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Nonlinear dynamics of intermittent-contact mode atomic force microscopy

J. Berg and G. A. D. Briggs
Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH, Great Britain

~Received 8 October 1996!

In intermittent-contact mode atomic force microscopy~AFM!, the AFM tip and the harmonically driven
sample only spend a brief time in contact, compared to the driving period. As a result the dynamical response
of the cantilever to the shocks received on impact can be described and analyzed in terms of an instantaneous
impact law specifying the loss of kinetic energy on impact. The simplest such law assumes a constant coeffi-
cient of restitution and results in the impact oscillator model. The coefficient-of-restitution law is modified to
include an absolute loss of energy on impact, modeling the effects of adhesion. The stability of single-impact
orbits for this impact law is analyzed. The analytical results based on these models are found to be in
agreement with experiment. A model of the tip-sample interaction based on the Johnson-Kendall-Roberts
model of contact incorporating the effects of a liquid meniscus between the tip and the sample is presented.
The resulting impact law is found to follow the modified impact law in the presence of adhesion.
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I. INTRODUCTION

Since its inception1 atomic force microscopy~AFM!,
which employs a nanosized tip on the end of a cantileve
sense the interaction between the tip and a sample, ha
curred a wide range of applications.2 Simultaneously, a
plethora of different techniques based on the AFM princi
have been developed for a wide range of purposes.3 In par-
ticular several dynamic techniques where the AFM tip, c
tilever base, or the sample are subjected to a periodic e
tation have been used for a number of applications. Differ
modes of AFM operation may be set up according to
frequency and amplitude of the vibration applied and
AFM component it is applied to.4

In this paper we will use the tools of dynamic system
theory ~nonlinear dynamics! to analyze the dynamics of in
termittent contact mode AFM. Whereas this mode has b
studied recently using mainly numerical techniques,5–11 the
emphasis in this paper lies on simplified partially analytica
soluble models. It is found that the amplitude of vibration
the tip in intermittent contact mode is sensitive to the loss
kinetic energy of the tip on impact, and may thus be used
characterize local energy dissipation on the sample.

In intermittent contact mode AFM the sample or canti
ver is harmonically driven at an amplitude sufficiently lar
for the tip to undergo impacts with the sample and to p
form a ‘‘bouncing’’ motion between impacts. In the follow
ing we consider the case where the sample, rather than
cantilever, is harmonically driven, since this case is ma
ematically and conceptually simpler. The case where
cantilever is driven is obtained by the noninertial transform
tion to the frame where the sample is at rest. The impacts
assumed to be brief, so that the tip is out of contact with
sample for most of its motion. If the duration of impact
short compared to the driving period of the sample, the re
tive velocity of tip and sample after impact is a function
their relative velocity before impact. Otherwise no such i
pact law representing the energy loss on impact may h
due to the acceleration of the sample during impact. T
550163-1829/97/55~22!/14899~10!/$10.00
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brevity of impact results from the highly nonlinear increa
in stiffness on impact—from the stiffness of the cantilever
that of the tip-sample contact. Thus instead of treating
response of the tip-cantilever system in the presence of
sample as a perturbation to the linear, and hence harmo
behavior, models are considered which are inherently n
linear. As a result the language and tools of dynamic syste
theory become applicable. The experimental justification
such an approach stems from recent work,12 where the AFM
was excited at frequencies several times higher than tha
the the free cantilever. Both subharmonic orbits of a per
several times that of the excitation as well as chaotic mot
of the tip were observed.

Throughout, the single-mass model will be used to d
scribe the tip-cantilever system. It has been used extensi
to model both contact, noncontact, and intermittent con
AFM.4 In the noncontact and intermittent-contact case th
is good agreement with experiment. The single-mass mo
assigns the tip and cantilever a single effective mass
stiffness, thus neglecting any higher modes of vibration
the cantilever. Figure 1 shows a schematic representatio
the cantilever and the tip and their description by the sing
mass model.

