poincaneap maps the single-impact orbits can be determined by linearizing the
velocity immediately after impact and the time of impact Poincafemap about its fixed points. For a general two-
from one impact to the next. Throughout we will refer to the dimensional map with the variablég and V| and a fixed
velocity of the tip just after impact as the impact velocity, pointt*, V'* we can write

which is thus positive. The phase flow is transverse to the

Poincaresection everywhere except wheze=0. Since the My Myi 1

V2:_Aﬂsim(t2_t1)+BQCOﬂ(tZ_tl). (4)

driving term is periodic with period 2/, we may reduce &k+1NTk&k+0_W5Vk'

the phase space to the topology of a cylinder. The corre-

sponding mapping maps the impact velocity and time V! N/

modulo the driving period from one impact to the next. OV, 1~ — L St — L sV,
In the lab frame, where the platform velocity is Ity IV
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FIG. 2. Regions of stability of single-impact or-
bits are shown whiteQQ=90x27 kHz, r=0.5, and
o=-—1nm.

1600

whereC= cod)(t,—t;), S=sinQ(t,—t;) andcy,,=cost;)),

fixed point. The partial derivatives form the Jacobian matrixs; ;= sin(wty).

A(ter1,Vir ) 3(t, Vi) of the mapping, which describes the

By computing the Jacobian of E@Ql) and applying the

linearized behavior of points near the fixed point under thechain rule the determinam and the tracd of the Jacobian
Poincaremap. If the absolute values of the eigenvalues ofof the Poincaremap can be calculated and the stability of
this matrix are all smaller than 1, there exists an attractivesingle-impact orbits be determinétiRegions of stability in
neighborhood around the fixed point within which applica-the (w,8) plane are shown in Fig. 2. They are found to

tion of the Poincarenap brings all points closer to the fixed
point. Hence the corresponding orbit is stalieSince the

consist of resonances centered @ 2n(}, that is, orbits
where half a period of the free motion of the tip equals

criterion that the modulus of the eigenvalues be smaller than driving periods. At low driving frequencies “tails” of re-

1 can be written agT|<|D+1|, the stability of single-

gions of stability slope towards lower/higher driving fre-

impact orbits can be determined by finding the determinanguencies for a negative/positive sample-cantilever offset

D and traceT of the Jacobian matrix of the Poincameap.
Implicitly differentiating Eqgs. (3) and (4) gives
A(tys1,Vir1)/9(tk, Vi) and applying the chain rule and the
coefficient of restitution law(1) gives the elements of the
Jacobian matrix.

The results of the first part of this calculation are

), AQS-BOC—Bws,
1
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AQS—-BQOC- Bws,’

(avz)
— =C
V1),

1

Q(AC+BS)S
- AQS-BQC- Bws,’

©)

Ill. THE COEFFICIENT-OF-RESTITUTION RULE
INCORPORATING ADHESION

We now extend the coefficient of restitution rul® to
include not only a constatftactional loss of energy on im-
pact but also a constamibsoluteloss é of kinetic energy
after application of Eq(1). This can be thought of as a crude
model of the effects of adhesion. In the frame of reference
where the platform position ig,= o+ Bcos(wt) this modi-
fied impact rule gives

V' =PV —0 ) et v,

whereV and V'’ are the tip velocities just before and just
after impact respectively, ang, is the velocity of the plat-
form on impact.e is a shorthand for 8 m, wherem is the
effective mass of the tip. We determine the stability of single
impact orbits by calculating the determindhtand traceT of

the Jacobian matrix(t,,V5)/d(t;,V}) of the Poincarenap.
The elements of(t,,V,)/d(t,,V;) are given by Eq.5),
whereas the elements of the Jacob#ty,V5)/d(t,,V,) of

the modified impact law6) are

(6)
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ity where indices have been droppedsV'/v,, and the rest of
(E) =1, the notation follows that of Sec. II.
v In order to evaluate Eq8) the impact phasedt) must
be calculated. Equating the periods of the platform with
r2(V2—vp(2)) that of the tip motion in a(l,n) orbit, we obtain
2 (Vo—v )2—5_1 ' V' =[ o+ Bcost) |Qtan(mnQ/w), and solving Eq.6) for
2 7@ V' for the case of a single-impact orbit gives

vV, )
— | =Bwcoywt,)
|,

2

—

at,
J— :O,
(avz)t (1+12) v+ Var2o,—(1-r?)e
2

1—r?