II. THE IMPACT OSCILLATOR

The so-called impact oscillator is a prototype model
vibrating systems undergoing rigid impacts, which has be
extensively studied.13–15It has been used to model process
where harmonically forced systems undergo impacts wit
rigid constraint in fields as diverse as the effects of ea
quakes on rigid structures16 or offshore engineering.17,18As a
result the impact oscillator still remains the subject of co
siderable theoretical, computational, and experimental in
est today.19

It consists of a harmonically driven harmonic oscillat
undergoing impacts with an infinitely rigid object. These im
pacts are assumed to occur instantaneously and obey
coefficient-of-restitution rule of impact: On impact the velo
14 899 © 1997 The American Physical Society



M
d-
-

14 900 55J. BERG AND G. A. D. BRIGGS
FIG. 1. Schematic representation of the AF
setup with sample modulation and the correspon
ing single-mass model with the tip at its equilib
rium position.
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ity of the oscillator is reversed and multiplied by a consta
factor r , the coefficient of restitution. In generalr<1, where
the equality applies to the case of perfectly elastic impa
Hence the oscillator loses a constant fraction 12r 2 of its
kinetic energy on impact.

The motion of the oscillator can be described by two
gimes; a linear equation of motion between impacts, and
discontinuous instantaneous impact law. The impact osc
tor exhibits a behavior of fascinating complexity,20 and, de-
pending on the driving frequency and amplitude, its mot
may be periodic or chaotic. The periodic motion is classifi
according to the number of impacts per periodm, and the
number of driving cycles per periodn. Such a type of motion
is denoted as an (m,n) orbit, wherem andn are integers.
Chaotic motion may occur due to the nonlinearity introduc
by the impact law: The motion of the oscillator betwe
impacts is given by the linear equation of motion and
initial conditions set at theprevious impact. In this way it is
possible for the initial conditions when starting off the osc
lator never to be damped out, although energy is being
sipated. Such a sensitivity on initial conditions is one of t
hallmarks of chaotic dynamics.

By transforming the equations governing the behavior
the impact oscillator to the frame of reference where
oscillator is unforced but theobstacle is performing simple
harmonic motion, we arrive at the single-mass model
shown in Fig. 1 subject to a coefficient-of restitution rule
impact.

In order to describe the dynamics of this system,
define its Poincare´ section as the surface {z,z,t:
z5zp ,ż.0%, wherez is the position of the tip relative to th
lab frame,ż is its velocity andzp5s1bcos(vt) is the po-
sition of the platform. Hence the Poincare´ map maps the
velocity immediately after impact and the time of impa
from one impact to the next. Throughout we will refer to t
velocity of the tip just after impact as the impact velocit
which is thus positive. The phase flow is transverse to
Poincare´ section everywhere except whereż50. Since the
driving term is periodic with period 2p/v, we may reduce
the phase space to the topology of a cylinder. The co
sponding mapping maps the impact velocity and ti
modulo the driving period from one impact to the next.

In the lab frame, where the platform velocity
t

s.
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żp52bvsin(vt), the coefficient of restitution law of impac
gives

ż→2rż2~11r !bvsin~vt !. ~1!

When determining the stability of single-impact orbit
use is made of the fact that the equation of motionbetween
consecutive impacts is linear and its solution as well as
derivatives with respect to the time of impact and impa
velocity can be given in closed form.

Consider two consecutive impacts at timest1 andt2. De-
noting signed velocities just before impact asV and just after
impact asV8 and neglecting damping, the motion of th
mass between these impacts is given by

z~ t !5AcosV~ t2t1!1BsinV~ t2t1!, ~2!

where the initial conditions give

A5s1bcos~vt1!,

B5V18/V.

The impact timet2 is given implicitly by the condition

AcosV~ t22t1!1BsinV~ t22t1!5s1bcos~vt2!, ~3!

which is called aswitching condition, because the coeffi
cients in the analytic solution~2! for subsequent times switc
to new values given by new initial conditions. The veloci
just before impact is given by

V252AVsinV~ t22t1!1BVcosV~ t22t1!. ~4!

Phrased in terms of the Poincare´ section the stability of
single-impact orbits can be determined by linearizing
Poincare´ map about its fixed points. For a general tw
dimensional map with the variablestk andVk8 and a fixed
point t* , V8* we can write

dtk11'
]tk11

]tk
dtk1

]tk11

]Vk8
dVk8 ,

dVk118 '
]Vk118

]tk
dtk1

]Vk118

]Vk8
dVk8,
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FIG. 2. Regions of stability of single-impact or
bits are shown white.V59032p kHz, r50.5, and
s521 nm.
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to first order in the small deviationsdt and dV8 from the
fixed point. The partial derivatives form the Jacobian mat
](tk11 ,Vk118 )/](tk ,Vk8) of the mapping, which describes th
linearized behavior of points near the fixed point under
Poincare´ map. If the absolute values of the eigenvalues
this matrix are all smaller than 1, there exists an attrac
neighborhood around the fixed point within which applic
tion of the Poincare´ map brings all points closer to the fixe
point. Hence the corresponding orbit is stable.21 Since the
criterion that the modulus of the eigenvalues be smaller t
1 can be written asuTu,uD11u, the stability of single-
impact orbits can be determined by finding the determin
D and traceT of the Jacobian matrix of the Poincare´ map.
Implicitly differentiating Eqs. ~3! and ~4! gives
](tk11 ,Vk11)/](tk ,Vk8) and applying the chain rule and th
coefficient of restitution law~1! gives the elements of th
Jacobian matrix.

The results of the first part of this calculation are

S ]t2
]t1

D
V
18
5

2bvs1C1AVS2BVC
AVS2BVC2bvs2

,

S ]t2
]V18

D
t1

5
S/V

AVS2BVC2bvs2
,

S ]V2

]t1
D
V
18
5bvVs1S2V2~AC1BS!

3
bv~s22s1C!

AVS2BVC2bvs2
,

S ]V2

]V18
D
t1

5C2
V~AC1BS!S

AVS2BVC2bvs2
, ~5!
x

e
f
e
-

n

t

whereC5cosV(t22t1), S5sinV(t22t1) andc1/25cos(vt1/2),
s1/25sin(vt1/2).

By computing the Jacobian of Eq.~1! and applying the
chain rule the determinantD and the traceT of the Jacobian
of the Poincare´ map can be calculated and the stability
single-impact orbits be determined.13 Regions of stability in
the (v,b) plane are shown in Fig. 2. They are found
consist of resonances centered onv52nV, that is, orbits
where half a period of the free motion of the tip equa
n driving periods. At low driving frequencies ‘‘tails’’ of re-
gions of stability slope towards lower/higher driving fre
quencies for a negative/positive sample-cantilever offsets.

III. THE COEFFICIENT-OF-RESTITUTION RULE
INCORPORATING ADHESION

We now extend the coefficient of restitution rule~1! to
include not only a constantfractional loss of energy on im-
pact but also a constantabsolute loss d of kinetic energy
after application of Eq.~1!. This can be thought of as a crud
model of the effects of adhesion. In the frame of referen
where the platform position iszp5s1bcos(vt) this modi-
fied impact rule gives

V85Ar 2~V2vp!
22e1vp , ~6!

whereV andV8 are the tip velocities just before and ju
after impact respectively, andvp is the velocity of the plat-
form on impact.e is a shorthand for 2d/m, wherem is the
effective mass of the tip. We determine the stability of sing
impact orbits by calculating the determinantD and traceT of
the Jacobian matrix](t2 ,V28)/](t1 ,V18) of the Poincare´ map.
The elements of](t2 ,V2)/](t1 ,V18) are given by Eq.~5!,
whereas the elements of the Jacobian](t2 ,V28)/](t2 ,V2) of
the modified impact law~6! are
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FIG. 3. Regions of stability of single-impact or
bits in the presence of adhesion.
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S ]t2
]t2

D
V2

51,

S ]V28

]t2
D
V2

5bv2cos~vt2!S r 2~V22vp~2!!

Ar 2~V22vp~2!!
22e

21D ,
S ]t2
]V2

D
t2

50,

S ]V28

]V2
D
t2

5
r 2~V22vp~2!!

Ar 2~V22vp~2!!
22e

, ~7!

wherevp(2)52bvsin(vt2) denotes the platform velocity a
the second impact. Using Eqs.~5! and ~7! the chain rule is
applied again to calculate the Jacobian matrix of the Poinc´
map

]~ t2 ,V28!

]~ t1 ,V18!
5

]~ t2 ,V28!

]~ t2 ,V2!

]~ t2 ,V2!

]~ t1 ,V18!
.