((9_\/é> ___PVavp0) @)
Naly rA(Vo—vpp)2—€ =[ o+ Bcog wt) |Qtan mnQ/ o). 9)
wherev ;)= — Bwsin(wty) denotes the platform velocity at

the second impact. Using Eq®) and (7) the chain rule is The presence of the square root on the left-hand side of this

applied again to calculate the Jacobian matrix of the Poincarequation, which stems from the square root in the modified

map impact law (6), leads to a polynomial equation of fourth
order in cosft), which must be solved numerically. Hence
(ty,V5) _a(tz,Vé) a(ty,Vy) expressiong8) can be evaluated and the stability criterion

It V) a(t.V) a(ty V) |T|<|1+D| can be applied.

Figure 3 shows the results of this calculation for
For a single impact orbit obeyingV,=Vj and ©@=—1 nm,r=05e=1 uJkg *. The regions of stability

Up(1)=Vp(2) We find for its determinanD and its traceT of single impact orbits are similar to those of the simple
coefficient of restitution law, except at low driving ampli-
D=r2 tudes and subharmonic orbits of low order. This stems from

the fact that the impact rulés) does not allow orbits with

, ) V—uv,<\elr, ie,v,<\elr(a+1), sincev,~pn subhar-
T=1+ ooV Bws—BwsC— (V' + BwsC)r monic orbits of low order and low driving amplitude cannot

occur under the modified impact rule. This corresponds to
—vp the tip getting stuck by adhesion.
—v, -1 Note that the fundamental frequency in the power spec-
trum of a(1,n) orbit is 1h of the driving frequency and the
o 1+r2(a—6)i1 orb_it is hence termed .subharmonic of orde_rThe order in _
which the subharmonics appear as the driving amplitude is
increased is related to the tip-sample offset parameter
) o and for negativer Figs. 2 and 3 show that high order
subharmonic orbits occur before the lower orders with re-

oy Up+ S|r
v '8_0

1 1
_+1T

Q -1

w a—i—l
+ —cot(wt)S| r —+1
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gions where no single impact orbits are stable between them. %V
This behavior agrees with the experimental results reported "= RTIn(o/pl) (11)
in Ref. 12 RTIn(p/ps)

whereV,, is the molar volume of the liquidl the tempera-
ture,p the pressure, anpl the saturated vapor pressure. For
IV. NUMERICAL SIMULATIONS INCORPORATING a water meniscup/ps equals the relative humidity. At STP
THE EFFECT OF A LIQUID MENISCUS conditionsy,V,/RT is 0.54 nm for water. In the following
calculations the relative humidity is taken to be 50%.

. In th.'S section we construct a n_10de| of the t|p-§ample The viscous force arises from the shear viscosity of the
interaction, focusing on the dissipation of energy on impactyi, i as the meniscus is continuously deformed. It has been
Since impacts are brief compared to the driving period it iS5 - 1ated for a number of geometries and for a sphere of
the energy dissipation rather than the contact mechaniqsddiusR and a flat the result 227
which is paramount to the dynamics of the tip. As long as the

elastic forces acting on the tip on contact result in a suffi- 37, R2D
ciently large acceleration for impacts to be brief, the relation Fuise=— ~—>p

between the tip velocities before and after impact is crucial,

but not the exact form of quasistatic forces reversing the tiQynereD is the relative velocity of tip and sample amg is

velocity. This is reflected in the model of the tip-sample ihe shear viscosity of the liquid. For water at STP conditions
interaction, which includes the effects of a liquid meniscus,, — 1 9o5¢ 103 Pa s.

. . . . . R
between tip and the sample. Such a meniscus is ubiquitous IN' the siryctural or entropic force arises from the discrete
AFM under ambient conditions and its viscosity contributes,gjecular nature of the liquid meniscus. It is primarily de-

to the energy _dissipation on impact. - i termined by the geometry of the molecules and how they
The model is composed of two parts, the liquid/solid con-pack around a constraining boundafyWhen the tip-sample
tact describing the force exerted by a liquid meniscus begenaration is of the order of magnitude of the size of the

tween the tip and the sample, and the solid/solid contaghgjecules of the liquid, changes in this separation lead to
describing the case when the tip is in direct elastic Conta%scillations of the density of the liquid, and hence to an