For a single impact orbit obeyingV185V28 and
vp(1)5vp(2) we find for its determinantD and its traceT

D5r 2

T511
1

vp2V Fbvs2bvsC2~V81bvsC!r 2

3
V2vp
V82vp

1b
v2

V
cSS r 2 V2vp

V82vp
21D G

511
1

11a FC211r 2~a2C!
a11

a21

1
v

V
cot~vt !SS r 2a11

a21
11D G , ~8!
re

where indices have been dropped,a5V8/vp , and the rest of
the notation follows that of Sec. II.

In order to evaluate Eq.~8! the impact phase (vt) must
be calculated. Equating then periods of the platform with
that of the tip motion in a ~1,n) orbit, we obtain
V85@s1bcos(vt)#Vtan(pnV/v), and solving Eq.~6! for
V8 for the case of a single-impact orbit gives

~11r 2!vp1A4r 2vp22~12r 2!e

12r 2

5@s1bcos~vt !#Vtan~pnV/v!. ~9!

The presence of the square root on the left-hand side of
equation, which stems from the square root in the modifi
impact law ~6!, leads to a polynomial equation of fourt
order in cos(vt), which must be solved numerically. Henc
expressions~8! can be evaluated and the stability criterio
uTu,u11Du can be applied.

Figure 3 shows the results of this calculation f
s521 nm, r50.5, e51 mJ kg21. The regions of stability
of single impact orbits are similar to those of the simp
coefficient of restitution law, except at low driving ampl
tudes and subharmonic orbits of low order. This stems fr
the fact that the impact rule~6! does not allow orbits with
V2vp,Ae/r , i.e., vp,Ae/r (a11), sincevp;bn subhar-
monic orbits of low order and low driving amplitude cann
occur under the modified impact rule. This corresponds
the tip getting stuck by adhesion.

Note that the fundamental frequency in the power sp
trum of a~1,n) orbit is 1/n of the driving frequency and the
orbit is hence termed subharmonic of ordern. The order in
which the subharmonics appear as the driving amplitud
increased is related to the tip-sample offset param
s and for negatives Figs. 2 and 3 show that high orde
subharmonic orbits occur before the lower orders with
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gions where no single impact orbits are stable between th
This behavior agrees with the experimental results repo
in Ref. 12.

IV. NUMERICAL SIMULATIONS INCORPORATING
THE EFFECT OF A LIQUID MENISCUS

In this section we construct a model of the tip-sam
interaction, focusing on the dissipation of energy on impa
Since impacts are brief compared to the driving period i
the energy dissipation rather than the contact mecha
which is paramount to the dynamics of the tip. As long as
elastic forces acting on the tip on contact result in a su
ciently large acceleration for impacts to be brief, the relat
between the tip velocities before and after impact is cruc
but not the exact form of quasistatic forces reversing the
velocity. This is reflected in the model of the tip-samp
interaction, which includes the effects of a liquid menisc
between tip and the sample. Such a meniscus is ubiquitou
AFM under ambient conditions and its viscosity contribu
to the energy dissipation on impact.

The model is composed of two parts, the liquid/solid co
tact describing the force exerted by a liquid meniscus
tween the tip and the sample, and the solid/solid con
describing the case when the tip is in direct elastic con
with the sample. Both regimes are well researched on t
own ~Refs. 22,23, and references contained therein!, but the
interface between these continuum theories is likely to
dominated by the molecular dynamics of the tip-menisc
sample system and is currently not well understood. The
lowing thus represents a compromise aimed to describe
dissipation of energy on impact, not the complete cont
mechanics of the tip-sample system in the presence of a
soscopic amount of water. In this sense the prime objec
of the quasistatic contribution to the tip-sample interaction
apart from providing the crucial nonlinearity of contact—
to enable the energy dissipation due to velocity-depend
terms to be calculated. As a result, long-range van der W
forces in air, which do not contribute to the energy loss,
neglected. The forces describing the liquid bridge are
capillary force, the viscous force, the structural force, and
core repulsion. The solid/solid contact is described by
Johnson-Kendall-Roberts~JKR! model,24 providing a high
tip-sample stiffness due to elastic deformation, as well
energy loss due to adhesive forces.