with the sample. Both regimes are well researched on theggcijlating force. In this application we consider the average
own (Refs. 22,23, and references contained therdint the ot the structural force over these oscillations. By integrating

interface between these continuum theories is likely 10 b§he expression for the average structural pressure given in
dominated by the molecular dynamics of the tip-meniscUSRet. 28 gver the area of the meniscus we obtain
sample system and is currently not well understood. The fol-

lowing thus represents a compromise aimed to describe the F srue= AOTe*(Dfﬁ)/T[l_efaZ/(ZRr)]' (13)
dissipation of energy on impact, not the complete contact

mechanics of the tip-sample system in the presence of a métherea is an effective Kelvin radius given By

soscopic amount of water. In this sense the prime objective . _

of the quasistatic contribution to the tip-sample interaction— a=Rsincos {(1-2r¢/R)].

apart from providing the crucial nonlinearity of contact—is The offsets and the decay length of the structural force

to enable the energy dissipation due to velocity-dependenire both taken to be 0.6 nm, aAg equals approximately 40
terms to be calculated. As a result, long-range van der Waalgm —1,28.2°

forces in air, which do not contribute to the energy loss, are  The core repulsion describes the short-range repulsive
neglected. The forces describing the liquid bridge are thgorce arising from the interaction of the atomic cores of the

capillary force, the viscous force, the structural force, and theip and the sample. They are described by the repulsive part
core repulsion. The solid/solid contact is described by thef a Lennard-Jones potential giving
Johnson-Kendall-Robert6)KR) model?* providing a high

(12

tip-sample stiffness due to elastic deformation, as well an BR
energy loss due to adhesive forces. Fcore:W: (14

The capillary force results from the surface tension and ) ) )
hydrostatic forces in a discrete liquid bridge between parWhere comparison with 7t7hge van ger. Waals attraction at
ticles. By considering the total surface energy for a sphere dP =0.2 nm leads t@=10"""J m~<.“" Figure 4 shows the

radiusR and a flat connected by a liquid meniscus of con-capillary force, the structural force, and the core repulsion, as
stant volume the capillary force is found to?#&° well as the sum of these contributions with the parameters

given above as a function of tip-sample separation.
In order to describe the forces acting on the tip when in
47RYy, elastic contact with the sample, we use the familiar JKR
Feap= — TrDl2ry’ (10 model of contact* which is well established for the case of
high adhesion, large radii of curvature, and compliant mate-
rials. The JKR model is based on a balance between surface,
where we have assumed the angle at which the meniscymtential, and elastic energies, where a constant surface en-
touches the sphere to be close to zdRois taken equal to ergy » over the area of contact is assumed. Interaction
100 nm throughouty, denotes the surface tension of the forces outside the area of contact are not taken into account,
liquid, D is the tip-sample separation, amg the Kelvin  leading to infinite stresses along the perimeter of the connec-
radius given b§? tive neck between tip and sample.
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FIG. 4. The constituent forces of the liquid bridge: Capillary £ 5. The loading and unloading curve of the contact model.
force (dashedl structural force(dash-dotte core repulsion(dot-

ted), and the sum of these contributioffsll). At distances smaller than about 0.2 nm the structural force

and the core repulsion cause the liquid bridge to be repulsive
Following the notation of Maugi&¥) we use the normal- and of large stiffness’

ized contact radiug, load P, penetration deptiA given in The formation of a solid junction is deemed to occur
terms of the un-normalized variables by when the forces and stiffnesses of the solid/solid junction
and of the liquid bridge are equal. As shown in Fig. 5 this
a instability occurs at a tip- sample separation of 0.124 nm and

leads to a snap-on at a negative force. The remainder of the
loading process is given by the load-displacement relation of
the JKR model15).

A= [(sz)/K]llgl

[ L However, the microscopic details of the transition from a
TR’ liquid/solid to a solid/solid contact process are poorly under-
stood as well as difficult to access experimentally. As argued
5 above the exact form of the force curve is not of paramount
A= ———r——, concern here as long as the correct dissipative processes can
[(m*w?R)/K?]H be incorporated. However, for applications of contact AFM

such as ultrasonic force microscopy an understanding of the
ransition region may be crucit.