The capillary force results from the surface tension a
hydrostatic forces in a discrete liquid bridge between p
ticles. By considering the total surface energy for a spher
radiusR and a flat connected by a liquid meniscus of co
stant volume the capillary force is found to be22,25

Fcap52
4pRg l

11D/2r K
, ~10!

where we have assumed the angle at which the meni
touches the sphere to be close to zero.R is taken equal to
100 nm throughout,g l denotes the surface tension of th
liquid, D is the tip-sample separation, andrK the Kelvin
radius given by26
m.
d
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rK5
g lVm

RTln~p/ps!
, ~11!

whereVm is the molar volume of the liquid,T the tempera-
ture,p the pressure, andps the saturated vapor pressure. F
a water meniscusp/ps equals the relative humidity. At STP
conditionsg lVm /RT is 0.54 nm for water. In the following
calculations the relative humidity is taken to be 50%.

The viscous force arises from the shear viscosity of
liquid as the meniscus is continuously deformed. It has b
calculated for a number of geometries and for a sphere
radiusR and a flat the result is25,27

Fvisc52
3ph lR

2Ḋ

2D
, ~12!

whereḊ is the relative velocity of tip and sample andh l is
the shear viscosity of the liquid. For water at STP conditio
h l51.00531023 Pa s.

The structural or entropic force arises from the discr
molecular nature of the liquid meniscus. It is primarily d
termined by the geometry of the molecules and how th
pack around a constraining boundary.22 When the tip-sample
separation is of the order of magnitude of the size of
molecules of the liquid, changes in this separation lead
oscillations of the density of the liquid, and hence to
oscillating force. In this application we consider the avera
of the structural force over these oscillations. By integrat
the expression for the average structural pressure give
Ref. 28 over the area of the meniscus we obtain

Fstruct5A0te
2~D2d!/t@12e2a2/~2Rt!#, ~13!

wherea is an effective Kelvin radius given by29

a5Rsin@cos21~122rK /R!#.

The offsetd and the decay lengtht of the structural force
are both taken to be 0.6 nm, andA0 equals approximately 40
Nm21.28,29

The core repulsion describes the short-range repul
force arising from the interaction of the atomic cores of t
tip and the sample. They are described by the repulsive
of a Lennard-Jones potential giving

Fcore5
BR

180D8 , ~14!

where comparison with the van der Waals attraction
D50.2 nm leads toB510279 J m22.29 Figure 4 shows the
capillary force, the structural force, and the core repulsion
well as the sum of these contributions with the parame
given above as a function of tip-sample separation.

In order to describe the forces acting on the tip when
elastic contact with the sample, we use the familiar JK
model of contact,24 which is well established for the case o
high adhesion, large radii of curvature, and compliant ma
rials. The JKR model is based on a balance between surf
potential, and elastic energies, where a constant surface
ergy v̄ over the area of contact is assumed. Interact
forces outside the area of contact are not taken into acco
leading to infinite stresses along the perimeter of the conn
tive neck between tip and sample.
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Following the notation of Maugis,30 we use the normal-
ized contact radiusA, load P̄, penetration depthD given in
terms of the un-normalized variables by

A5
a

@~pv̄R2!/K#1/3
,

P̄5
P

pv̄R
,

D5
d

@~p2v̄2R!/K2#1/3
,

wherea is the contact radius,v̄ the Dupréadhesion energy
P the load, andd the penetration depth. The reduced elas
modulusK for the tip-sample system is given by

1

K
5
3

4 F S 12n tip
2

Etip
D 1S 12nsample

2

Esample
D G .

Using the normalized variables the JKR theory takes
form

P̄5A32AA6A,

D5A22
2A6A
3

~15!

and has to be solved numerically for the relationship betw
P̄ and D. In this application we takeK5100 GPa and
v̄50.3 J m22.

The total force exerted by the liquid bridge is given by t
sum of Eqs.~10!, ~12!, ~13!, and~14!. The static component
of this force are shown in Fig. 4. For typical impact veloc
ties the viscous force is several orders of magnitude sma
than the static component of the meniscus force. Dur
loading we assume the meniscus to be present for tip-sam
displacements smaller than 3.5 nm. Due to the capillary c
tribution the static force is attractive over most of its rang

FIG. 4. The constituent forces of the liquid bridge: Capilla
force ~dashed!, structural force~dash-dotted!, core repulsion~dot-
ted!, and the sum of these contributions~full !.
c

e

n

er
g
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At distances smaller than about 0.2 nm the structural fo
and the core repulsion cause the liquid bridge to be repul
and of large stiffness.29

The formation of a solid junction is deemed to occ
when the forces and stiffnesses of the solid/solid junct
and of the liquid bridge are equal. As shown in Fig. 5 th
instability occurs at a tip- sample separation of 0.124 nm a
leads to a snap-on at a negative force. The remainder of
loading process is given by the load-displacement relation
the JKR model~15!.

However, the microscopic details of the transition from
liquid/solid to a solid/solid contact process are poorly und
stood as well as difficult to access experimentally. As argu
above the exact form of the force curve is not of paramo
concern here as long as the correct dissipative processe
be incorporated. However, for applications of contact AF
such as ultrasonic force microscopy an understanding of
transition region may be crucial.31

During the unloading process we follow the JKR for
curve until the well-known JKR instability occurs and th
connective neck between tip and sample breaks. From
point onwards the force is given by the expression for
liquid meniscus, which now extends to greater distances t
during the loading process. This distance is taken equa
4.7 nm yielding a total hysteretic energy loss of 6310217 J
corresponding to a total hysteretic energy loss per unit a
of 0.6 J m22. Both the meniscus and the elastic contact co
tribute to the total hysteretic energy loss.

The question arises, whether there are further mechan
of energy loss playing a role, particularly if plastic deform
tion will occur on impact. However, it is thought that since
repeated number of impacts take place on the same poin
the sample, shakedown and strain-hardening23 will prevent
an energy loss due to effects of plasticity after a fe
impacts.32 Nevertheless in a situation where the tip
scanned across the surface, permanent damage to the sa
may occur and has indeed been observed at driving am
tudes of the order of 10 nm.33

A. The impact law

Using the model for the tip-sample interaction develop
above to simulate impacts numerically, we can determine

FIG. 5. The loading and unloading curve of the contact mod



as
de
I
ti
e
s
ng
te
i
f
to
a
n

n-
ly

c
e
o

u
r
on

in
t
ur
im

ity
he
ta
ro
e

im
g

ge
ale

r a

ta-
ter-

e

as
sent
for
of
on-
he
a
a-
es

an
e

on

bit
on

p- ity
g an

55 14 905NONLINEAR DYNAMICS OF INTERMITTENT-CONTACT . . .
impact law resulting from this model and examine the
sumptions used in Secs. II and III. Throughout a 4/5-or
Runge-Kutta algorithm with variable step size is used.
order to find the impact law we consider impacts of a free
of massm510212 kg ~Refs. 11,35! on the stationary sampl
subject only to the forces discussed in Sec. IV. The speed
the tip at a point further away from the sample than the ra
of the tip-sample interaction after and before impact, deno
by v8 andv respectively, are plotted against each other
Fig. 6. The impact law exhibits a cutoff velocity o
1.1231022 m s21 corresponding to the tip getting stuck
the sample by adhesion. Figure 6 may be fitted to an imp
law of the formV85Ar 2V22e, which has been treated i
Sec. III. The fit parameters are found to be r5 0.9981 and
e51.2631024m2 s22 corresponding to an adhesive e
ergy of 6.34310217 J. This fit reproduces the numerical
determined impact law to within 0.3%.

In this context the absolute loss of energy per impa
denoted bye, results from the hysteresis of the force curv
The energy loss related to the kinetic energy of the tip
impact, denoted by the coefficient of restitutionr , results
from the viscous damping due to the presence of the liq
meniscus between tip and sample. For impact velocities la
compared to the cutoff the original coefficient of restituti
law V85rV holds in good approximation.

The assumption behind the application ofany impact law
is that the impact time is so short compared to the driv
period that it can be neglected. We can use the model of
tip-sample interaction to examine this assumption. Fig
7 shows the distance of the tip from the sample against t
for an impact of velocityv51.531022 m s21. Since this
impact velocity corresponds to only 1.3 times the veloc
cutoff, this is to be considered a low velocity impact. T
dotted line shows the corresponding orbit for an instan
neous law of impact. The finite stiffness of the sample int
duces a time lag of the numerical solution. For the giv
impact velocity this lag is 0.11ms, which is to be compared
to the driving periodT55.5 ms/n to be used below, where
n is the order of the subharmonic orbit.34 Since the stiffness
of the JKR model increases with penetration depth, this t
lag decreases with increasing impact velocity. Assumin

FIG. 6. The impact law resulting from the model of the ti
sample interaction.
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Hertzian stiffness, to which the JKR stiffness tends for lar
penetration depths, we immediately find the time lag to sc
asV2(1/4).