During the unloading process we follow the JKR force
curve until the well-known JKR instability occurs and the

wherea is the contact radiusy the Dupreadhesion energy, ;
P the load, and5 the penetration depth. The reduced elastic

modulusK for the tip-sample system is given by
1 3[/1-12 1— 12 connective neck between tip and sample breaks. From this
Vt|p Vsample . . . .
== + . point onwards the force is given by the expression for the
K4 Eiip liquid meniscus, which now extends to greater distances than

Using the normalized variables the JKR theory takes th&luring the loading process. This distance is taken equal to

Esample

form 4.7 nm yielding a total hysteretic energy loss of 60 17 J
corresponding to a total hysteretic energy loss per unit area
P=A3-ABA, of0.6 J m 2. Both the meniscus and the elastic contact con-
tribute to the total hysteretic energy loss.
The question arises, whether there are further mechanisms
2y6A ; . . :
2_ —3 (15) of energy loss playing a role, particularly if plastic deforma-

tion will occur on impact. However, it is thought that since a

and has to be solved numerically for the relationship betweefeP€ated number of impacts take place on the same point of
P and A. In this application we take =100 GPa and the sample, shakedown and strain-hardefiingll prevent
©=0.3 Jm2 an energy loss due to effects of plasticity after a few

The total force exerted by the liquid bridge is given by the'mpactS§2 Nevertheless in a situation where the tip is
sum of Eqs(10), (12), (13), and(14). The static components scanned across the surface, permanent damage to the sam_ple
of this force are shown in Fig. 4. For typical impact veloci- may occur and has mdeer% been observed at driving ampli-
ties the viscous force is several orders of magnitude smalletludes of the order of 10 nrit.
than the static component of the meniscus force. During
loading we assume the meniscus to be present for tip-sample
displacements smaller than 3.5 nm. Due to the capillary con- Using the model for the tip-sample interaction developed
tribution the static force is attractive over most of its range.above to simulate impacts numerically, we can determine the

A. The impact law
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FIG. 6. The impact law resulting from the model of the tip-  FIG. 7. Distance from the sample against time for a low-velocity
sample interaction. impact. Dotted lines show the corresponding trajectory assuming an

instantaneous impact.

impact law resulting from this model and examine the as-

sumptions used in Secs. Il and Ill. Throughout a 4/5-ordeHertzian stiffness, to which the JKR stiffness tends for large
Runge-Kutta algorithm with variable step size is used. Inpenetration depths, we immediately find the time lag to scale
order to find the impact law we consider impacts of a free tipgs\y— (14,

of massm=10""?kg (Refs. 11,350n the stationary sample  However, the fact that the hysteretic forces act over a
subject only to the forces discussed in Sec. IV. The speeds ghite range also introduces a tinead of the numerical so-
the tip at a point further away from the sample than the rang,tjon with respect to the trajectory given by an instanta-
of the tip-sample interaction after and before impact, denotegoq;5 impact law, since the net loss of energy due to hyster-

by v" anduv respectively, are plotted against each other inggjs takes place during unloading, thaiter the fictitious
Fig. 6. The impact law exhibits a cutoff velocity of «\oment” of impact assumed by an impact law. For the

tlﬁézsxarlno Iertr: Sa dhggzgisplgnﬁlrggaton:ge tt)lg f?;;gngj ‘:’;rl]“i:;tc; quven impact velocity this time lead is 02s and from el-
pe by - 19 y P €mentary geometrical considerations we find it to scale as

law of the formV'=r*V"—e, which has been treated in V1. Hence we can conclude in both cases that in the present

Sec. lll. The fit parameters are found to be=r0.9981 and ; . Lo
- T, 5T, . . context the use of an instantaneous impact law is justified for
€=1.26<10 "m" s corresponding to an adhesive en- sufficiently large impact velocities. With the parameters of
ergy of 6.34<107"7 J. This fit reproduces the numerically the ti —sa% Ieginterarzttion iven ab;)ve the timpe spent in con-
determined impact law to within 0.3%. p-sample gIve Lo P
tact during an impact of a typical velocity rises to 5% of the

In this context the absolute loss of energy per impaCt’drivin eriod forn=8. which thus mav be reqarded as a
denoted bye, results from the hysteresis of the force curve.. 9p S Y 9 ;
limit to the validity of the instantaneous-impact approxima-

The energy loss related to the kinetic energy of the tip on. AT
impact, denoted by the coefficient of restitution results r;?gaﬁ%‘ff;ﬁ#ﬂti I;mng E}g;%gg%g?ﬁ::sdiﬂgggnthe values

from the viscous damping due to the presence of the liqui ; : ; )

. . : o Using the model of the tip-sample interaction, we can
meniscus between tip and sample. For impact velocities Iargrel’\umericall solve the equation of motion of a tip of effective
compared to the cutoff the original coefficient of restitution y q P

law V' =rV_holds in good approximation. massm at the end of a cantilever of stiffneksand damping

The assumption behind the applicationamly impact law constanty
is that the impact time is so short compared to the driving
period that it can be neglected. We can use the model of the L .o
tip-sample interaction to examine this assumption. Figure mz+ yz+kz=F[(z-z,),(z—7p)], (16)
7 shows the distance of the tip from tzhe san;ple against time
for an impact of velocityy =1.5X10"“ ms™*. Since this . .
impact velocity corresponds to only 1.3 times the velocityWhere z andz,= o+ Scoset) denote the pos_ltlon of the tip
cutoff, this is to be considered a low velocity impact. Theand the vibrating platform, respectivellf[D,D] gives the
dotted line shows the corresponding orbit for an instantatiP-sample interaction as a function of their separafioand
neous law of impact. The finite stiffness of the sample intro-its rate of changd®. Throughout we taken= 1012 kg and
duces a time lag of the numerical solution. For the givenconsider a cantilever with a free frequency of vibration
impact velocity this lag is 0.1Ls, which is to be compared Q=90 kHz and a quality factor 40121135
to the driving periodT=5.5 us/n to be used below, where Figure 8 shows 1000 points of the Poincanap defined
n is the order of the subharmonic orBftSince the stiffness in Sec. Il at parameter values resulting in a chaotic orbit
of the JKR model increases with penetration depth, this tim@btained by numerically integrating the equation of motion
lag decreases with increasing impact velocity. Assuming d6 using a 4/5-order Runge-Kutta algorithm.
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0.07 : : . ; . resonant frequencf of the cantilever. Furthermore we can

: 3 compare the predictions of the instantaneous-impact model
in this situation with the results of dynamic simulations of
the tip-sample interaction.

Using Eq.(9) to find the impact phase, we can determine
the amplitude of vibration of stable single-impact orbits—if
they exist—just above and below the first resonance, which
for =0 occurs at a driving frequency of(R Figure
9 shows this steady-state amplitude as a function of the tip-
sample offsete and the coefficient of restitutiom with
e=1uJ kg™t and the amplitude rescaled to one unit of
length ato=0. It shows that for a subresonant excitation the
amplitude of vibration of the tip decreases linearly only at
-0.02 ‘ . . , ‘ sufficiently high values of the coefficient of restitution and
04 O e pact modulo driving pevcd (&) 14 18 sufficiently far away from resonance. For an excitation

x 10 f [ . . .
slightly above resonance, the amplitude of vibration is found

FIG. 8. The strange attractor found by numerically integratingto, increase_vvith the cantilever offset. A similar calculation
the equation of motioli16) for n=5.277, 3=4 nm, ando=0. Wlth t.he driving frequency equal to the f(ee frequgncy. of
vibration of the cantilever shows the amplitude of vibration
to decrease linearly witlr irrespectively of the coefficient
of restitution. Hence thgualitative dependence of the am-
plitude of vibration ass is varied on the coefficient of res-

An important procedure, which has been extensively retitution is only present near resonance.
searched experimentatfyand theoreticall§** in the context This behavior can be understood by considering the im-
of intermittent-contact mode AFM, is the slow approach ofpact phase, which decreases as the magnitude of the
the periodically driven cantilever base towards the sample. licantilever-sample offset is decreased. In the subresonant
the setup discussed here this corresponds to gradually iase, where the impact phase lies below (3/2his implies
creasing the offsetr between the rest positions of the tip a lower velocity of the sample at impact and hence a lower
and the vibrating sampf&.At driving frequencies at or near steady state amplitude of vibration, and vice versa for the
the free resonant frequency of the cantilever an almost lineasuperresonant case. Alternatively we can think of this proce-
decrease of the vibration amplitude of the tip is observeddure as shifting the “tails” of the regions of stable single-
ending with the tip stuck to the sample due to adhesion. Thigmpact orbits in Fig. 3 from lower to higher frequencies,
linear decrease in amplitude is found to be fairly independentvhich results in the above effects for orbits just below or
of the sample properties. above the resonanee=2().