However, the fact that the hysteretic forces act ove
finite range also introduces a timelead of the numerical so-
lution with respect to the trajectory given by an instan
neous impact law, since the net loss of energy due to hys
esis takes place during unloading, that isafter the fictitious
‘‘moment’’ of impact assumed by an impact law. For th
given impact velocity this time lead is 0.2ms and from el-
ementary geometrical considerations we find it to scale
V21. Hence we can conclude in both cases that in the pre
context the use of an instantaneous impact law is justified
sufficiently large impact velocities. With the parameters
the tip-sample interaction given above, the time spent in c
tact during an impact of a typical velocity rises to 5% of t
driving period forn58, which thus may be regarded as
limit to the validity of the instantaneous-impact approxim
tion. However, this limit is strongly dependent on the valu
of sample stiffness and effective tip mass chosen.

Using the model of the tip-sample interaction, we c
numerically solve the equation of motion of a tip of effectiv
massm at the end of a cantilever of stiffnessk and damping
constantg

mz̈1g ż1kz5F@~z2zp!,~ ż2 żp!#, ~16!

where z andzp5s1bcos(vt) denote the position of the tip
and the vibrating platform, respectively.F@D,Ḋ# gives the
tip-sample interaction as a function of their separationD and
its rate of changeḊ. Throughout we takem510212 kg and
consider a cantilever with a free frequency of vibrati
V590 kHz and a quality factor Q540.12,11,35

Figure 8 shows 1000 points of the Poincare´ map defined
in Sec. II at parameter values resulting in a chaotic or
obtained by numerically integrating the equation of moti
16 using a 4/5-order Runge-Kutta algorithm.

FIG. 7. Distance from the sample against time for a low-veloc
impact. Dotted lines show the corresponding trajectory assumin
instantaneous impact.
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B. Behavior of the vibration amplitude as the tip-sample offset
is decreased

An important procedure, which has been extensively
searched experimentally10 and theoretically6,11 in the context
of intermittent-contact mode AFM, is the slow approach
the periodically driven cantilever base towards the sample
the setup discussed here this corresponds to gradually
creasing the offsets between the rest positions of the t
and the vibrating sample.36 At driving frequencies at or nea
the free resonant frequency of the cantilever an almost lin
decrease of the vibration amplitude of the tip is observ
ending with the tip stuck to the sample due to adhesion. T
linear decrease in amplitude is found to be fairly independ
of the sample properties.

However, we can expect a more interesting behavio
occur at or near single impact resonances of the
cantilever system, the first of which occurs attwice the free

FIG. 8. The strange attractor found by numerically integrat
the equation of motion~16! for n55.277,b54 nm, ands50.
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resonant frequencyV of the cantilever. Furthermore we ca
compare the predictions of the instantaneous-impact mo
in this situation with the results of dynamic simulations
the tip-sample interaction.

Using Eq.~9! to find the impact phase, we can determi
the amplitude of vibration of stable single-impact orbits—
they exist—just above and below the first resonance, wh
for s50 occurs at a driving frequency of 2V. Figure
9 shows this steady-state amplitude as a function of the
sample offsets and the coefficient of restitutionr with
e51mJ kg21 and the amplitude rescaled to one unit
length ats50. It shows that for a subresonant excitation t
amplitude of vibration of the tip decreases linearly only
sufficiently high values of the coefficient of restitution an
sufficiently far away from resonance. For an excitati
slightly above resonance, the amplitude of vibration is fou
to increasewith the cantilever offset. A similar calculation
with the driving frequency equal to the free frequency
vibration of the cantilever shows the amplitude of vibrati
to decrease linearly withs irrespectively of the coefficien
of restitution. Hence thequalitative dependence of the am
plitude of vibration ass is varied on the coefficient of res
titution is only present near resonance.