However, we can expect a more interesting behavior to If the change in the cantilever-sample offsetproceeds
occur at or near single impact resonances of the tipslowly enough for the system to settle into its new steady
cantilever system, the first of which occurstaice the free  state ass changes, we should expect to observe the same

0.02

impact velocity {m/s)

=]

(=]

=
T

-0.01

B. Behavior of the vibration amplitude as the tip-sample offset
is decreased

a) Subresonant excitation

N

Y

rescaled amplitude of vibration

FIG. 9. Amplitude of the single-impact analytic
solution of the coefficient of restitution modéd)

coefficient of restitution cantilever offset (nm) X .
b) Superresonant excitation ( just below resonance=0.97 and(b) just above
resonancen=1.03 with a driving amplitude of
B=0.75 nm.

N

=O

rescaled amplitude of vibration

coefficient of restitution cantilever offset (nm)
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effects in numerical simulations using the full tip-sample in-by the drastic increase of stiffness on impact from that of the
teraction. Figures 10 and 11 show the trajectory of the tipcantilever to that of the tip-sample contact is crucial to its
subject to a slow change i at subresonant and superreso-dynamics. As a result of the disparity between the two stiff-
nant driving frequencies respectively. In the subresonanfesses the time the tip and sample spend in contact is brief
case, a decrease of the amplitude of vibration is observe mpared to the time between two consecutive impacts and

leading to the tip getting stuck by adhesion, whereas at aﬂway be brief compared to the driving period. If the latter is

e>§citatic_)n frequency above the resonance co_ndition the a he case, the dynamics can be approximately described by an
plitude Increases to a new steady-_state amp““%de- Althoug ealized impact law, which instantaneously reverses the
the transition does not proceed strictly adiabatically, result- '

ing in a delav bet the oh in the fi il ff relative velocity of the tip and the sample. Hence, it is the
Ing In a delay between the change in the tip-cantiever ofise nergy loss on impact rather than the exact form of the forces
and the change in amplitude, the amplitude response behav

: ; : : : Foducing this rapid acceleration which is crucial for the de-
as predicted by the single-impact analytical solution of th scription of the dynamics resulting from such impacts.
instantaneous-impact model. A modification of the coefficient-of-restitution law incor-

V. CONCLUSION porating adhesion was considered, allowing for two |r_1depen-

dent forms of energy loss: a loss of energy proportional to

In this paper we have analyzed intermittent-contact modé¢he kinetic energy of the tip in the frame where the sample is
AFM from the point of view that the nonlinearity introduced at rest and an absolute loss of energy per impact, modeling
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the effects of adhesion. It was found that the single impacvibration of the cantilever and the sample at different sub-
orbits for this impact law are similar to those of the original harmonic resonances the impact law can be determined. On
coefficient-of-restitution law, except at low driving ampli- resonance the impacts occur when the sample velocity is at a
tudes and low driving frequencies, where the tip remainsmaximum; hence the impact phase is known and from the
“stuck to the sample” by adhesion. amplitudes of vibration of the tip and the sample, the driving

A model of the tip-sample interaction based on the JKRfrequency, and the free frequency of vibration of the canti-
model of elastic contact but incorporating the effects of aever the velocities of the tip before and after impact relative
liquid meniscus between tip and the sample was used tg the platform can be determined. By varying the driving
determine the form of the impact law. It was found to follow frequency and exciting different subharmonics this relation
closely the modified impact law in the presence of adhesioncan be measured over a range of velocities and the impact
Furthermore, the assumption that the time of impact is briefaw be checked experimentally. This information about the
compared to the driving period was found to be justified forjgcal energy dissipation on the sample may also yield new
driving frequencies up to an order of magnitude higher thanesuits concerning the dynamic tip-sample interaction.
the free frequency of vibration of the cantilever.

The conclusion that energy dissipation on impact is of
prime importance for the dynamics of intermittent-contact ACKNOWLEDGMENTS
mode AFM implies that it may be possible to use such a
setup to develop an experimental tool for imaging and char- Many thanks to S. Biswas, O. V. Kolosov, and J. B.
acterizing local energy dissipation on impact, since variaPethica for discussions and criticism. Financial support from
tions in the steady-state amplitude of the cantilever could béhe HCM Grant “Atomic Force Microscopy and Microa-
used to image the energy loss at the corresponding impacbustics” No. ERBCHRXCT940668 is gratefully acknowl-
velocities. More importantly, by measuring the amplitudes ofedged.
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