This behavior can be understood by considering the
pact phase, which decreases as the magnitude of
cantilever-sample offset is decreased. In the subreso
case, where the impact phase lies below (3/2)p, this implies
a lower velocity of the sample at impact and hence a low
steady state amplitude of vibration, and vice versa for
superresonant case. Alternatively we can think of this pro
dure as shifting the ‘‘tails’’ of the regions of stable singl
impact orbits in Fig. 3 from lower to higher frequencie
which results in the above effects for orbits just below
above the resonancev52V.

If the change in the cantilever-sample offsets proceeds
slowly enough for the system to settle into its new stea
state ass changes, we should expect to observe the sa
c
FIG. 9. Amplitude of the single-impact analyti
solution of the coefficient of restitution model~a!
just below resonancen50.97 and~b! just above
resonancen51.03 with a driving amplitude of
b50.75 nm.
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FIG. 10. Gradually increasings from20.5 to 5
nm while driving the sample slightlybelow reso-
nanceb52 nm,n50.97.
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effects in numerical simulations using the full tip-sample
teraction. Figures 10 and 11 show the trajectory of the
subject to a slow change ins at subresonant and superres
nant driving frequencies respectively. In the subreson
case, a decrease of the amplitude of vibration is obser
leading to the tip getting stuck by adhesion, whereas a
excitation frequency above the resonance condition the
plitude increases to a new steady-state amplitude. Altho
the transition does not proceed strictly adiabatically, res
ing in a delay between the change in the tip-cantilever of
and the change in amplitude, the amplitude response beh
as predicted by the single-impact analytical solution of
instantaneous-impact model.

V. CONCLUSION

In this paper we have analyzed intermittent-contact m
AFM from the point of view that the nonlinearity introduce
-
p
-
nt
d,
n
-
h
t-
et
ves
e

e

by the drastic increase of stiffness on impact from that of
cantilever to that of the tip-sample contact is crucial to
dynamics. As a result of the disparity between the two st
nesses the time the tip and sample spend in contact is
compared to the time between two consecutive impacts
may be brief compared to the driving period. If the latter
the case, the dynamics can be approximately described b
idealized impact law, which instantaneously reverses
relative velocity of the tip and the sample. Hence, it is t
energy loss on impact rather than the exact form of the for
producing this rapid acceleration which is crucial for the d
scription of the dynamics resulting from such impacts.

A modification of the coefficient-of-restitution law incor
porating adhesion was considered, allowing for two indep
dent forms of energy loss: a loss of energy proportiona
the kinetic energy of the tip in the frame where the sample
at rest and an absolute loss of energy per impact, mode
FIG. 11. Gradually increasings from 22 to 2
nm while driving the sample slightlyabovereso-
nanceb54 nm,n51.01.
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the effects of adhesion. It was found that the single imp
orbits for this impact law are similar to those of the origin
coefficient-of-restitution law, except at low driving ampl
tudes and low driving frequencies, where the tip rema
‘‘stuck to the sample’’ by adhesion.

A model of the tip-sample interaction based on the J
model of elastic contact but incorporating the effects o
liquid meniscus between tip and the sample was used
determine the form of the impact law. It was found to follo
closely the modified impact law in the presence of adhes
Furthermore, the assumption that the time of impact is b
compared to the driving period was found to be justified
driving frequencies up to an order of magnitude higher th
the free frequency of vibration of the cantilever.

The conclusion that energy dissipation on impact is
prime importance for the dynamics of intermittent-conta
mode AFM implies that it may be possible to use such
setup to develop an experimental tool for imaging and ch
acterizing local energy dissipation on impact, since va
tions in the steady-state amplitude of the cantilever could
used to image the energy loss at the corresponding im
velocities. More importantly, by measuring the amplitudes
y

y
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ys
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n

ct
l

s

a
to
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f
r
n

f
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vibration of the cantilever and the sample at different su
harmonic resonances the impact law can be determined
resonance the impacts occur when the sample velocity is
maximum; hence the impact phase is known and from
amplitudes of vibration of the tip and the sample, the drivi
frequency, and the free frequency of vibration of the can
lever the velocities of the tip before and after impact relat
to the platform can be determined. By varying the drivi
frequency and exciting different subharmonics this relat
can be measured over a range of velocities and the im
law be checked experimentally. This information about t
local energy dissipation on the sample may also yield n
results concerning the dynamic tip-sample interaction.
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